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STUDIES IN PRESTRESSED
AND SEGMENTED BRITTLE STRUCTURES

by Ralph L. Barnett and Paul C. Hermann
SUMMARY

A nonlinear theory describing the response of rectangular pre-
stressed segmented beams is verified experimentally., The applica-
bility of the theory is extended to beam-columns and to I-beams with
multiﬂle tendons. The methods of limit analysis are used to pre-
dict the ultimate load carrying capacity of prestressed and seg-
mented beams and plates. A statistical hypothesis is developed
and verified for scaling the behavior of different height nonflat
segmented columns. Finally, the feasibility of prestressing cylin-
drical and ogive shells is investigated and evidence is obtained
which demonstrates the practicality of overwinding as a prestressing

technique.
I. INTRODUCTION

To realize the considerable potential of ceramics and cermets
in high performance structures it is necessary to circumvent the
problems which attend brittleness and small section size. One
approach to this problem utilizes the techniques of prestressing
and segmenting, and indeed, the principal objective of this program
is to study these techniques for their possible employment in aero-
space applications. Specifically,our goal has been the development
of an analytical capability for predicting the behavior of prestressed
monolithic and segmented brittle structures from a knowledge of the
behavior of their component elements.

In the first phase of the program, three fundamental problems
were considered (ref. 1)*. The first of these dealt with the devel-
opment of transverse tensile stress in a segmented column under
axial compressive loading. The second, involved the prediction of
the nonlinear response of a prestressed segmented beam.

%
References listed at the end of text.




The last concerned itself with the benefits which accrue from pre-
stressing a monolithic brittle element. We shall briefly review
the highlights of this first effort.

A. Summary of Previous efforts

1. Transverse cracking phenomenon. - Cracking in a direc-
tion transverse to a uniaxial compressive load was first recog-
nized by F. R. Shanley to be a major deterrent to the application
of prestressing to segmented members. 1In 1957, the authors con-
ducted a study of minimum weight deflection design for prestressed
segmented beams in which the roughness of the segment interfaces
played a predominant role. Based on this background, it was hypoth-
esized that the interface roughness causes transverse cracking.
To support this view the following evidence was established.

(1) The slope of the compressive stress-strain dia-
gram of a segmented column increases with in-
creasing stress. This is caused by the fact
that the contact area increases with axial load
and hence the stiffness correspondingly increases.

(2) Column strength increases with increasing flatness.

(3) Specimens increase in compressive strength with
decreasing cross sectional area.

(4) Internal transverse crack lenses can be observed
in glass columns (2x4x1/2 inches).

(5) Photoelastic and two-dimensional elasticity
results indicate that an uneven load distribu-
tion on a segment will cause internal tensile
stresses in directions parallel to the interfaces.

(6) Triaxial compressive tests indicate a very sub-
stantial increase in axial strength when a
lateral prestress is imposed.



2. Load-deflection characteristics of prestressed segmented

beams, - Two quite different mathematical models were developed

to describe the nonlinear response of prestressed segmented beams
with perfectly flat interfaces. The statistical nature of the
nonflat interface problem was identified and its implication to
both bending and column behavior was described. Load-deflection
diagrams were experimentally obtained for segmented glass beams
using several levels of prestress. The general characteristics of
these diagrams are illustrated in Figure l-a where we can identify
a linear and a nonlinear region. The rough interfaces of the glass
segments precluded a deterministic prediction of the linear portion
of the curve; however, when our 'perfect interface'" models were
modified to reflect the proper linear behavior, the nonlinear
region was predicted with remarkable precision.

3. Strength of prestressed monolithic brittle beams. - Apply-

ing Weibull's statistical fracture theory, it was possible to
theoretically establish for simple beams a relationship among
prestress level, reliability, loading, member geometry, and
material properties. A specific example was treated in which the
prestress results in a 25-fold increase in ultimate capacity over
a conventional beam of equal weight and reliability. The general
characteristics of the load-deflection diagrams for such members
are illustrated in Figure l1-b where we observe the influence of
both deterministic and statistical phenomena.

B. Summary of Current Accomplishments

The bending theory previously formulated for prestressed seg-
‘mented beams with perfectly flat interfaces was verified by care-
fully performed experiments on a segmented tungsten carbide beam.
The segment interfaces for this rectangular member were no more
than one half lightband out of flat., Having placed the theory on
a solid foundation, a computer program was written to extend our
analysis capability to I-beams and box beams with multiple tendon
arrangements. The applicability of limit analysis theory for pre-
dicting the ultimate load carrying capacity of prestressed segmented
beams was demonstrated by tests conducted on a 16-foot tubular
alumina beam with a thin wall circular cross section.

3
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Monolithic Hydrostone plaster beams were used to accumulate statis-
tical data on the '"initial fracture'" strength of beam-columns.
Weibull's statistical fracture theory provided a satisfactory des-
cription of the measured behavior.

Starting with the bending theory for perfectly flat segmented
beams, it was possible to describe the behavior of perfect segmented
beam-columns under eccentric axial loads. The buckling load of a

perfect segmented column was shown to be equal to the classical
Euler load. A statistical theory was proposed for scaling the com-
pressive stress-strain diagrams of different height segmented col-
umns with nonflat interfaces., Data obtained for various size seg-
mented glass columns supported our hypothesis that the stiffness
distribution is normal and scales as the "distribution of the mean'.
A brief investigation into the behavior of nonprismatic segmented
columns indicated that cracks are not necessarily arrested at segment
interfaces. Furthermore, the results of tests on short plaster back-
bone columns suggest that nature may prefer the prismatic column,

The theory of limit analysis was applied to prestressed seg-
mented circular plates and the resulting predictions agreed closely
with results obtained from preliminary experiments performed on
Hydrostone plaster disks. Theoretically, this theory provides a
lower bound to the strength of monolithic prestressed brittle plates
and tests conducted on such elements support this prediction.

Finally, preliminary studies were conducted with prestressed
cylindrical and ogive.shells. The technique of overwinding was
shown to be an effective method for applying a prestressing force
over an extended area. The first experiments with segmented plaster
ogive shells seemed to indicate that the interface roughness problem
may be of critical concern.
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II. PRESTRESSED BEAMS

A number of fundamental investigations involving pre-
stressed monolithic and segmented beams are described in
this section. Specifically, the theory of perfect segmented
beams (absolutely flat interfaces) presented in our first
report is verified experimentally. This theory is applied to
prismatic I-beams or box beams with multiple elastic tendons
and a computer program is presented for establishing the load-
deflection diagrams for such members. The possibility of using
limit analysis methods to establish the load-carrying capacity
of segmented beams is briefly exploited with the aid of a 16-
foot aluminum oxide segmented circular tube. Finally, the ulti-
mate capacities of prestressed monolithic hydrostone plaster
beams are measured and compared to predictions derived from a
statistical formulation of the problem that uses a beam-column
analysis together with the Weibull distribution function.

A. Nonlinear Bending Theory

1. Theory of perfect segmented beams. - In our first report
two different mathematical models were developed to account for

the segment separation which occurs during the bending of a seg-
mented beam (ref. 1). The first of these, the incremental model
shown in Figure 2a considers the beam at some instant during the
loading process. At this instant the beam is in equilibrium with
the applied moment M(x), and in general, cracks will have pene-
trated into the beam section for some distance along the segment
interfaces. The relationship between crack penetration and the
bending moment at a station along the beam is established in a
straightforward manner from moment equilibrium. If an additional
infinitesimal moment &M(x) 1is added to this beam, the resulting
infinitesimal response can be calculated as the linear response

of the uncracked beam section. The total live load deflection is
then found by summing all such infinitesimal responses which occur
;between M(x) = 0 and M(x) = M(x)lfinal‘
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In the second model, the equilibrium model shown in Figure 2b,
the beam is considered in its final loading state. The portion of
the beam which is uncracked is considered to be an elastic beam
under the external loading M(x) and the internal loading caused
by the prestressing. Since the deflection of an elastic beam can
be uniquely determined for every loading, the deflection of the
entire beam can be viewed as the deflection of the uncracked portion.

Since the general demonstration of the equivalence of these
models was not attempted in our previous study, we shall deal with
this problem here.

2. Equivalence of the two models. - In the postulation of both
the "incremental' and "equilibrium'' models, it was assumed that:
(1) the segment material is linearly elastic up to its ultimate
compressive strength, (2) the interfaces are absolutely flat, (3) the
tendons are constrained to deflect with the segments (eliminating any
beam-column action), (4) the number of segments is infinite, and
(5) the resultant prestressing force is located within the section
kern (precluding the existence of tensile bending stresses and hence,

cracking under zero external load). Also, for the sake of sim-
plicity, the equivalence of the two models will be demonstrated
for the case of rectangular cross section and zero stiffness
tendons.

Both models are identical as long as the beam is completely
uncracked. In the cracked region, the incremental method leads
to the following expression for the deflection

P dAk
A=Ac+f—a-§d1’ (1)
PC

where the applied bending moment distribution, M(x), has been
represented by Pg(x), P being the maximum applied bending moment,




and where AV is the cracking deflection, Pc is the cracking

moment, and

dp

mE() gy + J%ﬂig (2)
5 s

C

and where S and S, are respectively uncracked and cracked por-
tions of the beam and are functions of P. 1In the cracked region,
the equilibrium model leads to following expression

g

where T 1is the resulting moment acting on a cross section.

T T
Idx+f-E—‘;‘—dx (3)

Cc
SC

&=

The fact that these two models are indentical will be demon-
strated by showing that

dA
day  _ k
dp =~ ~dp (4)

Without loss of generality, temporarily assume that S(P) is the
interval 0 to a(P) and that SC(P) is the interval a(P)
to L.

Then for Equation (3)

d_A=d_f Im g + & [ Im gy (5)




Thus

a(P)
- m_ dT 'Tm le da
= = dx - 0+ |==
dp 0[ EI dP ET |,0 E x_a(P)a’F
0 md T Tm da Tm
+[ Ed T - |E a'p‘+,ml 0
a(P) € 'x=a(p) x=
and since at x = a(P), I, =1, we have
i a(p) g L
_ m m d T
ar f ET ap 4= + f'E'aF(I)dX
0 a(P)
or more generally
dA m dT m d T
af'f'ﬁa?d“ Ed () & (6)
S S ¢
c
For rectangular cross section we have
[ - bd?
} 7,3
I, =18b (F
(7)
T = Pg(x) - Fe in S
T =% |[F(etd) - Pe(x) | in s
2 +7 g c
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Thus, using Equation (7)),

in S: v g(x)
(8)

in SC: I (-f: =g-£_l1c

Inserting Equation (8 ) into Equation (6 ) we have completed the
proof, i.e.

%%Eldx+ %ﬁéldx (9)
C

da _ Px _
dF ~ dp
S S

3. General relationships for multiple tendons. -

a. Arbitrary cross section: The most general relationships
holding for -any cross sectional geometry and/or any number of elas-
tic tendons, will now be described. 1If Fi is the force in the ith
tendon located ey from the uncracked neutral axis, Figure 3 ,
and M 1is the applied moment, then the resultant moment acting

upon the cross section is

n 1 .
T=M-3 F Q (10)
i=1
where
Q =e; +f-a+X (11)

and where n 1is the total number of tendons.

Define n ]
F =-21 Ft (12)
1=
and n
i
i§1F° "1
e~ =F, — (13)

Using Equations (11), (12), and (13), Equation (10) may be written as

11




UOT309g ssox) AxealTgqay Jo Aajswosy ¢ 2an81dg

uopuaj ch_ 9
prosjua) payosoun : g
plosjua) payoos) : y

A +9

12

@q




n .
T=M-F(e+f-q+§)-'ZlFl(ei-e) (14)
i=

If we further define
Mp = rzl Fi (e,-e) (15)
i=1 *
Then the expression for the resultant moment becomes

T=M-F(e+f-q+3€)-MT ' (16)

As they have been defined, e represents the effective eccen-
tricity of the initial total prestress F, and M represents

the resultant moment due to the effective bending stiffness of

the tendons. We note that My = 0 when F = Fg and also that

My = 0 for the case when all the tendons have the same e; (equiva-
lent to a single elastic tendon).

In order to determine the crack penetration f we use the
fact that the stress is equal to zero at the top of the crack.

+ Ix (17)

0=- T

Scrack A

Combining Equations (16) and (17) yields

MMy

F

e+ f-q+E4 L (18)

AX
where
| I =1(f), ¥ =%(f) and A = A().

In general (except for the case of rectangular cross section),
Equation (18) cannot be solved explicitly for f . 1In the I-beam
computer program it is convenient to define W = (M-MT)/F, tabulate
W vs f and use the table to accomplish inversion and thus obtain
f=£fW).

The expressions for deflection and slope are simply

13
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o‘“‘\t_.
L
k=
HL?
oL
]

L
\ mL
oy, =-[. T 9 19)
0
L
Tmp
GR = 5T dx
0
where the virtual moments are
XA
m, = (1 - f_) x, for 0< x< X,
X, '
mA=f—(L-x),forxA~_<_x5L
(20)
m, = (- g
m =X
R L
Now
FoeL
8 = 00 = 8o = - ?ET; (21)

where Io is the uncracked moment of inertia.

The equations for determining the tendon forces are now, for

the tendon

(F-F O)L

—_—= +
A Ep

x=0

w5

Qi (9'90) Qi (9'90)

L
_ F-Fof d
_ E
* 0

(22)

where it has been assumed that all the tendons have area Al and
modulus E.. There are n such relationships, all coupled explicitly
by the F-F, term and implicitly by the other terms, to be solved
simultaneously. However, due to the fact that all the tendons

14




have the same A, E., these n equations may be added and
solved for F - F, (although transcendentally):

|Q<9 -9 >|

j dx
A A
e " 0

F - F x=L,

(23)

where

4 (24)

Having used Equation (23) to determine F - F,, the individual
tendon forces may be found directly from Equation (22).

b. Rectangular cross section: Several of the expres-
sions that were derived in the previous section simplify for
the special case of rectangular cross section. In this case,
taking d = d and taking b to be the width, we have the

total
following:
- 4
= d-f
x—.
(25)
A = b(d-£)

[ = bed-£)°

When these relationships are substituted into Equations (16)
and (17) we find that the uncracked portion of the beam, S ,
corresponds to the condition M - M= F(e+d/6) and the cracked
portlon S, » to the condition M - MTgF(e+d/6). Furthermore
it is determlned that

in S¢: F=0
T=M"Fe-MT (26)
A=A =Dbd
° 3
I = I0 = bd”/12

15



and in

T
SC: f=d-6(-f)
T=%— [F(e+-g)+MT-M]
. (27)
A=6b(—F—.)
3
I=18b(%)

4, Verification of theory. -
a. Design of experiments: Of the various assumptions

entering into the deflection analysis of segmented beams, the
most difficult to realize physically is that the segmented inter-
faces be perfectly flat. The glass beam used in our previous
study did not approach this condition and, consequently, it could
not be used to verify our proposed theory. In the present investi-
gation we were fortunate to obtain a set of 100 tungsten carbide
gage blocks with interfaces that were no more than one-half light
band out of flat. As shown in Figure 4, the compression load-
deflection diagram for a 18.75-inch column of l-inch x 2-inch x
1/4-inch blocks is linear down to very low loads and has a slope
equal to that of a monolithic tungsten carbide bar, that is, the
modulus of elasticity is about 92 x 106 psi.

The selection of extremely flat blocks was the first consid-
eration in the design of our experimental program. To minimize the
influence of the small range of nonlinearity in the compression
load-deflection diagram at low loads, a high prestressing level
(7,000 psi) was chosen for the tungsten carbide beam. Our previous
work on glass never exceeded the 1500 psi level. Further, to pre-
clude the possibility that one or several segments exert a dispro-
portionate influence on the overall beam behavior, a terminal cou-
ple-end rotation relationship was selected for the response com-

parisons.

16
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b. Test description: The experimental setup for testing
the prestressed and segmented WC beam is illustrated in Figure 5.
In order to apply terminal couples to the WC beam, it was neces-
sary to utilize steel extensions at the ends of the beam. Thus,
by employing four point loading (all points located on the steel
ends) a uniform bending moment distribution was produced in the

beam.

The true (tangent) end rotations were not measured. Instead
a secant approximation to the end rotations was obtained by meas-
uring the relative deflection of a point 1.06 inches from the as-
sumed end of the beam. In order to measure these deflections,
transducers (DCDT's) were suspended from the beam and located on
a freely swinging rack, Figure 5. The purpose of the rack was to
automatically compensate for any rigid body rotations the beam
might experience. The beam was loaded such that it bent concave
downwards and thus produced extensions for the DCDT's to measure.
The experimental setup was calibrated using a monolithic steel

beam.

Pairs of strain gages were attached to each of the tendons.
to eliminate bending strains. The assembly of the steel ends and
the tendons was calibrated in tension to verify the accuracy of
the tendon strain gages. Tendon strain gage readings were also
recorded during the bending tests for correlation with our elastic

tendon theory.

Two slightly different beam configurations were used to ob-
tain data. Details of these two configurations are presented in
Figures 6 and 7. Configuration no. 2 is the better one from the
point of view of the theory due to its simplicity. However, it
has the significant drawback that the amount of preload that could
be generated by tightening the nuts on the tendons is limited by
the relatively poor threads that were cut on the tendons. Conse-
quently, for all the higher preload levels, resort had to be made
to configuration no. 1 which generated the preload by extending
the jack screws.

18
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Preliminary bending tests were conducted using configuration
no. 1. Preload levels of 5, 8, 11 and 14 kips were selected which
were in the monolithic stiffness range according to Figure 4 for
the column test. The tests were run in the sequence 14, 11, 8, 5,
5, 8, 11 and 14 without ever bringing the preload to zero. The
results of these tests are presented in Figure 8.

Two final terminal couple-end rotation diagrams were deter-

mined for the WC beam where exceptional attention was devoted to
the testing details. In each test, the preload was gradually in-
creased from zero to the desired level and many load precycles
were applied to the beam to completely stabilize the system. The
first test was conducted with configuration no. 1 and a 14 kip
preload. The preload in the second test was 4 kips which enabled
us to use the configuration no. 2 and avoid the complications in-
troduced by the jack screws. The results of these tests are pre-
sented in Figures 9 and 10.

¢c. Comparison of theory and experiment: The theory,
with which the experiments will be compared, is in the form of a
computer program which was developed under the first phase of this
contract (ref. 1), In order to take into account the effect of
multiple elastic tendons and also to attempt to compensate for the
structural complications (especially in configuration no. 1) that
were introduced between the end of the WC beam and tendons, the
original computer program was significantly modified.

Recalling the elastic tendon equation for the case of multiple
tendons, we have

(Fi - Fi) L : ' F-F, L gx
A E, = | (8-8) Qg (6-8) - [ T @D
x=0 x=L
L
where 6 = [ ~;%? dx (28)
0

and where the interval (0,L) represents the assumed length of
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Total Preload In Upper And Lower Tendons (kips)

F,=14.0 kips

6f—
—Theory
5H— o Lower Tendon
e Upper Tendon
41—
(]
3_;——

Fo= 40 kips

! |
0 I | | | l ! | l
2. 4 6. 8. 10, |2.

Terminal Couple(inch-kips)

Figure 10 Tendon Stress - Terminal Couple Diagram
for a Prestressed Segmented WC Beam
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the WC beam, In order to account for the steel ends and (in
configuration no. 1) the jack screws in Equation (22), the end
rotation should be expressed as

L
= T
Q—Klfo A dx + Ky (M - F, - Mp) + Ky (5 (29)
- F-F, L ax
and the beam compression term, -5 / x > should be modi-
fied to 0
K K
1 (L dx 5
(F'Fo)[_E—{) i (30)
where
K = Luc
1 Assumed Length
1 £°
Ky = —= (g5
2 bw KE——JS (31)
1 L
Ky = —5 ()
3 E ‘gp
Ky = “'21:"(AE°)
JS
L
RKs = ()
5 E 7gp

These correction terms and factors were derived with the
following assumptions: (1) M(xX) = constant; (2) the steel ends
have the same width and depth as the WC beam and are infinitely
segmented so that their area and moment of inertia depend upon
the loading in the same manner assumed for the WC beam; and (3)
that the jack screws act simply as two force members. The sub-
scripts ST and JS refer to the steel ends and the jack screws
respectively, 2w is the vertical distance between jack screws and

£°JS is the extended length of the jack screws.

26




TABLE I

LENGTHS OF JACK SCREW CORRESPONDING TO THE
VARIOUS PRESTRESS LEVELS

Fo(kips) ﬂJS (inches)
14 0.0559
11 0.0439
8 0.0319
5 0.0200
In configuration no. 1, Lgp = 2.64 inch, w = ,75 inch,
A.JS = ,0227 sq. in., and Loc = 20.0 inch. In configuration
no. 2, Lgp = 1.44 inch and L, = 21.0 inch. Also, in both

configurations Egp = Ejg = 30 x 103 ksi, and the assumed

length = 18.75 inch. Insertion of these values into Equations
(31) yields Table II.

TABLE II

VARTIOUS CONSTANTS USED IN THE ROTATION COMPUTATIONS
FOR THE WC BEAM

F, Configuration K, K2_ K4 K, Ks
kips No. x107% 1076 %1076 x1076
14 1 20/18.75 36 44 21 88
11 1 20/18.75 29 44 16 88
8 1 20/18.75 21 44 12 88
5 1 20/18.75 13 44 7 88
4 2 21/18.75 0 24 0 48

As mentioned previously, the experiments yielded average
(of both ends) secant end rotations corresponding to vertical
deflection measurements taken at stations 1.06 inches apart
at both ends of the beam. Thus, the computer program was ad-
justed to compute the same secant end rotation.

Figure 8 illustrates the comparison of the theory and the
preliminary experiments. It is observed that generally, the
higher the preload, the better the agreement. There are a number
of reasons why this is expected; higher preloads provide a
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tighter system with greater contact area between segments,
the influence of the low stress nonlinearity is suppressed,
and the relative errors in preload determination are reduced.
It should be noted that a rough analysis of the jack screws
indicated that they tend to open up in the nonlinear ranges
for the cases F, = 5 and 8 kips.

The comparison of the theory and the final experiments
is illustrated in Figures 9 and 10. The agreement is much
better than in the case of the preliminary experiments, both
in the linear and in the nonlinear ranges. This is due to the
extra care used in performing the final experiments and pos-
sibly to the fact that the jack screws were eliminated in the
case Fo = 4 kips. The jack screws behaved as predicted in the

14 kip case.

5. Segmented beams with nonflat interfaces. - When the
segment interfaces are not flat, the contact area between any
two segments may vary from almost full contact to almost no
contact. Furthermore, the actual contact area cannot be pre-
dicted for particular segments since it varies randomly from
interface to interface. However, when all the interfaces have
been drawn from the same population, which usually happens when
the same manufacturing technique is used for all the blocks, we

can predict the behavior of groups of segments in a statistical
sense. The compression test, for example, furnishes a measure
of the average or effective contact area at eVery level of com-
pression. For a given segmented column the effective area is
computed by multiplying its nominal area by the ratio of its
tangent stiffness to the equivalent monolithic stiffness.

The statistical nature of the interface contact gives rise
to a number of important implications. First, a description of
the compressive stress-strain diagram will be statistical and
will depend on both the column area and the length. This prob-
lem will be studied more thoroughly in Section III. Second,
the moment of inertia, like the area, will be random with a
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lower bound equal to zero and an upper bound equal to the full
moment of inertia. It follows that beam behavior will be statis-
tical in nature and that the variability experienced will depend
on the length and area of the beam, the number of segments, and
on the loading.

Because the effective stress-strain curve of a segmented
column is area and length dependent, it is clear that an equivalent
nonlinear material cannot be defined which is useful for response
calculations. For example, in a segmented beam under sufficiently
high loads, the nominal "uncracked" area diminishes continually
as the load is increased. Consequently, the stiffness of the section
tends to increase as a result of increasing axial stress and de-
creasing nominal area; it tends to decrease because of a reduced
moment of inertia. The theory of perfect segmented beams accounts
only for variations in the moment of inertia. An exact solution

for the response will require, in addition, that we describe the
bending stiffness of any 'uncracked" area subjected to a linear
strain field that varies from zero at one end to some arbitrary
maximum value at the other. It does not appear that an exact bend-
ing stiffness relationship can be derived from column tests. The
desired relationship can be obtained from terminal couple-end
rotation tests; however, the authors doubt whether the end result
justifies the effort involved.

An approximate description of a load-deflection diagram can
be obtained through a slight modification of the perfect interface
theory. If the modulus of elasticity of the segment material enter-
ing into the theory is replaced by the tangent modulus of the beam
associated with the initial prestress level, the perfect interface
theory will predict the average load deflection diagram. In our
first report we demonstrated that this procedure predicted the non-
linear behavior of segmented beams when the initial straight line
portion of the curve was matched to the data. The necessity of
matching up the initial slope rather than infefring it from the
tangent modulus taken from the associated column tests strikes at
the core of the statistical problem. The tangent modulus prediction
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describes only the average behavior of a group of segmented beams
and not the response of a single member.

To use the suggested approximate technique for predicting beam
response, we require a description of the compressive stress-strain
curve for the nominal cross-sectional area of the beam. There is
every reason to believe that the statistical description of a
single typical size column will enable one to describe any other
column of different area and length. This problem is studied in
Section III.

As a final observation concerning nonflat interfaces, we re-
call from our last report that the initial portion of the central
load-central deflection diagrams for the glass beam were all
straight. On the other hand, the compression stress-strain diagram
for the glass is curvilinear with a monotonically increasing slope.
This apparent anomaly can be explained by considering an axial
prestressed beam that is free from lateral loads. The initial
bending stiffness of this member is proportional to the tangent
modulus of a compression curve at the given prestress level. Now,
when a bending moment is applied to this member the compression
fibers will tend to get stiffer and the tension fibers will tend
to become more flexible. The two effects neutralize each other and
mitigate the influence of the compression nonlinearity.

B. I-Beam or Box Beam with Multiple Tendons

The analysis of I (or equivalently box) beams proceeds exactly
as outlined in the section on general relationships. Referring to
Figure 11, we obtain the following cross sectional properties:

Uncracked section properties (f = 0)

A=2 btf + dtw
d t
twd3 bte> b, )
I = Vi + 5 + — (d + tf)
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Cracked section properties

Case I (0 < f < tg)

A = b(tgm£) + dt + b,
¥ =108 (0% + dr (et G- £) +bte(3 te+d - £)]  (33)

- ot 2
34 bt ] + b(eE) E - £+5)

2

1
A
21 3
1= 17 [b(tf-f) + twd

2
- 4
+dt (K- g-to+£) +beg Stp+d-X-£)

Case IT (tp <f <tg+ d)

A=(tf+d—f) t, + btg

'}‘{'_ 1 [tW, _ 2 2
= 5 [5% (tgt d-f) + bty (Ftg+ d-£)] (34)

3 - tf a £2
I=45lt, ( + d-f) +btf]+t (tgr d-)F -5 - 5+ 7)

3 _ 2
+ bty (Fte+d - X - £)

Case III (tf+d§f§_2tf+d)
A=bQt;+d - £)
- d
R=tety- % (35)
b 3
2y 2ty +d - £)

H
I

Due to the algebraic complexity of the above expressions for
A(f), X(f) and I(f), the equation for the crack penetration

W=e+f—q+x+K(—}5—§£J(-5 (36)

where

- M-Mr
¥
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cannot in general be inverted to find f=f(W). In order to be
able to handle this new complication, a new computer program

has been developed. A listing of the program (in Fortran II for
the IBM 7094) plus sample input-output is presented in Appendix A.
This program is currently set up to handle I-beams with multiple
elastic tendons. Each of the cross section properties A(f), X(f)
and I(f) are programmed as function subprograms and, consequently
any other cross section geometry may be investigated by merely
changing these three subprograms.

The inversion of Equation (32) is accomplished in the
computer program through the vehicle of a table of W vs f. This
table is constructed in increments according to input specifi-
cations, The inversion is easily effected by a function subprogram
which merely searches the table using W and linearly interpolates
between the bracketing values.

Prestressed segmented glass beams with the cross sectional
geometries shown in Figure 12 and with E = 10.5x106 psi,
Et = 30 xlO6 psi, and L = Ly = 38 inches have been selected to
illustrate and compare the behavior of I-beams, webless I-beams,
and rectangular beams of the same overall dimensions. Figure 13
illustrates the behavior of these beams under terminal couples
for the case of zero stiffness tendons (Et=0). We observe that the
rectangular beam is the stiffest (least deflection) member in the
initial load range, the I-beam in the middle range, and finally

the webless I-beam in the final range.

It is interesting to note that, for a load of 18 inch kips,
the rectangular beam has a crack pernietration of 2.5 inches, the
I-beam has 1.7 inches, and the webless I-beam is still uncracked.
Thus, the webless I-beam, which has only 25 percent of the area
and weight of the rectangular beam, is unquestionably the most
efficient cross section for prestressed beams in terms of stiff-
ness per unit weight.
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We also observe for the case of the webless I-beam that
although abrupt changes in character occur in the terminal
couple vs. end rotation curve and the terminal couple vs. crack
penetration curve as the crack passes through the bottom flange,
that there is in fact no discontinuity in slope in either of
these curves. One additional noteworthy item for the case of
zero stiffness tendons is the fact that, as the cracks penetrate
the cross sections, eventually (f > te + d) the uncracked sections
become identical and hence the behavior of the three beams coin-

cide in this range.

The behavior of the three beams for the case of elastic
tendons is shown in Figure 14 and 15. 1In general, the effect
of the tendon elasticity is to increase the stiffness and the
slope of the terminal couple vs. end rotation curve and to limit
its minimum slope as the load increases to infinity. There are

no discontinuities in the slope of the curves for end rotatiom,
prestress force, prestress moment, or crack penetration as the
crack passes through the bottom flange for the case of the web~-

less I-beam,

As in the case of terminal couples on a rectangular beam
with a single elastic tendon (ref. 1) it is expected that the
cracks will never pass completely through the section. This fact
is verified by the crack penetration curves in Figure 15 which
seem to be approaching asymptotic values other than dtotal= 4,
Whether all three curves will have the same asymptote depends
upon the relative stiffnesses of the beams to the tendons. Thus,
in general, it cannot be expected that the behavior of the rec-
tangular beam, I-beam, and webless I-beam will become coincident

as the applied load becomes unbounded.
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14 Rectangular Beam

I- Beam

Webless I-Beam

Total Tendon Force, F (kips)

13 +
12 | ] ] ]
0 4 8 12 16 20 24 28
Terminal Couple (in- kips)
3

Rectangular Beam

I- Beam

Webless I- Beam

Tendon Moment, My (in - kips)

Terminal Couple (in-kips)

Figure 15 Tendon Force and Moment vs. Terminal Couple
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C. Limit Analysis

The possibility of approximating the load-deflection diagram
of a prestressed segmented beam by one which is elastic-perfectly
plastic was suggested in our previous report (ref. 1). Indeed,
this possibility was exploited in 1952 by Kooharian in his study
of segmented concrete arches (ref. 2). In these arches, the com-
pressive forces acting normal to the segment interfaces were not
provided by prestressed tendons, but rather by the arches' reaction
to live and dead loading. '

The applicability of limit analysis for predicting the
ultimate load-carrying capacity of prestressed segmented beams
is investigated in this section with the aid of the 16-foot
segmented aluminum oxide beam shown in Figure 16 . Each segment
in this member was four-inches in both length and outside diameter
with a wall thickness of 3/16-inch. The beam was composed
of 48 such segments and the prestressing was accomplished by
pretensioning a 1/4-inch steel prestressing tendon that passed
along the axes of the cylinders and was secured to steel end
plates. To preclude the presence of secondary bending effects
(beam-column behavior), the tendon was constrained to the
centroid of the sections by five closely fitting wooden spacer

inserts on three-foot centers. Two strain gages on opposite
sides of the tendon were used to monitor the prestress level.
Simple end supports were provided by two saw horses as shown
in Figure 17a . The beam was loaded with dead weights and the
finest load increment was five pounds.

The beam was tested under the three types of loading
shown in Figure 18 . In all cases, the loading was continually
increased until a 0.005-inch thick feeler gage could be inserted
between the separated segments to a depth of two-inches. The
load associated with this condition is recorded in Figure 18
as PMeasured' The first test run was the central loading con-
figuration. It was noted at the conclusion of this test that
longitudinal cracks had appeared on the compressive side of
several segments that were close to the beam's center. For the
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a. Support
Conditions

b. Beam Fracture

Figure 17 Segmented Alumina Beam Tests
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Figure 18 Limit Analysis of Prestressed Segmented Az203 Beam
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remaining two tests the beam was rotated such that the final
bearing area was away from the cracks. During the final loading,
two concentrated loads at the quarter points, horizontal cracks
developed under the loads which resulted in the catastrophic
failure shown in Figure 17b. The failure modes shown in
-Figure 19 are typical of the primary segment fractures.

The prediction of the ultimate loading of the alumina
beam follows precisely the methods of limit analysis for simple
beams. Here, we take the plastic moment to be the prestressing |
force times half the beam depth as shown in Figure 18a . The
formulas and predictions for the limit loads are given in
Figure 18b,lc, and d where we reflect the following physical data:

(1) Prestress level, F = 5000 1b

(2) Weight density of tendon - 0.167 1b/ft

(3) Span length, L = 182.5 in.

(4) Weight of entire beam, W = 90 1b

(5) Weight of loading fixture - 10 1b

(6) Plastic moment, M, = (2) (5000) = 10,000 in.-1b

We observe from this figure that the predicted loads are froﬁ
2.92 percent to 5.41 percent lower than the measured loads.

D. Prestressed Monolithic Beams

Our previous work (ref. 1) was directed toward applica-
tion of Weibull's statistical fracture theory to monolithic
prestressed brittle beams, neglecting the effect of beam-column
action. That effort was devoted to developing the relationships
among prestress level, load, geometry and the reliability of a
structural member. We then proposed to demonétrate those results
by means of an experimental program using Hydrostone plaster '
beams. In this year's effort, the additional moment due to the
eccentricity of a straight tendon when the beam is laterally
loaded has been considered. This may well not be of major
significance in a real-life application where the prestressing
tendon should be constrained to deflect with the beam, but it
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is necessary explain the experimental results reported in this
section. The experiments which were carried out involved four-
point bending tests on the hydrostone beams described in Appendix
B. The dimensions are shown in Figure 20, and the loa&ing fixture
in Figure 21 . Since all specimens failed between the loads, the
experiment can be considered as a pure bending test with a gage
length L.

According to Weibull's theory, the failure probability F
will be:

'F(cr)=1-exp[-fffgd§ld§2dg3]

G¢ s ’ -0 "
g = _1_— C1o % &9 u] ; 0 $=20 =0  (37)
v O'o
g=0 : ; 0 <0,

where o is an intensity level; ¢ @ is the actual stress distribu-
tion in the body; gl, gz, and g3 are space coordinates; V is a
unit volume; and m, o_, and o, are statistical distribution para-

u
meters. For convenience, the notation

F=1- exp [-B] (38)

is used, where the definite integral B is called the risk of

rupture.

For the case of a rectangular beam subjected to a pure

couple,the risk of rupture is

da/2 ;2 m .
. 2y - o, L v (o-0, )"
| 5, Lbdy = 7Ty 5o
(o}
u
T (39
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Figure 20 Schematic of Four-Point Bending Test
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where V is the volume of a beam of length L, width b, and depth d;
the maximum fiber stress o = 6M/bd2 is taken as the intensity

level; ¢ is taken as 2y/d; and y is the coordinate through the
beam depth measured from the neutral axis. For materials like

Hydrostone that have low tensile strengths, it is common practice.
to attempt to fit their fracture data with a two parameter
assumption, i.e., o, =0. Then, Equation (39) simplifies to

B = grery (0/0)" (40)

or

(4D

where the volume has been incorporated into the scale parameter

! .
o .

The cumulative probability of failure curve for the unpre-
stressed beams is shown in Figure 22 where the data have been
ordered and the probability of failure at the stress associated
with the ith observation is estimated to be F = i/N+1 where N
is the total number of observations. The maximum likelihood
estimates of the parameters o'o and m are found from the solutions

of (ref. 3 ):

o]

N
N s (of log oy)
g + 3 logoj; - N s N - =0 (42)
i=1 3, oi
i=1
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and

N

m _ 1 m
(U' 0) - N(ITHJ 5 iz:l oi ( 43)

where the o, are the observed fiber stresses at fracture. When
the results of Equation (42) and (43), o'o = 821 psi and

m = 5.94, were checked by a Chi-squared test the response was at
the fifty percent level, indicating a very good fit.

For the loading shown in Figure 20, the beam-column solutién
is (ref. 4 ).

y = g‘ﬁigiﬁ E’ﬂ [sin k x + sin k (ﬁ—x)]- 9?5 (44)
where k =“\/P/EI. In order to verify the assertion about . the
linear behavior of the beam up to its cracking load, deflections
were measured for one beam. The cracking load was observed to be
702 pounds accompanied by a center deflection of .183 inches.
Substituting into Equation (44) the appropriate values:

2.8 x 10° psi

Q = 702 pounds E =

4 = 45 inches I = 3.26 in®

¢ = 7.5 inches : P = 10,000 pounds

x = £/2 = 22.5 inches k = .0321 in~t
we find y = .179 inches, a satisfactory agreement.

The bending stress in the outer fiber can be found by differ-
entiating Equation (44).

o = M——i—-—?-i/z = 4 (- EL y")
( 45)

= Eg% :;2 ﬁ; Q [sin kx + sin k(z—x)]

In a manner analogous to that used in developing Equation (39) one
can find the risk of rupture to be
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c [o(x)-o ] m+1

—Wgy—E— dx (46)

Using the transformation w = x-£/2 and the symmetry about the
centerline this can be written as

17,-

B = bd 1
2(m+I500m j

c

2/2-c ,. m+1
bd o.m (6/0.-1) ,
B = 2y (E§> f Ul;op dve (47)
(o]

To normalize the integral we can use z (2/L)w, leading to:

m 1

o (o/c -l)m".'l
e @ e “

o P

or in the notation of Equation (42),

l)m-l-l

1
1 o. m (c/ob- .
B = = (__P.OO,) fo C/GP dz; 020, (49)

Using Equation (45) to find the o associated with any value of
Q, Equation (49) can be evaluated numerically. Substitution into
Equation (38) will give the probability of failure for any load Q.
The results are shown in Figure 23 along with the test results.
Bearing in mind that only 26 prestressed beam tests were run,

the predicted failure probabilities are fairly well borne out.
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III., SEGMENTED COLUMNS

The study of segmented columns in brittle materials is moti-
vated in part by the enormous potential of ceramics for resisting
buckling and compressive fracture and in part for the relationship
that exists between column behavior and bending behavior. There
are two intrinsic properties of segmented columns that demand spe-
cial attention. First, the column has no tension resistance and,
consequently, we must modify the classical formulation of the buck-
ling problem. Second, the imperfect interface contract that exists
between segments gives rise to statistical column behavior. Fur-
thermore, rough interfaces cause uneven loading across the segments
which induces tensile stresses in directions transverse to the ax~
ial compression. The problems of stability, statistics, and strength
are studied in this chapter.

A. Buckling - Perfectly Flat Interfaces

For the particular case of a rectangular cross section with
perfect contact between segments, a static buckling analysis of a
segmented column will be developed. The column, illustrated in
Figure 24, is assumed to be acted upon only by the steady (nonfol-
lower) forces F a distance e from the column's original neutral
axis., It is also assumed that the number of segments is very large
and that the segment material is entirely linear elastic. Under
these assumptions, solutions are found in this section for the sta-
tic beam deflection equations describing the behavior of the seg-
mented beam-column. It is observed that when

F—Fp = fzgzg [cos-ltfgedﬂz (50)
the deflections become unbounded. Also it is observed that
. ﬂz EIO
e

which is the classic Euler buckling load for a monolithic columm.
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The development of this solution will now be presented.
Referring to Figure 24 , the resultant moment acting upon an
arbitrary section of the column is found to be

1) = F [y +e - - £(0] (51)

The governing differential equation for the deflection curve
from elementary beam theory is

2
EI (x) - —:-}Z’ = - T(x) (52)
X .

The relationships for the crack penetration into a rectangular

cross section apply in this case, thus

1

f(x)

f) =d - L& for Tx) 2T,

0 for T(x) < T, (53)

where the resultant moment for incipient cracking, Tc’ is given by

T, =E (54)

The local moment of inertia is given by

bad 4

I(x) = I, =17 for T(x) > T,
s (55)

I(x) = 18b [ZE2)” for 1(x) > T,

Using Equation (51) and (54), Equation (53) may be expressed as

when y ¢ %--'e then T(x) < Tc" and f(x) = 0
when y = %-- e then T(x) = T, and f(x) = 0 . (56)
when y> % - e then T(x) > T, and £(x) > 0

Consequently, the analysis will depend upon which of the
following two cases exists: (1) entire column uncracked, (2)

portion of column cracked.
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Case (1): f(x) =0
In this case the differential equation, Equation (52), reduces
to

2
dx
where ) :
_ F
K= ET (58)

The boundary conditions are simply
y(0) =y@) =0 (59)

The solution to Equation (57) and (59) is readily found to be

cos k (x- %} )

y(x) =e -1
cos Efk (60)
Equation (60) will be valid as long as ymax;g_—%— -e Fory . =
y (%—) = —%— - e, the limiting load is found to be
4EI 2
F = ——-1-.:2--0- [COS-l ( -6—3- ) (61)

Case (2): f(x) ¢ 0

In this case solutions must be found in both the cracked and
uncracked regions and forced to match displacements and slopes
on the boundaries between the regions. Referring to Figure 24c,
X = X locates the left bbundary between the regions. Note
that T(xcL) = T, and y(xcL) = % - e. By symmetry x.p = L-xX 5
and thus ¢ = Xop~¥er, = L-ZxcL.
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In the uncracked region, 0 < x < X,y , the solution found in
Case (1) still applies, thus

L
k (x- —2—0
y(x) = e[cos cos XL 1 (62)
]
| —

Using the fact that y(xCL) = % - e, Equation (62) yields

L = % cos™L (Eg cos EZL ) (63)

In the cracked central region f it is readily shown that the
differential equation, Equation (52), becomes

2 -
Y --h(g+e-P? (64)
d x
where
h = 5ty (65)

Equation (64) may be integrated once to yield

(Er?=2n(@+e- $ylue (66)

The fact that it is known a priori that y(xcL) = % - e
enables ¢ to be determined at this point by matching slopes and dis-
placements in Equation (62) and (66). Using this value for ¢ and
Equation (65) for £, Equation (66) becomes

2 2
@2 22 2 [(cos k12 Lz]
36e

r2n [Gre-H T 67
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Using the fact that

y (=) (68)

ymax

and

-7 =0

Equation (67) may be solved for Ymax? thus

-1
2
= L, _d
Ymax =Y () =g -e+d 12;5"3[-—"1?—361.} (69)
' d cos 7

Inspection of Equation (69) reveals that Ymax becomes
unbounded when the term inside the braces approaches zero, i.e.,

when
2 -1, 6e
k = cos ( =—
T V54
or A
EL 2
-1,6e
F=F o [cos (———] (70)
b 1.2 J5d

We observe that in the limit as the eccentricity vanishes, Fy
approaches the Euler buckling load for monolithic columns, thus

lim Fy = ;EEE%ﬁ_

L
e-0
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B. Nonflat Interface Problem

1. Area and length scaling.- Ideally, we would like to

fabricate segmented structures from segments with perfectly flat
interfaces; however, it may not be possible to obtain sufficient
smoothness on practical size cross sections. Even in the case of
our tungsten carbide gage blocks (one-half light band out of flat),
we can still detect nonlinearity in our column response at low
loads. At reasonable temperatures we may be able to approach mon-
olithic behavior through the use of grout or gaskets between the
segments. At elevated temperatures, however, these fillers may
have to be dispensed with. It is for these applications that we
will try to improve our understanding of the contact problem,

From a practical point of view, the alternative to full scale
testing of segmented columns is to develop a scaling procedure
that will enable us to predict the compression stress-strain dia-
grams for columns of any length and area from information obtained
from a single segmented column. We begin our search for such a
scaling law by examining the effects of column Tength. Let us
assume that all the interfaces have been drawn from the same pop-
ulation and that for a specified axial stress there exists a fre-
quency distribution for the interface contact areas. It follows,
then, that the deflection of each segment will be a random variable
which also possesses a frequency distribution. Now, the total
deflection of a multi-segment column will represent the sum of the
random deflections of the constituent blocks. Therefore, the fre-
quency distribution of the responses of many nominally identical
columns represents the distribution of the sums of the random
segment responses. From the Central Limit Theorem of Statistics
we are assured that the sums of random variables are normally dis-
tributed regardless of the form of the distribution £6r the random
variables themselves. Thus, we can hypothesize that the stiffness
of segmented columns of a given length and under a specified load
are normally distributed.

On the basis that the stiffness of a given size multisegment
columm is normally distributed, we can proceed from the following
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theorem to describe the scaling rule for length. Theorem (ref. 5):
nIf x is normally distributed with mean p and standard devia-
tion ¢ and a random sample of size ‘n 1is drawn, then the sample
mean X will be normally distributed with mean p and standard
deviation oA/n!' Evidence will be presented in the next section
which supports the hypothesis of normality and the scaling of the

scatter,

It is considerably more difficult to get a handle on the
"column area'" scaling problem and, because of a poorly executed
experiment, our efforts in this study can hardly shed any light
on this matter. We do, however, have a hypothesis that we feel
is worth exploring. Let us examine the assumption that the inter-
face contact is controlled primarily by the highest asperities on
the surface. If the maximum asperity was measured on each of
many nominally identical surfaces we could construct their fre-
quency distribution. The resulting frequency curve represents
the distribution of largest values in a sample of size n (or
rather area A). Methods for scaling such distributions to larger
areas are treated quite systematically by the methods of extreme
value statistics. 'Assuming that the stiffness is inversely pro-
portional to the maximum asperity heights, the stiffness distri-
bution F(Et) might scale as the distribution of smallest values,
i.e.,

Fi(B) =1-[1-Fg(E)]"
where the subscripts L and S refer respectively to the large
and small area columns, Et is the tangent modulus, and
n = AL/AS‘ This hypothesis conforms to our past observations that

smaller area columns are stiffer.

2. Test results and interpretation.-

a. Description of Experiments: The study of column area and
length scaling requires a data base of compressive stress-strain
curves which we attempted to establish using segmented glass col-
lums. To be sure that all segments would be drawn from the same
population, they were all cut from the central region of a single
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sheet of 1/4-inch window glass. Diamond core drills were used to
accurately produce fifty circular disks of each of the diameters,
1/2, 1, 1-1/2, 2 and 3 inches. To fabricate a particular column,
the appropriate size disks were randomly selected from a rotating
"lazy Susan'' on which they were scattered. For ease in handling
and alignment,the columns were sheathed in thin paper tubes. Com-
pressometers were attached to tabs glued to the edges of the top
and bottom disks in the column as shown in Figure 25, These top
and bottom segments were reused for all column tests of their diam-
eter. Polyethylene pads were placed on the top and bottom of the
columns which were then tested in a Riehle Universal Testing
Machine. The load-deflection diagrams for 10, 20 and 30 segment
columns were automatically recorded.

Seven typical load-deflection diagrams are shown in Figure 26
for two-inch diameter columns with 10 segments. To eliminate
errors at low loads due to backlash in the automatic plotting
equipment, only unloading curves were considered. The highly indi-
vidual behavior associated with columns with nonflat interfaces is
clearly illustrated in this figure. Three hundred and ninety such
curves were obtained and the hypothesized statistical relationship
which relates them was investigated by selecting the particular
tangent modulus associated with the 120 psi compression level.

This stress was selected because it fell close to the knee in most
of the curves. Several methods were studied for measuring the
slope of such curves - two optical devices, a graphical technique,
fitting a tangent by eye, and parabolic interpolation. All of the
methods gave reasonable results; but, the latter method was finally
selected since it produced the least scatter.

A simple computer program was used to fit the load-deflection
curves with a parabola, to compute the slope at 120 psi, and to
establish the mean and the standard deviation associated with each
group of 30 tests representing a given column height and area.

The tendency to buckle precluded testing of the 20 and 30 segment
columns for the 1/2-inch diameter disks. The cumulative distribu-
tion curve for the tangent modulus of each size column was plotted
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on "Normal Probability Paper' and in every case a linear relation-
ship was obtained which establishes the validity of our normality
hypothesis. Typical distribution curves are shown in Figure 27
for the two-inch diameter column. The solid lines represent the
normal curves generated from the computed mean and standard devia-
tions of the data. Table 1 tabulates the means and the coeffi-
cients of variation (standard deviation + mean) for each size

column,

b. Interpretation of results: Referring all our remarks to
Table 1, we first observe that no consistent pattern develops
vertically for either the mean or the coefficient of variation.

In view of the large scatter, as represented by the very high
coefficients of variation, this unexpected result may have occurred
by chance alone. On the other hand, the data may be in error.
Examining the parameters in the horizontal direction reveals that .
the mean values consistently increase with increasing column

height and, except for the three-inch column, the coefficients of
variation uniformly decrease. Since we cannot attribute a consis-
tent trend in 390 observations to chance, we must accept the pos-

sible presence of a systematic error,

Recalling that the entire column and not just the central
portion, was used as the gage length, one suspects the influence
-of "end effects." In particular, since a properly run test would
have a minimum of one diameter of segments outside of the gage
length on the top and bottom, it seems reasonable to suggest that the
Polyethylene pads that were used were too flexible. Furthermore,
this flexibility is of a different character than we would exper-
ience with glass end segments. The influence of such pads should
decrease with increasing column height and this should lead to -
increasing stiffness. This is, of course, exactly what we observe.
Also, since the same Polyethylene pads and glass end disks were used
for all columns of equal area, we would anticipate that the '"end
effect'" would be reasonably constant for each of the five diameters.
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TABLE 1

NORMAL DISTRIBUTION PARAMETERS FOR THE TANGENT MODULUS
OF SEGMENTED GLASS COLUMNS AT 120 psi COMPRESSION

Measure Column Height (Number of Segments)
Diameter Quantity 1o 20 30
| mean, 10° psi 0.92 . .
1/2 coef. var. 28.0 9 Buckling Buckling
mean, 10° psi 1.12 1.33 1.45
1"
1 coef. var. 27.5 % 9.1 % 8.0 %
mean, 10° psi 0.63 0.96 1.12
1"
1-1/2 coef. var. 21.0 % 14.1 % 12.0 %
] mean, 10° psi 0.70 0.88 1.33
2 coef. var. 28.6 % 19.1 % 14.9 %
] mean, 10° psi 0.93 0.93 1.12
3 coef. var. 10.7 % 10.8 % 13.2 %
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Our contention that "end effects'" influenced the behavior of
the segmented colums was briefly examined by testing an aluminum
rod using the identical procedures employed for the segmented glass
columns. The rod was 10 inches in length with a two-inch diameter
and the initial portion of its stress-strain curve turned out to
be curvilinear. The proper result was recorded when the compresso-
meter attachments were remote from the ends. Summarizing then,
we feel that our measurements of the mean tangent modulus do not
indicate the ''pure' behavior of the segmented columns and that the
standard deviations are fair apﬁfoximations. On this basis we
examined the possibility of scaling the coefficients of variations
of various height columns and the results are tabulated in Table 2.
According to our hypothesis, this quantity should scale as 1/4/n.
Table 2 shows excellent agreement with this theory for the 1~1/2
and 2-~inch diameter columns and for the average. This result to-
gether with the normality demonstration of Figure 27 tends to
support our column height scaling hypothesis. Unfortunately, no
conclusions can be drawn about the area scaling. Future experi-
ments with segmented columns should incorporate the following im-
provements:

(1) Employ larger sample size in view of the large scatter

observed. '

(2) Compressometer attachments should be kept in the interior
of the column.

(3) Digital output devices should be utilized.
C. Backbone Column

It was established in the first phase of this program that im-
perfect contact between the interface of a segmented column caused
transverse stresses upon application of axial loads. These trans- .
verse stresses were compressive near the interfaces and tensile in
the interior of the segment. Consequently, it appeared that if the
lateral geometry of the segments could be appropriately altered, we
might induce compression in the interior and tension near the inter-
faces of the segments. Thus, the two affects would tend to cancel
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MEASURED AND PREDICTED VALUES FOR THE COEFFICIENT OF VARIATION

TABLE 2

OF STIFFNESS FOR SEGMENTED GLASS COLUMNS

Column Height (Number of Segments)

Diameter
10 20 30
1n | Measured 27.5% - 9.1% 8.0%
Theory 27.5% 19.47% 15.9%
1_1/2” Measured 21- O% 14-1% 12.0%
Theory 21.0% 14.8% 12,17
2|| Measured 28.6% 19-1% 14.9%
Theory 28.6% .20.2% 16.5%
i Measured 10.7% 10.8% 13.2%
3 Theory 10.7% 7.6% 6.29
Average Measured 22.0% 13.3% 12.0%
Theory 22.0% 15.5% 12.7%
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one another and thereby give rise to a segmented column with a
higher strength to weight ratio than a prismatic column. The
geometry selected for this experiment is shown in Figure 28, to-
gether with a cylindrical segment of the same height and interface
area. This latter specimen was used to establish a group of con-

trol columns.

Using the procedures outlined in Appéndix B, Hydrostone
Gypsum specimens were cast in each of the shapes shown in Figure 28.
With the simple setup shown in Figure 29, the ultimate compressive
strength of 54 three-segment columns were obtained. The physical
and mechanical properties of these columns are summarized in
Table 3. It is of considerable interest that a number of columns
tested developed longitudinal cracks through two or three of the ‘
segments. As shown in Figure 29, the cracks did not stop at the
interfaces but passed into the next cylinder as if the column

were continuous.,

The backbone columns were tested in the same manner as the
cylindrical columns as depicted in Figure 30. As indicated in
Table 3 the strength-weight ratio of the backbone column is not
significantly higher than the control columm. Furthermore, the
mode of failure casts doubt upon any possible superiority of the
backbone specimen. Prior to ultimate fracture, the lips or
flanges on the dogbone segments were stripped off leaving a pris-
matic column of smaller diameter. It would then appear that the
higher strength-weight ratio is attributable to a size effect and
not a geometry effect.

When stress concentrations appear in a compressive field it
is possible to achieve''intelligent behavior'" from materials which
usually sustain no stress redistribution mechanism. 1In addition to
the dogbone specimen, another example of such behavior was described
to the author by H. A, Perry of the Naval Ordnance Laboratory.
Glass spheres were fabricated from two hemispheres that were at-
tached in such a way that a bead appeared around the equator on
the inside. When the sphere was submerged in the ocean, the bead
was stripped'off and appeared as chips in the bottom of the sphere.
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Figure 29 Test Setup for Cylindrical Columns
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TABLE 3
PHYSICAL PROPERTIES OF CYLINDRICAL AND BACKBONE COLUMNS

Physical Properties Cylindrical Backbone
Interface Diameter 3 in 3 in
Segment Height 3 in 3 in
Segment Weight 593.6 gm 333.67 gm
Number of Segments 3 3
Avg. Ult. Compressive Strength 16989 1bs 9580 1lbs
Avg,.Strength-Weight Ratio 28.64;38 38.7 é%i
Material Hydrostone Hydrostone
Number of Columns Tested 54 46
Central Diameter 3'in 3 in
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Figure 30 Test Setup for Backbone Columns
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As a final observation concerning the backbone specimen
we note that this shape makes it possible to apply a lateral
prestress to a column using straps at a small number of
locations., This idea is illustrated in Figure 31 Such struc-.
tures may have advantages over jacketed or continuously wound
columns. The bulkier prestressing tendons may be less fragile,
easier to insulate, or require fewer attachments., A similar
method of prestressing is briefly discussed in Section V for
the ogive shell.
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Figure 31 Laterally Prestressed Backbone Column
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IV. PRESTRESSED PLATES

The similarity between prestressed segmented beam behavior
and that of ductile bending made it possible to successfully apply
the techniques of limit analysis to describe the ultimate load
carrying capacity of prestressed segmented beams. The extension of
these techniques to prestressed segmented plates is investigated
in this section. Preliminary experiments are conducted using both
monolithic and segmented circular plates.

A. Segmented Plates

If a circular plate is subjected to a uniform radial pressure
around its periphery, a homogeneous isotropic state of plane com-
pressive stress o, is introduced into the plate. Any and all
cracks in such a plate will tend to close up, and in particular, the
ultimate bending resistance along such cracks will be calculated in
the same manner used for segmented beams. Referring to Figure 18 a,
the limiting moment per unit length in a plate is simply

M, = -7 . (71)

where o 1is the stress acting normal to the crack interface and
t is the plate thickness. We shall, of course, take ¢ as the pre-
stress op. This limiting moment capacity would.not be effected by
moments acting transverse to the crack which suggests the~applica-
tion of the square yield criterion shown in Figure 32 .

My \

Mo

..MO

Figure 32 Square Yield Criterion
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We shall use this criterion to analyze a circular plate of radius

R which is simply supported on a circular ring of radius r and is
subjected to a central load P brought onto the plate through a blunt
circular rod of radius a. Assuming the yield (or crack) pattern
shown in Figure 33, we observe that the loading die will ultimately
contact the centerline of each segment at only one point a distance
of a from the plate center. The loading at such points will be

P/n where n 1is the number of segments. The virtual work done by
these loads in the assumed displacement pattern is

P b-a
n (5 )a (%)
The energy dissipated at the yield lines is given by

in T
n R Mo 2Wsin n

Equating these virtual energies we obtain

. t
. _ P A a
n R ( —g—- y 2| —&— |sin L— =n 11 -
(r cos —o— n n r cos I-
) n
or
- 2 T R
P = cp t“ n tan o (;:——37——-) (72)
cos L
n

This load represents an upper bound on the true collapse load of
the plate, and consequently, we should choose from among this class
of collapse mechanisms the one which gives the lowest load. This
occurs when n— », and hence,

2 , R

P=7q70_t¢t (Ita-) n-—" o (73)

The true collapse load is realized only when the correct yield pat-
tern is chosen. 1In the present case, symmetry suggests that we
have made the right choice.

We can cause yielding to occur along a finite number of radial
lines by strengthening the material between them. We would expect
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Figure 33 Collapse Pattern for a Circular Plate
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the capacity of the plate to increase with such a procedure and
this is exactly what Equation (72) predicts. As we force failure
to occur along fewer and fewer lines, the required strength of the
segments will correspondingly increase. As a rule, to avoid frac-
turing the elements in a segmented component we should select seg~
ment geometries that approximate the true yield patterns for the
structure. An extensive treatment of limit analysis of plate
structures can be found in Wood (ref.6).

To establish the potential of the proposed analysis procedure,
we constructed two segmented circular plates using eight Hydrostone
plaster segments in each. The prestressing was accomplished by
making a double wrap of steel strapping about the periphery of the
plate as shown in Figure 34 , and tightening with a standard band-
ing tool until yielding occurred near the grip. Seven monolithic
plates and two segmented plates were prestressed in this way and
the resulting strains in six of the plates were recorded by radial-
ly positioned electrical resistance foil strain gages. The strain
gage readings and measured loads for these plates are tabulated
in Table 4 . The support fixture and loading setup are shown in
Figures 35 and 36 respectively. The load deflection diagrams for
the segmented beams are shown in Figure 37 where we observe well
defined horizontal regions. Upon unloading, we obtained complete
deflection recovery with only occasional chipping at the segment

edges.

As evidenced from Table 4 , the straps did not apply a uniform
radial prestress; however, since care was taken to tighten the straps
in the same way for all cases, it is felt that the average prestrains
in the various plates were about the same. On this basis, the pre-
strain was taken as the average at sixteen gage readings, i.e.,
49.4x10-6 inch/inch. Using this value together with the plate pro-
perties tabulated in Table 5 , Equation (72) predicts a yield load
of P = 309 1b. This value differs from the measured values of
270 1b and 288 1b by 14.4 percent and 7.3 percent respectively.
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TABLE 4
PRESTRESSED MONOLITHIC AND SEGMENTED CIRCULAR PLATE STRENGTHS

Plate Number Strain x 10°° in./in. | Yield Load | Ultimate Load

a B c (1b) (1b)

"Monolithic 1 defectf 50 45 400 540
Monolithic 2 70 55 65 345 582

Monolithic 3 30 50 55 370 . 520

Monolithic 4 40 45 | 55 410 624
Monolithic 5 60 70 defect. 330 706

Monolithic 6 no gages 300 535

Monolithic 7 nb gages' 350 430

Segmented- 1 50 40 10 270 C---

Segmented 2 no gages 288 . -——-

i
Average Strain Gage Reading: 49.4x107° in./in.
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TABLE 5

PHYSICAL PROPERTIES OF HYDROSTONE PLATES

Plate radius
Support ring radius
Central load die radius

Plate thickness

Average plate strain

R = 7.5 in.
r = 6.75 in,
a = 0.906 in.
t = 5/8 in.

€ = 49.4x10"° in./in.

Modulus of elasticity of Hydrostone E = 2.79x106 psi

Poisson's Ratio for Hydrostone

Average prestress level

Number of se