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Foreword 
 
We considered three main issues in distributed detection in sensor networks: 1) how to compute the 
performance of the detector, e.g., the average probability of error, when the network has an arbitrary (large or 
small) number of sensors;  2) how to quantify network parameter tradeoffs like signal-to-noise ratio, number of 
active sensors in the network, or number of bits per local decision at each sensor; and 3) how to design the 
topology of the network to minimize the number of iterations needed to achieve convergence with a distributed 
consensus algorithm. We developed a large deviation method, a saddlepoint based approximation,  to compute 
the probability of error for sensor networks with arbitrary number of sensors. We used this saddlepoint based 
approach to study the network parameter tradeoffs, in particular, what is the incremental SNR needed to reduce 
the number of sensors or the number of bits quantizing the local decisions at each sensor and achieve the same 
overall performance. Regarding network topology, we studied the design of the topology of a distributed sensor 
network, where the goal is to optimize the rate of convergence of a distributed inference consensus algorithm. 
We showed that this problem is equivalent to a spectral graph design problem: optimizing the rate of 
convergence is equivalent to designing the graph that maximizes a given eigenratio parameter, namely, the ratio 
of the algebraic connectivity, i.e., the second smallest eigenvalue of the graph Laplacian, to the largest 
eigenvalue of the graph Laplacian. We showed that Ramanujan graphs, for which there are explicit algebraic 
constructions, have large eigenratios, converging much faster than structured graphs (like nearest neighbor 
communication graphs), Watts-Sytrogatz small-world graphs, or Erdos-Renyi random graphs. Finally, because 
the constructions available for Ramanujan graphs restrict the number of graph nodes, we proposed a new class 
of graphs that can be constructed with an arbitrary number of nodes and whose convergence properties 
approach those of Ramanujan graphs. 
 
Statement of Problem 
 
The potential for large-scale sensor networks is attracting great interest in many applications in recent years due 
to emerging technological advancements. Increasing levels of electronics and RF circuits integration as well as 
the development of robust signal processing algorithms lend themselves to the deployment of affordable, yet 
reliable sensing systems, which are envisioned as networks of autonomous densely distributed sensor nodes. 
Individually, each sensor node may not accomplish much, but, working cooperatively, they have, for example, 
the potential to monitor large areas, detect the presence or absence of targets, or track moving objects. 
 
The design and analysis of sensor networks for detection applications has received considerable attention in the 
past decade. Our work addressed three issues in distributed inference in large sensor networks: develop a 
method that is computationally feasible and accurate to compute the detection performance associated with a 
sensor network, namely the probability of error; study tradeoffs among network parameters for efficient 
utilization of the network resources; and design the topology of the netwrk, i.e., with which sensors should each 
sensor communicate with to minimize communication among sensors (and so, minimize power consumption, 
bandwith utilization, and channel crowding) in distributed inference algorithms. 
 
Summary of Results 
 
Network detector: Design and Performance Evaluation 
A major difficulty usually encountered in sensor network applications is the high computational cost associated 
with evaluating the detection error probabilities of the network---a combinatorial problem in the number N of 

 
REPORT DOCUMENTATION PAGE (SF298) 

(Continuation Sheet) 
 



sensors---which can be extremely high when the number of sensors is large. Direct evaluation of these 
probabilities is possible only for rather small networks. Our work has developed a computationally fast and 
accurate methodology to evaluate the error, detection, and false alarm probabilities for networks of arbitrary 
size---small, medium, or large number of sensors. Our method is based on large deviation theory 
approximations to these probabilities, in particular, the saddlepoint approximation. 
 
We have illustrated the saddlepoint based methodology by considering a binary hypothesis detection problem in 
which the environment assumes one of two possible states (e.g., a target is present or absent). We focused on a 
parallel network architecture in which the sensors make local decisions based on their own measurements and 
then deliver these local decisions to a fusion center. The local measurements are quantized to b bits, so the local 
detectors can be thought of as b-bit local quantizers. 
 
In this particular architecture, called parallel fusion, there is no communication among the local sensors and the 
fusion center does not sense the physical phenomenon. Fundamental results on distributed detection with a 
parallel architecture date back to the early work of Tenney and Sandell.  
 
Designing the network detector and evaluating the global performance probabilities is a complicated task 
requiring high computational costs that grow as N^{2^{b}-1}, where N is the number of sensors and b is the 
number of bits per local detector. This renders their direct evaluation infeasible, except when the number of 
sensors N or the number of bits b per sensor is small. The literature usually avoids the direct computation of the 
performance probabilities by evaluating their asymptotic exponential decay rate, e.g., given by the Chernoff and 
Kullback-Leibler (KL) distances. These are in certain cases simple to compute, but, we emphasize, such 
measures estimate the asymptotic exponential decay rate of the performance probabilities, not the probabilities 
themselves. Chernoff and KL distances do not help with evaluating the receiver operating characteristics 
(ROC), or designing the fusion rule, say under the Neyman-Pearson criterion, since both require the actual 
detection and false alarm probabilities and not their decay rates. In addition, asymptotic measures are derived 
under limiting conditions, and thus, one has to make sure that these conditions are satisfied before adopting 
such measures in practical scenarios. To evaluate the detection performance probabilities, some authors use the 
normal approximation. The normal approximation can handle many practical problems, but fails often to 
provide acceptable accuracy, especially when the points to be approximated are in the tail regions and far from 
the mean of the decision variable. Simulations show that the normal approximation performs better with smaller 
networks but its accuracy deteriorates rapidly as the network size increases. 
 
We have developed a different approach that enables the analysis and design of networks of arbitrary size 
(small or large) by considering a large deviation theory based approximation to the error probabilities that is 
both simple to compute and accurate. We adopt the saddlepoint approximation, which has been used in many 
applications such as optical detection, bootstrapping, and queuing analysis. It could also be related to the 
method of stationary phase, which is used widely in Physics. Although based on asymptotic expansions, the 
saddlepoint approximation is highly accurate even for networks with a few number of sensors. In addition, 
remarkably, the computational complexity of the saddlepoint approximation is independent of the number of 
sensors. We provide numerical comparisons to illustrate the advantage of the saddlepoint approximation over 
other approximation methods under different conditions. We show that the saddlepoint formulas are an accurate 
approximation in practical scenarios involving identical or non-identical observations, identical or non-identical 
local detectors, and reliable or unreliable communication links between the sensors and the fusion center.  
 
With the saddlepoint approximation to design the Neyman-Pearson and the Bayes' detectors for a parallel 
architecture where the local sensors make a decision based on their measurements, quantize this local decision, 
and transmit it through a rate constrained channel to a fusion center. The network detector is composed of  the 
local detetectors and the fusion rule at the fusion center.  We demonstrated the probability of false alarm, the 
probability of detection, and the average probability of error. 
Network Tradeoffs 



We used the saddlepoint approximation to study tradeoffs among network parameters: number of sensors N, 
signal-to-noise ratio (SNR), and number of bits per local decision, subject to maximum rate constraint, i.e., 
subject to Nb = constant. Our results quantify for the same error performance  what is the excess SNR needed 
when only N/2 sensors are used, each sensor quantizing their local decision with 2b bits, versus when N sensors 
are used with b bits per local decision. The results on the saddlepoint approximation, its use in designing the 
Neyman-Pearson and Bayes' detectors,  computing the error detection performance, and studying network 
parameter tradeoffs are detailed in references [1] though [9]. 
 
Network Topology Design 
The problem of network topology design is the following. Let N local decision makers in a sensor network  
communicate with their neighbors to reach a decision consensus.  Communication is local,  among neighboring 
sensors only, through noiseless or noisy links. We show that the topology of the network has a major impact on 
the convergence of distributed inference algorithms, namely, that these algorithms converge much faster for 
certain connectivity patterns than for others, thus requiring  much less intersensor communication and power 
expenditure. We studied the design of the  network topology that optimizes the rate of convergence of the 
iterative decision consensus algorithm. We reformulate the topology design problem as a spectral graph  design 
problem, namely, maximizing the eigenratio  of two eigenvalues of the graph Laplacian L, a matrix that is 
naturally associated with the interconnectivity pattern of the network. This reformulation avoids costly Monte 
Carlo simulations  and leads to the class of non-bipartite Ramanujan graphs for which we find a lower bound on 
the eigenratio parameter. For Ramanujan topologies and noiseless links, the local probability of error converges 
much faster to the overall global probability of error than  for structured graphs, random graphs, or graphs 
exhibiting small-world characteristics. With noisy links, we determine the optimal number of iterations before 
calling a decision. Finally,  we introduce a new class of random graphs  that are easy to construct, can be 
designed with arbitrary number of sensors,  and whose spectral and convergence properties make them 
practically equivalent to  Ramanujan topologies. 
 
The literature on topology design for distributed detection is scarce. Usually, the underlying communication 
graph is specified ab initio as a  structured graph, e.g., parallel networks where sensors communicate with a 
fusion center, e.g.,Tenney and Sandell, 1981, Tsitsiklis, 1988, Tsitsiklis, 1993,  Willett, 2000, or serial networks 
where communication proceeds  sequentially from a sensor to the next; for these and other similar architectures, 
see Varshney, 1996, Blum, 1997, Chamberland, 2003.  These networks may not be practical; e.g., a parallel 
network depends on the integrity of the fusion center.  
 
We  published preliminary results on topology design for distributed inference problems in [2], [3]. We  
restricted the class of topologies to structured graphs,  random graphs obtained with the Erdos-Renyi 
construction, and random constructions  that exhibit small-world characteristics.  We considered tradeoffs 
among these networks,  their number of links M, and the number of bits b quantizing the state of the network at 
each sensor, under a global rate constraint, i.e.,  Mb=K, K fixed. We adopted as criterion the convergence of the 
average probability of error Pe, which required extensive simulation studies to find the desired network 
topology.  
 
Our recent work, [11], [12], designs good topologies for sensor networks, in particular,  with respect to the rate 
of convergence of   iterative consensus  and distributed detection algorithms. We consider the two cases of 
noiseless and noisy network links. We assume that   the total number M of communication links between 
sensors is fixed and that the graph weights are uniform across all network links. The optimal topology  
maximizes the convergence rate of the consensus algorithm, i.e., minimizes the number of iterations needed for 
the average probability of error of the local detector at each sensor to be within a small espilon of the minimum 
probability of error (given by a centralized fusion center architecture.)  Our work shows that, for both the 
iterative average-consensus and the distributed detection problems, the topology design  problem   is equivalent 
to the problem of maximizing with respect to the network topology  a certain graph spectral parameter. This 
parameter is the ratio of the  algebraic connectivity  of the  graph over the largest eigenvalue of the graph 
Laplacian L. The algebraic connectivity of a graph, terminology introduced by Fiedler, 1973,  is the second 



smallest eigenvalue of its discrete Laplacian. With this reinterpretation, we showed that the class of  Ramanujan 
graphs essentially provides the optimal network topologies, exhibiting remarkable convergence properties, 
orders of magnitude faster than other structured or random small-world like networks. When the links are noisy, 
our analysis determines what is the optimal number of iterations to declare a decision. Finally,  we presented a 
new class  of random regular graphs whose performance is very close to the performance of Ramanujan graphs. 
These graphs can be designed with arbitrary number of nodes,  overcoming the limitation that the available 
constructions of Ramanujan graphs are restricted to networks whose number of sensors are limited to a sparse 
subset of the integers. References [11] and [12] summarize and detial this work. 
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Order 10096, except where the contractor is a small business or nonprofit 
organization, in which case the provisions of 35 U.S.C. 202(e) will apply. 

5.g.(1) Self-explanatory. 

5.g.(2) Self-explanatory with the exception that the contractor or subcontractor 
shall indicate, if known at the time of this report, whether applications will be 
filed under either the Patent Cooperation Treaty (PCT) or the European Patent 
Convention (EPC). If such is known, the letters PCT or EPC shall be entered after 
each listed country. 

6.a. Self-explanatory. 

6.b. Self-explanatory. 

6.c. Self-explanatory. 

6.d. Patent Rights Clauses are located in FAR 52.227. 

6.e. Self-explanatory. 

6.f. Self-explanatory. 

7. Certification not required by small business firms and domestic nonprofit 
organizations. 

7.a. through 7.d. Self-explanatory. 
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