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THE WIRELESS NETWORK JAMMING PROBLEM

CLAYTON W. COMMANDER, PANOS M. PARDALOS, VALERIY RYABCHENKO, STAN URYASEV,
AND GRIGORIY ZRAZHEVSKY

ABSTRACT. In adversarial environments, disabling the communication capabilities of the
enemy is a high priority. We introduce the problem of determining the optimal number
and locations for a set of jamming devices in order to neutralize a wireless communica-
tion network. This problem is known as the WIRELESSNETWORK JAMMING PROBLEM.
We develop several mathematical programming formulationsbased on covering the com-
munication nodes and limiting the connectivity index of thenodes. Two case studies are
presented comparing the formulations with the addition of various percentile constraints.
Finally, directions of further research are addressed.

1. INTRODUCTION

Military strategists are constantly seeking ways to increase the effectiveness of their
force while reducing the risk of casualties. In any adversarial environment, an important
goal is always to neutralize the communication system of theenemy. In this work, we are
interested in jamming a wireless communication network. Specifically, we introduce and
study the problem of determining the optimal number and placement for a set of jamming
devices in order to neutralize communication on the network. This is known as theWIRE-
LESS NETWORK JAMMING PROBLEM(WNJP). Despite the enormous amount of research
on optimization in telecommunications [6], this importantproblem for military analysts
has received little attention by the research community.

The organization of the paper is as follows. Section 2 contains several formulations
based on covering the communication nodes with jamming devices. In Section 3, we use
tools from graph theory to define an alternative formulationbased on limiting the connec-
tivity index of the network nodes. Next, we incorporate percentile constraints to develop
formulations which provide solutions requiring less jamming devices, but whose solution
quality favors the exact methods. In Section 5, we present two case studies comparing
the solutions and computation time for all formulations. Finally, conclusions and future
directions of research are addressed.

2. COVERAGE FORMULATIONS

Before formally defining the problem statement, we will state some basic assumptions
about the jamming devices and the communication nodes beingjammed. We assume that
the such parameters as the frequency range of the jamming devices are known. In addition,
the jamming devices are assumed to have omnidirectional antennas. The communication
nodes are also assumed to be outfitted with omnidirectional antennas and function as both
receivers and transmitters. Given a graphG = (V, E), we can represent the communica-
tion devices as the vertices of the graph. An undirected edgewould connect two nodes if
they are within a certain communication threshold.

Given a setM = {1, 2, . . . , m} of communication nodes to be jammed, the goal is to
find a set of locations for placing jamming devices in order tosuppress the functionality of
the network. Thejamming effectiveness of devicej is calculated usingd : (V × V ) → R,
whered is a decreasing function of the distance from the jamming device to the node being

Air Force Research Laboratory Technical Report:  AFRL-MN-EG-TP-2006-7409  (AAC/PA #07-11-06-332).
1



2 C. COMMANDER, P. PARDALOS, V. RYABCHENKO, S. URYASEV, AND G. ZRAZHEVSKY

jammed. Here we are considering radio transmitting nodes, and correspondingly, jamming
devices which emit electromagnetic waves. Thus the jammingeffectiveness of a device
depends on the power of its electromagnetic emission, whichis inversely proportional to
the squared distance from the jamming device to the node being jammed. Specifically,

dij =
λ

r2(i, j)
,

whereλ ∈ R is a constant, andr(i, j) represents the distance between nodei and jamming
devicej. Without the loss of generality, we can setλ = 1.

The cumulative level of jamming energy received at nodei is defined as

Qi =

n
∑

j=1

dij =

n
∑

j=1

1

r2(i, j)
,

wheren is the number of jamming devices. Then, we can formulate theWIRELESS NET-
WORK JAMMING PROBLEM (WNJP) as the minimization of the number of jamming devices
placed, subject to a set ofquality covering constraints:

(QCP) Minimize n (1)

s.t. Qi ≥ Ci, i = 1, 2, . . . , m. (2)

The solution to this problem provides the optimal number of jamming devices needed
to ensure a certain jamming thresholdCi is met at every nodei ∈ M. A continuous op-
timization approach where one is seeking the optimal placement coordinates(xj , yj), j =
1, 2, . . . , n for jamming devices given the coordinates(Xi, Yi), i = 1, 2, . . . , m, of net-
work nodes, leads to highly non-convex formulations. For example, consider the quality
covering constraint for network nodei,

n
∑

j=1

1

(xj − Xi)2 + (yj − Yi)2
≥ Ci.

It is easy to verify that this constraint is non-convex. Finding the optimal solution to
this nonlinear programming problem would require an extensive amount of computational
effort.

To overcome the non-convexity of the above formulation, we propose several integer
programming models for the problem. Suppose now that along with the set of commu-
nication nodesM = {1, 2, . . . , m}, there is a fixed setN = {1, 2, . . . , n} of possible
locations for the jamming devices. This assumption is reasonable because in real battle-
field scenarios, the set of possible placement locations will likely be limited. Define the
decision variablexj as

xj =

{

1, if a jamming device is installed at locationj

0, otherwise.
(3)

If we redefiner(i, j) to be the distance between communication nodei and jamming loca-
tion j, then we have theOPTIMAL NETWORK COVERING (ONC) formulation of theWNJP

as

(ONC) Minimize
n

∑

j=1

cjxj (4)

s.t.
n

∑

j=1

dijxj ≥ Ci, i = 1, 2, . . . , m (5)

xj ∈ {0, 1}, j = 1, 2, . . . , n, (6)
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whereCi is defined as above. Here the objective is to minimize the number of jamming
devices used while achieving some minimum level of coverageat each node. The coef-
ficients cj in (4) represent the costs of installing a jamming device at locationj. In a
battlefield scenario, placing a jamming device in the directproximity of a network node
may be theoretically possible; however, such a placement might be undesirable due to se-
curity considerations. In this case, the location considered would have a higher placement
cost than would a safer location. If there are no preferencesfor device locations, then
without the loss of generality,

cj = 1, j = 1, 2, . . . , n.

Though we have removed the non-convex covering constraints, this formulation re-
mains computationally difficult. Notice thatONC is formulated as aMULTIDIMENSIONAL

KNAPSACK PROBLEMwhich is known to beNP-hard in general [1].

3. CONNECTIVITY FORMULATION

In the generalWNJP, it is important that the distinction be made that the objective is
not simply to jam some of the nodes, but to destroy the functionality of the underlying
communication network. In this section, we use tools from graph theory to develop a
method for suppressing the network by jamming those nodes with several communication
links and derive an alternative formulation of theWNJP.

(a) (b)

Figure 1: (a) Original graphG. (b) Transitive closure ofG.

Given a graphG = (V, E), thetransitive closure of G is a graphG′ = (V, E′), where
(i, j) ∈ E′ if and only if there exists a path fromi to j in G. Figure 1 provides an
example of a graph and its transitive closure. Also, theconnectivity index of a node is
defined as the number of nodes reachable from that vertex (seeFigure 2 for examples). To
constrain the network connectivity in optimization models, we can impose constraints on
the connectivity indices instead of using covering constraints.

We can now develop a formulation for theWNJPbased on the connectivity index of the
communication graph. We assume that the set of communication nodesM = {1, 2, . . . , m}
to be jammed is known and a set of possible locationsN = {1, 2, . . . , n} for the jamming
devices is given. LetSi =

∑n

j=1
dijxj denote the cumulative level of jamming at node

i. Then nodei is said to be jammed ifSi exceeds some threshold valueCi. We say that
communication is severed between nodesi andj if at least one of the nodes is jammed.
Further, lety : V × V → {0, 1} be a surjection whereyij = 1 if there exists a path from
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Figure 2: Connectivity Index of nodes A,B,C,D is 3. Connectivity Index of E,F,G is 2.
Connectivity Index of H is 0.

nodei to nodej in the jammed network. Lastly, letz : V → {0, 1} wherezi returns 1 if
nodei is not jammed.

The objective of theCONNECTIVITY INDEX PROBLEM (CIP) formulation of theWNJP

is to minimize total jamming cost subject to a constraint that the connectivity index of
each node does not exceed some pre-described levelL. The corresponding optimization
problem is given as:

(CIP) Minimize
n

∑

j=1

cjxj (7)

s.t.
∑

j 6=i

yij ≤ L, ∀ i, j ∈ M (8)

M(1 − zi) ≥ Si − Ci ≥ −Mzi, ∀ i ∈ M (9)

xj ∈ {0, 1}, ∀ j ∈ N (10)

zi ∈ {0, 1} ∀ i ∈ M, (11)

∀ i, j ∈ M, yij =

{

1, if i reachable fromj in the jammed network

0, otherwise,
(12)

whereM ∈ R is some large constant.
Let v : V × V → {0, 1} andv′ : V × V → {0, 1} be defined as follows:

vij =

{

1, if (i, j) ∈ E,

0, otherwise,
(13)

and

v′ij =

{

1, if (i, j) exists in the jammed network,

0, otherwise.
(14)
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With this, we can formulate an equivalent integer program as

(CIP-1) Minimize
n

∑

j=1

cjxj , (15)

s.t.

yij ≥ v′ij , ∀ i, j ∈ M, (16)

yij ≥ yikykj , k 6= i, j; ∀ i, j ∈ M, (17)

v
′

ij ≥ vijzjzi, i 6= j; ∀ i, j ∈ M, (18)
m

∑

j=1

yij ≤ L, j 6= i, ∀ i ∈ M, (19)

M(1 − zi) ≥ Si − Ci ≥ −Mzi, ∀ i ∈ M, (20)

zi ∈ {0, 1}, ∀ i ∈ M, (21)

xj ∈ {0, 1}, ∀ j ∈ N , yij ∈ {0, 1} ∀ i, j ∈ M, (22)

vij ∈ {0, 1}, ∀ i, j ∈ M, v′ij ∈ {0, 1}, ∀ i, j ∈ M. (23)

Lemma 1. If CIP has an optimal solution then, CIP-1 has an optimal solution. Further,
any optimal solution x∗ of the optimization problem CIP-1 is an optimal solution of CIP.

Proof. It is easy to establish that ifi andj are reachable from each other in the jammed
network then inCIP-1, yij = 1. Indeed, ifi andj are adjacent then there exists a sequence
of pairwise adjacent vertices:

{(i0, i1), ..., (im−1, im)}, (24)

wherei0 = i, and im = j. Using induction it can be shown thatyi0ik
= 1, ∀ k =

1, 2, . . . , m. From (16), we have thatyikik+1
= 1. If yi0ik

= 1, then by (17),yi0ik+1
≥

yi0ik
yikik+1

= 1, which proves the induction step.

The proven property implies that inCIP-1:
∑

j 6=i

yij ≥ connectivity index ofi. (25)

Therefore, if(x∗, y∗) and(x∗∗, y∗∗) are optimal solutions ofCIP-1 andCIP correspond-
ingly, then:

V (x∗) ≥ V (x∗∗), (26)

whereV is the objective inCIP-1 andCIP.
As (x∗∗, y∗∗) is feasible inCIP, it can be easily checked thaty∗∗ satisfies all feasibility
constraints inCIP-1 (it follows from the definition ofyij in CIP). So,(x∗∗, y∗∗) is feasible
in CIP-1; thus proving the first statement of the lemma.
Hence fromCIP-1,

V (x∗∗) ≥ V (x∗). (27)

From (26) and (27):

V (x∗∗) = V (x∗). (28)

Let us definey such that

yij = 1 ⇔ j is reachable fromi in the network jammed byx∗.

Using (25),(x∗, y) is feasible inCIP-1, and hence optimal. From the construction ofy it
follows that(x∗, y) is feasible inCIP. Relying on (28) we can claim thatx∗ is an optimal
solution ofCIP. The lemma is proved. �
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We have therefore established a one-to-one correspondencebetween formulationsCIP

andCIP-1. Now, we can linearize the integer programCIP-1 by applying some standard
transformations. The resulting linear 0-1 program,CIP-2 is given as

(CIP-2) Minimize
n

∑

j=1

cjxj (29)

s.t.

yij ≥ v
′

ij , ∀ i, j = 1, . . . ,M, (30)

yij ≥ yik + ykj − 1, k 6= i, j; ∀ i, j ∈ M, (31)

v
′

ij ≥ vij + zj + zi − 2, i 6= j; ∀ i, j ∈ M, (32)
I

∑

j=1

yij ≤ L, j 6= i, ∀ i ∈ M, (33)

M(1 − zi) ≥ Si − Ci ≥ −Mzi, ∀ i ∈ M, (34)

zi ∈ {0, 1}, ∀ i ∈ M, (35)

xj ∈ {0, 1}, ∀ j ∈ N , yij ∈ {0, 1} ∀ i, j ∈ M, (36)

vij ∈ {0, 1}, ∀ i, j ∈ M, v′ij ∈ {0, 1}, ∀ i, j ∈ M. (37)

In the following lemma, we provide a proof of equivalence betweenCIP-1 andCIP-2.

Lemma 2. If CIP-1 has an optimal solution then CIP-2 has an optimal solution. Further-
more, any optimal solution x∗ of CIP-2 is an optimal solution of CIP-1.

Proof. For 0-1 variables the following equivalence holds:

yij ≥ yikykj ⇔ yij ≥ yik + ykj − 1

The only differences betweenCIP-1 andCIP-2 are the constraints:

v
′

ij = vijzjzi (38)

v
′

ij ≥ vij + zi + zj − 2 (39)

Note that (38) implies (39) (vijzjzi ≥ vij +zi+zj−2). Therefore, the feasibility region of
CIP-2 includes the feasibility region ofCIP-1. This proves the first statement of the lemma.

From the last property we can also deduce that for allx1, x2 such thatx1 is an optimal
solution ofCIP-1, andx2 is optimal forCIP-2, that

V (x1) ≥ V (x2), (40)

whereV (x) is the objective ofCIP-1 andCIP-2.

Let (x∗, y∗, v
′∗, z∗) be an optimal solution ofCIP-2. Constructv

′′∗ using the following
rules:

v
′′∗
ij =

{

1, if vij + z∗i + z∗j − 2 = 1,

0, otherwise.
(41)

v
′∗
ij ≥ v

′′∗
ij ⇒ (x∗, y∗, v

′′∗, z∗) is feasible inCIP-2 (yij ≥ v
′′∗
ij ), hence optimal (the objec-

tive value isV (x∗), which is optimal). Using (41),(v
′′∗, z∗) satisfies:

v
′′∗
ij = vijz

∗
j z∗i .

Using this we have that(x∗, y∗, v
′′∗, z∗) is feasible forCIP-1. If x1 is an optimal solution

of CIP-1 then:
V (x1) ≤ V (x∗) (42)

On the other hand, using (40):
V (x∗) ≤ V (x1). (43)
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(42) and (43) together implyV (x1) = V (x∗). The last equality proves thatx∗ is an
optimal solution ofCIP-1. Thus, the lemma is proved. �

We have as a result of the above lemmata the following theoremwhich states that the op-
timal solution to the linearized integer programCIP-2 is an optimal solution to the original
connectivity index problemCIP.

Theorem 1. If CIP has an optimal solution then CIP-2 has an optimal solution. Further-
more, any optimal solution of CIP-2 is an optimal solution of CIP.

Proof. The theorem is an immediate corollary ofLemma 1 andLemma 2. �

4. DETERMINISTIC SETUP WITH PERCENTILE CONSTRAINTS

As mentioned in Section 1, to suppress communication on a wireless network does
not necessarily imply that all nodes must be jammed. It may besufficient to jam some
percentage of the total number of nodes in order to acquire aneffective control over the
network. Therefore we formulate theWNJPwith percentile constraints which require that
some percentageα ∈ [0, 1], of the nodes be jammed. This type of constraint is known as a
Value at Risk (VaR) percentile constraint [4].

To incorporate VaR constraints into theONC andONC-1 formulations we can easily take
advantage of the fact that both formulations are discrete 0-1 programming problems. Let
y : V → {0, 1} where

yi =

{

1, if nodei is covered,

0, otherwise.
(44)

Then to find the minimum number of locations of jamming devices that will allow for
coveringα · 100% of the network nodes with prescribed levels of jammingCi, we must
solve the following integer program

(ONC-VaR) Minimize
n

∑

j=1

cjxj (45)

s.t.
m

∑

i=1

yi ≥ αm, i = 1, 2, . . . , m, (46)

J
∑

j=1

dijxj ≥ Ciyi, i = 1, 2, . . . , m, (47)

xj ∈ {0, 1}, j = 1, 2, . . . , n, (48)

yi ∈ {0, 1}, i = 1, 2, . . . , m. (49)

Notice that the only difference between this formulation and theONC formulation is the
addition of them VaR constraints in (46) which ensure that the minimum required percent-
age of the nodes are jammed. The constraints in (47) enforce the coverage requirementCi

for each nodei that is covered.
The approach is quite useful when the network structure is known entirely, because

the constraints inONC-VaR do not guarantee any level of coverage for the nodes with
yi = 0. However, this does not make the problem any easier to solve because the VaR type
percentile constraints add an additionalm integer variables to the problem.

In the same manner, we can reformulate theCONNECTIVITY INDEX PROBLEM formu-
lation to include VaR type constraints. Letρ : V → Z

+ be a function such thatρi returns
the connectivity index of nodei. That is,ρi =

∑m

j=1,j 6=i yij . Further letw : V → {0, 1}
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be defined as

wi =

{

1, if ρi ≤ L,

0, otherwise.
(50)

With this, the connectivity index formulation ofWNJP with VaR percentile constraints is
given as

(CIP-VaR) Minimize
n

∑

j=1

cjxj (51)

s.t.

pi ≤ Lwi + (1 − wi)M, i = 1, 2, . . . , m, (52)
m

∑

i=1

wi ≥ αm, (53)

xj ∈ {0, 1}, j = 1, 2, . . . , n (54)

wi ∈ {0, 1}, i = 1, 2, . . . , m, (55)

pi ∈ {0, 1}, i = 1, 2, . . . , m, (56)

whereM is some large constant.
As with theONC-VaR formulation, there are two drawbacks ofCIP-VaR. First, there is

no control guarantee at all on any of the remaining(1 − α) · 100% nodes. Secondly, the
addition of am binary variables adds a tremendous computational burden tothe problem.

A more tractable approach is to impose a percentile constraint ensuring an average
level of coverageCmin for (1 − α) · 100% of the worst (least) jammed nodes. This type
of constraint can be formulated using the concept of Conditional Value-at-Risk (CVaR)
[7, 8]. Developed by Rockafellar and Uryasev, CVaR is formally defined as a percentile
risk measure constructed for estimation and control of risks in stochastic and uncertain
environments. However, CVaR-based optimization techniques can also be applied in a
deterministic percentile framework. For a description of CVaR methodology and related
optimization techniques, the reader is referred to [7, 8].

Here, we present a formulation of theOPTIMAL NETWORK COVERING problem with
CVaR-type percentile constraints resulting in the following mixed integer program:

(ONC-CVaR) Minimize
n

∑

j=1

cjxj (57)

subject to

ζ +
1

(1 − α)I

m
∑

i=1

max

{

Cmin −
n

∑

j=1

xjdij − ζ, 0

}

≤ 0, (58)

ζ ∈ R, (59)

xj ∈ {0, 1}. (60)

The CVaR constraint (58) ensures that the average coverage across(1 − α) · 100% of the
worst (least) covered nodes exceeds the minimal prescribedlevelCmin. Consequently, the
coverage of all other nodes in the network also exceedsCmin.

The important point about this formulation is that we have not introduced additional
integer variables to the problem in order to add the percentile constraints. Recall, that in
ONC-VaR we introducedm discrete variables. Since we have to add onlym real variables
to replacemax-expressions under the summation and a real variableζ, this formulation is
much easier to solve thanONC-VaR. In a similar manner, we can formulate the connectivity
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index problem with the addition of CVaR constraints as follows:

(CIP-CVaR) Minimize
n

∑

j=1

cjxj (61)

subject to

ζ +
1

(1 − α)I

m
∑

i=1

max{ρi − L − ζ, 0} ≤ 0, (62)

ρi ∈ Z, (63)

ζ ∈ R. (64)

Recall thatρi is the connectivity index of nodei. Again, we see that in order to include
the CVaR constraint, we only need to add(m + 1) real variables to the problem. Compu-
tationally, this will be much easier to solve than theCIP-VaR formulation as we will see in
the next section.

5. CASE STUDIES

In order to demonstrate the advantages and disadvantages ofthe proposed formulations
for the WNJP, we will present two case studies. The experiments were performed on a
PC equipped with a 1.4MHz Intel PentiumR© 4 processor with 1GB of RAM, working
under the Microsoft WindowsR© XP SP1 operating system. In the first study, an example
network is given and the problem is modeled using the proposed coverage formulation.
The problem is then solved exactly using the commercial integer programming software
package, CPLEXR©. Next, we modify the problem to include VaR and CVaR constraints
and again use CPLEXR© to solve the resulting problems. Numerical results are presented
and the three formulations are compared. In the second case study, we model and solve the
problem using the connectivity index formulation. We then include percentile constraints
re-optimize. Finally, we analyze the results.

Optimal Solutions Regular Constraints VaR Constraints
Number of Jammers 6 4
Level of Jamming 100% ∀ nodes 100% for 96% of nodes,

85% (of reqd.) for 4% of nodes
CPLEX R© Time 0.81 sec 0.98 sec

Table 1: Optimal solutions using the coverage formulation with regular and VaR con-
straints.

5.1. Coverage Formulation. Here we present two networks and solve theWNJP using
the network covering (ONC) formulation. The first network has 100 communication nodes
and the number of available jamming devices is 36. The cost ofplacing a jamming device
at locationj, cj is equal to 1 for all locations. This problem was solved usingthe regular
constraints and the VaR type constraints. Recall that thereis a set of possible locations
at which jamming devices can be placed. In these examples, this set of points constitutes
a uniform grid over the battlespace. The placement of the jamming devices from each
solution can be seen in Figure 3. The numerical results detailing the level of jamming
for the network nodes is given in Table 1. Notice that the VaR solution called for 33%
less jamming devices than the original problem while providing almost the same jamming
quality.

In the second example, the network has 100 communication nodes and 72 available
jammers. This problem was solved using the regular constraints as well as both types
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Opt Solns Reg (all) VaR (.9 conf) CVaR (.7 conf)
# Jammers 9 8 7

Jamming Level 100% ∀ nodes 100% for 90% of
nodes,
72% for 10% of
nodes

100% for 57% of
nodes,
90% for 20% of
nodes,
76% for 23% of
nodes

CPLEXR© Time 15 sec 15h 55min 11sec 41 sec

Table 2: Optimal solutions using the coverage formulation with regular and VaR, and CVaR
constraints.

of percentile constraints. The resulting graph is shown in Figure 4. The corresponding
numerical results are given in Table 2.

In this example, the VaR formulation requires 11% less jamming devices with almost
the same quality as the formulation with the standard constraints. However, this formula-
tion requires nearly 16 hours of computation time. The CVaR formulation gives a solution
with a very good jamming quality and requires 22% less jamming devices than the stan-
dard formulation and 11% less devices than the VaR formulation. Furthermore, the CVaR
formulation requires an order of magnitude less computing time than the formulation with
VaR constraints.

5.2. Connectivity Formulation. We now present a case study where theWNJPwas solved
using the connectivity index formulation (CIP). The communication graph consists of 30

Figure 3: Case study 1. The placement of jammers is shown whenthe problem is solved
using the original and VaR constraints.
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nodes and 60 edges. The maximal number of jamming devices available is 36. We set
the maximal allowed connectivity index of any node to be 3. InFigure 5 we can see the
original graph with the communication links prior to jamming. The result of the VaR and
CVaR solutions is seen in Figure 6. The confidence level for both the VaR and CVaR
formulations was 0.9. Both formulations provide optimal solutions for the given instance.
The resulting computation time for the VaR formulation was 15 minutes 34 seconds, while
the CVaR formulation required only 7 minutes 33 seconds.

6. EXTENSIONS AND CONCLUSIONS

In this paper we introduced the deterministicWIRELESS NETWORK JAMMING PROB-
LEM and provided several formulations using node covering constraints as well as con-
straints on the connectivity indices of the network nodes. We also incorporated percentile
constraints into the derived formulations. Further, we provided two case studies comparing
the two formulations with and without the risk constraints.

With the introduction of this problem, we also recognize that several extensions can be
made. For example, all of the formulations presented in thispaper assume that the network
topology of the enemy network is known. It is reasonable to assume that this is not always
the case. In fact, there may be little or noprior information about the network to be
jammed. In this case, stochastic formulations should be considered and analyzed.

A generalization of the node coverage formulation including uncertainties in the number
of communication nodes and their coordinates might be considered. For the connectivity
index problem, there might exist uncertainties in the number of network nodes, their loca-
tions, and the probability that a node will recover a jammed link. Also, efficient heuristics
such as Greedy Randomized Adaptive Search Procedure (GRASP) [5], Genetic Algorithms
[3], and Tabu Search [2], should be designed so that larger real-world instances can be

Figure 4: Case study 1 continued. The placement of jammers isshown when the problem
is solved using VaR and CVaR constraints.
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Figure 5: Case Study 2: Original graph.

solved. These are only a few ideas and extensions that can be derived from this new and
interesting combinatorial optimization problem.

(a) (b)

Figure 6: (a) VaR Solution. (b) CVaR Solution. In both cases,the triangles represent the
jammer locations.
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