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Abstract

The purpose of this work was twofold: (a) To develop numerical or analytical methods
capable of dealing with the combination of three-dimensionality and strong anisotropy
that occurs in the plume region near the exit of a Hall thruster, and (b) To explore the use
of fluid-based models in plume computations, so as to overcome the granularity
associated with normal particle-based approaches. In area (a) we have carefully
formulated the 3D near-plume problem using a combination of heavy particle tracking
and magnetized electron fluid equations, and have to a large extent clarified the structure
of the solutions, such that numerical implementation should be greatly facilitated. In area
(b) we have concentrated on an examination of the far-field of the plume, where the
geomagnetic field takes over the dynamics. Again, only a formulation and a suggested
method for numerical implementation were completed. Two graduate Theses are still in
progress in these two areas, and we expect to issue a supplementary report when they are
finalized.
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1 Near-exit plume model

1.1 Introduction

A multiplicity of plume codes based on hybrid simulation has been developed by many
researchers [1,2,3,4] these codes mature and comparisons are attempted to lab or space
plume data, it becomes evident that one of the essential ingredients is the distributions of
density, velocity and temperature of the ions at the initial plane, which is either the
thruster exit plane, or a plane chosen some short distance downstream from the exit. Our
work intends to improve present models for initial plane distributions in Hall thrusters by
solving accurately the near-exit zone.

The near-exit plume is characterized by different aspects that are not covered in the usual
plume models:

* Strong magnetic field.

* Ionization.

* 3D effects in the electron population induced by the hollow cathode.

Such effects can be taken into account by a hybrid model. Heavy particles, ions and
neutrals, are modeled using Particle-In-Cell (PIC) methods, whereas electrons are
considered as a continuum. The main difference with respect to previous hybrid plume
model is in the electron treatment, which includes the 3D anisotropy induced by the
magnetic field.

Cathode

by cathode ]•

Figure 1.1 Near-exit plume diagram. The cathode induces a highly anisotropic profile. Due to the fast
diffusion along the magnetic field lines, its effect extends far.
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Figure 1.1 presents the typical geometry in the near-exit plume. Even though the
geometry of the acceleration channel and the magnetic field is axi-symmetric, the cathode
breaks the symmetry. The diffusion along the magnetic lines is much larger than the
perpendicular diffusion. Thus, the cathode imposes the electron temperature and the
electric potential on the magnetic lines that touch it. The effect of the cathode extends
really far due to the fast diffusion along the magnetic lines. This effect and its range is
difficult to model because the transport across the magnetic lines has two components
very different in nature and value: the diamagnetic transport, perpendicular to the driving
potential gradient, modified by the pressure gradient, and the collisional perpendicular
transport. The diamagnetic transport is closely related to the E x B drift and it is a
consequence of the Larmor motion. The collisional perpendicular transport, much smaller
in size, has to do with perturbations on the Larmor motion, such as collisions or
turbulence. Note that in the axi-symmetric models, the diamagnetic transport lays in the
azimuthal direction, balancing out. However, in a 3D case, such as this one, this transport
has to be taken into account because it is the most important contribution in the direction
perpendicular to the magnetic field.

In what follows we discuss the electron fluid equations and the special mathematical
difficulties that appear as a consequence of the combination of strong magnetization and
three-dimensionality.

1.2 Electron equations
Electrons are modeled as a continuum. The equations to be solved are charge, momentum
and energy conservation.

Since the Larmor radius is really small compared to the typical length in the problem, a
simple diffusive model is proposed for all these equations. Such an approximation is
acceptable for the motion perpendicular to the magnetic field lines, but it is not as correct
along the lines. However, the proposed model is expected to yield results that contain
most of the physics.

In the next subsections, the different equations are described and explained briefly.

1.2.1 Charge conservation

Assuming quasineutrality:

V- j +V-je =0 (1.1)

ji is the ion current density, and it is obtained in the PIC submodel. j, = -eneve is the
electron current density. It is one of the unknowns that must be obtained from the
electron equations.
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Momentum conservation

In the diffusive limit:

O=--I-V(rieT)+ fnie Vr+ l±(oeie X b+-V j (1.2)me me e e

where 0b is the electrostatic potential, Te the electron temperature, oe = eB/me is the

gyrofrequency, 6 B / B is the unit vector in the same direction as the magnetic field and
Ve is a frequency that measures the collisionality and turbulence.

je can be solved from this equation:

Je = Jb 6 + Jell + Jet (1.3)

where

Jeb b[V* + e VTe(lnne -1)1 (1.4)

Jll -Urnb x VO* + IVe(n,- 1 (1.5)
e

Je±l =-U,[ViLV- +lV±Y(lnne -1)] (1.6)

Jeb is the current along the magnetic field line. jH is the diamagnetic component of the
current. It contains the electron current due to the E x B drift, plus the curvature and VB
drifts. je, is the collisional perpendicular current. It accounts for collisions and

turbulence.

It is important to point out that in axi-symmetric cases, JeH is aimed in the azimuthal

direction, therefore cancelling exactly. Thus, it is not usually included in 2D models.

In these equations, the thermalizedpotential, 0K% is used. It is defined as:

* = 0- T-T- inn, (1.7)
e

V. = V - -V is the gradient in the perpendicular direction to the magnetic field.
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The conductivity for the plasma is different in the different spatial directions. In
equationsl.4, 1.5 andl.6, these conductivities are called ob, oCH and a,:

e21e

b - ne(1.8)meve

2
ene 2 e n ene

2H 2 (V, << Coe) (1.9)
me oe + v B

ene 2 (1.10)

me We + Ve

Considering that ve << coe near the exit:

-b >> 0"H >> O'i

The ratio between these different conductivities is the hall parameter, PH= oe Ive. For

example, rb /IUH PH , or crH / al -P8H. This means that the plasma tends to

homogenize much faster along the magnetic lines, where o-b is the conductivity. Then,

along the magnetic lines:

b-Vo*-11.VTe(lnne -)=0 (1.11)
e

Actually, from the energy equation, we will obtain that 6. VTe = 0, which means that

1.11 is:

6.VO* =0 (1.12)

Even though 6- VOb* = 0 and 6. VTe = 0, Jeb is non-zero.

Plugging equation 1.3 into 1.1:
V × (fiorH).-VO*" + V.- (UIV±I*) - V X (fiH) -V(T•/ e) -V .(rV_(Te /e)) = (.3

- V. ji + V- (6]jeb)

7, = 0- (lnne - 1), where j = H,_.

It is important to note that in this equation there are terms of very different order of
magnitude. The terms that contain caH and YH are larger by a factor oe / ve, provided the

other factors in them are comparable to those in other terms.
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1.2.3 Energy conservation

The energy conservation is given by:

at( 2 +e' V -kI-2+e ± -j, e VO- neviaEi (1.14)

where q, is the electron heat conduction flux, and neviaEi are the ionization losses.

The heat conduction can be obtained using a diffusive approximation, similar to the one
used to obtain the electron current density (equation 1.3):

q, = qeb6 +qeH +qe± (1.15)

where

qeb = -'Cb6" VTe (1.16)

qeH =--KH6 XVTe (1.17)

q,l = -KLV-LTe (1.18)

Thermal conductivity is highly anisotropic. The values of the different coefficients are:

Kb = 5f- ee (1.19)

2H 2 , o (1.20)
2 me VeICL5 nT, ve (1.21)

toVe 2 (1.21)
2 22m~e Oe +e

For Coe >> Ve, the coefficients have really different orders of magnitude:

Kb >> KH >> KI

As it happened with the electrical conductivities, the ratio between the different thermal
conductivities is the Hall parameter.

Thermal diffusion is high in the direction of the magnetic field. That means that, as a first
approximation, the temperature is constant along the lines:

6. VT, =0 (1.22)
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Even though 6. VT, is almost zero, qeb is not zero. That means that equation 1.14 can be

written as:

3en a(T')+V -[iqb lfle -Inn, l e j+

+ x (EH)H V0" + V (X1v EI )-

-v x (r-,). v -v . r,1.23

I-(-n n,)- - a -(en,) +ene V, -aE -e In n, - •'

The first term in the LHS is just the time variation term for temperature. The second term
is the energy transport along the magnetic field lines. We would eliminate this term by
integrating along the magnetic lines. Note that the energy transport includes the potential
energy, - ene b. This potential energy transport can be obtained from the Joule heating

term, as we will explain a few paragraphs below. The rest of the LHS terms are transport

terms for energy, depending on 0* (which induces electron current, and, thus, electron

enthalpy transport) and Te (which induces electron current and heat conduction). In all

these terms, potential energy transport is also taken into account. The RHS has two main
contributions: the energy variation due to mass varying in time and the energy change
associated to ionization. In the RHS the potential energy is also accounted for.

The coefficients in the equation are:

Yj¾ =[.5lnn,(5 -Innj (1.24)Le \2

Fj L-nne7_-In n lnn- 1n -lj1 (1.25)

where j = H,I.

Equation 1.23 is obtained by using that:

- j. VO = -V. (je0) + ± OV. j (1.26)

Taking into account that charge conservation for the electron species is

-- a (en,) + V -j, = -eneV,, (1.27)
at

the final expression for the Joule heating is:
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-j," V0 = -V- (jeo) + 0 -a(ene) - Onev, (1.28)

1.2.4 Summary

Equations 1.12, 1.13, 1.22 and 1.23 can be solved for 0T, T' JIb and qeb"

1.3 Integration along magnetic lines

In this problem, two quantities, q" and T,, are constant along the lines. Thus, the

problem is, basically, 2D. Considering this, the problem can be solved in some other,
more natural, coordinates. Let us define 2A, 22 and s such as:

f. V2, =0 (1.29)

6.'VA2 =0 (1.30)

ax- (1.31)

as

where x = (x, y, z) are the spatial coordinates.

V

Magnetic 1
field

Figure 1.2. Magnetic coordinates 2A and 22 in an axil-symmetric magnetic field.

Note that 2A and 22 are two variables that define each magnetic field line (thus, these

variables are constant along magnetic field lines).

We require Vs- (V21 x V2 2) = 0. We can also impose VA1 - V2 2 = 0, but this last
condition is very restrictive and can be relaxed.
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As an example, consider a magnetic field with cylindrical symmetry. In this case, the
variables A, and 22 could be the magnetic flux function and the azimuthal angle (see
figure 1.2)

In this new reference system, the divergence of a vector V is:

V . V= Vs.V + V.a + V2' V (.2Os Vq .- 2. --•2(1.32)

as a~, aA.2

In the new reference system, the volume integrals must be done considering:

dx dy dz = ds d 1 dA2.' x - x (1.33)dxdydz~dsd~ az s (,0a 22

Then, the integral of the divergence of V must be:
ax (a 2ax Xj vs (v aV 1

dxdydzV*V=dsddA.2 -, x-/12 J NVs +V -Va 2 -- + (1.34)
as C9 a21 as as., aA2 j

To simplify this expression, first consider the following equivalences:
ax (ax ax " Vs Vs ax ax
ax 4- x Vs= VS - VS - = x x (1.35)as K aa) Vs.(V2xVA2) IV xvX I a2 ,2 aA2

axraX ax V_ = V- - ax ax (1.36)
as 4 aA½ Vs.(VA. 1 xVA2 ) IVýx VA21 as aA2
ax (ax ax "vI v~2 v. 2 x (137

a x ax Va . VA2 VA2 ax Xax
as ýaX a2 = Vs.(Výx VA 2 ) IVXVA 2 2 aS a 1  (3

In these equations we have used VA1 x V2 2 = VAI x V2 2 Iand b.Vs = xa•s VSV=1.

This does not mean that Vs is parallel to 6.

Using equations 1.35, 1.36 and 1.37 to simplify 1.34:

dxdydzV'V=-dsdA Vd. sV- V + a j• + a V/12 _V(1.38)
as V/ýXVA.2 1) aA., \V21 XVA. 2 j) aA2 IV21XVA.21)J

To get to this equation we have used:
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a VS + a ( ~ +2 a V /12
a s J V 1 V 2 ) a ý J ý V 2 1 a 2V1X V 2 1 )( . 9

a ax aO 02 a as a

•las VýýA) +•-lVi as vA aXV•=

Equation 1.38 is important because allows us to simplify the equations. Integrating in s,
that is, along magnetic field lines:

fdF(' VSv _ +_ aw _-v a + V2'V(IV'{ X VA2 V/ X V2 2  02+ 2 IV2 if :

_E VsV Os B VIý -V OSB VA2 -V T
IV/XVA2 I a~lV2IxV2l2  0 a I2l xV V -i + (1.40)

+ a f jd5 1  J±ý- - a fPds IVi2 -VIJ

Here, sB (2R A2) is the equation that describes the boundaries of our domain. sB can be

so or s,.

Considering that F= s - sB (2A,22) = 0 is the equation for the boundary:

VF = Vs-aSB Vh - ýsB Vd•2= kN (1.41)
a2 a022

where lS is the normal to the boundary, and k is simply the magnitude of the vector. It is
also true that:

k_ SN.Vs -V2 SBb.V22 xVs (1.42)
sBo 022 = S

Then, k = 1/(6. N) and we can write:

VS0- v 022 a-B N (1.43)

Finally, the integral of the divergence of V along the magnetic field lines can be written
as:
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togJ dxdydzV -V dýdAd2j VN + VN +
JbN ) I wl x V22  (b.NjVX11 X VA2 1,,, (1.44)

V2 X VA2  a2 V1X VA,2

where VN =V.N.

Let us apply this to equation 1. 13. Among other terms, we will find:

a__ UV14V.j a1 fd, ( cVA2 *(6 Vq)a,ý ~ ~ I~d V~ X '2,2 J A (1.45)

Considering that 6.* = 0:

VO* V,ýLoý+ V/ ao(1.46)

We also know that 6. (VAI x V/12) VAI X VA2 1. Then:

V 2 a a 2 al aOH X OYH q5 (1.47)
__ *CYa UH a*+ Uao

12 aA 2  Bal a,'ý, aA2  aA2 ~a,

where

UH = fdsca, (1.48)

Another term that will appear is:

a d TVl-VL*) aJSldS UHVA 2 -V~q -LO

1 JaI),s ) 0As jVA X V/12I (1.49)
a ~ ~ ~ ~ ~ 0) L-l+a(ar)+ar ai -a

aA,) al a, a2)+ BA2 a,1 1 7 tA2  .22)

where

a- J~ij Asu_ VA 3  ~ for i= 1,2,j=1,2 (1.50)
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In a case where VA •V2 2 =0, the equations are simpler because 0±,12 = (71,21 = 0,

C-L_,,,= Jdscr U- 1 I V /I V2 2 and Oli,22 = Jdso-, VA IV2 V21

Working all terms similarly, equation 1.13 becomes:

aor-H ao* aG9H * 17aH a r aYH a T
+ + a

o4 aA2 a22 a)1  a a22 e a / 2 a e

-4 aoh at (- a4 - a=al'iI a0* ,1j2 )+ a 71,
12 aO +±0U,22 a 2)-

a 'ý(- - Zi) a(A2- aA215
a a -0-aT + aI - a ,,2-a + Y1,22 a04 "•0 e all al4 e 022

~, 'a2~~ 'a2 2 e aA2 \ U 1 e / e,

a fd v.-j, )+ a ('ýds A-I +

ali1ý d I V21XVA21 aA2 1 ~V-lX VA 2IJ)

JiN + eN + JiN + JN

(b-N)IV• x VA22 _ (b.-N)I V•/- XV22

Similarly, equation 1.23 becomes: Ls, 3 en% Isc r

o21V&xV2 at e te

+ QN + QeN

(b.N)V xV/ 2I s (b.N) I V 1 XVA2

axH a + aZH ao * aF" H a Te aIH a T+
a2 aA2  aA2  al, a2l, aA2  e a)ý ~a, e(1.52)

_ __ af- 0(a- aT v aT+ a(•,, , o + •,, 2 . . . + I, Z12-±--+
a4 e all2 2  a , a22 )

= [_aT. a(-aTe aA a_±F 2

f,, IL [i _e- (en,)+ enVi-aA-

"S, I ýXVA 2 2 a

where QN is the total energy flux perpendicular to the boundary

QN qeN -- eNr.- 5 - - (1.53)
-2 e 1
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These equations are equations for q* and Te. Before, leb and qeb were also unknowns,

but integrating along the lines has eliminated these variables. This integration has also
eliminated the dependence with s. Only the dependence with /1 and A.2 is left. These
variables determine univocally each magnetic line. The best way to visualize these
variables is considering an axi-symmetric magnetic field. Then, any cylindrical surface is
cut once and only once by each magnetic line and each point in the cylindrical surface
corresponds univocally to a magnetic line. That is what is plotted in figure 1.2. A1 is

equivalent to the axial coordinate in the cylinder, and A2 is equivalent to the azimuthal
angle.

It is interesting to take a look into the form of the equations. There are terms derived from
the diamagnetic transport, such that

a +Hao* a22 a (1.54)

These terms are characterized by the lack of second derivative and they are usually the
higher order terms in the equation (by a factor oe / v,).

The collisional perpendicular transport terms are diffusion-like, such that

__ aý,, + a -,K- _A7 (1.55)

Since these equations have been integrated along the magnetic lines, the flows across the
boundaries appear, such that

iN + IeN + JiN + JeN (156
(b. N)IVA1, -X V122 ((b. -N) V•- xVA 21 (1.56)

Any other term is just the corresponding contribution from equations 1.13 and 1.23,
integrated along the magnetic field lines.

1.31 Structure of the solution

Both equations 1.51 and 1.52 have similar structure. To study the possible solutions, let
us take equation 1.51 in the simplified case T, = const. and VA1 .VA,2 = 0:

aUHa a+naq5 a +, ']+ a (- a 'aa +i --- 22 - = S (1.57)11 •,t2 oaA2 a& + & a , I'l +& a'2 (_ ',22
aa,1  aA2  aA.2

where CrH, Ur11i, U1,22 and S are known functions of A, and A2.

15



Looking at the order of magnitude of the different coefficients, the terms that contain Ur
are much larger than any other term by a factor coe /v, This means that, to zeroth order:

-- -+- -o =0 (1.58)
a21 a, 2  a'½2 a'a

This equation imposes that 0* is constant along the lines cH= constant.

I Periodic boundary conditions

, .....
/ ,/

Periodic boundary conditionsl\
xl

Figure 1.3. Hall thruster representation in a 21 -- 22 plane. cH= const. lines are plotted.

Note that this equation may not (and usually will not) be enough to determine 1, since

its variation across lines of constant CH is left indeterminate by the neglect of the higher
order terms. Let us look at an usual Hall thruster configuration plotted in a 2A - 22 plane

(see figure 1.3). Assume that 2 and 22 are the axial and azimuthal coordinates that
locate the magnetic field lines (as seen in figure 1.2). A typical configuration of
CHn = const. lines is plotted in the 2 plane. The boundary conditions are imposed on the
upstream and downstream boundaries 2A = const. and on the contour of the image of the

hollow cathode in the 2/ - 22 plane. In addition, periodicity is imposed on the top and

bottom edges. That means that only some of the UH = const. lines have information for
b*. The modified potential in the other lines has to be determined by the next order

equation, which contains diffusion terms.
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The question about the validity of this approximation naturally arises. We have to pay
special attention to the boundaries and the points where the gradient of oUr is zero. In the
next sections we describe the solutions at those zones.

Solution near the boundaries

At a non-periodic boundary intersected by cYH = const. lines, a thin layer may develop.
The physical meaning of such a layer will be discussed later. Now, the mathematical
solution in such a layer will be studied.

a = const.
H

Tl1

Figure 1.4. Coordinate system tangent to the boundaries. Note that the direction of O-H= const.
lines is given by angle a.

In the 2D space 2A -22 it is possible to define, at least locally, two variables, ý and r7

(see figure 1.4), such that the boundary that we are studying is a line = const. and ý is

perpendicular to 77 in the sense that

aý a977- 04 a77 -U01,1 1 a- 0-_1,22 = 0 (1.59)

0201 ,; i +A 022 0

In such variables, and considering that the gradients along q are much larger than along

•, the equation for 0b" would be:

- o 2  r 91±cs" =0 (1.60)

where

o'1,,, = I'll + 1 1 ,22 (1.61)

&YH -1 _ + (1.62)
01 022 022 02,)1
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b

o-H cos a= - +- (1.63)
a', aA2 aA2 aA1

o',•, So-H and a can be considered functions of ý only. These parameters do not
change appreciably in q -direction compared to what they change in ý -direction.

Considering that U±,,, /(ý S-H) - ve coe << 1, there are too possible cases:

a >> /eel . In this case, the o'H = const. lines are far from being parallel to the

boundary. That means that the equation for the solution near the boundary can be
written as:

a2 0 oU-±,7 + - sina_ 0 (1.64)

Since Ur,,,, JUH and a are only functions of ý, the general solution to this
equation is:

A(ý) + B(ý)ex - _ sina (1.65)

This solution only makes sense when sin a > 0, because otherwise there would be
an exponential growth. This means, basically, according to equation 1.62:

allH a77  allH a77
- - >0 (1.66)

a0, aA2  a22 a',

where 7(2R, I2) 0 is the boundary we are interested in, and the vector

(07r/ aA1•, 7 / a22) points inwards in the plane 2A -22.

If the condition in equation 1.66 is not satisfied, there is continuity between the
boundary condition and the solution because there is no boundary layer solution,
that is, the boundary layer solution has exponential growth. This means that the
value of &* in each o-H = const. line is given by the boundary conditions on the
boundaries that DO NOT SATISFY the condition in equation 1.66. The boundary
conditions on the boundaries where equation 1.66 is true do not necessarily
determine the thermalized potential in the an= const. lines: a jump in value
occurs across the thin layer.

a - Iv e . In this case, the Crn = const. lines are almost parallel to the

boundary. Then, the equation for •b is equation 1.60.

This is a parabolic equation, where not only the 77 dependence is important. No
general conclusions can be drawn from this equation. However, the boundaries
are not expected in general to be parallel to the Cn = const. lines, except in small
zones.
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The mathematical solution of the problem makes necessary the presence of these
boundary layers. The thickness of this layers is 5 - L (ve/,oe) in general, and

,5 - Lv Ve/Coe when the boundary and the 'H = const. lines are parallel. L is the
characteristic length in the problem, associated to the density and magnetic field
gradients. The thickness of the layers can be written in terms of the collision mean free
path, 2

mfp' and the Larmor radius, PL. In such variables, 65 - PL (L /
2

mfp). If 2
mfp is

assumed to be the mean free path of classical electron-neutral collisions, the thickness 5
would be a small fraction of the Larmor radius, which makes no physical sense since the
Larmor radius is the smallest characteristic length in the problem. To explain this
apparent contradiction, we should consider that the electron fluid equations as written are
only valid if Amfp << L, or if the classical value of the collision frequency is substituted

by a more accurate anomalous transport coefficient. In the case of an anomalous transport
collision frequency, the equivalent mean free path is 2 mrp - 2OPL < L. Then, the

thickness of the layers by the boundaries would be several gyroradii, which is an
acceptable value. It seems that these boundary layers, where the collisional perpendicular
transport is the most important contribution, must be related to turbulence induced with
wavelength of the order of the Larmor radius, since the classical collision mean free path
cannot explain their presence. Further study is needed to determine the true nature of
these layers.

Solution near extreme points and saddle points of Jr

At a point where aO/H /a = 0 and auH /O22 = 0, the approximation fails. The gradient of
rH can actually be approximated by:

H CH A 8 + •2 A2 (1.67)

a0H _ H A + (1.68)

Locally, two new variables, ý and 77, can be defined to simplify the equation. These new
variables are defined so that the equation has the following form:

+ae a _ J a2 H -, 7 7  a * 0= 0 (1.69)

In this equation, 7±, a 2crH /8a2 and a2 un /87 2 are almost constant.

The solution of this equation just shows a small zone where the diffusion dominates. This
zone is really small and its effect is negligible.
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Except for the cases when -H= const. lines intersect non-periodic boundaries, the
problem of determining the variation across on= const. lines is still unsolved. In
principle, integration along these "drift lines" will yield one-dimensional differential
equations for the variation of the mean variables in the perpendicular ("diffusion")
direction. This is now being studied in detail, the difficulty being related to the existence
of singular saddle points where these directions are ill-defined. This happens in particular
in the vicinity of the cathode's image, because the plasma density, and hence the quantity
F0H, has there a local maximum, immersed in the more general variations due to the main
flow. Some other possible techniques are now under consideration, and further results
will be available when the M.S. thesis by F. Parra is completed.

2 Application of fluid models to plumes

2.1 Introduction

Work on a fluid model aims to address noise and statistics issues inherent to a discrete
approach when simulating a Hall thruster plume expansion. As such, a simplified plasma
model has been chosen as an initial test case to confirm that the fluid model works. This
preliminary case assumes quasineutrality, no neutrals, no magnetic field, no collisions
and neglects electron inertia. Applying these assumptions, the fluid equations are the
ambipolar momentum equation, plus the ion conservation equation:

a(MineVi)V *(mine vi+Pe)=0, (2.1)at

ane + V). (neV|) o. (2.2)

at

After these are solved, the potential, assuming a polytropic model, follows from,

Ze n (2.3)
To eo

Y kT - eo = constant. (2.4)

Note that Equation 2.3 can be regarded as an interpolating approximation between
isentropic flow (y = 5/3 for electrons) and isothermal flow (y = 1).
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Because the form of the fluid plasma equations is hyperbolic, the discontinuous Galerkin
method has been chosen as the preferred solution scheme [5]. The power behind
discontinuous Galerkin is in the way it merges advantages of both finite volume and
finite element methods. The result affords higher-order and thus more accurate solutions
at smaller computational cost.

Solving the simplified plasma model axisymmetrically allows verification of our fluid
model against existing analytical solutions [6]. In this test case, the expansion of a
supersonic jet into vacuum is simulated for comparison to known asymptotic
distributions of the plasma properties. Figure 2.1 gives P0 results, constant across
elements, for normalized density and Mach number. In these figures, a M-1 0 jet is
issuing from the bottom left corner into vacuum conditions. These low-order results are
reasonable -- however, when trying to attain higher-order solutions, numerical difficulties
are encountered and no solution is obtained. These problems remain to be resolved and
will continue to be worked on.

20 20
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(a) Normalized density (b) Mach number

Figure 2.1. P0 results.

2.2 Far-field model

The purpose of the far-field model is to examine how the bulk plume evolves at greater
distances from the thruster exit where the complications of the near-field have already
vanished. In this environment, different physics come into play, most notably the effect
of the geomagnetic field on the final configuration of the plume. The far-field model aims
to expand on previous analytical work and create a numerical model to study this regime.

Formulation of the equations for the far-field model is similar to that for the fluid model,
but does not neglect magnetic field. Assumptions made are quasi-neutrality, static
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magnetic field and Coulomb-dominated collision interactions. Applying these, the
electron momentum equation becomes,

VPe = -ene(E + ve x B)- meneveve, (2.5)

and assuming the electron gas is perfect, pe nekTe, the polytropic relationship can be

used to express VPe as,

VP, r n, kVT,. (2.6)

Using the electron current density, j, = -eneve and E = -VqO, Equation 2.5 can be

rearranged to yield,

-eneV • kTe =j, xB++ mve j, (2.7)r-1 e e

Defining 0* = -' kTf and E* =--V*,
y-l e

oE=j, X6l+je, (2.8)

where e-e and P = eB
meVe meVe

In the far-field, only the geomagnetic field must be accounted for - in general, the field
lines are straight and their interaction with the plume will be determined by their
orientation with the thrust axis. Assume for now that B Earth/ Bz. Taking components of

Equation 2.8,

J= -ex +-2 (E: -fyE;)

1+,82

JeY =e1  ,8 (f8E;*+ E;) (2.9)

jez = 'E*
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One can see that anisotropy in transport arises due to the difference in coefficients of
terms parallel and perpendicular to the magnetic field. Perpendicular terms have an

1 1
additional I factor. In general 8 >> 1, meaning I + << 1 and transport in the

perpendicular direction is much slower than that in the parallel direction.

Assuming steady-state, the continuity equation reduces to V . e 0. Plugging the current

density components in and making use of E" = -VV*, a modified Poisson's equation is
obtained,

a2 " 0a2 0 2 a20"

&x2-Tay2 az 2

+ alnaT aoP*__fa, +O rn'8 Xao" +XaY+x (-•- ax ýy) -•( x ay(2.10)

2 " _ ln_ - -
Dz 8z

The plan is to approach the far-field model with a hybrid approach, treating ions as
particles and electrons as a fluid by solving Equation 2.10. The ion particle distribution is
used to find the plasma density, ne, ne is then input into the electron equation, solution

of which provides the electric field that allows integration of the ion equations to provide
the ion distribution for the next time step.

The primary difficulty will lie in solving Equation 2.10 due to the large discrepancy in
length scale terms caused by the magnetic field. The problem may be made more
tractable by eliminating the anisotropy through a transformation that incorporates the /3

term into the z coordinate, such as a- a where 8 + 8' represents a

constant 83 over the domain and f8' represents the perturbation from the constant value).
A similar result would be obtained by using a stretched grid with the elongation in the z
coordinate. Employing a coordinate transformation or stretched grid alleviates the length
scale difference between x, y and z , but does not help with terms involving /3 and the
x or y coordinate. However, upon closer inspection of these terms in Equation 2.10, it

can be seen that they involve products of V ln(u/fl) and Vo*. If 0b* and Ur//3 are related

to each other, i.e. q5 = F(cr/lf), these cross-terms may cancel one another out and not

pose any difficulties to the numerics. Such a situation is plausible since both 0* and a
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are inherently related to the plasma density, n, The true nature of the equation will be

discovered as this portion of the model is developed further.
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