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Executive Summary 
 

This program addresses Automatic Image Understanding and Automatic Integration of 
Disparate Sources of Information. The research is being pursued collaboratively by the 
Signal Innovations Group, Inc. (SIG), Lockheed Martin Missiles & Fire Control 
(LMM&FC), and the NAVAIR Weapons Division at China Lake. The techniques have a 
rigorous mathematical foundation, buttressed by many years of ONR basic (6.1) research 
pursued at Duke University, NAVAIR, and LMM&FC. The techniques are particularly 
focused on asymmetric warfare, urban warfare, guerrilla warfare, and port/base security, 
for which automatic integration of disparate sources is particularly important, typically 
with very limited if any a priori training data.  
 
Concerning automatic image understanding, we are principally considering image 
sequences (video). The approaches utilize the new field of semi-supervised learning. 
Specifically, most existing Automatic Target Recognition (ATR) approaches are 
supervised, in the sense that they require an a priori training set of labeled data DL. The 
set DL is composed of example signatures (features) and their associated identity (label). 
These data are typically employed to design a classifier, with the hope that the labeled 
training set DL is well matched statistically to the unlabeled data DU to which the ATR 
algorithm is applied. Such supervised algorithms are vitiated by the inherent differences 
in training and testing data (DL and DU, respectively) found in practice. In addition, in 
conventional techniques the classifier is applied to each element of DU, one at a time, 
without accounting for the cumulative contextual information inherent to DU. The semi-
supervised algorithms employed here ameliorate the limitations of conventional 
approaches by performing learning based on all available data, both labeled and 
unlabeled. By explicitly employing DU in design of the classifier, the algorithm 
automatically accounts for context and for changing sensing conditions.  
 
The performance of the semi-supervised classifier is directly related to the features 
extracted from the imagery and video. LMM&FC has done extensive research and testing 
on target detection algorithms based upon Quadratic Correlation Filtering (QCF) theory 
which project the image data onto a subspace which is optimal for discriminating targets 
versus clutter. The merger of these features into the semi-supervised classification 
algorithms offers the possibility of higher detection and classification rates, less training 
requirements, and adaptive algorithm updates. These techniques and features are also 
being employed within the rigorous joint classification and feature optimization (JCFO) 
algorithm developed at Duke and now transitioned to SIG. The JCFO is a state-of-the-art 
data-mining framework that accounts for the importance of given features/data for 
classification, thereby merging the feature selection and classifier-design stages. 
 
The semi-supervised classifiers utilize Bayesian kernel algorithms, employing graph-
theoretic techniques. Graph-based techniques account for all available data, both labeled 
and unlabeled (respectively, DL and DU), in a mathematically rigorous framework. For 
video, we are exploiting the spatial information from a given image as well as the 
temporal information associated with a changing scene. Time-varying spatial information 
is well characterized via a hidden Markov model (HMM), for which a given scene is 
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represented by (hidden) states. The states may reflect the (unobserved) intentions of an 
individual being monitored via video, e.g., an asymmetric threat in an urban environment. 
Almost all previous research with HMMs has been performed in the context of 
supervised algorithms, for which an a priori labeled training set DL is assumed and the 
context inherent to DU is not exploited. For the problem of interest here the HMM has 
been placed within a semi-supervised framework. The HMM will therefore be adaptable 
for interpretation of video, under the realistic scenario for which a priori training data 
may be quite limited (as anticipated for asymmetric threats). 
 
For the thrust on automatic integration of disparate sources of information, we are 
developing algorithms that autonomously integrate and manage an arbitrary number and 
range of sensors. Within the information-integration framework, the algorithms merge 
sensor data with information that may be provided by personnel in theatre (human 
intelligence, or HUMINT). The integration of multiple and disparate information sources 
is manifested via a graph-based statistical prior, and the sensor management is 
implemented by computing the expected information gain associated with particular 
actions. The management of resources (sensors and personnel) is manifested by 
accounting for costs associated with particular actions (e.g., time, bandwidth and/or 
energy requirements).  
 
Our knowledge of a given environment is defined by the available labeled and unlabeled 
data, DL and DU, respectively. We augment DL and DU to improve our knowledge base, 
by deploying sensors and personnel. For example, personnel or near-range sensors may 
be employed to acquire labels for particular elements in DU, with the subsequent labeled 
examples used to augment DL. Alternatively, one may employ new sensors to enhance 
our understanding of DU, without the costly task of acquiring labels. Since the 
information content of such actions depends on what is observed (what labels or data are 
collected), and these observations are unavailable in advance, we must compute the 
expected information gain. In the research being pursued this is implemented in a 
mathematically rigorous framework, utilizing the theory of optimal experiments, where 
here an “experiment” consists of deploying sensors and/or personnel and acquiring new 
data about the environment. Actions are prioritized based on the balance between 
expected information gain and deployment costs. For imagery this framework will be 
implemented using state-of-the-art Bayesian kernel algorithms, and for video the time 
variation will be exploited via an HMM formulation. The HMM framework is also being 
utilized when performing multi-aspect imaging of a given scene. These techniques define 
the particular disparate viewing angles which are optimal for the classification 
performance. This is the premise behind the LMM&FC collaborative ATR algorithms 
which have been researched under recent ONR sponsorship. 
 
The investigators at SIG, LMM&FC and NAVAIR have a long history of successful 
collaborations that is being leveraged in this program. NAVAIR is funded by ONR 
separately. 
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I. Concept of Operation for the Navy 
 

The future of modern warfare lies in managing and exploiting netted and distributed 
systems with algorithms for automatic integration of disparate sources of information 
coupled with automated image understanding (or automatic target recognition – ATR). 
The hardware infrastructure for such 
systems is advancing, and is being 
further revolutionized by the 
FORCEnet program, for which the 
program is targeted. As an example, 
the pictorial in Fig. 1 depicts an 
artist’s concept of the littoral warfare 
environment. It shows the key 
elements of a netted and distributed 
system such as sensors, platforms, 
communication links, and weapons. 
The same technology may be used in 
an urban setting, for detection of 
asymmetric threats, utilizing 
techniques that learn typical behavior, with anomalous events appearing with low 
likelihiood. 
 
The magnitude of data implied by such a distributed sensor network such as in Fig. 1 is 
enormous. It requires robust algorithms for automatic image understanding and ATR 
which utilizes and tasks all the available sensors in the network in a way which is optimal 
for the exploitation of information. Given that multiple sensors of disparate information 
are available, we seek to take advantage of the network and its resources to address 
information integration and sensor management within the context of asymmetric 
warfare, urban warfare, guerrilla warfare and port/base security. An environment such as 
that in Fig. 1 is of interest for port security, with similar issues of interest for the other 
targeted applications (asymmetric threats in urban and suburban settings). The program is 

developing general algorithms of 
interest to asymmetric threats, with 
specific examples and 
demonstrations (milestones) 
dictated by ONR priorities and by 
NAVAIR/LMM&FC experimental 
resources (which are substantial).  
 
In the past, the approach to 
automatic target 
detection/recognition (ATD/R) has 
been open loop and treated as a 
stand-alone problem. Thus, the 
sensing of information has not 
been guided by the methodology 
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Figure 2. An ATR suite (detection, feature extraction, and classification) 
is designed from partially labeled data.  Results are used to tasks sensors, 
analyze features, and update training. 

Figure 1: A conceptual netted and distributed system for Littoral 
Warfare 
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for processing it.  Defining algorithms for image and video understanding, taken in 
conjunction with the integration of disparate sources of information is key to the data 
exploitation.  Also, one must take care to define, with a sound mathematical framework, 
algorithms which: process the data locally, adapt to heterogeneous environments, use all 
available data, and work in conjunction with the sensors. 
 
The SIG, LMM&FC, and NAVAIR team is developing and testing algorithms that 
consider the whole reconnaissance/surveillance system, where individual algorithm 
components are clearly synergistic with other algorithms, sensors, and the overall 
mission.  Fig. 2 outlines a notional data processing environment where components to be 
researched have a clear relation to other components and the overall mission.  

 
The close coupling of the research with NAVAIR will allow demonstrations on measured 
prototype multi-sensor data, with the particular test examples to be investigated defined 
in collaboration with ONR (we anticipate deploying video sensors at China Lake in the 
next year of funding). The quantitative specifications for how the products will improve 
operational performance include: 
 

• Demonstrated reduction in the amount of labeled training required data for 
algorithm design, with this achieved via semi-supervised classifiers that 
incorporate context. Specifically, the semi-supervised classifiers integrate 
information from labeled “training” data and unlabeled “testing” data. We will 
demonstrate a quantitative reduction in the required amount of training data, as 
well as quantitative improvements in detection performance (e.g., ROC curves) 
when environmental conditions are changing. 

 
• Demonstration of feature-based image and video information extraction, whereby 

joint classification and feature optimization (JCFO) is achieved. This manifests a 
direct mapping from analog sensor data to information (A/I, rather than 
conventional A/D). This will be quantified in terms of the number of bits required 
for conventional digital compression (A/D) vis-à-vis the number of bits required 
for analog to information (A/I). The classification performance of A/D and A/I 
algorithms will also be quantified (e.g., ROC curves, confusion matrices). 

 
• Within the context of sensor management and information integration, we will 

quantify the number of optimally chosen sensor and HUMINT deployments 
required to achieve a given objective, vis-à-vis non-optimal and essentially 
random sensor deployment. We will also quantify the performance of optimal 
sensor deployment vis-à-vis fixed or random sensor deployment (e.g., ROC 
curves). 
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II. Project Schedule and Milestones 
 

During the first year of the program 
we have focused principally on 
information sources involving video. 
As detailed below, we have 
developed techniques that remove an 
arbitrary background, for extraction 
of general foreground (moving) 
objects. The algorithms track 
arbitrary moving objects, and by 
maintaining shape information the 
algorithms seamlessly mitigate 
occlusions. In the next year of 
funding the extracted moving object 

will be analyzed via statistical algorithms, and the sensor-management algorithms will be 
used to control the camera(s) characteristics. Below we summarize the Year I milestones 
and associated progress.  
 
Year 1 Milestones: Using video, demonstrate automatic extraction of features from 
imagery. This will be demonstrated for the realistic scenario in which the number of 
labeled examples is far smaller than the number of unlabeled examples to be classified.  
 
All Phase I milestones have been met, and have been demonstrated to the sponsor. In 
addition, SIG has provided ONR and China Lake the underlying MatlabTM code used to 
implement the algorithms. The algorithms provide real-time processing of video at 30 
frames per second, with automatic learning of the background statistics, automatic 
extraction of moving objects, estimation of the shape of all moving entities, and Bayesian 
techniques for handling occlusions. The algorithms have been demonstrated on several 
different complex data sets. 
 
In Year II we will deploy cameras at China Lake for further testing of the algorithms, on 
video of interest to the Navy (e.g., for base security). We will develop the HMM 
statistical models for learning typical behavior, and we will develop cost-sensitive sensor-
management agents for optimal control of the multiple sensors. 

Feature selection & 
classifier design: Imagery

Optimize LMM&FC-NAVAIR
features: Imagery

Graph-based semi-supervised
classifiers: Imagery

Theory of optimal experiments: 
Imagery & kernel algorithms

Testing & performance
characterization

Feature selection & 
classifier design: Video

Graph-based semi-supervised
classifiers: Video

Theory of optimal experiments: 
Video & HMMs

Optimal experiments: 
Multi-aspect & HMMs

Year 1 Year 2 Year 3

Table 1. Summary of the schedule for the tasks listed in Sec. II. 
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 III. Overall Technical Approach and Deliverables 
 

III.1 Overarching Approach  
 
The program tasks involve the following technical challenges: 
 

• Development of classifiers that utilize all available data, both labeled and 
unlabeled. This manifests a semi-supervised algorithm that naturally adapts as 
new unlabeled data are acquired. In addition, when classifying any given item, the 
algorithm must utilize information from all labeled and unlabeled data (i.e., the 
classification must be placed in the context of all information sources). This 
framework must also integrate different classes of information (multiple sensors 
and personnel). 

• Development of algorithms that autonomously integrate and manage multiple 
information sources (sensors and personnel) as a given scene is interrogated. 
Collection of new information is here termed an “experiment”, and the efficient 
utilization of multiple resources will be achieved using the theory of optimal 
experiments. 

• Development of algorithms that perform joint feature selection and classifier 
design, such that only the most relevant components of an information source are 
extracted. Such feature extraction must be realized in a multi-sensor setting, 
integrating both labeled and unlabeled data. 

• The above challenges must be addressed in the context of new sensor modalities, 
with video being an important target. The multiple types of data (images, video, 
waveforms, and human intelligence) must be integrated within a single 
framework. 

 
In the following we provide details on how these challenges will be addressed within the 
research program. 
 
III.1.1 Semi-supervised classifier 
 
Assume for simplicity we have a binary problem, where label y=1 corresponds to targets 
of interest and label y=0 corresponds to false targets (clutter). The similarity of any two 
feature vectors xi and xj is defined in terms of a generally non-linear kernel K(xi,xj), 
where K(xi,xj) is large when xi and xj are close in feature space. For an arbitrary feature 
vector x the classifier seeks to learn a function 

)(),()( T
o

1
xφwxxwx =+= ∑

=
wKwf n

LN

n
n    (1) 

where T
21 )},(...,),,(),,(,1{)( LNKKK xxxxxxxφ =  and T

21o }...,,,,{ LNwwww=w . 
The probability that a given feature vector x is associated with y=1 or y=0 is expressed as 

 
[ ] [ ] y-y fffy 1})](exp[1/{1})](exp[1/{)](exp[),(p wxwxwxwx ++=  
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Figure 3. Illustration of a graph, in 
which the connections are dictated by 
similarity, defined by a kernel distance 
measure. 

This formulation is readily extended to an arbitrary number of label types (beyond the 
binary y=0/1 problem discussed here for simplicity). The probability of the label given 
feature vector x is now expressed as  

∫= wxwwxx d)(p),(p)(p yy  

where )(p xw  is a prior on the weights w. Previously researchers have imposed a 
sparseness prior on w (usually a Gamma prior Γ(w)), which favors most of the weights 
being set to zero.  
 
Rather than or in addition to a sparseness prior, a new graphical prior be employed, 
utilizing all available data from DL and DU (labeled and unlabeled data, respectively). 
Figure 3 shows a graphical rendering for handwritten-digit recognition, as an illustrative 
example. The distance between any two feature vectors xi and xj is defined via a general 
metric, where here we employ a kernel Ko(xi,xj). Note that this need not be the same 
kernel as employed in the classifier in (1). For any function g(x), we introduce the cost 
function  

∑ ∑
+

=

+

=
−=

UNLN

i

UNLN

j
jijiKC

1 1

2
o )](g)(g)[,( xxxx   (2) 

and we wish to minimize C, over the choice of functions g(x). We sum over all available 
feature vectors: NL labeled examples and NU unlabeled 
examples. Note that when the distance between xi and xj is 
small, the kernel Ko(xi,xj) is large, thereby forcing 

)(g)(g ji xx ≈ . However, when xi and xj are dissimilar  
Ko(xi,xj)→0, and therefore there is little restriction placed 
on )(g ix  with respect to )(g jx . This implies that 
targets/non-targets that are similar in feature space should 
be classified similarly. It can be shown that minimizing C 
in (2) is equivalent to choosing 

T
21 )}(,...,)(),({ UNLNggg += xxxg  that minimizes 

∆ggT , where ∆  is the graph Laplacian, defined as oKD∆ −= . The ijth element of Ko is 
Ko(xi,xj) and D is a diagonal matrix, the ith element of which is ∑=

j
ijii ,KD )( xx .  

 
The above analysis is true for any function g(x), and we now consider the special case 
g(x)=f(x), where )()( T xφwx =f  as defined in (1). In this case we have Φwg = , where 

T
21 )}(...,),(),({ UNLN += xφxφxφΦ . Therefore, for our problem we must choose the w 

that minimizes ∆ΦwΦw TT , which is equivalent to choosing the w that maximizes the 
zero-mean Gaussian random field prior with covariance matrix 1T ][ −= ∆ΦΦΣ , 

),(~)(p UL Σ0DDw N∪ . 
 

Within the training process, for determination of the classifier weights w, the overall 
algorithm reduces to a maximum a posteriori (MAP) estimate 
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The relative importance of the three terms above is controlled by the Lagrange 
multipliers λG and λP, which are optimized in the training phase. The framework 
indicated above, first developed at Duke under 6.1 ONR support, has an attractive 
interpretation: The first term controls the impact of the labeled training data DL; the 
second term accounts for all available data DL and DU, via the aforementioned graphical 
prior; and the last term imposes sparseness via a Gamma prior. The sparseness selects 
only the most informative (relevant) feature vectors for classifier design. This same type 
of sparseness prior may also be used to select the most informative feature components. 
 
III.1.2. Feature selection 
 
The framework discussed above is naturally suited for investigation of feature selection. 

We may employ a linear kernel ∑
=

==
fN

i
ii xwf

1

T)( xwwx , where xi represents the ith 

feature component and Nf is the total number of features. The sparseness Gamma prior 
Γ(w) favors a classifier for which most wi are zero, and therefore this prior favors a 
solution for which most of the feature components xi are ignored. In this manner, through 
training, we learn which of the features are most important for the classification task. The 
important thing to note is that, via the graphical prior )(p UL DDw ∪ , the important 
features are selected using all available data, labeled and unlabeled. This is a critical 
characteristic in the context of adaptivity, as discussed further below. This framework 
will be extended such that the most relevant feature vectors and feature components are 
selected simultaneously, via appropriate sparseness priors. 
 
Extracting robust features from the sensor information will be explored using Quadratic 
Correlation Filters (QCFs). Linear correlation filters have been used successfully for 
addressing the target detection problem. It is however often necessary to use a large 
number of linear filters for dealing with challenging detection problems. The 
disadvantage is that each linear filter is designed to operate independently of the others. 
As a result the correlation surface of all filters must be individually searched and a 
winner must be selected. A major benefit of QCFs may be to reduce the processing 
complexity by requiring fewer overall computations and simplifying the decision process. 
It can be shown that although the QCF requires several parallel linear correlations to 
implement, the linear branches work together to implement one QCF, and their outputs 
are combined into a single detection output. This greatly reduces post-processing 
complexity as the need to search many separate correlation surfaces is eliminated. 
Another advantage of quadratic filters is that they are able to better exploit the second 
order statistics of the data. It is well known that quadratic classifiers are optimum for 









Γλ+∪λ+= ∏
=

LN

n
nn ,yp

1
PULGMAP )()(p)(
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wDDwwx

w
w

Labeled Training
Data, DL

Graphical Prior 
Utilizing All

Available Data DL& DU
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Gaussian distributions. However, even when the data is not necessarily Gaussian we 
expect QCFs to perform better than their linear counterparts, under general conditions. 
 
The issue of finding targets in background clutter is a two-class pattern recognition 
problem. Consider an input signal ( ) ( ) ( )1 2

T
x x x N=   x L  that can be either a 

target (class 1ω ) or background (class 2ω ). For now we assume that x is a purely real 
signal. The output of the quadratic filter is defined as  

∑∑
= =

==
N

i

N

j
ij

T jxixty
1 1

)()(Txx      (4)   

The coefficient matrix T={tij} is square and real but otherwise unrestricted. It should be 
noted that since T is not restricted to be positive definite, the output y can be either 
positive or negative. The idea is to determine T such that y is positive and as large as 
possible when 1ω∈x , and is negative or as small as possible when 2ω∈x . 
 
LMM&FC has developed extensive methodologies for estimating the matrix T, based 
upon separation of information and class separation.  In either case, the problem reduces 
to projecting the data onto a subspace (of reduced dimension) where separation of classes 
is done optimally. The class separation metric leads to a subspace defined by the 
eigenvectors of the matrix 
 

( ) ( )YXYX RRRR −+ −1     (5) 
 
where RX and RY are the correlation matrices for the training data of class X and Y 
respectively.  Since we have a subspace defined, we have basis vectors which determine 
this subspace. The projections of the data onto these basis vectors become features for 
classification. It has been shown by experimentation, that since the basis vectors are 
derived from optimizing a quadratic form, the optimal discriminate function is quadratic.  
Thus, the energy metric of (4) becomes optimal. 
 
It is envisioned that coupling the QCF architecture with unlabeled data will lead to 
higher-order decision boundaries. Thus, extending the QCF architecture to unlabeled data 
via the graph-based similarity metric depicted by Fig. 1 holds promise in extracting 
robust features for further classification algorithms, outlined in Sec. V.1.1. 
  
III.1.3. Adaptivity and sensor management 
  
The Bayesian formalism discussed in Sec. V.1.1 allows several strategies by which the 
classifier may adapt to its environment and to the characteristics of targets. Note from (3) 
that the classifier utilizes the labeled training data DL and also all of the available 
unlabeled data DU (which is to be labeled or classified). In this manner, as the 
environmental and target characteristics change (i.e., as DU changes) the algorithm 
automatically refines itself via the prior )(p UL DDw ∪ . For example, the algorithm may 
refine what are deemed to be the most appropriate features, as environmental conditions 
change. 
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We also utilize new techniques in the design of optimal experiments (DOE), whereby we 
integrate sensing and ATR. Specifically, rather than simply applying the algorithms to 
whatever data the sensor collects, the algorithm will guide selection of new multi-sensor 
data (defining new data for DU). As a result of this process the parameters of the classifier 
are refined, as are detection thresholds, based on (3).  
 
Providing more details on the DOE technique, recall that the data-dependent component 
of the Hessian, as defined on the posterior likelihood of the weights w, is expressed using 
(3) as  









∪λ+
∂
∂

∂
∂

=∪ ∑
=

LN

n
nn

ji
ij yp

ww
H

1
ULGUL )(p),()( DDwwxDD    

By taking the determinant of the Hessian matrix, we quantify the information content in 
the data DL and DU (within a second-order – Gaussian – approximation), in the context of 
learning the classifier weights w. Considering now the labeled and unlabeled data, 

LNnnn
m

n Smy ,1
)(

L }:,{ =∈∀= xD  and UNLNLNnn
m

n Sm ++=∈∀= ,1
)(

U }:{xD , we may ask 
the following question: Given the available unlabeled data DU, which sensor 
measurements should be performed that would best improve our ability to classify? For 
example, if we have feature vectors )(m

nx  for sensors m in the set nS , we may ask which 
sensors nSm∉  should be deployed to acquire new features (physics) for a given target.  
 
For sensing paradigms for which a given target may be viewed from multiple 
orientations, the hidden Markov model (HMM) is a natural tool for processing the data 
and for performing optimal design of experiments (see Subtask 3.2). In Sec. V.1.5 we 
provide further details on the HMM and on how the HMM may be placed within a semi-
supervised setting. 
 
III.1.4. Integrating multiple information sources: Bayesian co-training 
 
The techniques summarized above address semi-supervised utilization of labeled and 
unlabeled data, via graph-theoretic techniques. We now discuss how this graph-based 
statistical prior may be utilized to integrate multiple information sources. The framework 
in (2) dictates that if a given source is characterized by feature vector x, and if xi and xj 
are closely connected within the graph, feature vectors xi and xj should yield similar 
classification decisions. If xi and xj are not connected graphically, it is deemed 
statistically unlikely that they are associated with the same target/clutter class. We now 
consider an additional (separate) information source, characterized by the feature vector 
z. In this case we have three scenarios: (i) items characterized only by information source 
x, (ii) items characterized only by information source z, and (iii) items characterized by 
both information sources x and z. This addresses the likely situation for which the 
information associated with x may be available for some items, the information 
associated with z may be available for other items, and a subset of items may have 
features from both information types. We now seek to integrate this disparate 
information.  
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This problem will be addressed as follows. Two graphs will be designed, using (2), one 
for items with feature vector x and a second for items with feature vector z. We now seek 
to couple these graphs, using those items for which both information sources x and z are 
available. As in (1), a function )( xx wxf  is defined on the graph associated with feature-

vector x, and a separate function )( zz wzf  is defined on the graph associated with z. For 
those items for which information sources x and z are both available, we enforce the 
condition that it is statistically likely that )( xx wxf  and )( zz wzf  yield similar results 
(i.e., a statistical prior should be designed that favors that these two information sources 
yield a similar classification decision). Let the set SB represent those examples for which 
both information sources are available. As an extension of (2), we add the additional 
condition that the following should be minimized 

∑ ∑
∈ ∈

−=
B B

2
zzxxB )]()([

S S
wzwx

i j
ji ffC   (6) 

This yields a joint prior on the weights wx and wz, linked where both information types 
are available. Algorithmically, a new term is added to (3), accounting for (6). Similar to 
the terms in (3), the relative importance of the new term is controlled by a Lagrange 
multiplier Bλ , learned when training. In the machine-learning community utilization of 
multiple “views” of the same item (here multiple information sources) is termed “co-
training”. The above formalism yields Bayesian co-training, first developed at Duke 
under ONR 6.1 support. We will apply this technique to the asymmetric-warfare 
problems of interest, while also accounting for an arbitrary number of information 
sources (not only two information sources, x and z, discussed above for simplicity). 
 
III.1.5. A collaborative ATR framework 
 
Consider the scenario in which an object has been detected, and we wish to verify its 
class. To simplify the discussion, assume that two separate ATRs (that produce a 2-bit 
code) must be designed to work together to recognize two different classes denoted by 

xω and yω . For the purposes of discussion, we treat each ATR to be a MACH type 
correlation filter, and represent them as ( )lkH ,1 and ( )lkH ,2 , respectively. We require 
that if class xω is present, ( )lkH ,1  should produce a large positive output which is treated 
as a “1” if it exceeds a threshold T1. Similarly, ( )lkH ,2  should produce a large negative 
output which is treated as a “0” if it less than a threshold T2. Thus, the output code [1 0] 
should be obtained whenever xω is present. Conversely, if yω  is present, the filters are 
designed such that ( )lkH ,1  yields a large negative value while ( )lkH ,2  yields a large 
positive value, producing the output code [0 1].  Using these two ATR algorithms and 
their outputs, how may we optimize the sensors relative to the target? 
 
We seek a metric that characterizes performance as a function of viewing geometry, and 
then drive the configuration of the sensors to optimize the performance metric. Towards 
this end, we define a distance or separation metric based on the MACH filter algorithm 
(a similar function may be derived for essentially any ATR algorithm). Let ( )lkX i ,  
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represent the 2-D Fourier transforms of N training images of class xω , selected to 
represent viewing angles of the class 1 object around oθ . Similarly, ( )lkYi ,  are the 2-D 
Fourier transforms of N training images of class yω that represent viewing angles of the 

class 2 object around oα . The mean and spectral variance for each of the classes are 
defined as 

( ) ( ) ( ) ( ) ( )
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∑∑

=

αα

=

α

=

θθ

=

θ

−==

−==

N

i
yiy

N

i
iy

N

i
xix

N

i
ix

lkMlkYlkSlkY
N

lkM

lkMlkXlkSlkX
N

lkM

1

2

1

1

2

1

,,,                ,1,

,,,                ,1,
      

We first discuss the design of one of the filters, say ( )lkH ,1 ; the design of the second 
filter will follow the same paradigm. The expression for the first MACH filter that 
separates a oθ  view of class 1 from a oα view of class 2 is  
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In fact, it is easy to show that distance or separation produced by this filter as function of 
the angles α and θ is given by  
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We refer to this function as the MACH separation metric. Our strategy is to train the filter 
at the specific viewing angles of each class that maximize ( )αθ,Q . 
 
We assume that ATR-1 and ATR-2 are on separate platforms, each with its own sensor. 
To drive the relative position of the sensors in an optimum manner consistent with a 
MACH filter class separation metric, the platforms must move in the specific formation 

which maximizes Q. Under the hypothesis that the 
object belongs to Class-1, ATR-1 should yield a 
strong positive response (code bit 1) when the 
object is viewed from angle 1θ . Similarly, ATR-2 
should produce a strong negative response (code bit 
0) when the object is viewed from the angle 2θ . If 
the orientation of the object is known, both ATR-1 
and ATR-2 can move to the necessary positions and 
obtain images at the optimum angles. Otherwise, 
the two platforms should move around the object 
with a relative angular separation of 21 θ−θ , 
checking to see if a strong [1 0] code is obtained. 

Similarly, to verify the hypothesis that the object belongs to Class-2, the sensors should 
group into a new formation with a relative angular separation of 21 α−α  and move 
around the object to see if the code [0 1] is obtained. 
 

F ig u r e  2 :  T h e  s e n s o rs  c a n  f ly  to w a r d s  th e  o b je c t  a t  
o p t im u m  a n g le s  i f  i t s  o r ie n ta t io n  is  k n o w n .  O th e r w is e  th e  
s e n s o rs  m a y  s e a rc h  fo r  th e  c o r r e c t  2 - b it  c o d e  b y  f ly in g  
a r o u n d  th e  o b je c t  a t  a  r e la t iv e  a n g u la r  s e p a ra t io n  o f   o r  ,  
d e p e n d in g  o n  w h e th e r  i t  is  b e l ie v e d  to  b e lo n g  to  C la s s - 1  
o r  C la s s - 2 .

Figure 4. Adaptive optimization of the 
sensor position relative to a target, 
using collaborative ATR. 
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The collaborative ATR scenario is built upon local processing of each sensor, with the 
final outputs delivered to a central command console in the form of an ATR codeword.  It 
is envisioned that this type of collaborating ATR can offer a final classification decision, 
or offer the formal labeling of the clusters which make up DU. The framework will be 
implemented in a semi-supervised setting (see Sec. V.1.1), thereby accounting for limited 
labeled (training) data and large quantities of unlabeled data DU.  
  
III.1.6. Extension to video 
 
Feature optimization, information integration and sensor management have been 
discussed in the context of state-of-the-art kernel-based algorithms. For time-dependent 
data, e.g., video, it is desirable to extend these ideas to algorithms that explicitly exploit 
time-dependent phenomena. For such data we will therefore employ a hidden Markov 
model (HMM), with such widely employed for time-dependent data such as speech. The 
key new contribution to be pursued involves integrating the HMM within a semi-
supervised framework. Recall that the semi-supervised construct is motivated by the fact 
that in the asymmetric-warfare problem of interest, we are unlikely to have a large 
quantity of labeled data DL, while there is likely to be much unlabeled data DU. For 
example, in urban warfare, it is unlikely that there will be a large quantity of data DL 
consistent with suicide-bomber behavior. However, there is likely to be very large 
quantities of data consistent with general human behavior in an urban environment, this 
collected as a given environment is being monitored. The objective is to design an HMM 
classifier based on the small quantity of labeled data and the large quantity of unlabeled 
data. Moreover, the classifier should not characterize a given sequence in isolation, but 
rather should place that video in context, based on all other data available from a given 
environment. Traditional HMMs are purely supervised, in that they are trained 
exclusively on the labeled data DL. 
 
In the semi-supervised HMM, the unlabeled data DU is integrated with the labeled data 
DL via a modification of the traditional expectation-maximization (EM) algorithm. In 
particular, in the classical supervised EM training of an HMM, the hidden variables are 
the states S in which a given feature resides (recall that the HMM is characterized by a 
underlying hidden state sequence, modeled as a Markov process). In the semi-supervised 
HMM, we introduce a new hidden variable: the label y associated with a given unlabeled 
sequence (the label characterizes the different types of conditions characteristic of a given 
video sequence). Duke has demonstrated, in its 6.1 ONR research, that this relatively 
modest extension of the EM algorithm (introduction of a new hidden variable), allowing 
semi-supervised HMM training, yields markedly improved classification performance. 
 
In addition to developing the semi-supervised HMM to perform classification, we will 
utilize the HMM within the optimal design of experiments, to optimize the operation of 
video sensors. This will be performed as follows. Rather than making a Laplace 
approximation to the HMM parameters, as done in Sec. V.1.3 for the kernel machines, a 
variational approach will be employed to characterize the likelihood of HMM parameters 
given previously observed data. Once the posterior likelihood of HMM parameters is so 
computed, the selection of which video to acquire next proceeds analogous to the 
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procedure discussed in Sec. V.1.3. Specifically, we perform that measurement that most 
reduces the expected entropy in the HMM parameters. 
 
Some of the challenges to be pursued include coupling video data with other information 
sources (still images, waveforms and human intelligence). This will involve an 
integration of kernel-based classifiers and HMMs within a single paradigm. Toward this 
end, the statistical output of the kernel classifier, defined in Sec. V.1.1, will be coupled 
with the natural statistical output of the HMM.  
 
III.2 Results targeted 
 
The research is targeted primarily toward asymmetric warfare, urban warfare, and 
port/base security. In consultation with ONR, and utilizing the significant experimental 
resources of NAVAIR and LMM&FC, measurements will be performed to provide a data 
base for algorithm development and refinement. The data will be targeted toward 
situations of: (i) significant quantities of unlabeled data DU; (ii) small and possibly no 
labeled data DL; and (iii) multiple sensor modalities, including video. We will also utilize 
existing data from previous extensive collections performed by NAVAIR and LMM&FC. 
It is our goal to demonstrate the following targeted objectives: 
 

• Within an environment of limited labeled data and large quantities unlabeled data, 
from multiple information sources, extract the most informative data features, 
accounting for the classification task. We hope to demonstrate an autonomous 
pipeline from data to information, thereby significantly reducing burdens on the 
human analyst.   

• Semi-supervised detection of low-likelihood events, for which limited labeled 
training data may be available (e.g., suicide attackers at a port/base), exploiting 
multiple sensor modalities, including video.  

• Optimization of all information resources, using multiple sensor modalities as 
well as HUMINT. This will be demonstrated using graph-based semi-supervised 
algorithms, within the context of optimal experiments and collaborative ATR.  
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IV. Operational Utility 
 
This research program is a coordinated effort between NAVAIR, SIG and LMM&FC. In 
this section we discuss the operational utility of the entire program.  
 
A high-level concept of how the video and signal management module would integrate in 
the FORCEnet architecture is illustrated in Fig. 5. To integrate sensors, networks and 
decision aids with a client, all combatants within the theater of operation (as well as many 
non-combatants outside it) must be able to communicate with each other, receiving and 
transmitting updated information over a network backbone. The architecture as presently 
envisioned assumes an agent-based computing infrastructure. In fact FORCEnet is built 
on the concept of an agent-based computing infrastructure that will provide a dynamic, 
highly reconfigurable command-and-control system to contain large numbers of 
heterogeneous sensors and systems. The CoABS research community, a DARPA 
initiative, is developing a prototype agent grid as an infrastructure for the run-time 
integration of heterogeneous multi-agent and legacy systems. Since as advertised “The 
CoABS Grid is middleware that integrates heterogeneous agent-based systems, object-
based applications, and legacy systems”, they provide a software vehicle to transport 
algorithms to sensors (e.g., Java Script) and a foundation to wrap legacy systems. The 
notional model in Fig. 5 also assumes that some language like Extensible Markup 
Language (XML) or even the DARPA Agent Markup Language (DAML) that is being 
developed as an extension to XML  to process the  metadata tags will be available on the 

network. Thus, an agent’s 
output or service is 
implicitly available to (i) 
initiate a request for service 
from the archive or (ii) 
broker a catalog algorithm 
delivery to a client, but its 
final instantiation is not 
critical to this research.  
 
The signals or images will 
reside in a tiered 
architecture that will 
provide distributed 
surveillance in the air, sea 

and land domains. The sensor grid components will include unattended ground sensors 
(UGS), as well as sensors residing on lower-tier manned and unmanned aircraft, sea-
borne vessels and upper-tier assets. UGS are signal sources, while synthetic aperture 
radar (SAR), laser radars, sensor arrays, electro-optical and infrared cameras are image 
sources. An organic or distributed event monitoring capability based on local unusual 
sensor patterns, possibly using an agent service will initiate cueing messages.  
             
In terms of describing the operational utility of this work, let us consider operational 
situations ranging from the simplest and least stressing to the most challenging, in 

FORCENet Connectivity (networks, agents)

Sensor
Grid
IR, EO
SAR 
UGS

Video Management
Meta Based Retrieval 
Content Classification

Image
Analyst 
Workstation

Event
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Archive L  C
I   A
B  T
R  A
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Y  G
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Figure 5. Video signal management notional interconnection. 
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keeping with the crawl, walk, run and fly paradigm. The initial work will be geared to 
address the problem of the image analyst operating in the Marine Tactical Exploitation 
Group (TEG) or perhaps a sailor aboard a carrier utilizing the Tactical Exploitation 
System as part of DCGS, the Distributed Common Ground Station. The analyst is 
currently presented with a single stream of imagery to assess and determine possible 
target locations, and will be asked in the future to ingest and process multiple data 
streams from distributed heterogeneous sensors. Under this program we will automate the 
target-detection process within ATR algorithms, increasing the number of potential 
targets that can be passed through the targeting chain, reduce the operational workload of 
the image analyst, and increase available time for analysts to consider difficult imagery 
where the target detection algorithms will not provide the required performance. In this 
scenario, the advantage is clear, providing a suitable metric in terms of the number of 
detected targets, both by automatic systems and the analyst. From the assessment studies, 
the false-alarm rates of the system will be documented, but in the operational sense a 
“frustration” metric will need to be developed. If the false-alarm rate is too high, at some 
point analysts will refuse to use the system, as it generates too many false alarms 
resulting in increased analyst workload rather than lowering it, while if the false-alarm 
rate is too low, we risk lowering the probability of detection to the point that human 
analyst will consistently find more targets. The feedback from an image analyst can be 
used to drive development of labeled and unlabeled data sets to adapt the classifiers. 
 
Progressing to “walk”, the decision-making process moves forward from a central 
location to an airborne asset, such as the Hairy Buffalo, an experimental P-3 testbed. The 
P-3 houses an APY-6 radar system, imaging infra-red sensors, a multi-spectral push-
broom sensor, and plans exist to incorporate a Tactical Control System (TCS) for 
controlling a UAV. In this case, the targeteer aboard the Hairy Buffalo will need to be 
able to ingest multiple data streams, and detect targets in a computational and bandwidth 
constrained environment. The same metrics used for a centrally located ground based 
image analyst apply in this scenario. By moving the decision-making process further 
forward, reduced timelines from target detection to target prosecution will result. 
 
Having developed and assessed new multidimensional target detection approaches for 
networked sensors, the approach enables the progression to “run”. Under the FORCEnet 
concept, the battlefield will be populated by large numbers of heterogeneous sensors, 
both imaging and non-imaging, which will provide persistent surveillance of the 
battlespace. Unless technology advances to enable some measure of autonomy and 
cooperation among the sensor grid, image analysts and system operators will be 
overwhelmed by a virtual avalanche of digital data. Just one enhanced resolution color 
video system proposed by National Imagery and Mapping Agency (NIMA)  operating 
with 1280×720 pixels (progressive scan) at 60 frames/sec and 10-12 bit dynamic range 
will generate a raw stream of about 0.8 terabytes / hour.  The theory-of-optimal-
experiments approach will provide some measure of autonomy and cooperation, by 
attempting to make the best possible use of the global information available on the ESG – 
determining which data would be best to consider next to provide an optimal decision. 
Data availability will most likely be determined by use of an agent-based computing 
architecture, such as the one explored in the DARPA CoAbS program. Given the data 
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availability, the information-theoretic (design of experiments) approach will request data 
and possibly task other sensors to further process potential target detections. Only when a 
specified data quality assurance level has been achieved will an Event Cue as seen in Fig. 
5 be generated, reducing image analyst workload, reducing bandwidth demands, and 
maximizing information usage, providing the highest targeting throughput with minimal 
false alarms. 
 

V. Year 1 Results 
 

IV.1. Video Analytics 
 
The Program Manager, Dr. Shubha Kadambe, visited the SIG offices on August 11, 
2006, during which SIG presented a detailed set of results on several video data sets 
associated with complex scenes. The presentations and corresponding video were given 
to Dr. Kadambe on CD; we here concentrate on summarizing the technical approaches, 

since the video itself clearly cannot be 
shown. 
 
In Fig. 6 we summarize the overall video-
processing algorithm. Adaptive tracking of 
general moving objects is performed by 
developing a Gaussian mixture model 
(GMM) for each pixel in the scene. The 
GMM is continually updated, to adaptively 
learn the properties of the environment. 
When a pixel is deemed to be of low 
likelihood by the background model, it is 
characterized as foreground. Proximate 

foreground pixels are then aggregated (via simple foreground-pixel adjacency analysis). 
The motion of the foreground object is estimated, and in a Bayesian sense we predict the 
next shape and position information, this serving as a prior for the next frame. This 
component plays a critical role in tracking moving objects through occlusions, with this 
demonstrated on several complex video data sets. A hidden Markov model (HMM), 
which learns typical behavior, is used to help track the foreground objects. All of these 
components have been completed successfully in Year 1, for arbitrary video sequences. 
 
In Year 2 we will focus on the sensor-management agent, which will utilize 
reinforcement learning (RL) technology to learn a policy for the video camera(s). The RL 
algorithm will develop a real-time policy for control of the sensors. For example, if 
something anomalous is apparent, it may be desirable to zoom the camera, to obtain 
finer-resolution data. However, this is done at the cost of losing the ability to see the 
broader scene. Therefore, it may be desirable to augment the parameters of other 
available sensors (e.g., other cameras) to “cover” for the camera performing zooming. 
The cost-sensitive sensor-management agent develops a policy that maps sensor 
observations to optimal sensing actions, accounting for the cost of the action and the 
associated risk to the decision maker (Bayes risk). 
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Figure 6. Overall summary of video processing 
scheme. 
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As indicated in Fig. 6, one possible action may be to employ an analyst, and ask for a 
label for a given scene (with binary label benign or dangerous). There are two salutary 
aspects of such use of analysts. First, by focusing the analyst only on those aspects of the 
scene for which labels would be most informative to the algorithm, the analyst workload 
is reduced. Hence, by optimally integrating the analyst with the algorithm, overall system 
performance is improved while collectively allowing all video to be analyzed (by the 
algorithm and analyst). In addition, use of the analyst also allows the algorithm to 
continually learn, and therefore refine itself to new scenes or to changes in a given scene. 
Let Ij represent the image frame at time j, Aj the labels for all pixels at time j, t the current 
time step (frame) and assume n frames of labeled training data. Then the inference with 
regard to the image to be viewed at frame t, given all previous frames 1-tI

v
 and training 

data nA
v

 may be expressed rigorously as 
 
  
 
We now utilize the color (C), shape (S) and trajectory (T) information to constitute the 
representation 
 
 
 
 
 
 
 
Careful analysis of these equations reveals we need to 
compute and update three statistical quantities: 

),( 1-ttt CAIP , )µ,( 1-tt SAP  and )µ( 1-tTP . The first term 
),( 1-ttt CAIP  is a statistical mapping from current 

assignments (foreground/background) and previous pixel 
colors to future colors, with this modeled via a GMM. 
The term )µ,( 1-tt SAP  is a mapping from the previous 
shape information and associated position to new labels. 
Finally, )µ( 1-tTP  is essentially a tracker that estimates the 
location of the centroid of moving entities. This latter 
component is implemented via a simple Kalman filter, 
with future implementations utilizing a hidden Markov 
model (HMM). We present examples of each of these 
components, and their respective roles. 
 
Considering first ),( 1-ttt CAIP , implemented via the 
GMM, we present an example result in Fig. 7. In this 
figure the red locates regions that are likely to be 
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Figure 7. GMM extraction of 
foreground items from complex 
scene. 
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representative of background, given previous 
labels and colors. In this figure we note that the 
multiple moving objects (people) are accurately 
extracted from a complex scene. 
 
Concerning )µ,( 1-tt SAP , a stochastic model is 
maintained for the label of each pixel, with this 
tied to previous shape information and predicted 
new location µ . The key aspect of this framework 
is that it maintains through inference the shape of 
multiple moving entities, even when occlusions 
occur, with a frame from a representative example 
presented in Fig. 8. 
 
The final entity that must be statistically updated 
is )µ( 1-tTP , which is estimated using a Kalman 
filter to keep track of the centroid of moving 
entities. An example of estimated tracks in video 

is shown in Fig. 9. 
 
The results in Figs. 7-9, in addition to the large set of video examples given to Dr. 
Kadame, demonstrate that SIG has developed the tools to extract general moving entities 
from complex scenes. The algorithm extracts the moving entity, maintains an estimate of 
its shape, and can address multiple objects and associated 
occlusions. The next step, to be examined in detail in 
Year 2, is to develop statistical models of typical 
behavior (e.g., with an HMM), and to use such to detect 
anomalous behavior, of interest for asymmetric threats. 
As indicated in Fig. 6, the algorithm will be integrated 
within a sensor-management framework, with sensing 
policy learned adaptively via reinforcement learning. 
Note from Fig. 6 that a possible action of the algorithm is 
to ask an analyst for a label, thereby integrating the 
human into the adaptive algorithm learning, focusing the 
analyst on that data/video of greatest information for 
adaptive algorithm learning. 
 
In Year 1 we have implemented preliminary algorithms 
to perform anomaly detection. Specifically, we have the 
ability to track the location of each item over time, 
through occlusions if necessary. We can therefore place a 
time constraint on the time a given item may remain in a 
given location; if this time period is exceeded, than a 
loitering event is detected. In addition, by maintaining a history of the tracks observed 
over a prescribed period (see Fig. 9), we can constitute a density function for the 
likelihood that a moving entity should be observed subsequently in a given area. This 

Stochastic Shape Estimation Stochastic Shape Estimation

Original Image Object IDs w/ occlusion

Stochastic Shape Estimation Stochastic Shape Estimation

Original Image Object IDs w/ occlusion

Figure 8. Frame from video (top left), 
and estimated shape of two moving 
people (bottom two figures). At top-right 
is shown the estimated identities 
(different colors) of moving entities. 
Note that the shape of the occluded 
person is maintained, through inference. 

Original Image

Color Model Probabilities

Original Image

Color Model Probabilities

Figure 9. Tracked locations of 
three moving objects. 
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simple approach may be used to detect a 
moving entity in a location it shouldn’t be. 
These concepts have been implemented in an 
adaptive, automatic algorithm, poised for 
immediate testing. In Fig. 10 we show an 
example of this algorithm, where here one 
individual has loitered too long and the other 
individual is walking in an area in which 
nobody has entered previously. Note that the 
algorithm maintains a count of the number of 
moving entities observed at all times, as well 
as the number of entities that are inferred to be 
occluded. 
 
The algorithm has been carefully tested on a 
large set of video data, for variable numbers of 

types of moving entities, and for different background complexity. The performance 
appears to be quite promising. We note some of the algorithm strengths: (i) it employs a 
principled Bayesian framework, which is mathematically sound, with explicit 
assumptions and approximations, and it is capable of multiple hypotheses; (ii) the 
algorithm has proven to be robust, it being dynamic to changing environments, 
employing autonomous parameter calibration, and demonstrating a graceful failure mode 
and recovery; and (iii) it is powerful, since it incorporates strong color, spatial, and 
temporal dependencies, and it includes spatial and limited temporal information. The 
background removal relies on color information, naturally handling complex situations, 
e.g. occlusions, ambiguities, and it provides seamless expansion of additional evidence 
and models. 
 
IV.2. Polynomial Correlation Filters and Multi-Frame Processing 
 
Conventional correlation filters operate on a single image frame. PCFs are an extension 
where multiple image sources can be simultaneously and jointly filtered to produce a 
single correlation surface which is optimized with respect to all of the sources of data. 
We first provide an overview of the design of the multi-channel filter, and then illustrate 
its application and performance using multiple video image frames. 
 
The notation followed in this section is as follows: images in the space domain are 
denoted in lower case italics while upper case italics are used to represent the same in the 
frequency domain. Thus, a two dimensional (2D) image x(m,n) has Fourier transform 
X(k,l). Vectors are represented by lower case bold characters while matrices are denoted 
by upper case bold characters. Either x(m,n) or X(k,l) can be expressed as a column vector 
x by lexicographical scanning. The superscript T denoted the transpose operation, and + 

denotes the complex conjugate transpose of vectors and matrices. 
 
The output of the PCF can be mathematically expressed as  

Figure 10. Example video in which a 
loitering person is detected (blue) and an 
individual is located in a region not 
previously visited in data seen prior. 
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where ( )nmxi ,   is the image frame associated with the i-th channel, and ( )nmhi ,  is the 
corresponding filter. The N filters jointly optimize a performance metric associated with 
the final output ( )nmg x , . An example of the PCF structure is shown in Figure 10 where 
the different channels represent non-linear functions of data from a given source although 
in general no restrictions are placed on what the channels or the sources of the inputs to 

the filters may be. 
 
A sequence of video images of a van (the target) 
circling in a parking was collected using a 
COTS video webcam. A 64 x 128 region of 
each frame containing the target was extracted 
for training and testing purposes. Representative 
images from this set are shown in Figure 11. 
There were 512 frames collected covering 180 
degrees of the target ranging from the front end 

view to the rear end-view (shown in the figure). The frames were separated by 
approximately 0.35 degrees. 
 
Every other frame was chose as a training image for Channel 1. The input data for 
Channel 2 was arbitrarily selected to be the absolute difference between the channel 1 
image and the view that lagged it by 50 frames (approximately 17.5 degrees separation).  
The 2-channel PCF was synthesized using these training images and then tested with the 
rest of the (non-training) images. 
 
For testing purposes as well, the data input for Channel 2 was the absolute difference 
between the Channel 1 input image and a view that lagged it by 50 frames. For the 
purposes of comparison, the Channel 1 image was also processed by a conventional 
“single frame” maximum average correlation height (MACH) [1] filter synthesized using 
only the Channel 1 training images. The peak values were measured for both the 2-
channel PCF and the conventional MACH filter and are plotted in Figure 12, and the 
cross-sections of representative correlation surfaces are shown in Figure 13. 

 
Figure 11. Representative images of the target at different points in the video sequence. 

 
 
 

Figure 10. N-th Order Polynomial  
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In Fig. 12 the vertical axis represents the peak value 
measured in terms of peak to side-lobe ratio (PSR) 
and the horizontal axis is the test frame number. It 
is clear that the 2-Channel PCF performs better than 
the single channel MACH filter at almost every 
frame. In fact, there is considerable performance 
improvements at most places  with the exception of 
a few instances where the 2-look performance 
overlaps the single look result. We believe in these 
cases one of the channels had a poor contrast or 
illumination, resulting in the absence of extra 
information and thus the result was essentially the 
same as that for the single look case. Overall, the 2-
look PCF and the single channel MACH filter 

outputs are separated by a Fisher ratio of over 3.5. 
 
The cross-sections shown in Fig. 13 also show the advantages of two-look correlation 
filtering. Subjectively, the single look correlation result on the left is more noisy with 
larger side-lobes (false peaks) than the 2-look correlation result on the right. This 
accounts for the better PSR values and overall greater confidence in the correlation peak. 
 
We now describe the approach where multiple correlation surfaces used in a Bayesian 
decision process to estimate target probability using a model for the target’s motion. 
Correlation filtering is a popular approach for image-based automatic target recognition 
(ATR) due to several attractive properties.  Four such properties are: (1) correlation filters 
are inherently shift-invariant, which makes them useful for applications in which target 
position is unknown; (2) they can be designed to tolerate variability in the target 
signature, which could be caused by such phenomena as in-plane and out-of-plane 
rotation, scale changes, thermal state variations, and configuration changes; (3) they have 
closed-form solutions, making the design stage efficient and predictable; and (4) they can 
be applied efficiently in the frequency domain using the fast Fourier transform (FFT) 
algorithm.  Many advanced correlation filer designs are available which optimize certain 
criteria and/or focus on particular types 
of distortion. Also, while most designs 
assume linear filtering, non-linear 
designs such as quadratic and 
polynomial correlation filters are 
available.  Thus, the field of 
correlation filters offers a wide variety 
of options to the user, who can select 
the filter design best suited to the 
particular application at hand. 
 

Figure 12. Plot of the peak correlation 
output for the 2-channel PCF (green) 
and the conventional single frame
MACH filter (blue) 

Figure 13. Comparison of the cross-section of the 
correlation surfaces obtained using (left) single-frame 
MACH filter and (right) 2-channel PCF. 
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In a typical ATR application, each value in the output of a correlation filter is compared 
to a pre-determined threshold, and the locations of all such values exceeding the 
threshold, called “peaks”, may either be declared as target detections or fed into some 
sort of postprocessor (e.g., a tracker).  When the images are corrupted by high amounts of 
noise, false peaks can occur frequently and may either cause too high a false alarm rate or 
confuse the tracking algorithm (if one is used).  As an alternative to immediate 
thresholding in video-based ATR, we have developed a multiframe correlation filtering 
algorithm whereby correlation outputs are mapped to probability values and soft-
information processing is performed in the mapped output before thresholding.  A simple 
target motion model is employed by the algorithm to impose limitations on how targets 
may move in the scene; thus, noise-induced peaks which may have exceeded the 
threshold (and consequently mis-detected as targets in single-frame schemes) will not be 
classified as targets in the multiframe algorithm if they violate the assumed motion 
model. 
 
Several advantages are realized by using this probabilistic approach. First, the algorithm 
avoids the information loss incurred by early thresholding, utilizing instead all of the 
available information in the outputs in a probabilistic sense.  Second, the theory provides 
a means by which different correlation filters may communicate with one another, so that 
the likelihood of two conflicting detections at the same location is reduced.  Third, we 
can weave into the algorithm probabilistic models of the terrain to disallow targets from 
spontaneously appearing in certain places (e.g., the middle of an empty field), which may 
help to further mitigate false detections.  Most importantly, because the algorithm is not a 
substitute for existing correlation filter methods but rather an optional “attachment”, we 
are able to retain all of the above-mentioned advantages of correlation filters in the 
multiframe algorithm, while potentially improving the recognition performance.. 
 
Our original multiframe correlation filter algorithm has several limitations including: (1) 
the ability to handle multiple targets was hindered by an assumed normalization constant 
which stood in for theory that was yet undeveloped; (2) we had not yet developed the 
theory that would allow multiple correlation filters to communicate with each other; and 
(3) there was no provision for a spatially varying target occlusion model.  These 
problems have since been fixed by refining the underlying theory, resulting in a more 
robust algorithm. 
 
In this report, we summarize the current status of the multiframe algorithm, describing in 
detail several improvements that have been made to the algorithm since our visit to 
Lockheed Martin.  We point out some observations made during the visit that led to many 
of these improvements.  We discuss not only the current capabilities of the algorithm but 
also potential applications and possible extensions. 
 
Several limitations of the early version of the multiframe algorithm resulted from the 
method by which correlation values were mapped to probability values and subsequently 
combined with information from past frames.  The correlation output from each frame 
was first mapped to an array of probability values using a predetermined mapping.  Using 
the assumed motion model, a “prior probability” array corresponding to the next frame 



 
Signal Innovations Group, Inc 

25

was computed from the current array of probability values via a convolution.  In the next 
frame, the same mapping was used to generate another probability array, and this array 
was combined with the computed prior probability array via a pointwise multiplication to 
form a “posterior probability array”, or “enhanced array”.  During the creation of these 
probability arrays, it was assumed that the result of this pointwise multiplication should 
be normalized by a constant to yield true probability values.  Because of the high 
complexity of the expression for this normalization constant, we approximated it instead 
of computing it directly. 
 
As a consequence of the repeated multiplications and spatially invariant normalizations in 
the above algorithm, targets producing slightly stronger correlation responses tend to 
dominate and suppress those producing weaker responses after a long sequence of 
frames.  This phenomenon was noticed in several test sequences containing multiple 
targets.  Because of the resulting poor performance on these sequences, the normalization 
theory was revisited, and we discovered that the normalization actually should not be 
constant with respect to either position or time.  We derived new theory which includes an 
exact expression for the true normalization function. 
 
Upon examining this new theory, we further discovered that it was unnecessary to 
generate the intermediate probability array via the old mapping and subsequently 
combine it with the prior probability array.  Instead, the posterior probability array could 
be computed by feeding both the correlation output and the prior probability array into a 
single new mapping function.  The correct normalization is implicitly included in this 
new mapping function.  We have found that using the new mapping with implicit 
normalization results in much better handling of multiple targets, i.e., a strong response 
from one target does not adversely affect the response of other targets.  Preliminary 
results demonstrates the ability of the algorithm to handle multiple targets. 
 
Previously the multiframe algorithm only supported a single correlation filter.  Thus, if 
multiple filters were to be used in conjunction with the multiframe algorithm, each filter 
would need to be a separate “thread”, i.e., the multiframe algorithm would be applied to 
the video multiple times in parallel, once for each filter.  Such a scheme does not take 
advantage of the potential for communication between filters, where information from the 
output of one filter could be used in the calculating probabilities in the output of another 
filter.  For example, if filters A and B were each designed to look for different target 
classes, we ought to be able to impose the constraint that the two filters cannot 
simultaneously detect a target at the same location, and the probabilities computed from 
their outputs should reflect this constraint. 
 
The new mapping function described in the previous section is derived such that it 
simultaneously considers the outputs from as many filters as desired when computing 
each probability value.  It also considers the entire group of prior probability arrays 
generated by the filters in the previous frame rather than just one such array.  
Communication between filters is thus implicitly carried out by this mapping function.  
With the advancements in the mapping function described above, information is allowed 
to flow more extensively than before, as illustrated schematically in Fig. 14. 
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VI. Transition Opportunities and Leveraging 
 
The teaming of SIG with Lockheed Martin provides several teaming opportunities. 
Specifically, there are two key programs into which the ONR research may be 
transitioned: 
 
Future Combat Systems (FCS) 
 
Lockheed Martin is the prime contractor for Aided Target Recognition (AiTR) for FCS 
ground systems, for which the objective is to perform wide-area surveillance using FLIR 
and video sensors. The technologies developed under the ONR C2&CS program are 
directly relevant to FCS AiTR functions. The methods being developed here can be 
applied to detect and track moving vehicles and dismounts in surveillance imagery. 
Specifically, the algorithms may be included for evaluation in FCS Technology 
maturation activity. 
 
 
 

Filter 1 

Filter 2 

Frame i Frame i+1 

CORRELATION 
OUTPUTS 

POSTERIOR 
PROBABILITY 
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Figure 14.  Information flow between correlation outputs and probability arrays in the multiframe algorithm 
(two-filter example).  Thin black lines indicate flow in original algorithm, while thick red lines indicate 
additional flow achieved by improved mapping.  Previously, there was no flow between separate threads 
(e.g., Filter 1 and Filter 2).  After improvements to the theory, information from all previous prior probability 
arrays as well as all current correlation outputs is used to compute the posterior probability arrays.  The 
intermediate prior probability arrays are not shown in this diagram. 
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DARPA’s LACOSTE program 
 
Lockheed Martin is one of the contractors selected to develop the LACOSTE sensor for 
persistent surveillance applications. The objective is to detect and track moving objects in 
FLIR images over a “ultra” large area. Phase II of LACOSTE program will require 
algorithms such as those developed under the ONR C2&CS program to exploit 
LACOSTE imagery, and to automatically adapt sensor parameters. 
 
SIG will is also leveraging to programs: 
 
AFRL Phase II SBIR 
 
SIG has a Fast-Track Phase II SBIR directed toward multi-sensor base security. Integrian, 
a leading video-surveillance company, is an “investor” on this project, with this 
representing a drect transition opportunity to Integrian systems. Integrian is the contractor 
for video surveillance systems in New York City, Dallas, New Jersey, London, and 
Madrid, among many others. This also represents a significant opportunity for homeland 
security systems. 
 
Video-based IED detection 
 
SIG is applying similar techniques to those investigated here for the problem of video 
systems mounted on military vehicles, with this of significant importance for Marines 
(e.g., IEDs). SIG has just been issued a contract by NVESD to address this important 
problem. 
 
 
 
 
 
 
 
 
 
 
 
 
 


