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Abstract. Software systems need to adapt as requirements change, en-
vironment conditions vary, and bugs are discovered and fixed. In systems
that need to provide continuous operation, it is important that the adap-
tation be done with minimal interruption in the execution of the system.
In context of verification of these adaptive systems, the verification needs
to be done for the system before adaptation, for the system during adapta-
tion, and for the system after adaptation. While the existing techniques of
program verification can be directly applied to verify the system before and
the system after adaptation, they cannot be applied directly to verify the
system during adaptation. This is because the system during adaptation
is not well-defined as it consists of parts of both the old system (system
before adaptation) and the new system (system after adaptation). In our
previous work, we presented an approach based on adaptation lattice for
verifying the correctness of dynamic adaptation. The complexity of our
approach depends on the size (number of nodes and edges) of the adapta-
tion lattice, as each node and each edge in the lattice needs to be verified
independently. In this paper, we discuss the tradeoff between concurrency
of adaptation and complexity of verifying that adaptation.

1 Introduction

Software systems evolve or adapt to modify their functional or non-functional
behavior. This adaptation is required because of changes in requirements and/or
environment conditions. The adaptation may reconfigure system parameters, or
add, remove or replace software components. Such adaptation can be done either
statically (during compile-time or load-time) or dynamically (during run-time).
In systems that are required to provide continuous (uninterrupted) service, the
adaptation needs to be done dynamically. In this paper, we focus on the verification
of such dynamic adaptive systems. (For brevity, unless mentioned otherwise, in
this paper, we use adaptation to denote dynamic adaptation.)

The issues in adaptation can be classified into two broad categories: syntactic
and semantic. Syntactic issues in adaptation deal with mechanisms of adapta-
tion, such as, parameter checking, interface compatibility, dynamic loading, and
reflection. Semantic issues address the correctness aspect of adaptation, such as,
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verifying the system during adaptation and the system after adaptation. Several
approaches (e.g. [1–6]) addressing adaptation in distributed systems have been
discussed in literature. However, these approaches mostly address the syntactic
issues in adaptation.

Since current literature does not sufficiently address the semantic issues in
adaptation, in [7], we focused on an approach for verifying adaptation in a dis-
tributed system. Since such adaptation involves modification to several (if not all)
processes involved in the system, it cannot be performed atomically. We, therefore,
introduced the notion of atomic adaptation; typically only a single process will be
involved in an atomic adaptation. Thus, the adaptation in a distributed system
can be modeled as a sequence of several atomic adaptations. It follows that dur-
ing adaptation, the system may consist of parts of the old program (i.e., program
before adaptation) and parts of the new program (i.e., program after adaptation).
Hence, to guarantee correctness of adaptation, in [7], we focus on the properties
of such intermediate programs.

To verify the properties of an adaptive program, in [7], we introduced an adap-
tation lattice. Specifically this lattice enables us to verify properties of adaptation
by verifying the (safety) properties of these intermediate programs. Each node
in the lattice corresponds to an intermediate program and needs to be verified
independently. Further, each edge in the lattice also needs to be verified. Thus,
the complexity of verification depends on the size of the adaptation lattice.

In this paper, we investigate approaches for reducing the size of the adapta-
tion lattice and, thereby reduce the cost of verification of adaptation. Specifically,
we evaluate the tradeoff between concurrency of adaptation and the verification
complexity of that adaptation. We show that such a tradeoff — that is previously
considered in the context of concurrency and verification of single non-adaptive
programs — can be extended in the context of adaptive systems. We illustrate
this tradeoff using the case study in which the adaptation replaces a centralized
mutual exclusion protocol ([8]) with a distributed mutual exclusion protocol ([9]).

Organization of the paper. In Section 2, we discuss how distributed pro-
grams and adaptations are modeled. We describe the adaptation lattice used in
verification of adaptation in Section 3. The tradeoff in verifying adaptation is
discussed in Section 4. We present our case study in Section 5. In Section 6, we
discuss some issues related to our work, and finally conclude in Section 7.

2 Modeling Adaptation

In this section, we describe how we model the adaptive programs in order to show
their correctness. This modeling is based on our previous work in [7]. We con-
sider adaptations where the program needs to add, remove or replace distributed
protocols. A protocol implements a part of the desired behavior of the system. It
consists of one of more fractions [1]. Each fraction is associated with one process
of the program. For example, consider a protocol that provides secure communi-
cation between a sender and a receiver. Such a protocol consists of two fractions,
namely, encryption fraction at the sender that encrypts the packets before send-
ing and decryption fraction at the receiver that decrypts the encrypted packets
received from the sender. For simplicity, we consider only one fraction at each pro-



cess, although, our approach can be used even if multiple fractions are associated
at a process.

Atomic Adaptation. To add a protocol to a distributed program, each frac-
tion of the protocol needs to be added at processes of the program. Similarly, to
remove a protocol, each fraction of the component needs to be removed from the
corresponding process of the program. Thus, an adaptation in distributed system
involves changes at various processes of the system. In other words, adaptation
in distributed programs involves multiple steps. The key to verifying adaptation
in distributed programs is identifying individual atomic steps in adaptation. We
divide this multi-step adaptation into multiple atomic adaptations each occur-
ring at only one process. Thus, an adaptation consists of a sequence of atomic
adaptations. Each atomic adaptation a special type of action (defined later in
this section) and is represented by a name and has a guard (defined later in this
section). An atomic adaptation is performed when the guard corresponding to it
becomes true.

Intermediate Program. We define a system before adaptation as old pro-
gram and a system after adaptation as new program. Each atomic adaptation
modifies the system into an intermediate program. The first atomic adaptation
modifies the old program into the first intermediate program. Similarly, other
atomic adaptations modifies one intermediate program into the next intermediate
program. The last atomic adaptation results into the new program.

In the case study discussed in Section 5, we consider adaptation that performs
replacement of protocols. Addition and removal of protocols are considered as
special case of replacement (cf. Section 6).

Now, we discuss how we model such distributed programs and the multi-step
adaptation performed in them. We note that general purpose languages such as
C++/Java that are used in existing adaptation techniques (e.g., [1–4, 10]) are
not suitable for our task as verification of programs in these languages is difficult
even in the absence of adaptation. For this reason, while proving correctness of
programs, we often consider their abstract version where several implementation
details are omitted. We use a variation of the guarded commands [11] for our
purpose. We note that there are techniques [12] that allow one to obtain a guarded
command representation from a program in general purpose language such as C.
Also, there are techniques [13,14] that allow one to transform a program in guarded
commands into a program in general purpose languages. We describe the modeling
of the distributed programs and their adaptation, next.

2.1 Modeling Adaptive Program

Program and Process. A program P is specified by a set of global constants, a
set of global variables and a finite set of processes. A process p is specified by a set
of local constants, a set of local variables and a finite set of actions (defined later in
this section). Variables declared in P can be read and written by the actions of all
processes. The processes in a program communicate with one another by sending
and receiving messages over unbounded channels that connect the processes. We
use the notation ch.p.q to denote the content of the channel from process p to
process q, and #ch.p.q to denote the number of messages in the channel from p

to q.



Protocol and its Fractions. A protocol is a set of global constants, a set
of global variables, and a finite set of fractions that are involved in providing a
common functionality. A fraction is a set of local constants, a set of local variables,
and a finite set of actions that are associated with a single process. A protocol and
a fraction also has input parameters, which are values of the variables supplied by
the program; and output parameters, which are values returned to the program.
State and State Predicate. A state of process p is defined by a value for each
variable of p, chosen from the predefined domain of the variable. A state of program
P is defined by a value for each global variable of P , the state of all its processes
and the contents of all channels. A state predicate of p is a boolean expression over
the constants and variables of p. A state predicate of P is a boolean expression over
constants and variables of all processes, all global constants and global variables,
and the contents of all channels. A state and a state predicate of a protocol and
a fraction are defined accordingly.
Action. An action of p is uniquely identified by a name, and is of the form

〈name〉 : 〈guard〉 → 〈statement〉

A guard is a combination of one or more of the following: a state predicate of p, a
receiving guard of p, or a timeout guard. A receiving guard of p is of the form rcv

〈message〉 from 〈q〉. A timeout guard is of the form timeout 〈state predicate of P〉.
The statement of an action updates zero or more variables and/or sends one or
more messages. An action can be executed only if its guard evaluates to true. To
execute an action, the statement of that action is executed atomically. A sending
statement of p is of the form send 〈message〉 to 〈q1, ..., qn〉, which sends a message
to one or more processes . We say that an action of p is enabled in a state of P iff
its guard evaluates to true in that state.
Computation. A computation of P is a sequence of states s0, s1, ... such that for
each j, j > 0, sj is obtained from state sj−1 by executing an action of P that is en-
abled in the state sj−1, and satisfies the following conditions: (i) Non-determinism:
Any action that is enabled in a state of P can be selected for execution at that
state, (ii) Atomicity: Enabled actions in P are executed one at a time, (iii) Fair-
ness: If an action is continuously enabled along the states in the sequence, then
that action is eventually chosen for execution, and (iv) Maximality: Maximality
of the sequence means that if the sequence is finite then the guard of each action
in P is false in the final state.
Closure. Let S be a state predicate. An action ac of p preserves S iff in any state
where S is true and ac is enabled, atomically executing the statement of ac yields
a state where S continues to be true. S is closed in a set of actions iff each action
in that set preserves S.
Specification. The program specification is a set of acceptable computations. Fol-
lowing Alpern and Schneider [15], specification can be decomposed into a safety
specification and a liveness specification. Also, as shown in [16], for a rich class of
specifications, safety specification can be represented as a set of bad transitions
that should not occur in program computations. Hence, we represent this safety
specification by a set of bad transitions that should not occur in program com-
putations. We omit the representation of liveness specification here as it is not
required for our purpose.
Satisfies. P satisfies specification from S iff each computation of P that starts
from a state where S is true is in the specification.



Invariant. The state predicate S of P is an invariant iff (i) S is closed in P , and
(ii) P satisfies specification from S.
Specification during adaptation. We argue that while the specification before
and after adaptation can be arbitrary, the specification during adaptation should
be a safety specification. This is due to the fact that one often wants the adaptation
to be completed as quickly as possible. Hence, it is desirable not to delay the
adaptation task to satisfy the liveness specification during adaptation. Rather, it
is desirable to guarantee that, after adaptation, the program reaches states from
where its (new) safety and liveness specification is satisfied. Thus, the implicit
liveness specification during adaptation is that the adaptation completes.
Notation. We use the notation X Y Y Y Z to imply that only one of X , Y , or Z

is true at a time.

3 Verifying Adaptation

In this section, we recall the relevant definitions and results from [7]. These defini-
tions include adaptation lattice, transitional-invariants and transitional-invariant
lattice.
Adaptation lattice. An adaptation lattice is a finite directed acyclic graph in
which each node is labeled with one or more predicates and each edge is labeled
with an atomic adaptation, such that,

1. There is a single entry node P having no incoming edges. The entry node
is associated with predicates over the variables of the old program, i.e., the
program before adaptation. The entry node is also called a start node.

2. There is a single exit node Q having no outgoing edges. The exit node is
associated with predicates over the variables of the new program, i.e., the
program after adaptation. The exit node is also called an end node.

3. Each intermediate node R that has at least one incoming and outgoing edge
is associated with predicates over the variables of both the old and the new
program.

In the context of adaptation, the program adds and removes components, and
thus, the program during adaptation consists of actions of the old program and the
new program. Therefore, we consider intermediate programs obtained after one or
more atomic adaptations. Similar to the invariants that are used to identify “legal”
program states and are closed under program execution, we define transitional-
invariants.
Transitional-invariant. A transitional-invariant is a predicate that is true
throughout the execution of an intermediate program and is closed under the
old program actions that are not yet removed and the new program actions that
are already added. However, the atomic adaptations do not necessarily preserve
the transitional-invariant. Now, we define transitional-invariant lattice.
Transitional-invariant lattice. A transitional-invariant lattice is an adaptation
lattice with each node having one predicate and that satisfies the following five
conditions (see Fig. 1 for an example):

1. The entry node P is associated with an invariant SP of the program before
adaptation.

2. The exit node Q is associated with an invariant SQ of the program after
adaptation.



3. Each intermediate node R is associated with a transitional-invariant TS R,
such that any intermediate program at R (i.e., intermediate program obtained
by performing adaptations from the entry node to R) satisfies the (safety)
specification during adaptation from TSR.

4. If a node labeled Ri has an outgoing edge labeled A to a node labeled Rj , then
performing atomic adaptation A in any state where TSRi

holds and guard of
A is true results in a state where TSRj

holds, and the transition obtained by
A satisfies the safety specification during adaptation.

5. If a node labeled R has outgoing edges labeled a1, a2, ..., ak to nodes labeled
R1, R2, ..., Rk, respectively, then in any execution of any intermediate program
at R that starts in a state where TSR is true, eventually, the guard of at least
one atomic adaptation ai, 1 ≤ i ≤ k, becomes true and remains true thereafter
and, hence, eventually some ai will be performed.

Remark. An intermediate node R could be reached by multiple paths. Therefore,
it is required that TSR be met for each intermediate program corresponding to
the path.
Now, to prove the correctness of adaptation, we need to find a transitional-
invariant lattice corresponding to the adaptation. This is stated formally by the
following theorem: (We refer readers to [17] for the proof.)

�

����

�

��

��

��

��

Fig. 1. An example of a transitional-invariant lattice

Theorem. Given SP as the invariant of the program before adaptation and
SQ as the invariant of the program after adaptation, if there is a transitional-
invariant lattice for an adaptation with entry node associated with SP and exit
node associated with SQ, then the adaptation depicted by that lattice is correct
(i.e., while the adaptation is being performed the specification during adaptation
is satisfied and after the adaptation completes, the application satisfies the new
specification). ut

4 Concurrency v/s Complexity of Verification

In an adaptation, the atomic adaptations occurring at different processes may
occur in an asynchronous manner. Therefore, to verify a given adaptation, we
need to consider all possible orderings of concurrent atomic adaptations. As a
result, in the adaptation lattice, we have multiple paths from start node to end
node to encompass all possible orderings among concurrent atomic adaptations.
Each path from start node to end node in the lattice denotes a possible adaptation



from an old program to a new program. We call a path in the lattice from the
start node to the end node as an adaptation path.

Putting concurrent atomic adaptations in various possible orderings is a po-
tential cause of the explosion in size of the adaptation lattice. For example, if an
adaptation consists of n atomic adaptations that can be executed concurrently,
then there are n! different orderings and 2n − 2 different intermediate programs.
Thus, 2n − 2 transitional-invariants need to be identified corresponding to each
intermediate program. The adaptation lattice in this case is as shown in Fig. 2(a)
for n = 3. To identify all these transitional-invariants and verify the corresponding
intermediate programs is a difficult process.
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Fig. 2. Executing three atomic adaptations

Clearly, the specification during adaptation is satisfied, if the adaptation fol-
lows any path in the lattice. So instead of choosing to verify all adaptation paths,
if we verify only one path (e.g. a1, a3, a2), then the lattice would be as shown in
Fig. 2(b). For specification during adaptation to be satisfied the adaptation must
follow this path, i.e., a1 has to occur before a3, and a3 has to occur before a2. In
this case there is no concurrency of adaptation, and we are able to reduce the cost
of verification from O(2n) to O(n). Specifically, for n concurrent atomic adapta-
tions, the number of transitional-invariants that needs to be identified is reduced
to n − 1.

Alternatively, we could have chosen a lattice as shown in Fig. 2(c). In this
case the cost of verification is more compared to the lattice in Fig. 2(b), but less
compared to the lattice in Fig. 2(a). Also, the concurrency in the lattice in Fig.
2(c) is more compared to the lattice in Fig. 2(b), but less when compared to the
lattice in Fig. 2(a).

Thus, based on the tradeoff between concurrency of adaptation and complexity
of verifying that adaptation, we can choose a subgraph (sublattice) of a given
lattice that has all the properties of the adaptation lattice as defined in Section
3. The adaptation in this case has to be constrained so that it follows some path
in the sublattice.



5 Case Study

In this section, we illustrate the tradeoff between concurrency of adaptation and
complexity of verifying that adaptation using the replacement of mutual exclusion
protocols. We describe adaptation from a centralized mutual exclusion protocol
to a distributed mutual exclusion protocol, and demonstrate how the ordering
among atomic adaptations reduces the size of the adaptation lattice. We choose
these two extreme solutions of mutual exclusion protocols, because it is easy to
explain the tradeoff in this context.

We use the component family design [18] to model these two protocols. The
component family design focuses on building a family of components involved
in providing similar functionality. For separating the adaptation concern, each
component in a family consists of two parts (i) a functional part, and (ii) an
adapt-active part. The adapt-active part consists of actions that are needed only
during adaptation.

In this case study, we build a family of mutual exclusion protocols. We con-
sider two protocols in the family, a centralized mutual exclusion protocol and a
distributed mutual exclusion protocol. We consider mutual exclusion by Felten
and Rabinovich [8] for centralized mutual exclusion protocol, and by Ricart and
Agrawala [9] for distributed mutual exclusion protocol.

In the following subsections, we describe the details of these protocols. These
protocols are installed on a distributed program consisting of N processes. Each
process is denoted by i (1 ≤ i ≤ N). Each process i has two output variables
tryi and reseti, which are inputs to the mutual exclusion protocol; and two input
variables criti and remi, which are outputs of the mutual exclusion protocol. When
a process wants access to the critical section, it sets tryi to true. The process can
access the critical section only when criti is set to true. When it has finished
accessing the critical section it sets reseti to true. When a process is not accessing
or requesting the critical section, the mutual exclusion protocol sets remi to true.

5.1 Centralized Mutual Exclusion Protocol

In centralized mutual exclusion protocol, one of the node acts as a master node.
The role of the master node is to assign the permission to the critical section to
the requesting nodes. If a client needs to access the critical section, it requests the
token from the master. The master maintains a list of nodes that have requested
the token. It grants the token to the first node in the queue. A client node after
finishing its critical section informs the master; whereupon the master will remove
that client from the list, and grant the token to the next node in the list.

The centralized mutual exclusion protocol is shown in Fig. 3. Each fraction
CentralME.fi of the protocol is installed at the corresponding process i of the
distributed program. The master fraction is denoted by CentralME.m (m = fi for
some i). A client requests the token by sending REQUEST message to the master.
The master maintains two data structures: the activeQ contains a list of nodes
that have requested the token, and which will receive the token without further
action by the master; the passiveQ is a list of nodes that have requested the token,
but whose requests will not be satisfied until the master sends further messages.
A client node receives the token by the arrival of the GRANT message. The GRANT

message contains a queue of nodes that have requested the token. When a client



Component CentralME

const minLen, m

Fraction CentralME.fi

input tryi, reseti : bool
output criti : bool {initially false}

remi : bool {initially true}
var afterMe, forwardQ : list {initially φ}

lastbatch : int {initially 0}
critReq, sendingReq : bool {initially false}
activeQ, passiveQ : list {initially φ}
batch : int {initially 0}

rcvReq : fi = m ∧ rcv REQUEST from fj → passiveQ := passiveQ ◦ j;

rcvDone : fi = m ∧ rcv DONE from fj → activeQ := removeMatchedItem(activeQ, j);

Grant : fi = m ∧ activeQ = φ ∧ passiveQ 6= φ → activeQ := passiveQ;
passiveQ := φ;
send GRANT(batch,activeQ) to head(activeQ);
batch := batch + 1;

Forward : fi = m ∧ length(activeQ) < minLen ∧ passiveQ 6= φ →
send FORWARD(batch,passiveQ) to tail(activeQ);
batch := batch + 1;
activeQ := activeQ ◦ passiveQ ;
passiveQ := φ;

start try : tryi ∧ ¬critReq → critReq, sendingReq := true;
remi := false;

sndReq : critReq ∧ sendingReq → send REQUEST to m;
sendingReq := false;

allowCrit : rcv GRANT(bnum, Q) from m ∨ rcv GRANT(bnum, Q) from fj →
criti := true;
critReq := false;
lastbatch := bnum;
afterMe :=removeFirstItem(Q);

exit : criti ∧ reseti → criti := false;
remi := true;
send DONE to m;
if forwardQ 6= φ

afterMe := afterMe ◦ forwardQ ;
forwardQ := φ;
lastbatch := lastbatch + 1;

if afterMe 6= φ
send GRANT(lastbatch, afterMe) to head(afterMe);

rcvFwd : rcv FORWARD(bnum, Q) from m → if bnum = lastbatch + 1 ∧ ¬criti

send GRANT(bnum, Q) to head(Q);
elseif bnum > lastbatch

forwardQ := Q;

Fig. 3. Centralized Mutual Exclusion Protocol [8]

receives a GRANT message, it removes its own ID from the head of the queue, and
after finishing its critical section, it sends the GRANT message to the first node
in the queue. A client node after finishing its critical section also sends a DONE

message to the master. A master removes the ID of the node from its activeQ
after it receives DONE from that node.

The invariant of the centralized mutual exclusion protocol is as shown in Fig. 4.
Informally, the invariant states that the execution of CentralME protocol satisfies
the following conditions: (i) if a process is in the master’s activeQ list, then either
it is accessing the critical section or its request is still not granted, (ii) if a process
is in the master’s passiveQ list, then its request to access the critical section is still
not granted, and (iii) if a process is accessing the critical section, then all processes
who requested critical section before it have finished accessing the critical section,



T1 ∧ T2 ∧ T3, where

T1 = ∀i : fi ∈ m.activeQ ⇒ fi.critReq Y criti

T2 = ∀i : fi ∈ m.passiveQ ⇒ fi.critReq ∧ ¬criti

T3 = ∀i : criti ⇒ fi ∈ m.activeQ ∧
∀j : fj ∈ precedeList(m.activeQ, fi) :: #ch.fj .m(DONE) = 1 ∧
∀k : fk ∈ succeedList(m.passiveQ, fk) :: (fk .critReq ∧ ¬critk)

Fig. 4. Invariant of CentralME

and all processes who requested critical section after it are still waiting for access
to critical section.

5.2 Distributed Mutual Exclusion Protocol

In distributed mutual exclusion protocol, the nodes communicate with each other
to arrive at a consensus on what process will get access to the critical section. There
are several distributed mutual exclusion protocols; most of them can be classified
into two categories: quorum-based and token-based protocols. In quorum-based
protocols, each node maintains its own local lock that can be given to one process
at a time. In order to attain a mutual exclusion, a process must obtain local locks
on a set of nodes called a quorum. Quorums are defined in such a way that any
two of them have at least one node in common, which ensures at most one process
can succeed in obtaining local locks from a quorum. In token-based protocols,
the mutual exclusion privilege is associated with the possession of a token. The
protocols ensure that there is always only one valid token in the system, and hence,
mutual exclusion is enforced. We consider the Ricart-Agrawala protocol [9] for
achieving mutual exclusion in a network, which is one of the well-known protocols
in distributed computing.

The distributed mutual exclusion protocol is shown in Fig. 5. A node making
an attempt to invoke mutual exclusion sends a REQUEST message to all other
nodes. Upon receipt of the REQUEST message, the other node either sends a REPLY

immediately or defers a response until after it leaves its own critical section. A
REPLY message is returned immediately if the originator of the REQUEST message
has priority; otherwise, the REPLY is delayed. The priority order decision is made
by comparing a sequence number present in each REQUEST message. If the sequence
numbers are equal, the node numbers are compared to determine which node will
get access to critical section first. A node can access the critical section after all
other nodes have sent their REPLY messages.

The invariant of the distributed mutual exclusion protocol is as shown in Fig. 6.
Informally, the invariant states that the execution of RicartAgrawalaME satisfies
the following conditions: (i) if fj has received a request from fi, then the highest
sequence number (highestseqno) of fj is greater than or equal to the sequence
number (seqno) of fi, and (ii) if fj has received a request from fi, it will grant
its permission to fi if fj itself is not requesting for access to the critical section,
or the sequence number of fi is less than fj ’s sequence number, or if the sequence
numbers are same, then i < j.

Notation. Instead of CentralME.fi (respectively, RicartAgrawalaME.fi), we use
fi if the component CentralME (respectively, RicartAgrawalaME) is obvious from



Component RicartAgrawalaME

const N

Fraction RicartAgrawalaME.fi

input tryi, reseti : bool
output criti : bool {initially false}

remi : bool {initially true}
var seqno : int {initially arbitrary}

highestseqno : int {initially 0}
replycnt : int {initially arbitrary}
critReq, sendingReq : bool {initially false}
defReply : array [1 : N ] of bool

{initially false}

start try : tryi ∧ ¬critReq → critReq, sendingReq := true;
remi := false;

sndReq : critReq ∧ sendingReq → seqno := highestseqno + 1;
replycnt := N − 1;
for p = 1 to N

if i 6= p
send REQUEST(seqno) to fp;

sendingReq := false;

rcvRep : rcv REPLY from fj → replycnt := replycnt − 1;

allowCrit : critReq ∧ replycnt = 0 → criti := true;
critReq := false;

exit : criti ∧ reseti → criti := false;
remi := true;
for j = 1 to N

if defReply[j]
defReply[j] := false;
send REPLY to fj ;

rcvReqt : rcv REQUEST(k) from fj → if highestseqno < k
highestseqno := k;

defReply[j] := critReq ∧ (seqno, i) ≺ (k, j);
if ¬defReply[j]

send REPLY to fj ;

Fig. 5. RicartAgrawala Mutual Exclusion Protocol [9]

S1 ∧ S2, where

S1 = request received(fi, fj) ⇒ fi.seqno ≤ fj .hsn

S2 = granted(fi, fj) ⇒ ¬fj .critReq ∨ (fi.seqno, i) ≺ (fj .seqno, j)

granted(fi, fj) = request received(fi, fj) ∧ ¬fj .defRep[i]

request received(fi, fj) = requested(fi, fj) ∧ #ch.fi.fj (REQUEST) = 0

requested(fi, fj) = fi 6= fj ∧ (fi.(rcv REPLY from fj) ∨
(fi.critReq ∧ ¬fi.sendingReq) ∨ (fi.critReq ∧ fi.replycnt = 0))

Fig. 6. Invariant of RicartAgrawalaME

the context. We refer the variable var of fraction fi as fi.var, and of process i as
vari.

5.3 Adaptation

Centralized mutual exclusion protocols requires less message passing between
nodes, but is vulnerable to load on the master. When the master node is un-
der heavy load, the system should dynamically adapt to a distributed mutual
exclusion protocol. We consider the adaptation from the centralized mutual ex-



clusion protocol (cf. Fig. 3) to the distributed mutual exclusion protocol (cf. Fig.
5).

One way to do this adaptation would be to initially stop all the processes from
requesting access to critical section. After all processes that requested access to
the critical section have finished accessing the critical section, the corresponding
fractions can be changed. The processes can start requesting access to critical sec-
tion only when the adaptation (protocol replacement) is complete. This approach
is similar to doing the adaptation statically, i.e., to stop the application and re-
compile (or reload) the application with the new protocol and then restart the
application. This approach of doing adaptation leads to unnecessary interruption
and blocking.

Another way of doing adaptation is to do the protocol replacement without
blocking (stopping) the entire application. It would be desirable to let processes
continue requesting access to critical section while the protocols are being replaced.
The adaptation is done as shown in Fig. 7, which describes the adapt-active parts
of each fractions that are involved in the adaptation. The adapt-active parts of the
fractions contain the atomic adaptations that are associated with them. The name
of each atomic adaptation has two subscripts (e.g., a1i). The first subscript denotes
the order in the sequence of atomic adaptation. Since all atomic adaptations has
the same first subscript, it means that they can be executed concurrently (in any
order). The second subscript denotes the process that the atomic adaptation is
associated with. At each process i, there are two atomic adaptations that have
same name a1i, one associated with CentralME.fi fraction and other associated
with RicartAgrawalaME.fi fraction. This implies that removal of CentralME.fi

and addition of RicartAgrawalaME.fi needs to be done in an atomic manner.

Adapt-active parts

Fraction : CentralME.fi

a1i : ¬criti → remove fi;

Fraction : RicartAgrawalaME.fi

a1i : a1i (CentralME.fi) → add fi;

Fig. 7. Adaptation from CentralME to RicartAgrawalaME

In this adaptation, the fraction at a process is replaced if that process is not
accessing the critical section. During adaptation, some process will have the old
fractions running while some will have the new fractions running. If the new (Ri-
cartAgrawalaME) fraction receives any message (REQUEST, DONE, GRANT) from the
old (CentralME) fraction, then that message is discarded. Any message (REQUEST)
sent by the new (RicartAgrawalaME) fraction to the process still using the old
(CentralME) fraction is buffered, and is made available to the new fraction once
it replaces the old fraction at that process. In this adaptation, the process with
new fraction can start requesting access to critical section before the adaptation
completes. However, that process will be granted access to critical section only
when all processes have completed their atomic adaptation. Further, the system
does not have to wait for all processes to be out of critical section before initiating
adaptation.
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Fig. 8. Transitional-invariant lattices

The transitional-invariant lattice in this case consists of 2N − 2 transitional-
invariants, and N ! orderings as atomic adaptations are interleaved in all possible
ways. To verify the adaptation, each node and each edge in the lattice needs to
be verified independently. The complexity of the verification grows exponentially
with the number of processes. The transitional invariant lattice for the adaptation
of Fig. 7 for N = 3 is shown in Fig. 8(a). To simplify the verification, we model
the adaptation as discussed next.

Constrained Adaptation. To simplify verification, we model the adapta-
tion by introducing constraints on the atomic adaptations. We introduce priority
among the processes such that a process having a lower ID executes an atomic
adaptation before a process having a higher ID. This is shown in Fig. 9. In this
case, as shown in Fig. 8(b), there is only one ordering and n − 1 transitional-
invariants.

Adapt-active parts

Fraction : CentralME.fi

a1i : (i 6= 1 ∧ a1(i−1)) ∧ ¬criti → remove fi;

Fraction : RicartAgrawalaME.fi

a1i : a1i (CentralME.fi) → add fi;

Fig. 9. Constrained Adaptation from CentralME to RicartAgrawalaME

6 Discussion

In this section, we explain some of the issues related to our work.

How is the verification of the program before adaptation and the program after
adaptation related to our approach? Why is it necessary to verify program during
adaptation?

Since the program and the specification before adaptation is fixed, we can use
existing techniques, such as model-checking and theorem-proving, to verify the
program before adaptation. These techniques can also be used to verify the pro-
gram after adaptation, as the program and specification after adaptation is also



fixed, though different from the old program and specification. However, verifying
the old and new program is not enough, as the specification during adaptation
is also to be satisfied. For example, as discussed in Section 5, while replacing
mutual exclusion protocol we still want to satisfy mutual exclusion property dur-
ing adaptation. Moreover, since the program during adaptation is not fixed, it
is not straightforward to use the existing techniques such as model-checking and
theorem-proving for verification. As shown in the Section 3, the intermediate pro-
grams and the transitional-invariants need to identified for verifying program dur-
ing adaptation. The results of verification of the old and the new program are
used in instantiating the start node and the end node in the lattice.

How does enforcing ordering among atomic adaptations affect the execution of
adaptation?

Executing the atomic adaptations in a predefined order may increase the
amount of time it takes to complete the adaptation compared to the case where
these atomic adaptations can be executed concurrently. However, since all atomic
adaptations need to be executed in order for the adaptation to complete, a delay
in any atomic adaptation may delay the entire adaptation. In order to reduce the
verification complexity while minimizing the execution time of adaptation, one
can enforce the ordering only on a subset of concurrent atomic adaptations.

Can the verification complexity be reduced in presence of concurrent atomic adap-
tations?

In this paper, we reduced the verification complexity by introducing constraints
on the adaptation to enforce some ordering among concurrent atomic adaptations.
In case where the concurrent atomic adaptations are similar, the different adapta-
tion paths in the adaptation lattice would be also similar. If it is possible to verify
a subset of these paths and imply the correctness of other paths based on the sim-
ilarity among atomic adaptations, then this approach will reduce the verification
complexity in presence of concurrent atomic adaptations.

7 Conclusion

In this paper we discussed an approach based on the adaptation lattice to ver-
ify the dynamic adaptation and the tradeoff between concurrency of adaptation
and complexity of verifying that adaptation. We discussed how the enforcing of
ordering among atomic adaptations can reduce the complexity of verifying adap-
tation. We presented our results using the case study of dynamic adaptation from
centralized mutual exclusion protocol to a distributed mutual exclusion protocol.

The results from our case study in this paper suggests that by setting ap-
propriate constraints on adaptation, we can reduce the complexity of verifying
the adaptation, and thereby, making it easy to provide assurance guarantees for
adaptation.

As discussed in Section 6, we would like to reduce the verification complexity
without altering the concurrency of adaptation. In this context, we would like
to investigate if it is possible to provide assurance of the entire lattice by veri-
fying only a subset of the lattice. Though not formally established, our current
results suggest that this may be possible in case where there is similarity among
adaptation paths in the lattice. As a part of future work, we want to use some of



the results from partial order reduction in model-checking and apply them in the
context of verifying adaptation using adaptation lattice.
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