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STUDIES IN PRESTRESSED

AND SEGMENTED BRITTLE STRUCTURES

by Ralph L. Barnett and Paul C. Hermann

SUMMARY

A nonlinear theory describing the response of rectangular pre-

stressed segmented beams is verified experimentally. The applica-

bility of the theory is extended to beam-columns and to I-beams with

multiple tendons. The methods of limit analysis are used to pre-

dict the ultimate load carrying capacity of prestressed and seg-

mented beams and plates. A statistical hypothesis is developed

and verified for scaling the behavior of different height nonflat

segmented columns. Finally, the feasibility of prestressing cylin-

drical and ogive shells is investigated and evidence is obtained

which demonstrates the practicality of overwinding as a prestressing

technique.

I. INTRODUCTION

To realize the considerable potential of ceramics and cermets

in high performance structures it is necessary to circumvent the

problems which attend brittleness and small section size. One

approach to this problem utilizes the techniques of prestressing

and segmenting, and indeed, the principal objective of this program

is to study these techniques for their possible employment in aero-

space applications. Specifically,our goal has been the development

of an analytical capability for predicting the behavior of prestressed

monolithic and segmented brittle structures from a knowledge of the

behavior of their component elements.

In the first phase of the program, three fundamental problems

were considered (ref. 1)*. The first of these dealt with the devel-

opment of transverse tensile stress in a segmented column under

axial compressive loading. The second, involved the prediction of

the nonlinear response of a prestressed segmented beam.

*References listed at the end of text.
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The last concerned itself with the benefits which accrue from pre-

stressing a monolithic brittle element. We shall briefly review

the highlights of this first effort.

A. Summary of Previous efforts

L. Transverse cracking phenomenon. - Cracking in a direc-

tion transverse to a uniaxial compressive load was first recog-

nized by F. R. Shanley to be a major deterrent to the application

of prestressing to segmented members. In 1957, the authors con-

ducted a study of minimum weight deflection design for prestressed

segmented beams in which the roughness of the segment interfaces

played a predominant role. Based on this background, it was hypoth-

esized that the interface roughness causes transverse cracking.

To support this view the following evidence was established.

(1) The slope of the compressive stress-strain dia-
gram of a segmented column increases with in-

creasing stress. This is caused by the fact
that the contact area increases with axial load

and hence the stiffness correspondingly increases.

(2) Column strength increases with increasing flatness.

(3) Specimens increase in compressive strength with

decreasing cross sectional area.

(4) Internal transverse crack lenses can be observed
in glass columns (2x4xl/2 inches).

(5) Photoelastic and two-dimensional elasticity

results indicate that an uneven load distribu-

tion on a segment will cause internal tensile

stresses in directions parallel to the interfaces.

(6) Triaxial compressive tests indicate a very sub-

stantial increase in axial strength when a

lateral prestress is imposed.
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2. Load-deflection characteristics of prestressed segmented

beams. - Two quite different mathematical models were developed

to describe the nonlinear response of prestressed segmented beams

with perfectly flat interfaces. The statistical nature of the

nonflat interface problem was identified and its implication to
both bending and column behavior was described. Load-deflection

diagrams were experimentally obtained for segmented glass beams

using several levels of prestress. The general characteristics of

these diagrams are illustrated in Figure l-a where we can identify

a linear and a nonlinear region. The rough interfaces of the glass

segments precluded a deterministic prediction of the linear portion

of the curve; however, when our "perfect interface" models were

modified to reflect the proper linear behavior, the nonlinear

region was predicted with remarkable precision.

3. strength of prestressed monolithic brittle beams. - Apply-

ing Weibull's statistical fracture theory, it was possible to

theoretically establish for simple beams a relationship among

prestress level, reliability, loading, member geometry, and

material properties. A specific example was treated in which the

prestress results in a 25-fold increase in ultimate capacity over

a conventional beam of equal weight and reliability. The general

characteristics of the load-deflection diagrams for such members

are illustrated in Figure 1-b where we observe the influence of

both deterministic and statistical phenomena.

B. Summary of Current Accomplishments

The bending theory previously formulated for prestressed seg-
mented beams with perfectly flat interfaces was verified by care-

fully performed experiments on a segmented tungsten carbide beam.

The segment interfaces for this rectangular member were no more

than one half lightband out of flat. Having placed the theory on

a solid foundation, a computer program was written to extend our

analysis capability to I-beams and box beams with multiple tendon

arrangements. The applicability of limit analysis theory for pre-

dicting the ultimate load carrying capacity of prestressed segmented

beams was demonstrated by tests conducted on a 16-foot tubular

alumina beam with a thin wall circular cross section.

3
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Monolithic Hydrostone plaster beams were used to accumulate statis-

tical data on the "initial fracture" strength of beam-columns.

Weibull's statistical fracture theory provided a satisfactory des-

cription of the measured behavior.

Starting with the bending theory for perfectly flat segmented

beams, it was possible to describe the behavior of perfect segmented

beam-columns under eccentric axial loads. The buckling load of a

perfect segmented column was shown to be equal to the classical

Euler load. A statistical theory was proposed for scaling the com-

pressive stress-strain diagrams of different height segmented col-

umns with nonflat interfaces. Data obtained for various size seg-

mented glass columns supported our hypothesis that the stiffness

distribution is normal and scales as the "distribution of the mean".

A brief investigation into the behavior of nonprismatic segmented

columns indicated that cracks are not necessarily arrested at segment

interfaces. Furthermore, the results of tests on short plaster back-

bone columns suggest that nature may prefer the prismatic column.

The theory of limit analysis was applied to prestressed seg-

mented circular plates and the resulting predictions agreed closely

with results obtained from preliminary experiments performed on

Hydrostone plaster disks. Theoretically, this theory provides a

lower bound to the strength of monolithic prestressed brittle plates

and tests conducted on such elements support this prediction.

Finally, preliminary studies were conducted with prestressed

cylindrical and ogive shells. The technique of overwinding was

shown to be an effective method for applying a prestressing force

over an extended area. The first experiments with segmented plaster

ogive shells seemed to indicate that the interface roughness problem

may be of critical concern.

C. Acknowledgments

The diversified nature of this program required the special-

ized talents of many people. The authors would like to acknowledge

the important technical contributions made by K. E. Hofer and J. R.

Wingfield in the area of experimental mechanics, by J. F. Costello in

the field of statistical fracture theory, L. A. Bertram in the area

of computer technology, and by K. L. Cole in the area of filament

winding.
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II. PRESTRESSED BEAMS

A number of fundamental investigations involving pre-

stressed monolithic and segmented beams are described in

this section. Specifically, the theory of perfect segmented

beams (absolutely flat interfaces) presented in our first

report is verified experimentally. This theory is applied to

prismatic I-beams or box beams with multiple elastic tendons

and a computer program is presented for establishing the load-

deflection diagrams for such members. The possibility of using

limit analysis methods to establish the load-carrying capacity

of segmented beams is briefly exploited with the aid of a 16-

foot aluminum oxide segmented circular tube. Finally, the ulti-

mate capacities of prestressed monolithic hydrostone plaster

beams are measured and compared to predictions derived from a

statistical formulation of the problem that uses a beam-column

analysis together with the Weibull distribution function.

A. Nonlinear Bending Theory

1. Theory of perfect segmented beams. - In our first report

two different mathematical models were developed to account for

the segment separation which occurs during the bending of a seg-

mented beam (ref. 1). The first of these, the incremental model

shown in Figure 2a considers the beam at some instant during the

loading process. At this instant the beam is in equilibrium with

the applied moment M(x), and in general, cracks will have pene-

trated into the beam section for some distance along the segment

interfaces. The relationship between crack penetration and the

bending moment at a station along the beam is established in a

straightforward manner from moment equilibrium. If an additional

infinitesimal moment 6M(x) is added to this beam, the resulting

infinitesimal response can be calculated as the linear response

of the uncracked beam section. The total live load deflection is

then found by summing all such infinitesimal responses which occur

between M(x) = 0 and M(x) = M(x) Ifinal"
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In the second model, the equilibrium model shown in Figure 2b,

the beam is considered in its final loading state. The portion of

the beam which is uncracked is considered to be an elastic beam

under the external loading M(x) and the internal loading caused

by the prestressing. Since the deflection of an elastic beam can

be uniquely determined for every loading, the deflection of the

entire beam can be viewed as the deflection of the uncracked portion.

Since the general demonstration of the equivalence of these

models was not attempted in our previous study, we shall deal with

this problem here.

2. Equivalence of the two models. - In the postulation of both

the "incremental" and "equilibrium" models, it was assumed that:

(1) the segment material is linearly elastic up to its ultimate

compressive strength, (2) the interfaces are absolutely flat, (3) the

tendons are constrained to deflect with the segments (eliminating any

beam-column action), (4) the number of segments is infinite, and

(5) the resultant prestressing force is located within the section

kern (precluding the existence of tensile bending stresses and hence,

cracking under zero external load). Also, for the sake of sim-

plicity, the equivalence of the two models will be demonstrated
for the case of rectangular cross section and zero stiffness

tendons.

Both models are identical as long as the beam is completely
uncracked. In the cracked region, the incremental method leads

to the following expression for the deflection

A =Ac + p dAk dP (i)

PC

where the applied bending moment distribution, M(x), has been

represented by Pg(x), P being the maximum applied bending moment,
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and where Ac is the cracking deflection, Pc is the cracking

moment, and

dAk = fmEcx)dx + m7(x)d 2)
7 J El J EIC

Sc

and where S and Sc are respectively uncracked and cracked por-

tions of the beam and are functions of P. In the cracked region,

the equilibrium model leads to following expression

AfTm dx f - dx (3)

S Sc

where T is the resulting moment acting on a cross section.

The fact that these two models are indentical will be demon-

strated by showing that

dA _ dAkup u (4)

Without loss of generality, temporarily assume that S(P) is the

interval 0 to a(P) and that Sc(P) is the interval a(P)

to L.

Then for Equation (3)

a(P) L

d d dx dP Tf c T(5
0 a(P)

9



Thus

dA fa(P) mddA f m dT Tm 1 Tm + da
uEp P dx 00 I EI-x=a(P)up-

d T ddx - m da +TM0
a(P) c El c IdP- ( )d x=a(P) x=L

and since at x = a(P), Ic = I, wehave

a(P) L
dA f m dT f)md Tf-P upE-- dx + f MEd-• (T) dx

0 a(p)

or more generally

d fm dTd fmx+
dA-= f- dT dx + f - (T) dx (6)

S Sc c

For rectangular cross section we have

I bd
3

Ic = 18 b (T 3

(7)
T = Pg(x) - Fe in S

T = 1 [F (e+) - Pg(x)] in Sc

10



Thus, using Equation (7 ),
dT

in S: g -=g(x)

(8)
in S: d (T W

Inserting Equation (8) into Equation ( 6) we have completed the

proof, i.e.

A dAk mg( dx + fmg(x) dx (9)
S Sc C

3. General relationships for multiple tendons. -

a. Arbitrary cross section: The most general relationships

holding for any cross sectional geometry and/or any number of elas-

tic tendons, will now be described. If Fi is the force in the ith

tendon located ej from the uncracked neutral axis, Figure 3

and M is the applied moment, then the resultant moment acting

upon the cross section is

n
TnM-Z F Qi (10)

i=l

where

Qi= ei + f - q + x (11)

and where n is the total number of tendons.

Define n F

F = F (12)
i=l

and
n
ZF ei

e =Fo (13)

Using Equations (11), (12), and (13), Equation (10) may be written as

11
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n
T = M - F (e + f - q + x ) - F1 (ei-e) (14)i=l1

If we further define

n
7= F (e.-e) (15)

Then the expression for the resultant moment becomes

T = M - F (e + f - q + 3 ) - MT (16)

As they have been defined, e represents the effective eccen-
tricity of the initial total prestress F° and MT represents

the resultant moment due to the effective bending stiffness of
the tendons. We note that MT = 0 when F = Fo and also that
MT = 0 for the case when all the tendons have the same ei (equiva-
lent to a single elastic tendon).

In order to determine the crack penetration f we use the
fact that the stress is equal to zero at the top of the crack.

=0 F T x (17)acrack A- A I(

Combining Equations (16) and (17) yields

M-MT =eq I
F -e + f - q + x + I_ (18)

Ax

where

I = I(f), 7 = i(f) and A = A(f).

In general (except for the case of rectangular cross section),

Equation (18) cannot be solved explicitly for f . In the I-beam
computer program it is convenient to define W = (M-MT)/F, tabulate
W vs f and use the table to accomplish inversion and thus obtain

f = f(W).

The expressions for deflection and slope are simply

13



L TmA

f E d

0

L TmLe L = - dx 
(19)

L f E0
0

L
LR - dx

0

where the virtual moments are

m (1-) x, for 0< x_< xx

xA (L - x) for x. < x<• LmA L A

(20)
S: (1 - •

mif x
R L

Now

00 ~ ~FoeL,(1
0 =Lo = Ro 7E (21)

where 10 is the uncracked moment of inertia.

The equations for determining the tendon forces are now, for

the i th tendon

(F i-F i)L F-F° L

At Et- Qi (0-0°) x=o +IQi ((-00) x=L E 0 A

(22)

where it has been assumed that all the tendons have area At and

modulus Et. There are n such relationships, all coupled explicitly

by the F-Fo term and implicitly by the other terms, to be solved

simultaneously. However, due to the fact that all the tendons

14



have the same At Et, these n equations may be added and

solved for F - Fo (although transcendentally):

F Fo I Q(0-0°)1x=0 + IQ(9-9 0 )-LLF _ 1 x x--L (23)

L L + n_ fLdx

At Et E 0jA

where
n

Q Z Qi (24)
i=l

Having used Equation (23) to determine F - Fo, the individual
tendon forces may be found directly from Equation (22).

b. Rectangular cross section: Several of the expres-

sions that were derived in the previous section simplify for
the special case of rectangular cross section. In this case,
taking d total d and taking b to be the width, we have the

following:

dq-

-_ d-f
T (25)

A = b(d-f)

I = b(d-f• 3

12

When these relationships are substituted into Equations (16)
and (17) we find that the uncracked portion of the beam, S
corresponds to the condition M - MT-. F(e+d/6) and the cracked
portion, Sc , to the condition M - MTF(e+d/6). Furthermore

it is determined that

in S: F=0

T = M - Fe - MT (26)

A=Ao =bd
I = Io =bd3 /12

15



and in

S f =d -6()
CF

T i [F(e + d ) + -M

T (27)
A = 6 b (P)

T3

I = 18 b (T)

4. Verification of theory. -
a. Design of experiments: Of the various assumptions

entering into the deflection analysis of segmented beams, the
most difficult to realize physically is that the segmented inter-

faces be perfectly flat. The glass beam used in our previous

study did not approach this condition and, consequently, it could
not be used to verify our proposed theory. In the present investi-

gation we were fortunate to obtain a set of 100 tungsten carbide
gage blocks with interfaces that were no more than one-half light
band out of flat. As shown in Figure 4, the compression load-
deflection diagram for a 18.75-inch column of 1-inch x 2-inch x
1/4-inch blocks is linear down to very low loads and has a slope

equal to that of a monolithic tungsten carbide bar, that is, the
modulus of elasticity is about 92 x 106 psi.

The selection of extremely flat blocks was the first consid-
eration in the design of our experimental program. To minimize the
influence of the small range of nonlinearity in the compression
load-deflection diagram at low loads, a high prestressing level

(7,000 psi) was chosen for the tungsten carbide beam. Our previous
work on glass never exceeded the 1500 psi level. Further, to pre-
clude the possibility that one or several segments exert a dispro-
portionate influence on the overall beam behavior, a terminal cou-
ple-end rotation relationship was selected for the response com-

parisons.

16
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b. Test description: The experimental setup for testing
the prestressed and segmented WC beam is illustrated in Figure 5.

In order to apply terminal couples to the WC beam, it was neces-
sary to utilize steel extensions at the ends of the beam. Thus,
by employing four point loading (all points located on the steel

ends) a uniform bending moment distribution was produced in the

beam.

The true (tangent) end rotations were not measured. Instead
a secant approximation to the end rotations was obtained by meas-
uring the relative deflection of a point 1.06 inches from the as-

sumed end of the beam. In order to measure these deflections,
transducers (DCDT's) were suspended from the beam and located on

a freely swinging rack, Figure 5. The purpose of the rack was to
automatically compensate for any rigid body rotations the beam
might experience. The beam was loaded such that it bent concave

downwards and thus produced extensions for the DCDT's to measure.

The experimental setup was calibrated using a monolithic steel
beam.

Pairs of strain gages were attached to each of the tendons
to eliminate bending strains. The assembly of the steel ends and
the tendons was calibrated in tension to verify the accuracy of

the tendon strain gages. Tendon strain gage readings were also
recorded during the bending tests for correlation with our elastic

tendon theory.

Two slightly different beam configurations were used to ob-
tain data. Details of these two configurations are presented in

Figures 6 and 7. Configuration no. 2 is the better one from the
point of view of the theory due to its simplicity. However, it

has the significant drawback that the amount of preload that could
be generated by tightening the nuts on the tendons is limited by
the relatively poor threads that were cut on the tendons. Conse-
quently, for all the higher preload levels, resort had to be made

to configuration no. 1 which generated the preload by extending
the jack screws.

18
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Preliminary bending tests were conducted using configuration

no. 1. Preload levels of 5, 8, 11 and 14 kips were selected which

were in the monolithic stiffness range according to Figure 4 for

the column test. The tests were run in the sequence 14, 11, 8, 5,

5, 8, 11 and 14 without ever bringing the preload to zero. The

results of these tests are presented in Figure 8.

Two final terminal couple-end rotation diagrams were deter-

mined for the WC beam where exceptional attention was devoted to

the testing details. In each test, the preload was gradually in-

creased from zero to the desired level and many load precycles

were applied to the beam to completely stabilize the system. The

first test was conducted with configuration no. I and a 14 kip

preload. The preload in the second test was 4 kips which enabled

us to use the configuration no. 2 and avoid the complications in-

troduced by the jack screws. The results of these tests are pre-

sented in Figures 9 and 10.

c. Comparison of theory and experiment: The theory,

with which the experiments will be compared, is in the form of a

computer program which was developed under the first phase of this

contract (ref. 1). In order to take into account the effect of

multiple elastic tendons and also to attempt to compensate for the

structural complications (especially in configuration no. 1) that

were introduced between the end of the WC beam and tendons, the

original computer program was significantly modified.

Recalling the elastic tendon equation for the case of multiple

tendons, we have

(Fi- F i) L F- F0  dxAt Et Qi (0-90) + IQi (0-0.) E f -K (2

t t Ix=O x=L E

where Tmf - dx (28)SE I

and where the interval (0,L) represents the assumed length of
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for a Prestressed Segmented WC Beam
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the WC beam. In order to account for the steel ends and (in

configuration no. 1) the jack screws in Equation (22), the end

rotation should be expressed as

L TmL dx + K2 (M - F + K (29)
QKf e...Ld(9

0 El + F M )+ 3
F - Fo fL dx

and the beam compression term, E 0 ' should be modi-

fied to
[KI L dx K5

(F F 0 )L d + K K5 (30)0F-F) E 0 -A K4 + A

where

1 Assumed Length

= 1 0
4J s (31)

K3L
K3  E EST

K1 •0

K = L
(5 E ST

These correction terms and factors were derived with the

following assumptions: (1) M(x) = constant; (2) the steel ends

have the same width and depth as the WC beam and are infinitely

segmented so that their area and moment of inertia depend upon

the loading in the same manner assumed for the WC beam; and (3)

that the jack screws act simply as two force members. The sub-

scripts ST and JS refer to the steel ends and the jack screws

respectively, 2w is the vertical distance between jack screws and

0 is is the extended length of the jack screws.
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TABLE I

LENGTHS OF JACK SCREW CORRESPONDING TO THE
VARIOUS PRESTRESS LEVELS

Fo(kips) 1JS (inches)

14 0.0559

11 0.0439

8 0.0319

5 0.0200

In configuration no. 1, LST = 2.64 inch, w = .75 inch,

AjS = .0227 sq. in., and LWC = 20.0 inch. In configuration

no. 2, LST = 1.44 inch and Lwc = 21.0 inch. Also, in both

configurations EST = E = 30 x 10 3 ksi, and the assumed

length = 18.75 inch. Insertion of these values into Equations

(31) yields Table II.

TABLE II

VARIOUS CONSTANTS USED IN THE ROTATION COMPUTATIONS
FOR THE WC BEAM

F Configuration K1  K2  K3  K4  K5

2_l -6 -6 K 6 K
kips No. x10 xl0 x10 6  x10"6

14 1 20/18.75 36 44 21 88

11 1 20/18.75 29 44 16 88

8 1 20/18.75 21 44 12 88

5 1 20/18.75 13 44 7 88

4 2 21/18.75 0 24 0 48

As mentioned previously, the experiments yielded average

(of both ends) secant end rotations corresponding to vertical

deflection measurements taken at stations 1.06 inches apart

at both ends of the beam. Thus, the computer program was ad-

justed to compute the same secant end rotation.

Figure 8 illustrates the comparison of the theory and the

preliminary experiments. It is observed that generally, the

higher the preload, the better the agreement. There are a number

of reasons why this is expected; higher preloads provide a
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tighter system with greater contact area between segments,
the influence of the low stress nonlinearity is suppressed,
and the relative errors in preload determination are reduced.

It should be noted that a rough analysis of the jack screws
indicated that they tend to open up in the nonlinear ranges

for the cases Fo = 5 and 8 kips.

The comparison of the theory and the final experiments
is illustrated in Figures 9 and 10. The agreement is much
better than in the case of the preliminary experiments, both
in the linear and in the nonlinear ranges. This is due to the
extra care used in performing the final experiments and pos-
sibly to the fact that the jack screws were eliminated in the
case F° = 4 kips. The jack screws behaved as predicted in the
14 kip case.

5. Segmented beams with nonflat interfaces. - When the
segment interfaces are not flat, the contact area between any
two segments may vary from almost full contact to almost no
contact. Furthermore, the actual contact area cannot be pre-
dicted for particular segments since it varies randomly from
interface to interface. However, when all the interfaces have
been drawn from the same population, which usually happens when
the same manufacturing technique is used for all the blocks, we
can predict the behavior of groups of segments in a statistical
sense. The compression test, for example, furnishes a measure
of the average or effective contact area at every level of com-
pression. For a given segmented column the effective area is
computed by multiplying its nominal area by the ratio of its
tangent stiffness to the equivalent monolithic stiffness.

The statistical nature of the interface contact gives rise
to a number of important implications. First, a description of
the compressive stress-strain diagram will be statistical and
will depend on both the column area and the length. This prob-
lem will be studied more thoroughly in Section III. Second,
the moment of inertia, like the area, will be random with a
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lower bound equal to zero and an upper bound equal to the full

moment of inertia. It follows that beam behavior will be statis-

tical in nature and that the variability experienced will depend

on the length and area of the beam, the number of segments, and

on the loading.

Because the effective stress-strain curve of a segmented

column is area and length dependent, it is clear that an equivalent

nonlinear material cannot be defined which is useful for response

calculations. For example, in a segmented beam under sufficiently

high loads, the nominal "uncracked" area diminishes continually
as the load is increased. Consequently, the stiffness of the section

tends to increase as a result of increasing axial stress and de-

creasing nominal area; it tends to decrease because of a reduced

moment of inertia. The theory of perfect segmented beams accounts

only for variations in the moment of inertia. An exact solution

for the response will require, in addition, that we describe the
bending stiffness of any "uncracked" area subjected to a linear

strain field that varies from zero at one end to some arbitrary

maximum value at the other. It does not appear that an exact bend-

ing stiffness relationship can be derived from column tests. The

desired relationship can be obtained from terminal couple-end
rotation tests; however, the authors doubt whether the end result

justifies the effort involved.

An approximate description of a load-deflection diagram can
be obtained through a slight modification of the perfect interface
theory. If the modulus of elasticity of the segment material enter-
ing into the theory is replaced by the tangent modulus of the beam
associated with the initial prestress level, the perfect interface

theory will predict the average load deflection diagram. In our
first report we demonstrated that this procedure predicted the non-
linear behavior of segmented beams when the initial straight line

portion of the curve was matched to the data. The necessity of
matching up the initial slope rather than inferring it from the

tangent modulus taken from the associated column tests strikes at
the core of the statistical problem. The tangent modulus prediction
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describes only the average behavior of a group of segmented beams

and not the response of a single member.

To use the suggested approximate technique for predicting beam

response, we require a description of the compressive stress-strain

curve for the nominal cross-sectional area of the beam. There is

every reason to believe that the statistical description of a

single typical size column will enable one to describe any other

column of different area and length. This problem is studied in

Section III.

As a final observation concerning nonflat interfaces, we re-

call from our last report that the initial portion of the central

load-central deflection diagrams for the glass beam were all

straight. On the other hand, the compression stress-strain diagram

for the glass is curvilinear with a monotonically increasing slope.

This apparent anomaly can be explained by considering an axial

prestressed beam that is free from lateral loads. The initial

bending stiffness of this member is proportional to the tangent

modulus of a compression curve at the given prestress level. Now,

when a bending moment is applied to this member the compression

fibers will tend to get stiffer and the tension fibers will tend

to become more flexible. The two effects neutralize each other and

mitigate the influence of the compression nonlinearity.

B. I-Beam or Box Beam with Multiple Tendons

The analysis of I (or equivalently box) beams proceeds exactly
as outlined in the section on general relationships. Referring to

Figure 11, we obtain the following cross sectional properties:

Uncracked section properties (f = 0)

A = 2 btf + dtw

d tf-- dtotal d f (32)
= q = d =+-.(3

twd3  btf 3  btf 2
I = --6--+ + 2---- (d + tf)
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q

tf

b

Figure 11 Geometry of Cracked I-Beam
Cross Section
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Cracked section properties

Case I (0 < f < tf)

A = b(tf-f) + dtw + btf

1 lb 2+ d_3
- [x (tf-f) + dtw(tf+•- f) + btf(3 tf+d - f)] (33)

SI+ 
3 + 3 tf 2

1 [b(tf-f)t + twd3 + + b(tf-f)(x- - f + f)

d _ d 2 3 2
+ dtw - -tf + f) + btf ( tf + d - -f)

Case II (tf < f < tf + d)

A (tf + d - f) tw + btf

[w- (tf+ d-f) + btf ( 7 tf+ d-f)] (34)

Si 3 tf d + 2
I 1= [tw (tf + d-f) + btf + tw (tf+ d-f)(3 --p - +

3 2
+ btf (Ttf+ d - - f)

Case III (tf + d < f < 2 tf + d)

A = b( 2 tf + d - f)

-- d f (35)
x= tf + -

b 3
1= f ( 2 tf + d - f)

Due to the algebraic complexity of the above expressions for

A(f), 7(f) and I(f), the equation for the crack penetration

l(f) (36)
W=e + f - q +x+ A(f)•(f)

where
W M-MT

F
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cannot in general be inverted to find f=f(W). In order to be

able to handle this new complication, a new computer program

has been developed. A listing of the program (in Fortran II for

the IBM 7094) plus sample input-output is presented in Appendix A.

This program is currently set up to handle I-beams with multiple

elastic tendons. Each of the cross section properties A(f), 3E(f)
and I(f) are programmed as function subprograms and, consequently

any other cross section geometry may be investigated by merely

changing these three subprograms.

The inversion of Equation (32) is accomplished in the

computer program through the vehicle of a table of W vs f. This

table is constructed in increments according to input specifi-

cations. The inversion is easily effected by a function subprogram

which merely searches the table using W and linearly interpolates

between the bracketing values.

Prestressed segmented glass beams with the cross sectional

geometries shown in Figure 12 and with E = 10.5x10 6 psi,

Et = 30 xl06 psi, and L = Lt = 38 inches have been selected to

illustrate and compare the behavior of I-beams, webless I-beams,
and rectangular beams of the same overall dimensions. Figure 13

illustrates the behavior of these beams under terminal couples

for the case of zero stiffness tendons (Et=0). We observe that the

rectangular beam is the stiffest (least deflection) member in the

initial load range, the I-beam in the middle range, and finally

the webless I-beam in the final range.

It is interesting to note that, for a load of 18 inch kips,

the rectangular beam has a crack penetration of 2.5 inches, the

I-beam has 1.7 inches, and the webless I-beam is still uncracked.

Thus, the webless I-beam, which has only 25 percent of the area
and weight of the rectangular beam, is unquestionably the most

efficient cross section for prestressed beams in terms of stiff-

ness per unit weight.

33



I I _ _ I

E

I I I

0)0

s-r

4,1

0

00

-0-0 0 0
0 0)

0 4)n

-0) t- Cd0

E
00

(NJ
0

E P4

0)0

F- I *LZ.

-G Bit-

34E



E

co - -

E .2 0

a)
0

E
0 .

oc
W~~ 0a0

0
.r4
4~J

*4~J

0)1

oc
Li-

0

a,0

CT

'a p

2)-0) 0

an in) 00

Doo

-u 4-) 4-

0o L44

0)) Wo

Cd 4J
o 0 r4

0 P

0

OD (\j 0 0 0
N~ N N -

35



We also observe for the case of the webless I-beam that

although abrupt changes in character occur in the terminal

couple vs. end rotation curve and the terminal couple vs. crack

penetration curve as the crack passes through the bottom flange,

that there is in fact no discontinuity in slope in either of

these curves. One additional noteworthy item for the case of

zero stiffness tendons is the fact that, as the cracks penetrate

the cross sections, eventually (f > tf + d) the uncracked sections

become identical and hence the behavior of the three beams coin-

cide in this range.

The behavior of the three beams for the case of elastic

tendons is shown in Figure 14 and 15. In general, the effect

of the tendon elasticity is to increase the stiffness and the

slope of the terminal couple vs. end rotation curve and to limit

its minimum slope as the load increases to infinity. There are

no discontinuities in the slope of the curves for end rotation,

prestress force, prestress moment, or crack penetration as the

crack passes through the bottom flange for the case of the web-

less I-beam.

As in the case of terminal couples on a rectangular beam

with a single elastic tendon (ref. 1) it is expected that the

cracks will never pass completely through the section. This fact

is verified by the crack penetration curves in Figure 15 which

seem to be approaching asymptotic values other than dtotal= 4.

Whether all three curves will have the same asymptote depends
upon the relative stiffnesses of the beams to the tendons. Thus,

in general, it cannot be expected that the behavior of the rec-

tangular beam, I-beam, and webless I-beam will become coincident

as the applied load becomes unbounded.
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Figure 15 Tendon Force and Moment vs. Terminal Couple
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C. Limit Analysis

The possibility of approximating the load-deflection diagram

of a prestressed segmented beam by one which is elastic-perfectly

plastic was suggested in our previous report (ref. 1). Indeed,

this possibility was exploited in 1952 by Kooharian in his study

of segmented concrete arches (ref. 2). In these arches, the com-

pressive forces acting normal to the segment interfaces were not

provided by prestressed tendons, but rather by the arches' reaction

to live and dead loading.

The applicability of limit analysis for predicting the

ultimate load-carrying capacity of prestressed segmented beams

is investigated in this section with the aid of the 16-foot

segmented aluminum oxide beam shown in Figure 16 . Each segment

in this member was four-inches in both length and outside diameter

with a wall thickness of 3/16-inch. The beam was composed

of 48 such segments and the prestressing was accomplished by

pretensioning a 1/4-inch steel prestressing tendon that passed

along the axes of the cylinders and was secured to steel end

plates. To preclude the presence of secondary bending effects

(beam-column behavior), the tendon was constrained to the

centroid of the sections by five closely fitting wooden spacer

inserts on three-foot centers. Two strain gages on opposite

sides of the tendon were used to monitor the prestress level.

Simple end supports were provided by two saw horses as shown
in Figure 17a . The beam was loaded with dead weights and the

finest load increment was five pounds.

The beam was tested under the three types of loading

shown in Figure 18 . In all cases, the loading was continually

increased until a 0.005-inch thick feeler gage could be inserted

between the separated segments to a depth of two-inches. The

load associated with this condition is recorded in Figure 18

as PMeasured" The first test run was the central loading con-

figuration. It was noted at the conclusion of this test that
longitudinal cracks had appeared on the compressive side of

several segments that were close to the beam's center. For the
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a. Support
Conditions

b. Beam Fracture

Figure 17 Segmented Alumina Beam Tests
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Mp F d M =Fd/2

a) Plastic Moment: M
p

P = 4Ml

Theory L " = 174 lb

PMeasured = 180 lb

io L

b) Central Loading

P P

p = 4Mp _wT 14l

Theory - L - 174 lb

tL/4 PMeasured = 185 lb

c) Quarter Point Loading

w
TT P16M 2W

"Theory = -L"k -"j-T 233 1b

PMeasured = 240 lb
*L/4 1 3L/4

d) Single Quarter Point Loading

Figure 18 Limit Analysis of Prestressed Segmented Al 2 0 3 Beam
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remaining two tests the beam was rotated such that the final

bearing area was away from the cracks. During the final loading,
two concentrated loads at the quarter points, horizontal cracks

developed under the loads which resulted in the catastrophic
failure shown in Figure l7b. The failure modes shown in
ýFigure 19 are typical of the primary segment fractures.

The prediction of the ultimate loading of the alumina
beam follows precisely the methods of limit analysis for simple
beams. Here, we take the plastic moment to be the prestressing
force times half the beam depth as shown in Figure 18a . The
formulas and predictions for the limit loads are given in
Figure l8b, c, and d where we reflect the following physical data:

(1) Prestress level, F = 5000 lb
( 2) Weight density of tendon - 0.167 lb/ft
(3) Span length, L = 182.5 in.
(4) Weight of entire beam, W 90 lb
(5) Weight of loading fixture 10 lb
(6) Plastic moment, MP = (2) (5000) = 10,000 in.-lb

We observe from this figure that the predicted loads are from
2.92 percent to 5.41 percent lower than the measured loads.

D. Prestressed Monolithic Beams

Our previous work (ref. 1) was directed toward applica-
tion of Weibull's statistical fracture theory to monolithic
prestressed brittle beams, neglecting the effect of beam-column
action. That effort was devoted to developing the relationships
among prestress level, load, geometry and the reliability of a
structural member. We then proposed to demonstrate those results
by means of an experimental program using Hydrostone plaster
beams. In this yearts effort, the additional moment due to the
eccentricity of a straight tendon when the beam is laterally
loaded has been considered. This may well not be of major
significance in a real-life application where the prestressing
tendon should be constrained to deflect with the beam, but it
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is necessary explain the experimental results reported in this

section. The experiments which were carried out involved four-

point bending tests on the hydrostone beams described in Appendix

B. The dimensions are shown in Figure 20, and the loading fixture

in Figure 21 . Since all specimens failed between the loads, the

experiment can be considered as a pure bending test with a gage

length L.

According to Weibull's theory, the failure probability F

will be:

F(o) = 1 - exp [- fff g d e1 d a2 d E3

g (Ell ; E -ua a 0 (37)

g=0 a 0.<Gu

where a is an intensity level; a 0 is the actual stress distribu-

tion in the body; Ell E2, and E3 are space coordinates; v is a

unit volume; and m, aOu and a0 are statistical distribution para-

meters. For convenience, the notation

F = 1 - exp [-B] (38)

is used, where the definite integral B is called the risk of

rupture.

For the case of a rectangular beam subjected to a pure

couplethe risk of rupture is

d/2 2a m V (auM~l

B- ( - o L b dy d 2 (ml) U am

u (39)

45



Q Q

Dimension:L- 45 inch

b=d= 2.5 inch

Unprestressed Case: P=0
Number of Tests,N=130

Prestressed Case: P= 10,000 Pounds
P_

Prestress o'P =-bd-= 1,600 Psi

Number of Tests,N= 26

Figure 20 Schematic of Four-Point Bending Test
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where V is the volume of a beam of length L, width b, and depth d;

the maximum fiber stress a = 6M/bd 2 is taken as the intensity

level; $ is taken as 2y/d; and y is the coordinate through the
beam depth measured from the neutral axis. For materials like

Hydrostone that have low tensile strengths, it is common practice

to attempt to fit their fracture data with a two parameter

assumption, i.e., au = 0. Then, Equation (39) simplifies to

B V (a/oo)m (40)

or

B = (mi/ o/&)M (41)

where the volume has been incorporated into the scale parameter

0'

The cumulative probability of failure curve for the unpre-

stressed beams is shown in Figure 22 where the data have been

ordered and the probability of failure at the stress associated

with the ith observation is estimated to be F = i/N+l where N

is the total number of observations. The maximum likelihood

estimates of the parameters a' and m are found from the solutions0

of (ref. 3 ):

N

N z (a 1 log ai)
N + • log. i N i=1 = 0 (42)

m 1N m
i=1
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and

(Or o)=M .oe (43)

where the ai are the observed fiber stresses at fracture. When

the results of Equation (42) and (43), ' = 821 psi and

m = 5.94, were checked by a Chi-squared test the response was at

the fifty percent level, indicating a very good fit.

For the loading shown in Figure 20, the beam-column solution

is (ref. 4 ).

- Q sin k c [sin k x + sin k (i-x)] Q c (44)

P Pk sin k• P

where k = V'i7EI. In order to verify the assertion about the

linear behavior of the beam up to its cracking load, deflections

were measured for one beam. The cracking load was observed to be

702 pounds accompanied by a center deflection of .183 inches.

Substituting into Equation (44) the appropriate values:

Q = 702 pounds E = 2.8 x 106 psi

I = 45 inches I = 3.26 in 4

c = 7.5 inches P = 10,000 pounds

x = 1/2 - 22.5 inches k = .0321 in- 1

we find y = .179 inches, a satisfactory agreement.

The bending stress in the outer fiber can be found by differ-

entiating Equation (44).

a= M(d/2) I d

I TY(-Ey")
(45)

Edk sin kc sin kx + sin k(]-xj
= -P' sin k Q [i k(

In a manner analogous to that used in developing Equation (39) one

can find the risk of rupture to be

50



b-c [0(x)-a] m+l

B (ml) Im j '(x) dx (46)
c

Using the transformation w = x-/2 and the symmetry about the

centerline this can be written as

bd a p m 1/2-c (a/ p-1)m+l
B bd (.- ) a 0p dw (47)

To normalize the integral we can use z = (2/L)w, leading to:

bdL Crm i ( Y/CY_ lm+l

B bdm+LT ( ) p dz (48)

0

or in the notation of Equation (42),

i•Od" )m (a ( l - m+lO.o

B =((-2, (/ UP dz; a>up (49)
(I o0 0-, / p

Using Equation (45) to find the a associated with any value of

Q, Equation (49) can be evaluated numerically. Substitution into

Equation (38) will give the probability of failure for any load Q.

The results are shown in Figure 23 along with the test results.

Bearing in mind that only 26 prestressed beam tests were run,

the predicted failure probabilities are fairly well borne out.
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III. SEGMENTED COLUMNS

The study of segmented columns in brittle materials is moti-

vated in part by the enormous potential of ceramics for resisting

buckling and compressive fracture and in part for the relationship

that exists between column behavior and bending behavior. There

are two intrinsic properties of segmented columns that demand spe-

cial attention. First, the column has no tension resistance and,

consequently, we must modify the classical formulation of the buck-

ling problem. Second, the imperfect interface contract that exists

between segments gives rise to statistical column behavior. Fur-

thermore, rough interfaces cause uneven loading across the segments

which induces tensile stresses in directions transverse to the ax-

ial compression. The problems of stability, statistics, and strength

are studied in this chapter.

A. Buckling - Perfectly Flat Interfaces

For the particular case of a rectangular cross section with

perfect contact between segments, a static buckling analysis of a

segmented column will be developed. The column, illustrated in

Figure 24, is assumed to be acted upon only by the steady (nonfol-

lower) forces F a distance e from the column's original neutral

axis. It is also assumed that the number of segments is very large

and that the segment material is entirely linear elastic. Under

these assumptions, solutions are found in this section for the sta-

tic beam deflection equations describing the behavior of the seg-

mented beam-column. It is observed that when

4 El0 [ is 6 e•2
F -- Fb = tcos-�-1 (50)

the deflections become unbounded. Also it is observed that

2 EIo

lim Fb = L7-2

which is the classic Euler buckling load for a monolithic column.
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Figure 24 Eccentrically Loaded Segmented Column
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The development of this solution will now be presented.

Referring to Figure 24 , the resultant moment acting upon an

arbitrary section of the column is found to be

T(x) = F [y(x) + e -4 f(x)] (51)

The governing differential equation for the deflection curve

from elementary beam theory is

EI(x) d2  T(x) (52)
dx2

The relationships for the crack penetration into a rectangular

cr oss section apply in this case, thus

f(x) =Q for T(x)• T c(53)

f(x)=d - 6T(x) for T(x)>?T
F

where the resultant moment for incipient cracking, Tc, is given by

Tc Fd (54)

The local moment of inertia is given by

I(x) = bd3  for T(x)>:Tc

(55)

I(x) = 18b [x 3for T~)> T

Using Equation (51) and (54), Equation (53) may be expressed as

when y< d e then T(x)K<Tc and f(x)= 0

dwhen y 6-e then T(x) =Tc and f(x)=O0 (56)

when y > d-6 e then T(x) > Tc and f(x) > 0

Consequently, the analysis will depend upon which of the

following two cases exists: (1) entire column uncracked, (2)

portion of column cracked.
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Case (1): f(x) = 0

In this case the differential equation, Equation (52), reduces

to

+ k y = e (57)
dx

where

k2 = F (58)Elo

The boundary conditions are simply

y(0) = y(L) = 0 (59)

The solution to Equation (57) and (59) is readily found to be

cos k (x- L1
y (x ) -- e [ L iCOS s -- 1 (60)

Equation (60) will be valid as long as Y < -d - e. For Ymax

y d-6- - e, the limiting load is found to be
4 Elo [ 1  612• 2

F -= 4-E1 [cos ( 6)e (61)

Case (2): f(x) 0 0

In this case solutions must be found in both the cracked and

uncracked regions and forced to match displacements and slopes

on the boundaries between the regions. Referring to Figure 24c,
X = XcL locates the left boundary between the regions. Note

that T(xcL) = Tc and Y(xcL) = d - e. By symmetry XcR = L-x cL

and thus i = xcR-xcL = L-2xcL.
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In the uncracked region, 0 <x <_XcL, the solution found in

Case (1) still applies, thus

[cos k (x-4-1
y(x) = e LkL -i (62)

d

Using the fact that y(xcL) * . - e, Equation (62) yields

2 1 d kL
cos e C (63)

In the cracked central region I it is readily shown that the

differential equation, Equation (52), becomes

= - h (y + e - (64)

where

h - 2 F (65)TFTE

Equation (64) may be integrated once to yield
d 2 d -1

) 2 2 h (y + e - 7 + c (66)

d

The fact that it is known a priori that y(x c) d - e
enables c to be determined at this point by matching slopes and dis-
placements in Equation (62) and (66). Using this value for c and

Equation (65) for 1, Equation (66) becomes

(d)2 - k 2 e2 k(cos L) 2  d2

+ 2 h (y + e --- -] (67)
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Using the fact that

= L
Ymax y (68)

and

Equation (67) may be solved for Ymax' thus

Ymax = Y (L) d -e+d - [ 3 ] }L d- _ e + d 15 3- (69)
Ymax = yd cos

Inspection of Equation (69) reveals that ymax becomes

unbounded when the term inside the braces approaches zero, i.e.,

when

_ 2 -il 6e
k = 2 cos (6)

f5d

or

F = Fb - L2 cos 1 (70)
b Ld

We observe that in the limit as the eccentricity vanishes, Fb

approaches the Euler buckling load for monolithic columns, thus

lim Fb -
L2

e-0 
5
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B. Nonflat Interface Problem

1. Area and length scaling.- Ideally, we would like to

fabricate segmented structures from segments with perfectly flat

interfaces; however, it may not be possible to obtain sufficient

smoothness on practical size cross sections. Even in the case of

our tungsten carbide gage blocks (one-half light band out of flat),

we can still detect nonlinearity in our column response at low

loads. At reasonable temperatures we may be able to approach mon-

olithic behavior through the use of grout or gaskets between the

segments. At elevated temperatures, however, these fillers may

have to be dispensed with. It is for these applications that we

will try to improve our understanding of the contact problem.

From a practical point of view, the alternative to full scale

testing of segmented columns is to develop a scaling procedure

that will enable us to predict the compression stress-strain dia-

grams for columns of any length and area from information obtained

from a single segmented column. We begin our search for such a

scaling law by examining the effects of column length. Let us

assume that all the interfaces have been drawn from the same pop-

ulation and that for a specified axial stress there exists a fre-

quency distribution for the interface contact areas. It follows,

then, that the deflection of each segment will be a random variable

which also possesses a frequency distribution. Now, the total

deflection of a multi-segment column will represent the sum of the

random deflections of the constituent blocks. Therefore, the fre-

quency distribution of the responses of many nominally identical

columns represents the distribution of the sums of the random

segment responses. From the Central Limit Theorem of Statistics

we are assured that the sums of random variables are normally dis-

tributed regardless of the form of the distribution f6r the random

variables themselves. Thus, we can hypothesize that the stiffness

of segmented columns of a given length and under a specified load

are normally distributed.

On the basis that the stiffness of a given size multisegment

column is normally distributed, we can proceed from the following
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theorem to describe the scaling rule for length. Theorem (ref. 5):

"If x is normally distributed with mean [L and standard devia-

tion a and a random sample of size n is drawn, then the sample

mean x will be normally distributed with mean p. and standard

deviation a/Tn." Evidence will be presented in the next section

which supports the hypothesis of normality and the scaling of the

scatter.

It is considerably more difficult to get a handle on the
"column area" scaling problem and, because of a poorly executed

experiment, our efforts in this study can hardly shed any light

on this matter. We do, however, have a hypothesis that we feel

is worth exploring. Let us examine the assumption that the inter-
face contact is controlled primarily by the highest asperities on

the surface. If the maximum asperity was measured on each of

many nominally identical surfaces we could construct their fre-
quency distribution. The resulting frequency curve represents

the distribution of largest values in a sample of size n (or

rather area A). Methods for scaling such distributions to larger

areas are treated quite systematically by the methods of extreme

value statistics. Assuming that the stiffness is inversely pro-

portional to the maximum asperity heights, the stiffness distri-

bution F(Et) might scale as the distribution of smallest values,

i.e.,

FL(Et) = - [ -]n

where the subscripts L and S refer respectively to the large

and small area columns, Et is the tangent modulus, and

n - •L/AS. This hypothesis conforms to our past observations that

smaller area columns are stiffer.

2. Test results and interpretation.-

a. Description of Experiments: The study of column area and

length scaling requires a data base of compressive stress-strain

curves which we attempted to establish using segmented glass col-

lumns. To be sure that all segments would be drawn from the same

population, they were all. cut from the central region of a single
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sheet of 1/4-inch window glass. Diamond core drills were used to

accurately produce fifty circular disks of each of the diameters,

1/2, 1, 1-1/2, 2 and 3 inches. To fabricate a particular column,

the appropriate size disks were randomly selected from a rotating

"lazy Susan" on which they were scattered. For ease in handling

and alignment,the columns were sheathed in thin paper tubes. Com-

pressometers were attached to tabs glued to the edges of the top

and bottom disks in the column as shown in Figure 25. These top

and bottom segments were reused for all column tests of their diam-

eter. Polyethylene pads were placed on the top and bottom of the

columns which were then tested in a Riehle Universal Testing

Machine. The load-deflection diagrams for 10, 20 and 30 segment

columns were automatically recorded.

Seven typical load-deflection diagrams are shown in Figure 26

for two-inch diameter columns with 10 segments. To eliminate

errors at low loads due to backlash in the automatic plotting

equipment, only unloading curves were considered. The highly indi-

vidual behavior associated with columns with nonflat interfaces is

clearly illustrated in this figure. Three hundred and ninety such

curves were obtained and the hypothesized statistical relationship

which relates them was investigated by selecting the particular

tangent modulus associated with the 120 psi compression level.

This stress was selected because it fell close to the knee in most

of the curves. Several methods were studied for measuring the

slope of such curves - two optical devices, a graphical technique,

fitting a tangent by eye, and parabolic interpolation. All of the

methods gave reasonable results; but, the latter method was finally

selected since it produced the least scatter.

A simple computer program was used to fit the load-deflection

curves with a parabola, to compute the slope at 120 psi, and to

establish the mean and the standard deviation associated with each

group of 30 tests representing a given column height and area.

The tendency to buckle precluded testing of the 20 and 30 segment

columns for the 1/2-inch diameter disks. The cumulative distribu-

tion curve for the tangent modulus of each size column was plotted
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on "Normal Probability Paper" and in every case a linear relation-

ship was obtained which establishes the validity of our normality

hypothesis. Typical distribution curves are shown in Figure 27

for the two-inch diameter column. The solid lines represent the

normal curves generated from the computed mean and standard devia-

tions of the data. Table 1 tabulates the means and the coeffi-

cients of variation (standard deviation ÷ mean) for each size

column.

b. Interpretation of results: Referring all our remarks to

Table 1, we first observe that no consistent pattern develops

vertically for either the mean or the coefficient of variation.

In view of the large scatter, as represented by the very high

coefficients of variation, this unexpected result may have occurred

by chance alone. On the other hand, the data may be in error.

Examining the parameters in the horizontal direction reveals that

the mean values consistently increase with increasing column

height and, except for the three-inch column. the coefficients of

variation uniformly decrease. Since we cannot attribute a consis-

tent trend in 390 observations to chance, we must accept the pos-

sible presence of a systematic error.

Recalling that the entire column and not just the central

portion, was used as the gage length, one suspects the influence
of "end effects." In particular, since a properly run test would

have a minimum of one diameter of segments outside of the gage

length on the top and bottom, it seems reasonable to suggest that the

Polyethylene pads that were used were too flexible. Furthermore,
this flexibility is of a different character than we would exper-

ience with glass end segments. The influence of such pads should

decrease with increasing column height and this should lead to-

increasing stiffness. This is, of course, exactly what we observe.

Also, since the same Polyethylene pads and glass end disks were used

for all columns of equal area, we would anticipate that the "end

effect" would be reasonably constant for each of the five diameters.
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TABLE 1

NORMAL DISTRIBUTION PARAMETERS FOR THE TANGENT MODULUS
OF SEGMENTED GLASS COLUMNS AT 120 psi COMPRESSION

Diameter Measure Column Height (Number of Segments)

Quantity 10 20 30

mean, 106 psi 0.92
1/2" coef. var. 28.0 % Buckling Buckling

mean, 106 psi 1.12 1.33 1.45
1" coef. var. 27.5 % 9.1 % 8.0 %

mean, 106 psi 0.63 0.96 1.12
1-1/2" coef. var. 21.0 % 14.1 % 12.0 %

mean, 106 psi 0.70 0.88 1.33
2" coef. var. 28.6 % 19.1 % 14.9 %

mean, 10 6 psi 0.93 0.93 1.12
3" coef. var. 10.7 % 10.8 % 13.2 %
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Our contention that "end effects" influenced the behavior of

the segmented columns was briefly examined by testing an aluminum

rod using the identical procedures employed for the segmented glass

columns. The rod was 10 inches in length with a two-inch diameter

and the initial portion of its stress-strain curve turned out to

be curvilinear. The proper result was recorded when the compresso-

meter attachments were remote from the ends. Summarizing then,

we feel that our measurements of the mean tangent modulus do not

indicate the "pure" behavior of the segmented columns and that the

standard deviations are fair approximations. On this basis we

examined the possibility of scaling the coefficients of variations

of various height columns and the results are tabulated in Table 2.

According to our hypothesis, this quantity should scale as 1/,/n.

Table 2 shows excellent agreement with this theory for the 1-1/2

and 2-inch diameter columns and for the average. This result to-

gether with the normality demonstration of Figure 27 tends to

support our column height scaling hypothesis. Unfortunately, no

conclusions can be drawn about the area scaling. Future experi-

ments with segmented columns should incorporate the following im-

provements:

(1) Employ larger sample size in view of the large scatter

observed.

(2) Compressometer attachments should be kept in the interior
of the column.

(3) Digital output devices should be utilized.

C. Backbone Column

It was established in the first phase of this program that im-

perfect contact between the interface of a segmented column caused

transverse stresses upon application of axial loads. These trans-

verse stresses were compressive near the interfaces and tensile in

the interior of the segment. Consequently, it appeared that if the

lateral geometry of the segments could be appropriately altered, we

might induce compression in the interior and tension near the inter-

faces of the segments. Thus, the two affects would tend to cancel
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TABLE 2

MEASURED AND PREDICTED VALUES FOR THE COEFFICIENT OF VARIATION
OF STIFFNESS FOR SEGMENTED GLASS COLUMNS

Column Height (Number of Segments)
Diameter

10 20 30

Measured 27.5% 9.1% 8.0%

Theory 27.5% 19.4% 15.9%

1-1/2" Measured 21.0% 14.1% 12.0%

Theory 21.70% 14.8% 12.1%

2" Measured 28.6% 19.1% 14.9%

Theory 28.6% .20.2% 16.5%

Measured 10.7% 10.8% 13.2%
3?? Theory 10.7% 7.6% 6.2%

Average Measured 22.0% 13.3% 12.0To

Theory 22.0% 15.5% 12.7%
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one another and thereby give rise to a segmented column with a

higher strength to weight ratio than a prismatic column. The

geometry selected for this experiment is shown in Figure 28, to-

gether with a cylindrical segment of the same height and interface
area. This latter specimen was used to establish a group of con-
trol columns.

Using the procedures outlined in Appendix B, Hydrostone

Gypsum specimens were cast in each of the shapes shown in Figure 28.

With the simple setup shown in Figure 29, the ultimate compressive
strength of 54 three-segment columns were obtained. The physical
and mechanical properties of these columns are summarized in

Table 3. It is of considerable interest that a number of columns
tested developed longitudinal cracks through two or three of the

segments. As shown in Figure 29, the cracks did not stop at the
interfaces but passed into the next cylinder as if the column

were continuous.

The backbone columns were tested in the same manner as the

cylindrical columns as depicted in Figure 30. As indicated in

Table 3 the strength-weight ratio of the backbone column is not

significantly higher than the control column. Furthermore, the
mode of failure casts doubt upon any possible superiority of the
backbone specimen. Prior to ultimate fracture, the lips or

flanges on the dogbone segments were stripped off leaving a pris-
matic column of smaller diameter. It would then appear that the

higher strength-weight ratio is attributable to a size effect and

not a geometry effect.

When stress concentrations appear in a compressive field it
is possible to achieve"intelligent behavior" from materials which
usually sustain no stress redistribution mechanism. In addition to

the dogbone specimen, another example of such behavior was described
to the author by H. A. Perry of the Naval Ordnance Laboratory.

Glass spheres were fabricated from two hemispheres that were at-
tached in such a way that a bead appeared around the equator on
the inside. When the sphere was submerged in the ocean, the bead

was stripped off and appeared as chips in the bottom of the sphere.
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Figure 29 Test Setup for Cylindrical Columns
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TABLE 3

PHYSICAL PROPERTIES OF CYLINDRICAL AND BACKBONE COLUMNS

Physical Properties Cylindrical Backbone

Interface Diameter 3 in 3 in

Segment Height 3 in 3 in

Segment Weight 593.6 gm 333.67 gm

Number of Segments 3 3

Avg. Ult. Compressive Strength 16989 lbs 9580 lbs

Avg.Strength-Weight Ratio 28.6 Lbs 38.7 gm
__ __ __ _ __ __ __ _ __ __ _gm __ _ __ _ __ _

Material Hydrostone Hydrostone

Number of Columns Tested 54 46

Central Diameter 3min 3 in
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Figure 30 Test Setup for Backbone Columns
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As a final observation concerning the backbone specimen
we note that this shape makes it possible to apply a lateral

prestress to a column using straps at a small number of
locations. This idea is illustrated in Figure 31. Such struc-

tures may have advantages over jacketed or continuously wound

columns. The bulkier prestressing tendons may be less fragile,

easier to insulate, or require fewer attachments. A similar
method of prestressing is briefly discussed in Section V for

the ogive shell.
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Figure 31 Laterally Prestressed Backbone Column
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IV. PRESTRESSED PLATES

The similarity between prestressed segmented beam-behavior

and that of ductile bending made it possible to successfully apply

the techniques of limit analysis to describe the ultimate load

carrying capacity of prestressed segmented beams. The extension of

these techniques to prestressed segmented plates is investigated

in this section. Preliminary experiments are conducted using both

monolithic and segmented circular plates.

A. Segmented Plates

If a circular plate is subjected to a uniform radial pressure

around its periphery, a homogeneous isotropic state of plane com-

pressive stress a is introduced into the plate. Any and all

cracks in such a plate will tend to close up, and in particular, the

ultimate bending resistance along such cracks will be calculated in

the same manner used for segmented beams. Referring to Figure 18 a,

the limiting moment per unit length in a plate is simply

0 o = t 2  (71)

72

where a is the stress acting normal to the crack interface and

t is the plate thickness. We shall, of course, take a as the pre-

stress a P. This limiting moment capacity would.not be effected by

moments acting transverse to the crack which suggests the applica-

tion of the square yield criterion shown in Figure 32.

M2

I F Mo

-Mo M 1

-Mo

Figure 32 Square Yield Criterion
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We shall use this criterion to analyze a circular plate of radius

R which is simply supported on a circular ring of radius r and is

subjected to a central load P brought onto the plate through a blunt

circular rod of radius a. Assuming the yield (or crack) pattern

shown in Figure 33, we observe that the loading die will ultimately

contact the centerline of each segment at only one point a distance
of a from the plate center. The loading at such points will be

P/n where n is the number of segments. The virtual work done by
these loads in the assumed displacement pattern is

P b-a

The energy dissipated at the yield lines is given by

n R M 2LMsin --'0 n

Equating these virtual energies we obtain

nR2 A sin - n P A(a )

n n

or

P=at 2 n tan R (72)P p n a

dos -
n

This load represents an upper bound on the true collapse load of

the plate, and consequently, we should choose from among this class
of collapse mechanisms the one which gives the lowest load. This
occurs when n-c o, and hence,

P=rra t 2  R n - oo (73)

The true collapse load is realized only when the correct yield pat-
tern is chosen. In the present case, symmetry suggests that we

have made the right choice.

We can cause yielding to occur along a finite number of radial
lines by strengthening the material between them. We would expect
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Figure 33 Collapse Pattern for a Circular Plate
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the capacity of the plate to increase with such a procedure and

this is exactly what Equation (72) predicts. As we force failure
to occur along fewer and fewer lines, the required strength of the

segments will correspondingly increase. As a rule, to avoid frac-

turing the elements in a segmented component we should select seg-

ment geometries that approximate the true yield patterns for the

structure. An extensive treatment of limit analysis of plate
structures can be found in Wood (ref. 6).

To establish the potential of the proposed analysis procedure,

we constructed two segmented circular plates using eight Hydrostone

plaster segments in each. The prestressing was accomplished by
making a double wrap of steel strapping about the periphery of the
plate as shown in Figure 34 , and tightening with a standard band-

ing tool until yielding occurred near the grip. Seven monolithic
plates and two segmented plates were prestressed in this way and
the resulting strains in six of the plates were recorded by radial-

ly positioned electrical resistance foil strain gages. The strain
gage readings and measured loads for these plates are tabulated

in Table 4 . The support fixture and loading setup are shown in

Figures 35 and 36 respectively. The load deflection diagrams for

the segmented beams are shown in Figure 37 where we observe well

defined horizontal regions. Upon unloading, we obtained complete

deflection recovery with only occasional chipping at the segment

edges.

As evidenced from Table 4 , the straps did not apply a uniform
radial prestress; however, since care was taken to tighten the straps

in the same way for all cases, it is felt that the average prestrains
in the various plates were about the same. On this basis, the pre-

strain was taken as the average at sixteen gage readings, i.e.,

49.4xi0-6 inch/inch. Using this value together with the plate pro-
perties tabulated in Table 5 , Equation (72) predicts a yield load
of P = 309 lb. This value differs from the measured values of

270 lb and 288 lb by 14.4 percent and 7.3 percent respectively.
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TABLE 4

PRESTRESSED MONOLITHIC AND SEGMENTED CIRCULAR PLATE STRENGTHS

Plate Number Strain x 10-6 in./in. Yield Load Ultimate Load
a b c (Ib) (lb)

Monolithic I defect. 50 45 400 540

Monolithic 2 70 55 65 345 582

Monolithic 3 30 50 55 370 520

Monolithic 4 40 45 55 410 624

Monolithic 5 60 70 defect. 330 706

Monolithic 6 no gages 300 535

Monolithic 7 no gages 350 430

Segmentedl 50 40 10 270

Segmented 2 no gages 288 ---
_6 I

Average Strain Gage Reading: 49.4x0-6 in./in.
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Figure 36 Test Setup for Loading Circular Plates
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TABLE 5

PHYSICAL PROPERTIES OF HYDROSTONE PLATES

Plate radius R = 7.5 in.

Support ring radius r = 6.75 in.

Central load die radius a = 0.906 in.

Plate thickness t = 5/8 in.

Average plate strain Ep = 49.4x10"6 in./in.

Modulus of elasticity of Hydrostone E = 2.79xi0 6 psi

Poisson's Ratio for Hydrostone v = 1/4
Average prestress level sp = sp T- =

a ~~ 1 .~- 84 psi

Number of segmented beam elements = 8
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B. Monolithic Plates

When a prestressed monolithic plate is slowly loaded, conven-

tional elastic behavior is experienced until the net tensile stress

at some point exceeds the material strength and a crack develops.

In a constant strain rate machine, the load would fall off abruptly

and then increase again as the strain continued to increase. This

behavior is depicted in the central load-central deflection diagram

shown in Figure 38 for the second monolithic plate referenced in

Table 4. As we see, other cracks continue to form until the strength

of the surviving material is sufficient to force unconstrained yield-

ing in the existing crack pattern. The radial crack pattern (artifi-

cially darkened) shown in the top plate in Figure 34 is exactly what

our limit analysis theory anticipates. The visible crushing at the

center of this early plate test was caused by a steel ball that was

used originally to load the plate. Subsequent tests employed a cir-

cular die to distribute the central load over a greater area.

Seven central load tests were conducted with monolithic plates

and their yield and ultimate strengths are recorded in Table 4 .

The average ultimate strength for these members is 562 pounds which

represents a considerable increase in the average strength of mono-

lithic plates without prestressing, 328 pounds. The distribution

curve for the strength of these unprestressed control plates is

shown in Figure 39 where we observe a considerable spread in the

data. This implies that very low strength values will be present

in a population of even a few hundred. Consequently, very "low

strength" operating levels must be used to obtain reasonable relia-

bility. For the prestressed plates, on the other hand, there is a

built in fail-safe mechanism. Although the ultimate load is statis-

tical and may be subject to wide variability, the yield load is

bounded from below. We observe that the weakest plate is achieved

when an infinite number of radial cracks develop in which case

their yield load is computed from Equation (73). Real plates will

crack in a finite number of places and will therefore be stronger.

For our prestressed monolithic plates, Equation 73 predicts a yield

load of 289 pounds and we observe from Table 4 that all of the
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yield strengths reported are higher than this value; the average

load is 358 pounds.

We should point out that our two mathematical models for

beams assume an infinite number of segments and should therefore

predict a lower bound on the behavior of monolithic prestressed

beams. In the exceptional case of a beam-column; however, we can-

not make this statement since the resistance at a section can be

lowered by virtue of the beam deflection. The distance from the

outer compressive beam fibers to the centroid of the tendons de-

creases as the beam deflection increases. As a matter of fact,

a point of instability is finally reached and the prestressing

force participates in the catastrophic destruction of the beam.

Finally, since a monolithic segment sustains no separation, it is

stiffer than an equivalent length of several segments. Consequently,

beams constructed with a finite number of elements will be stiffer

than predicted from an infinite number of elements.
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V. PRELIMINARY INVESTIGATIONS OF PRESTRESSED SHELLS

Fundamental studies of prestressed elements demand as a pre-

requisite that methods be available for applying, maintaining, and

monitoring prestressing forces. In the case of shell structures,

this may require a considerable amount of innovation and, perhaps,

the elaborate development of special techniques. Since such

efforts are beyond the scope of our present endeavors, a brief

study has been undertaken to examine two conventional approaches

to the problem of prestressing an ogive shell and a cylindrical

shell.

A. Cylindrical Shell

For problems which require the continuous application of pre-

stressing force over large areas, it is sometimes possible to utilize

the technique of overwinding. Here, we visualize using a brittle

component in place of a mandrel. Continuous filaments under high

tension are then wound onto the components, and in this way, a jacket

is formed permanently over the monolithic or segmented element which

may prevent the leakage of liquids or gases and which could provide

an energy absorbing layer that would protect the component from

local impacts.

To investigate the potential of this technique, a three inch

diameter alumina cylinder with a 0.2 inch wall thickness was over-

wrapped with preimpregnated 20 end glass roving. An electrical

resistance strain gage was mounted on the inner wall of the cylin-

der to monitor the induced stress caused by the overwinding. Using

an overwinding tension of 0.325 lbs/end to produce a tension force

of 65 lb/in, along the cylinder axis, we obtained the relationship

shown in Figure 40 between induced prestress and fiberglass layers.

The relationship between the induced prestress in a cylinder

and the number of layers of overwound filaments was obtained

where account is taken of the changes in filament stress that occur

when additional filament layers are applied. The hoop stress

is given by
a = n iE7

j=l 6 E2 r (j-l)
n + - -

1 [r+(j-l) • ]
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where 6 is the layer thickness, t is the wall thickness of

the cylinder, r is the outside radius of the cylinder, T is the

overwind tension per unit length in the direction of the axis of

the cylinder, and El and E2 are the modulus of elasticity of

the cylinder material and the filament material respectively.

This theory assumes that we have perfect packing of rectangular

fibers; however, for circular fibers without nesting we can modi-

fy the theory by replacing E 2 by 'rE2 /4. Using the following,

data, the theory is plotted in Figure

T = 65 lb/in. t = 3/32 in.

6 = 0.005 in. El = 40x10 6 psi

r = 1.5 in. E2 = 8x106 psi.

Considering the preliminary nature of the experimental setup used,

the agreement between the measured and predicted values is quite

satisfactory. On this basis, calculations performed for ultra

high strength overwinding materials such as high carbon steel wire

and "S" fiberglass single end indicate that induced stresses ex-

ceeding 1000 psi/layer for a one inch wall thickness specimen are

not unreasonable. This implies that for practical purposes any

desired level of prestress can be obtained provided that winding

on a geodesic path is possible.

B. Ogive Shell

If an axial compressive load is applied to the apex of an ogive

shell, the membrane stresses in the shell wall are compressive in

every direction. We see from this example that an effective state

of initial stress can be accomplished by applying a prestressing

force at a discrete point. Because the application and monitoring

of such a force is exceptionally simple, the fabrication of ogive

shells was attempted during this phase of the program.

Figure 41 illustrates one of several segmented Hydrostone

plaster shells which were produced by cutting up monolithic shells

before they completely cured. The interfaces of these shells tend

to close up under compression; however, the thin sections near the

92



P4

.-r4

4Ji

r-4

ti

r4x~

93



apex are breaking under load. We attribute these failures to

extremely rough interface conditions. Further studies with these
shells should address themselves in this problem in addition to
investigations of prestressed monolithic behavior.
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APPENDIX A

I-BEAM COMPUTER PROGRAM

In this appendix, we shall present the computer program which

was developed to perform the analysis of prestressed segmented

I-beams with multiple elastic tendons. The program consists of a

main program plus ten function subprograms. The main program es-

sentially consists of those equations presented in the section on

general relationships. Those relationships which depend explicitly

upon the particular cross section being investigated have been iso-

lated into individual function subprograms. The applied bending

moment distribution, in normalized form, has also been isolated

in its own function subprogram. Hence, only the appropriate sub-

program(s) need be changed to permit the investigation of different

cross sections and/or applied loadings.

Immediately following this introduction is a glossary of some

of the important variables as they appear in the program along with

their relationship to the variables used in the presentation of the

analysis elsewhere in this report. Next after the glossary is a

listing of the computer program as written in Fortran II for the

IBM 7094. Finally, a sample input and corresponding output are

presented.

The output has been designed to present as much relevant infor-

mation as possible in a meaningful manner. The first page of out-

put contains all the input data plus the results of a few preliminary

calculations. Next is presented the table of W vs. f. The first

differences in W are also given to illustrate whether the function

is approximately linear between entries in the table as assumed by

the linear interpolation scheme in the function subprogram FCP(W).

The remainder of the output consists of evaluating deflections,

end rotations, etc. at the various selected values of the applied

loading. The first value of the applied load is always zero and is

followed by an intermediate value which leads to the value corres-

ponding to incipient cracking. The program then truncates the

cracking load to a specified number of figures and proceeds by adding

specified increments in applied load until either the load exceeds

the specified maximum or one of the counters exceeds its specified

maximum. The final item in the output is a table of applied load

versus central deflection, left end rotation, and right end rotation.
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Partial listing of variables appearing in computer program:

AL ............. applied load, e.g. force, moment, etc.

ALDMBM ......... applied load divided by maximum bending moment,

eg. P/(PL/4)

ALMAX .......... value of applied load which is not to be exceeded

AT ............. area of each tendon, At

CP ............. crack penetrationjf

CPXD ........... crack penetration f at XA

DAL ............ increment in applied load

DCENT .......... distance q from bottom of section to center of
gravity

DELTA .......... deflection A at XA

DIMI = B ....... width of flange for I-beam, b

DIM2 = TW ...... thickness of web for I-beam, tw

DIM3 = D ....... depth of web for I-beam, d

DIM4 = TF ...... thickness of flange for I-beam, tf

DIM5, etc. = 0.. not used for I-beams

DISC(I) ........ distance from bottom of section to ith discontinuity

DTOT ........... overall depth, dtotal' of cross section

EB ............. elastic modulus of beam, E

EC ............. effective initial eccentricity of preload, e

ECT(I) ......... eccentricity of ith tendon, ei

ET ............. elastic modulus of tendon, Et

F .............. total preload exerted by tendons, F

FO ............. initial preload exerted by tendons, Fo

FT(1) .......... force in the ith tendon, Fi

FTO(I) .......... initial force in ith tendon, F0 i
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IK ............. number of equally spaced points on beam at which
deflections are to be found

IKK ............ if IKK = 2, then applied loading is symmetrical
about x L/2

K .............. number of increments used in numerical integrations

KFUDMI ......... maximum number of applied load increment halvings

KFUDM2 ......... maximum number of occurrences of questionable output

KSMAX .......... maximum number of steps/loop in F and MI
directions in the solution of tendon equations

KTRYM .......... maximum number of loops in the solution of tendon
equations

NIR(I) ......... number of entries in table of W vs. f between
f = CP = DISC(I-l) and DISC(I)

NOREG .......... total number of regions cross section is divided
into depthwise for table of W vs. f (three for
I-beam)

NSF ............ number of significant figures for truncation of
cracking load

NT ............. total number of tendons, n

PERMAX ......... maximum allowable percent in-out errot in the
solution of the tendon equations

T .............. resultant bending moment applied to beam, T

TABAL(I) ....... Ith applied load for table at end of output

TABCD(I) ....... i.th central deflection for table at end of output

TABCP(I) ....... ith crack penetration for table of W vs. f

TABTL(I) ....... ith left end rotation for table at end of output

TABTR(I) ....... ith right end rotation for table at end of output

TABW(I) ........ ith value of W for table of W vs. f

THETAL ......... left end rotation, 0L

THETAO ......... initial end rotation, Q0

THETAR ......... right end rotation, 0R

V .............. maximum value of W along the beam
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W .............. variable, W = (M-MT)/F, appearing in crack

penetration equati6n

WCRACK ......... value of W corresponding to incipient cracking

X .............. coordinate, x, measured along the length of the
beam

XD ............. location, xA, where deflection is being determined

YL ............. lenth of segmented beam, L

YLT ............ length of tendons, Lt

YNB ............ maximum applied bending moment, Mmax

YMT ............ tendon stiffness bending moment, MT
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PROGRAM LISTING

CMAIN PROGRAM - PRESTRESSED SEGMENTED I BEAM WITH ELASTIC TENDONS, PCH
DIMENSION HOLLER(12),DIFX(200)
DIMENSION FTO(1l)bECT(I0),FTtlO),SIGMA(IO),TABAL(1OO),TABTL(lOO),

1TABTR( 100 ) DISC( 10) ,NIR( 10) ,TABCP( 200) ,TABW(200), TABCD( 100)
COMMON YMBYMTFFOVLEBXDWCRACKNI ,ICIBMD ,IXSDTOT,DCENTDIMI
1i,DIM2,DIM3,DIM4,DIM5,DIM6,DIM7,DIM8,DIM9,DIMlODISC,TABCPTABWEC

F FDI
F FTLI
F FTRI
F FBCI

45 WRITE OUTPUT TAPE 6950
50 FORMAT(55HIPRESTRESSED SEGMENTED I BEAM WITH ELASTIC TENDONS, PCH)

WRITE OUTPUT TAPE 6955
55 FORMAT(119HODIMENSIONS - LENGTHS ARE IN INCHES, LOADS ARE IN KIPS,

I BENDING MOMENTS ARE IN INCH-KIPS, STRESSES + MODULI ARE IN KSI
100 READ INPUT TAPE 5,10IHOLLER
101 FORMAT(12A6)

READ INPUT TAPE 5,105,YL,,EB,YLT,ET,ATPERt4AXKNTtNOREG
105 FORMAT(6F10.0,3[5)

READ INPUT TAPE 5,110v(FTO(I),ECT(I)'fI=IvNT)
110 FORMAT(2FI0.0)

READ INPUT TAPE 5,115,DTOT,DCENT,DIM1,DIM2,DIM3,DIM4
READ INPUT TAPE 5,115, DIM5,DIM6,DIM7,01M8,DIM9,DIM10

115 FORMAT(610.0)
READ INPUT TAPE 5,120,(DISC(I),NIR(I.),I=1,NOREG)

120 FORMAT (F1O.6,15)
READ INPUT TAPE 5,127, IK,IKK,NSF,ALDMBM,ALMAX,DAL

127 FORMAT(315,3FI0.0)
READ INPUT TAPE 5,128,KTRYM,KSMAXtKFUDM19KFUDM2

128 FORMAT(415)
WRITE OUTPUT TAPE 6,130,HOLLER

130 FORMAT(IHOtl2A6)
WRITE OUTPUT TAPE 6,135tYLEBYLT,ET,AT

135 FORMAT(15HO8EAM LENGTH z tF8.4,12H BEAM MOD = 9FIO.2,17H TENDON LE
1NGTH = ,F8.4tl4H TENDON MOD =,FLO.2919H AREA PER TENDON = ,F7.5)
WRITE OUTPUT TAPE 6t140,PERMAX,K

140 FORMAT(75HOPERCENT IN--OUT DIFFERENCE IN PRESTRESS AND TENDON MOMEN
1T IS LESS THAN OR =,F6.4,33H NO. INCREMENTS IN INTEGRATIONS =t14)
WRITE OUTPUT TAPE 6,145,NTNOREG

145 FORMAT(18H0N0. OF TENDONS = 1[2118H NO. OF REGIONS = 912)
WRITE OUTPUT TAPE 6, 150,DTOTDCENTDIMl,DIM2,DIM3,DIM4

150 FORMAT(I5HOTOTAL DEPTH = ,F7.4,20H DIST TO CENTROID = ,F7.4,8H DIM
11 = ,F7.4,8H DIM2 = ,F7.4,8H DIM3 = qF7.4,8H DIM4 = ,F7.4)
WRITE OUTPUT TAPE 6, 155,DIM5,DIM6,DIM7,DIM8,DIM9,DIMIO

155 FORMAT (8H001M5 = ,F7.498H D1M6 t F7.498H DIM7 = ,F7.498H DIM8=
lF7.4,8H DIM9 = #F7.4t9H DIM10 # F7.4)
WRITE OUTPUT TAPE 6,160,( I,DISC(I) ,I,NTR(I),I=1,NOREG)

160 FORMAT(6H DISCbI12#5H ) 9F7.4,5H NIR(,12,5H P 13)
SUMECT=0.
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DO 165 I=19NT
165 SUMECT=SUMECT+ECT( I)

ERRMAX=PERMAX/100.
IxS~=0
IBMD=O
WRITE = FM( 0.0)
WRITE = FI(O.0)
IXS=1
IBMD=I.
XNT=NT
R=0.
RM=0.
DO 170 I1,NT
FT(I)=FTO( I)
R=R+FTO( I)

170 RM=RM*FTO(I)*ECT(I)
F0= R
EC=RM/R
F=FO
WRITE OUTPUT TAPE 6,175,ALDMBM*ALMAXoDAL

175 FORMATI35HO(APPLIED LOADM/MAX BEND MOMENT) =tFlO.6t20H MAX APPLIE
1D LOAD = ,FI0.6,29H INCREMENT IN APPLIED LOAD = PF1O.6)
WRITE OUTPUT TAPE 6vl80,F9EC

180 FORMAT(27HOINITIAL PRELOAD IN BEAM = ,FlO.6,35H ECCENTRICITY OF IN
11TIAL PRELOAD = 9FI0.6)
WRITE OUTPUT TAPE 69185#IKNSF

185 FORMAT(18HODEFLECTIONS AT 1/912,16H POINTS ON BEAM,,28H ROUND OFF
ICRACKING LOAD TO 911,20H SIGNIFICANT FIGURES
IF( IKK-2)190,187, 190

187 WRITE OUTPUT TAPE 6,188
188 FORMAT(40HOAPPLIED BENDING MOM DIST IS SYMMETRICAL
190'WRITE OUTPUT TAPE 6,195,KTRYM,KSMAX
195 FORMAT(7OHOFOR DETERMINATION OF PRELOAD AND TENDON MOMENT - MAX NO

1. STEPS/LOOP = 912,16H MAX NO. LOOPS = 12t2lH MAX NO. APPLIED LOA
2D0
WRITE OUTPUT TAPE 6,196,KFUDMIKFUDM2

196 FORMAT(21HOINCREMENT HALVINGS =#12,44H MAX NO. OCCURENCES OF QUEST
11ONABLE OUTPUT =,12)

C TABLE OF TABW VS TABCP (200 THRU 299)
200 NIRIPI=NIR(1)+l

DO '210 K2=1,oNIRlP1
TABCP(K2)=FLOATF(K2-1)*DISC(1)/FLOATF(NIR(l))
Xl=TABCP( K2)

210 TABW(K2)=EC-'XI-DCENT+FXB(XI'),FI(X1 )/(FA(X1)*FXB(Xl))
WCRACK=TABW(l)
NIRT=NIR( 1)
IF(NOREG-2) 240,215,215

215 DO 230 KI=2#NOREG
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x2=DISC(KI )-OISC(Kl-l1)
NNN=NIR(KI )+1
Do 220 K2=1#NNN
K3=NIRT*K2
TABCP(K3)=DISC(Kl-l)+FLOATF(K2-1)*X2/FLOATF(NIRfKl))
X1=TABCP( K3)
TABW(K3)=EC4-Xl-DCENT+FXB(Xl)+FI(Xl)/(FA(Xl):*FXB(Xl))

220 CONTINUE
NIRT=NIRT+NIR(K 1)

230 CONTINUE
240 NI=NIRT

WMAX=TABW(NI+l)
245 WRITE OUTPUT TAPE 6,250. WCRACK
250 FORMAT(9HlWCRACK =vFIO.6)

WRITE OUTPUT TAPE 6,255
255 FORMAT(1HO,13X96H rABCP,14Xt5H TABW,12X,11H FIRST 01FF)

DIFX( I.)=O.0
NIP2=NIf2
00 270 K4=2,NIP2
DIFXIK4)=TABW(K4 )-TABW(K4-1)
K5=K 4-I
WRITE OUTPUT TAPE 6,260,K5,TABCP(K5)IT'A8W(K5),DIFX(K5)

260 FORMAT(1593F20.8)
270 CONTINUE

DO 280 1=1,NT
280 FT( I)=FTO(1I)

CTEN=YLT/f AT*ET)
v=0.
YMT=0.
MM=0
YMB=O.
XIK=IK
IJK=IK/IKK
KK=0
K FU 0=0
x=0.
TABTL( l)=FINT( FTL I*K)
TABTR4 L)=FINT(FTRIK)
TABAL( lizO.
THET AO=TABTL ( 1)
THETAL=THETAO
THETAR=THETAO
WRITE OUTPUT TAPE 6,290

290 FORMAT(lHl)
WRITE OUTPUT TAPE 61295,THETAO

295 FORMATMOH THETAO =,F12.8)
GO TO 400

C ROUTINE FOR SELECTING APPLIED LOAD (300 IHRU 399)
300 KK=KK+l
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IF(KK-2) 310,320,330
310 YMB=WCRACK*FO

YMBOLD=YMB
GO TO 400

320 YM8=((FO*WCRACK)**2)/((2.*FO-F)*WCRACK-YMT)
ID=XFIXF( .43429448*ILOGF(YMB*ALDMBM) )-NSF+I.
ALO=(10.**ID)*FLOATF(XFIXF(YMB*ALDM8M/t10.**IO)))
SFYMB- ALO/ ALDMBM
GO TO 400

330 YMB=SFYMB+DAL*FLOATF(KK-2)/ALDMBM
AL=ALD+DAL*FLOATF (KK-2)
IF(CAL-ALMAX)4009400, 340

340 WRITE OUTPUT TAPE 6,345

345 FORMAT(15HI. APPLIED LOAD98X,12H CENTER DEFLIOX,11lH THETA LEFT,,BX

1*12H THETA RIGHT)
WRITE OUTPUT TAPE 69350,(TABAL(N),TABCD(N),TABTL(N),TABTR(N),N=1,M
im)

350 FORMAT(4F20.8)
WRITE OUTPUT TAPE 6,355

355 FORMAT (LH1)
GO TO 45

C ROUTINE FOR DETERMINING PRESTRESS FORCE AND M4OMENT (400 THRU 499)

400 AL=YMB*ALOMBM
THETAL=FINT( FTL1I K)
THETAR=FINT( FTRI,K).
IF(ET*FLOATF(KKI) 410,500,410

C ET=O. FOR ZERO STIFFNESS TENDONS
410 CYMT=YMTOLD

YMT=YMTOLD*YMB/YMBOLD
F=FOLD' (YMB-YMT )I(YMBOLD-YMTOLD)
DELF=(F-FOLD)/2.
OELYMT=(YMT-YMTOLD) /2.
KK FU 0=0
IF( ABSF(DELF/F)-ERRMAX)4ll,4ll,4l2

411 OELFz2.*ERRMAX*F
412 IF(ABSF(DELYMT)-ABSF(YMT*ERRMAX))413',

413,4 1 4

413 OELYMT=2.*ERRMAX*YMT
414 SFODELF

SYMT=DELYMT
KS=0
WRITE OUTPUT TAPE 69415,AL

415 FORMAT(15HOAPPLIED LOAD =,F12.8)
418 KTRY=O

KALT=O
WRITE OUTPUT TAPE 69419*YMT

419 FORMAT(14H HOLDING YMT =*F12.8)
DFOLD=F

425 FIN=F
IFI KTRY-KTRYM)426,426,461
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426 WL4(YMB*FM(Oo)-YMT)/F
CPL:NFCP( WI)
WR=(YMB*FM(YL )-YMT) /F
CPR=FCP(WR)
THETAL=F IN T(FTL ItK)
IF(IKK-2) 428,427,428

C IKK=2 FOR SYMMETRICAL LOADING, FM(X)=FM(L-X)
427 THETAR=THETAL

GO TO 429
428 THETAR=FINT(FTRI,,K)
429 BCOMP=FINT(FBC[,K)

V MT OUT =0.
Zl=(SUMECT+XNT*(CPL-OCENT+FXB(CPL) ))*(THETAL-THETAO)
Z2=(SUMECT+XNT*(CPR-DCENT+FXB(CPR)))*(THETAR-THETAO)
FOUT=FO+( Z +Z2) I CCTEN+XNT*BCOMP)
DO 430 I=lNT
ZZI=(ECT(I)+CPL-DCENT+FXB(CPL))*(THETAL-THETAO)
1Z2=(ECT( I)+CPR-OCENT+FXB(CPR))*(THETAR-THETAO)
FT.(I)=FTO(I)+(ZZI+ZZ2-(F-FO)*BCOMP)/CTEN

430 VMTOUT=YMTCUT+FT( I)*(ECT( 1)-EC)
D F =FOUT -F [N

435 VIN=(YMB-YMT)fFIN
VOUT=( VMO-YMTOUT)/FOUT
WRI[TE OUTPUT TAPE 6,438, FINtVINFOUT,ODF,YMTOUTIVaUT

438 FORMAT(6H FIN =,Fl2.8,6H VIN =,F1O.891H FOUT =,F12.8,5H OF =,F12.8
1,9H VMTOUT =tF12.8,7H VOUT =vF1O.8)
IF(ABSFU(FOUT-FIN)/FIN)-ERRMAX) 450,450,440

440 IF(DFOLO*OF)445,450,442
442 IF(ABSF(DFOLD)-ABSF(OF) )443,448,448
443 DELF=-.75*DELF

GO TO 448
445 OELF=-DELF/2.
448 F=F-DELF

OF CL 0= F
KTRY=KTRY+l
GO TO 425

450 [F(KTRY-KTRYMI3)451,452,452
451 SF=SF/2.
452 DELF=SF

IF(KS+KK-1 )453,453,460
453 DELYMT=YMTOUT/5.

YMT=YMTOUT/C 1.-2.*ERRMAX)
GO TO 460

455 !F(KTRY-KTRYM/3)456,456,457
456 SYMhT=SYMT/2.
457 DELYMT=SYMT

IF(KS4-KK--2)458#458,460
458 DELF=(FOUT-F)/5.
460 KS=KS4-J

IF( KS-KSMAX )465, 465 ,461
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461 IF(KFUO-KFUDM1)462,463,463
462 DAL=0.5*DAL

KK=2*( KK-1 )-2
KKFUD= 1

463 WRITE OUTPUT TAPE 69464
464 FORMAT(63HOTHE FOLLOWING OUTPUT FOR THIS LOAD IS OF QUESTIONABLE A.

1CCURACY)
KFUD=KFUD+l
IF(KFUD-KFUDM2) 500, 500,340

465 IF(ABSF(IF-FOUT)/F)-ERRMAX)466,466,47C
466 IF(YMT)467,470,467
467 IF(ABSF(IYMT-YMTOUT)/YMT)-ERRMAX)500,500,470
470 IF(KALT)418,4739418
473 KTRY=0

K ALT= 1
WRITE OUTPUT TAPE 6,474,F

474 FORMAT(12H HOLDING F =,F12.8)
DY MT0= YM B

480 YMTIN=YMT
IF (KTRY-KTRYM)481,481, 461

481 WL=(YMB*FM(0.)-YMT)/F
C PL=FC P(CWL)
WR=(YMB*FM(YL)-YMT) IF
CPR=FCP(WR)
THETAL=FINT( FTLIPK)
IFI IKK-2) 4,83,482,483

C IKK=2 FOR SYMMETRICAL LOADING, FM(X)=FM(L-X)
482 THETAR=THETAL

GO TO 484
483 THETAR=FINT(FTR[,K)
484 BCOMP=FINT(FBCT,K)

YMTOUT=O.
Z1=(SUMECT.XNT*(CPL-DCENT+FXB(CPL) ))*(THETAL-THETAO)
Z2=(SUMECT+XNT*(CPR-DCENT+FXB(CPR)))*(THETAR-THETAO)
FOUT=FO+(11+Z2) /(CTEN+XNT*BCCMP)
DO 485 I=ltNT
ZZ1=CECTtI)+CPL-DCENT+FXB(CPL))*(THE.TAL-THETAO)
ZZ2=IECT(I)4-CPR-DCENT+FXB(CPR) )*(THETAR-THETAO)
FTCI)=FTOCI)+(lZZ+ZZ2-(F-FO)*BCOMP)/CTEN

485 YMTOUT=YMTOUT+FTC I)*(ECTC I)-EC)
DYMT=YMTOUT-YMT IN

490 VIN=(YMB-YMTIN)IF
VOUT=(CYMB-YMTOUT I/FOUT
WRITE OUTPUT TAPE 6,492, YMTINVINYMTOUTDYMT,.FOUTVOUT

492 FORMAT(BH YMTIN =,F12.8,6H VIN =,Fl0.8,9H YMTOUT =*F12.8,7H DYMT
1,F12.8,7H FOUT =tF12.8t7H VOUT =tF10.8)
IF(ABSF( CYMTOUT-YMTIN)/YMTIN)--ERRMAX) 455,455,493

493 IF(DYMTO*DYMT)496,455,494
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494 IF(ABSFIDYMJTO)-ABSF(DYMT))495,499,499
495 DELYMT=-.75*DELYMT

GO TO 499
496 DELYMT=-DELYMTI2.
499 YMT=YMT.DELYMT

DYmTO=DYMT
KTRY=KTRY+l
GO TO 480

C ROUTINE FOR DETERMINING TENDON STRES-SES + BEAM DEFL. (500 TO 599).
500 IF(KK-1)505,590,505
505 AL=ALDMBM*YMB

WRITE OUTPUT TAPE 6t510,ALvYMBF
510 FORMAT(16HOAPPLIED LOAD = tF12.8,3X,24H MAX APPLIED BEND MOM = ,Fl

12.8,3X,25H TOTAL PRELOAD IN BEAM = 9F12.8)
DF= F-FOUT
DYMT=YMT-YMTOUT
V=(YMB-YMT)/F
WRITE OUTPUT TAPE 6,515,DF,YMTtDYMTIV

515 FORMAT(7H 01FF =,F12.8,3Xt21H TENDON BENDING MOM = F12.8,3Xt7H DI
1.FF =,Fl2.8t3X,5IF V = ,F12.8)
WRITE OUTPUT TAPE 6,517,THETAL,THETAR

517 FORMAT(20ODLEFT END ROTATION =#F12.8,21H RIGHT END ROTATION ,IF12.
18)
WRITE OUTPUT TAPE 6,520

520 FORMAT(3OHOINITIAL TENDON ECCENTRICITY 4,13H TENDON FORCE,7X,14" T
1ENDON STRESS)
DO 530 I1,NT

530 SICMA(I3=FTfI)/AT
WRITE OUTPUT TAPE 6,540,(ECTiI),FT(Iý),SIGMA(I,),I=1,NT)

540 FORMAT(F20.8,7X12F2C.8)
MM=MM+ I
TABAL( MM)=AL
TABTL( MM)=THETAL
TAOTR( MM)=THETAR
WRITE OUTPUT TAPE 6,550

550 FORMAT(IHO,22X,6H XD/YL98X,1IH DEFLECTION,5X,17HCRACK PENETRATION)
DO 570 1J=191JK
XIJ=IJ
XD=YL*X IJ/X 1K
DELTA=FINT( FOI K)
WXD=(YMB*FM( XD)-YMT )IF
CPXO=FCP( WXD)
[F(XIJIXIK-.5) 560,555,560

555 TABCD(MM)=CELTA
560 WRITE OUTPUT TAPE 69565,IJ,IK,DELTA,CPXD
565 FORMAT(23X*12,2H /,12j5XtlPE15.8v1OXiOPFl0.6)
570 CONTINUE

WRITE OUTPUT TAPE 6,580
580 FORMAT11HI//)
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IF(KKFUD-I )590, 595,595
590 FOLD=F

YMTOLD=YMT
YMBOLD=YMB

595 IF(MM-10O)30O,340,340
END
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CFCP CRACK PENETRATION AS A FUNCTION OF W USING TABULATED VALUES, PCH
FUNCTION FCP(W)
DIMENSION FTO( lO),ECT( 10),FT(10) ,SIGMA(10ObTABAL(100JTABTL(100),
1 TABTR( 100),DISC( 10),NIR( 10),TABCP(200) ,TABW(200) ,TABCD(100)
COMMON YMB,YMTFFOYLEBXOWCRACKNI ,ICI.BMDIXSDTOTDCENTDIMI
1,DIM2,DIM3,DIM4,01M5,DIM6,DIM7,DIM8,01M9,DIM10,DISC,TABCPTABWEC
IF(W-WCRACK) 10,10,20

10 FCP=0.
GO TO 100

20 KLOW=1
K H IG H=N I 4
IF(W-TABW(KHIGH) )30,30,25

25 FCP=OTOT
WRITE OUTPUT TAPE 6,26

26 FORMAT(38H0W GREATER THAN WMAX, SETTING FCP=DTOT # I
GO TO 100

30 KMID=KLOW+(KHIGFH-KLOW)/2
IF(W-TABW(KMID)) 40,50,60

4.0 KHIGH=KMID
GO TO 70

50 FCP=TABCP(KMID)
GO TO 100

60 KLOW=KMIO
70 IF(KHIGH-KLOW-1) 80,80,30
80 SLOPE=(TABCP(KHIGH)-TABCP(KLOW) )/(TABW(KHIGH)-TABWIKLOW))

FCP=TABCP(KLOW)+(W-TABW(KLOW) )*SLOPE
100 RETURN

END

CFA I BEAM CROSS SECTIONAL AREA AS A FUNCTION OF CRACK PENETRATION,PCH
FUNCTION FA(CP)
DIMENSION FiO0(10),ECT(10),FTCIOJSIGMA[10),TABAL(100),TABTL(100),
1 TABTR(100),DISC(1ObNIR(10),TABCP(200) ,TABW(200) ,TABCD(100)
COMMON YMBYMTF,FO,YL,EB,XD,WCRACK,NI, [C,IBMD,IXS,DTOT,DCENTB,TW
I.,D,TF,D1M5,DIM6,DIM7,DIMBDIM9,DIMIO,OISC,TABCP,TABW,EC
IF(CP-rF) 10,10,20

10 FA=B*CTF-CP)4-O*TW*B*TF
GO TO 50

20 IF(CP-TF-O) 30,30,4C
30 FA=(D+rF-CP)*TW4B*TF

GO TO 50
40 FA=(2.*TF+C-CP)*B
50 IF(IXS) 70,60,70
60 WRITE OUTPUT TAPE 6,65
65 FORMAT (33IP0I BEAM AREA FUNCTION IN PROGRAM
70 RETURN

END
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CFXB I BEAM CENTROID DISTANCE FROM CRACK VS CRACK PENETRATION, PCH
FUNCTION FXB(CP)
DIMENSION FTO(10),ECT( 10),FT(10),SIGMA(10),TABAL(100),TABTLf 100),
1 TABTR(10O)bDISC( IO),NIR(10),TABCP(200) ,TABW(200) ,TABCD(100)
COMMON YMB,YMTFFOYLEBXDWCRACKNI ,ICtIBMD,IXSDTOT,DCENTBTW
1, 0,TF D IMS, DIM6, DIM7,D 1M8, DIM9D IM 10,01 SC, TABCP, TABW,EC
IF(CP-TF) 10910920

10 TOP=0.5*B*(TF-CP)**2+D*TW*(TF-CP+0.5*D)+B*TF*I1.5*TF-CPI-D)
FXB=TOP/FA( CP)
GO TO 50

20 IF (CP-TF-D) 30#30v40
30 TOP=0.5*TW*(D+TF-CP)**2+B*TF*(D+1.5*TF-CPI

FXB=TOP/FA( CP)
GO TO 50

40 FXB=(2.*TF+D-CP)/2.
50 IF(IXS) 70,60,70
60 WRITE OUTPUT TAPE 6,65
65 FORMAT (37H01 BEAM CENTROID FUNCTION IN PROGRAM
70 RETURN

END

CFI I BEAM MOMENT OF INERTIA AS A FUNCTION OF CRACK PENETRATION, PCH
FUNCTION FI(CP)
DIMENSION FTO(10),ECT( 10),FTILO),SIGMA(i0) ,TABAL(100) ,TABTL(100),
1 TABTR(100),DISC(10)tNIRI1O),TABCP(200htTABW(200hvTABCD(100)
COMMON YMBYMTtFFOYL,EBXDtWCRACKNIICIBMDIXSDTOTDCENTB ,TW
lDtTFDIM5,DIM6,OIM7,DIM8,DIM9,DIM10,OISC,TABCPTABWEC
IF(CP-TF) 10910920

10 FI=( B*(TF-CP)**3+TW*O**3+B*TF**3)/12.+B*(TF-CP)*(FXB(CP)-0.5*(TF-
ICP))**2+D*TW*(FXB(CP)-TF+CP-O.5*D)**2+B*TF*(D+1.5*TF-FXB(CP)-CP)~*
22
GO TO 50

20 IF(CP-TF-O) 30,30,40
30 FI=(TW*(TF+D--CP)**3+B*TF**3)/12.+TW*(D+TF-CP) .(FXB (CP)-0.5*(D+TF-

1CP) )**2+B*TF*(D+1.5*TF-FXB(CP)-CP)..2
GO TO 50

40 FI=( B*(2.*TF+D'-CP)**3)/12.
50 IFUIXS) 80r609,80
60 WRITE OUTPUT TAPE 6,65
65 FORMAT (46H01 BEAM MOMENT OF INERTIA FUNCTION IN PROGRAM

WRITE OUTPUT TAPE 6,70,B,TF,D,TW
70 FORMAT (16HOFLANGE WIDTH = tF7.4,16H FLANGE THICK = ,F7.4#13H WEB

1DEPTH = ,F7.4913H WEB THICK = 9F7.4)
80 RETURN

END
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CFINT SIMPSONS 1/3 RULE FOR NUMERICAL INTEGRATION PCH
FUNCTION FINT(FCUM,K)
DIMENSION FTO( 10),ECT( 1O),FT(10),SIG?4A(1O0),TA8AL(100),TABTL(100),
1 TABTR( 100) ,DISC( 10),NIR(10) ,TABCP(200), ,TABW(200) ,TABCD(100)
COMMON YMB,YMT,F,FO,YL,EB,XD,WCRACK,NI,ICt,IBMD,IXS,DTOTDCENTD[Ml
1,DIM2,01M3,DIM4,IJIM5,DIM6,DIM7,DIM8,DIM9,DINIlO,DISC,TABCP,TABW,EC
I 1=K-1
12=K-2
XK =K
FINT1=0.
FINT2=0.
DO 10 1=1,11,2
XI=I
X=X I*YL/XK

10 FINTI=FINT1e-FDUM(X)
DO 20 1=2,12,2
xI=I
X=XI *YL/XK

20 FINT2=FINT2+FDUM(X)
A l=FDUM( 0.0)
A2=FDUM(YL)
FINT=(YL/(3.*XK))*(Al+4.*FINT1+2.*FINT2+A2)
RE TURN
END

CFTLI FUNCTION FOR THETA LEFT INTEGRAL PCH
FUNCTION FTLL(X)
DIMENSION FTO( 1O),ECT(10),FT(10),SIGMA(10),TABAL(100),TABTL(100),
1 TABTR(100),DISC(1O),NIR(1O),TABCP(200),TABW(200),TABCD(100)
COMMON YMB,YMT,FFO,YL,EB,XDWCRACKN!, IC1,IBMDIXSDTOTDCENTDIMl
1,DIM2tDIM3,01M4,01M5,DIM6,DIM7,DIM8,DIM9,Dl.MlODISC,TABCPTABWEC
W=(YMB*FM(X)-YMT)/F
CP=FCP(W)
T=F*(W-EC-CP+DCENT-FXB(CP))
FTLI=T*(YL-X)/(YL.EB*FI(CP))
RETURN
END

CFTRI FUNCTION FOR THETA RIGHT INTEGRAL PCH
FUNCTION FTRI(X)
DIMENSION FTO(10),ECT(10),FT(1O),SIGt4AI1O),TABAL(IO0)bTABTLI100),
1 TABTR(100),DISC(1O),NIR(10),TABCP(200),TABW(200).TABCD(100)
COMMON YMB,YMT,F,FO,YLEBXD,WCRACKNI, IC, IBMD,IXSDTOTDCENTDIMI
1,DIM2,DIM3, DIM4,01M5,DIM6,,DIM7,DIM8,DIM9,DI:MIODISCTABCPTABWEC
.W=(YMB*FM( X)-YMT)/F
CP=FCP(W)
T=F*(W-EC-CP+DCENT-FXB(CP))
FTRI=T*XI(YL*EB*FI(CP))
RETURN
END
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CFBCI FUNCTION FOR BEAM COMPRESSION INTEGRAL PCH
FUNCTION FBCI(X)
DIMENSION FTO( 10),ECT( 1O),FT(10),SIGMA(10) ,TABAL(100) ,TABTL(100),
1 TABTR(100),DISC(10),NIR(10),TABCP(200),TABW(200) ,TABCD(100)
COMMON YMBYMTF,FOYLEB,XDWCRACKNI ,IC,IBMD,IXSDTOT,DCENTDIM1
19DIM29 DIM3t DIM4v01M5vD IM6vD IM7,DIM8,D IM99DIMlOtDI SCoTABCP,TABWtEC
W=(YMB*FM( X)-YMT)/F
CP=FCP(W)
FBCI=1./(EB*FA( UP))
RETURN
END

CFDI FUNCTION FOR DEFLECTION (DELTA) INTEGRAL PCH
FUNCTION FHIMX
DIMENSION FTOC 10),ECTI 10),FT(10),SIGMA(IO),TABAL(100) ,TABTL(IO0),
I. TABTR(100),DISC(10),NIR( 1O),TABCP(200),TABW(200) ,TABCD(100)
COMMON YMBYMTFFO,YLEBXDWCRACK,NI ,IC,I.BMD,IXS,DTOT,DCENT,DIMI
1,DIM2,OIM3,DIM4,DIM5,DIM6,DIM7,DIMB,D[M9,DIMIO,DISC,TABCP,TABW,,.EC
W=(YMB*FM(X)-YMT )/F
CP=FCP(W)
T=F*(W-EC-CP+DCENT-FXB(CP))
G=T/(EB.FI (CP3)
IF(X-XD) 10910,20

tOFDI=G*X*(YL-XD)/YL
GO TO 30

20 FDI=G*XD*(YL-X)/YL
30 RETURN

END

CFM UNIFORM BENDING MOMENT DISTRIBUTION PCH
FUNCTION FM(X)
DIMENSION FTO(10),ECT(10),FT(10),SIGMA(10),TABAL(1O0),TABTL(100),
1 TABTR(100),DISC(I0),NIR(10),TABCP(200),TABW(200),TABCD(100)
COMMON YMBYMTFFOYLEBXDWCRACK,NI ,ICIBMD,[XSDTOTDCENTDIMI
l1,DIM2,01M3,0IM4,DIM5,DIM6,DIM7,DIM8,DIM9,D-IMIOtDI.SC,TABCP,TABW, EC
RULES=X
FM= 1.0
IF(IBMD) 20,10,20

10 WRITE OUTPUT TAPE 6,15
15 FORMAT (38HOTERMINAL COUPLES, C ,MAX MOMENT =C

20 RETURN
END
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WCRACK = 1.041667

TABCP TABW FIRST DIFF
1 0. 1.04166666 0.
2 0.01666667 1.05029832 0.00863166
3 0.03333333 1.05883005 0.00853173
4 0.05000000 1.06725861 0.00842856
5 0.06666666 1.07558069 0.00832208
6 0:08333333 1.08379292 0.00821224
7 0.09999999 1.09189187 0.00809895
8 0.11666666 1.09987406 0.00798219
9 0.13333333 1.10773592 0.00786185

10 0.15000000 1.11547388 0.00773796
11 0.16666666 1.12308426 0.00761038
12 0.18333333 1.13056338 0.00747912
13 0.20000000 1.13790745 0.00734407
14 0.21666666 1.14511262 0.00720517
15 0.23333333 1.15217508 0.00706246
16 0.25000000 1.15909091 0.00691582
17 0.26666667 1.16585602 0.00676511
18 0.28333333 1.17246653 0.00661051
19 0.30000000 1.17891827 0.006451T4
20 0.31666666 1.18520723 0.00628896
21 0.33333333 1.19132915 0.00612192
22 0.34999999 1.19727989 0.00595073
23 0.36666666 1.20305520 0.00577532
24 0.38333333 1.20865084 0.00559564
25 0.40000000 1.21406247 0.00541162
26 0.41666666 1.21928577 0.00522330
27 0.43333333 1.22431642 0.00503065
28 0.45000000 1.22914998 0.00483356
29 0.46666666 1.23378208 0.00463210
30 0.48333333 1.23820829 0.00442621
31 0.50000000 1.24242422 0.00421593
32 0.57500000 1.26084441 0.01842019
33 0.65000000 1.27911845 0.01827404
34 0.72499999 1.29724148 0.01812303
35 0.80000000 1.31520861 0.01796713
36 0.87500000 1.33301473 0.01780611
37 0.95000000 1.35065430 0.01763958
38 1.02499999 1.36812186 0.01746756
39 1.09999999 1.38541155 0.01728968
40 1.17500000 1.40251730 0.01710576
41 1.25000000 1.41943291 0.01691560
42 1.32499999 1.43615174 0.01671883
43 1.39999999 1.45266713 0.01651539
44 1.47499999 1.46897201 0.01630488
45 1.54999998 1.48505914 0.01608713
46 1.62500000 1.50092110 0.01586196
47 1.69999999 1.51655009 0.01562899
48 1.77499999 1.53193827 0.01538818
49 1.84999999 1.54707755 0.01513928
50 1.92499998 1.56195973 0.01488218
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51 2.00000000 1.57657656 0.01461683
52 2.07499999 1.59091975 0.01434319

53 2.14999998 1.60498123 0.01406148

54 2.22499996 1.61875317 0.01377194
55 2.29999998 1.63222833 0.01347516
56 2.37500000 1.64540029 0.01317196
57 2.44999999 1.65826389 0.01286361
58 2.52499998 1.67081594 0.01255205
59 2.59999996 1.68305604 0.01224010
60 2.67494998 1.69498783 0401193179
61 2.75000000 1.70662099 0.01163316
62 2.82499999 1.71797386 0.01135287

63 2.89999998 1.72907798 0.01110412
64 2.97499996 1.73998486 0.01090688

65 3.04999998 1.75077711 0.01079226
66 3.12500000 1.76158775 0.01081064

67 3.19999999 1.77263463 0.01104687

68 3.27499998 1.78428653 0.01165190

69 3.34999996 1.79720080 0.01291427
70 3.42499998 1.81264159 0.01544079
71 3.50000000 1.83333333 0.02069174
72 3.51666665 1,83888887 0,00555554
73 3.53333333 1.84444444 0.00555557
74 3.54999998 1.84999998 0.00555554
75 3.56666666 1.85555555 0.00555557
76 3.58333331 1.86111109 0.00555554
77 3.59999999 1.86666666 0.00555557
78 3.61666664 1.87222220 0.00555554
79 3.63333333 1.87777777 0.00555557
80 3.64999998 1.88333331 0100555554
81 3.66666666 1.88888888 0.00555557
82 3.68333331 1.89444442 0.00555554
83 3.69999999 1.89999999 0,00555557
84 3.71666664 1.90555553 0,00555554
85 3.73333332 1.91111110 0.00555557
86 3.75000000 1.91666666 0.00555556
87 3.76666665 1.92222221 0o00555556
88 3.78333333 1.92777777 0.00555556
89 3.79999998 1.93333332 0.00555556
90 3.81666666 1.93888888 0.00555556
91 3.83333331 1.94444443 0.00555556
92 3o84999999 1.94999999 0.00555556

93 3.86666664 1.95555554 0.00555556
94 3.88333333 1.96111110 0.00555556
95 3.89999998 1.96666665 0.00555556
96 3.91666666 1.97222221 0.00555556
97 3.93333331 1.97777776 0.00555556
98 3.94999999 1.98333332 0.00555556
99 3.96666664 1.98888887 0.00555556

100 3.98333332 1.99444443 0.00555556
101 4.00000000 2.00000000 0.00555557
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APPENDIX B

SELECTION OF A MODELING MATERIAL

Because a meaningful statistical treatment of test specimens

demands a large number of replications, an inexpensive modeling

material was required for this program. The Hydrocal gypsum

cements seemed to possess all the brittle characteristics desired
and could be obtained in large quantities of uniform material at

a reasonable cost.

To minimize possible errors in the measurement of mechanical

strength, the strongest member of the gypsum family was sought.

Test specimens in the form of small rectangular beams (1/4xl/4x4
inches) were cast using the Hydrocal, Ultracal 30, and Hydrostone

cements. The results of these tests are shown in Figure 42. The

Hydrostone was selected as the modeling material because this group

(batch A) of specimens had the highest average stress.

It was learned that the mill preparation of Hydrostone in-

volved one ton lots only. Therefore, to achieve the desired uni-
formity in the base material it was arranged with the manufacturer

to have the Hydrostone bagged in accordance with the following

procedure.

(1) Hydrostone was processed in twelve one-ton lots.
(2) Each lot was kept separate in the plant.

(3) Two bags from each of the lots were then selected

and blended to form a 2400 pound lot.

(4) This process was repeated to form ten such re-
blended lots.

Following this procedure, the shipment of 230 bags of Hydro-
stone were rebagged and shipped to IITRI. In addition to the

"A" batch, two more batches "B" and "C" were prepared from two
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different bags drawn from the Hydrostone supply. The distri-

bution of fracture strength for these three batches are shown

in Figure 43. The small variability of fracture stress for

these three batches indicate that the precautions taken to in-

sure uniformity in the supply of Hydrostone were adequate.

The data illustrated in Figures 42 and 43 were obtained for

materials mixed at maximum consistency which was desirable for

strength purposes but somewhat unsatisfactory for molding pur-

poses since the setting time was relatively short. For this

reason, several mixtures of Hydrostone mixed at maximum con-

sistency but with the addition of minute traces of sodate re-

tarder were prepared. A wet mix working time of 1-1/2 hours was

made possible by the following Hydrostone-water sodate retarder

ratio:

Hydrostone (dry): water: retarder = 100:32:04. This formula

was used uniformly throughout the course of all investigations

reported herein.

Mold preparations and casting procedure for the Hydrostone
specimens. - Various component shapes were required throughout

the experimental effort. These shapes ranged from simple beams

of square cross section to shapes of a somewhat more complicated

geometry involving surfaces curved in two directions. The simple

shapes such as the 2.5 inch x 2.5 inch x 40 inch beam and the 15 inch

diameter by 5/8-inch thick plate were cast in one piece molds. The

mold for the beams was constructed as a battery of five units. See

Figures 44 and 45 . The complicated mold configurations as re-

presented by the "backbone" and the ogive shell were obtained by

first making master molds using wood and aluminum materials. The

master molds were then used to prepare room-temperature vulcani-

zing rubber ship molds. These molds were in turn used as the pro-

duction mold in casting the required quantity of the desired

shape. See Figures 46, 47 , and 41.
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Figure 44 Example of Battery Mold for Casting Beams
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Figure 47 Ogive Shell Mold
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The following casting process was used to produce consistent

Hydrostone plaster test specimens; Hydrostone, water, and retarder

were weighed out in the normal consistency proportions of 100:32:0 4.

The gypsum was slowly sifted into the water and allowed to

soak for about one minute. The mix was then stirred by hand tor

three to five minutes followed by mechanical mixing for three to

four minutes. The mechanical mixing coalesced the smaller bubbles

into larger bubbles which quickly came to the surface of the mix

and dissipated into the air. The resulting castings were reasonably

bubble free and fairly consistent in appearance from batch to batch.

Curing of Hydrostone specimens. - In order to insure uniformity

among specimens with regard to strength, each specimen was cured

by driving off the excess moisture in a drying oven. It was deter-

mined that in the case of the large volume beam specimens, ten

hours of exposure at 104'F was sufficient to bring the specimens

to constant weight. As an added margin, no specimen tested was sub-

jected to less than 24 hours of drying time.
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