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Scheduling and Sequence Reshuffle for Autonomous
Aerial Refueling of Multiple UAVs

Zhipu Jin, Tal Shima, and Corey J. Schumacher

Abstract— In this paper, we formulate the autonomous aerial
refueling of multiple unmanned aerial vehicles (UAVs) as a
scheduling problem. In order to find the optimal refueling
sequence of UAVs, an efficient dynamic programming algo-
rithm is introduced. When UAVs leave or join the queue,
the optimal sequence needs to be recalculated. A systematic
reshuffling method is developed such that the UAV sequence
can be reconfigured by using the least amount of shuffle steps,
where only one UAV changes its position in each step. By
introducing a metric over UAV sequences, this reconfiguration
effort is quantified and is treated as an additional cost which
is integrated into the dynamic programming algorithm.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are commonly used in
military and civilian applications. One of the limitations of
many current UAVs is the restriction in flight duration due to
the limited fuel capacity. Having autonomous aerial refueling
(AAR) capability will allow UAVs to remain airborne longer
and/or to take off with a larger payload. Some work has
already been done for modelling AAR docking maneuvers
of a single UAV [1]. In this paper, we address the AAR
problem as a scheduling problem in which a tanker needs to
refuel multiple UAVs.

Considering the limited waiting time, finding the optimal
refueling sequence for UAVs is similar to the scheduling
problem for a single machine with “non-resumable” opera-
tions [2]. The problem is NP-hard and resembles in some
aspects to the restricted traveling salesman problem with
time windows [3], [4] and to the vehicle routing problem
with time windows [5]. Many efficient algorithms have been
developed to solve these problems such as linear program-
ming, branch-and-bound, and genetic algorithm. We use the
dynamic programming method [6], [7] to develop an efficient
algorithm to find the optimal sequence. By using a prior
examination and feasibility tests during the execution, the
proposed algorithm reduces efficiently the search space in
cases where the constraints are active.

The optimal sequence needs to be recalculated whenever a
UAV joins the queue or leaves it unexpectedly. We omit the
dynamics of the UAVs and assume that the UAV sequence
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can be reconfigured by shuffling the UAVs’ location. We
quantify the effort of this reconfiguration and integrate it
into the dynamic programming algorithm. Thus, optimality
is achieved while considering the reconfiguration effort.

The remainder of this paper is organized as follows. In
section II, we formulate the scheduling problem for the
AAR of multiple UAVs and an efficient dynamic program-
ming algorithm is developed. We introduce a metric over
sequences in section III to quantify the similarities among
different UAV sequences. In section IV, three reshuffling
algorithms are proposed for transfering one sequence into
another. In section V, the relationship between the metric and
the number of shuffle steps is investigated and the effort of
reconfiguration is quantified as an additive cost. Conclusions
are offered in section VI.

II. AAR SCHEDULING PROBLEM OF MULTIPLE UAV S

In this section, we model the scheduling for the AAR of
multiple UAVs as a combinatorial optimization problem. A
tanker needs to provide refueling service for multiple UAVs.
Each UAV has different parameters such as the current fuel
level, refueling time, and the “Return-to-Field” priority. The
last parameter, designated possibly by a human operator,
indicates how important it is for the UAV to return for
duty. The tanker gathers this information from all UAVs,
decides the optimal refueling sequence, and sends the result
back to each UAV. The UAVs form an echelon formation,
as shown in Fig. 1, following the tanker according to the
optimal sequence. We assume that communication between
the tanker and the UAVs is ideal, i.e., perfect information
is sent between the tanker and UAVs without delays and
errors. Thus, the problem we need to solve is a centralized
optimization problem.

A. Problem Formulation

Suppose that there areN UAVs and each UAV is marked
by an index i. The index set isS = {1, · · · , N}. The
parameters of each UAV are:

• Maximum waiting timewi. This parameter indicates the
longest time that theith UAV can wait before refueling.
The value ofwi is changing w.r.t. time, i.e. it reduces
as time progresses. We assume thatwi > 0 ∀ i ∈ S
and thatwi is sent, by each UAV, with a time stamp to
enable synchronization.

• Refueling timeτi. This is the time that the tanker needs
to fill up the ith UAV. It includes the time of docking
maneuvers. In order to simplify the problem, we assume
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Fig. 1. Echelon formation of UAVs for AAR.

that τi is time-invariant and0 < τ ≤ τi ≤ τ for any
i ∈ S.

• “Return-to-Field” priority pi. This positive number is
assigned to theith UAV before it is sent for refueling.
The biggerpi is, the higher the UAV’s priority is.

• Refueling sequence numberk ∈ S. The tanker refuels
UAVs according to this number from1 to N .

For any refueling sequence, there exists a bijective func-
tion f(·) : S → S such thatk = f(i) for any UAV i. The
cost function for the AAR problem is defined as:

J =
N∑

i=1

(
pi ·

f(i)∑

k=1

τf−1(k)

)
, (1)

where
∑f(i)

k=1 τf−1(k) is the total time needed for refueling
the ith UAV and the UAVs before it in the queue. Suppose
the set of all possible bijective functions isF . The optimal
scheduling problem is finding the functionf(·) ∈ F to
minimize the cost functionJ . We can represent this as:

f(·) = arg min
f(·)∈F

J (2)

subject to:

wi ≥
f(i)−1∑

k=1

τf−1(k), ∀i ∈ S. (3)

Without the time constraints of inequations (3), there are
totally N ! elements inF . However, the timing constrains
may make some of them unfeasible. Thus, the optimal
scheduling problem is composed of two parts: (a) finding
feasible sequences, and then (b) obtaining the optimal one.
According to the formulation, the solution of equation (2)
is not unique. For example, if two UAVs have the same
parameters, then they can switch their position without
affecting the cost. In that case, we do not distinguish between
these solutions and just pick one heuristically, e.g., that with
the smallest index number.

For the sake of simplicity, we assume in this work that
there always exists at least one feasible solution. In an actual
implementation if a feasible solution will not exist than it will

be up to the human operator to decide which UAV can be
sacrificed, and then the proposed algorithm can be re-run.

B. Dynamic Programming Algorithm

In order to develop the search algorithm, a layered struc-
ture withN +2 layers of nodes is introduced in this subsec-
tion. Each layer is marked by an indexj ∈ {0, 1, · · · , N +1}
which corresponds to one stage in dynamic programming.
The nodes in each layer represent UAVs that may be refueled
at that stage. We useij ∈ S to indicate these nodes except
on the initial layer(j = 0) where there is only one virtual
starting nodei0 = 0 and on the final layer(j = N+1) which
only includes one sink nodeiN+1 = −1. The nodes set on
each layer is defined bySj ⊆ S. The scheduling problem is
to find an optimal pathπ(0,−1) from the starting node to the
sink node by connecting nodes on adjacent layers. For each
layer, only one node can be visited. Also, each node can be
visited only once. When the path is found, the functionf(·)
is determined.

For each layer, the node setSj is formed according to a
prior examination. For nodei ∈ S, if there exists a subset
K ⊆ S \ {i} and |K| = j − 1 such that

wi ≥
∑

n∈K

τn, (4)

theni ∈ Sj . |K| is the number of elements in the setK. This
prior examination is important when the time constraints are
tight.

Following are two lemmas that are easy to prove according
to the above definition of the layer structure.

Lemma 2.1:If there exists a feasible path in the layer
structure, then|Sj | ≥ N + 1− j for any j ∈ {1, 2, · · · , N}.

Lemma 2.2:For anyj ∈ {1, · · · , N − 1}, Sj+1 ⊆ Sj .
When we construct the layer structure, we determineSN

first, then findSN−1 by joining SN and examine the results
overS\SN , then findSN−2, and so forth. After constructing
the layer structure, we break the problem intoN stages and
define T (0,−1) as the cost of the optimal path from the
initial node to the sink node. TheN stages correspond to
the N layers, excluding the initial and final one.

Before the path reaches the sink node, it must reach a
nodeiN ∈ SN . Therefore,

T (0,−1) = min
iN∈SN

(
T

(
0, iN

)
+ d(iN ,−1)

)
(5)

whered(iN ,−1) is the cost fromiN to the sink node and
it equalspiN

τiN
. For any other stagej, given the sequence

{ij , · · · , iN}, we have the similar recursion equation:

T (0, ij) = min
ij−1∈Sj−1\{ij ,··· ,iN}

(
T (0, ij−1) + d(ij−1, ij)

)

(6)
where the costd(ij−1, ij) can be calculated by

d(ij−1, ij) = τij−1

N∑

n=j−1

pin . (7)

For the initial layer, the recursion is:

T (0, i1) = d(0, i1) (8)
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whered(0, i1) = 0.
At each stage, an additional feasibility test is needed. Let

Γ =
∑N

i=1 τi be the total refueling time for all UAVs. At
stage (j − 1), a feasibility test for nodeij−1 ∈ Sj−1 \
{ij , · · · , iN} is that if

wij−1 ≥ Γ−
N∑

n=j−1

τin , (9)

thenij−1 is feasible. If there is no node that passes this test,
we letT (0, ij) be big enough such that it cannot be selected
at the pervious stage. One reasonable value is:

T (0, ij) = N · Γ ·max(pi). (10)

Given {ij , · · · , iN}, the nodes on layer(j − 1) that pass
the test compose the feasible setΩj−1. When the algorithm
finishes searching, ifT (0,−1) ≥ N · Γ ·max(pi), it means
that there does not exist a feasible refueling sequence to meet
the timing constraints.

The computation complexity is sensitive to the timing
constraints. In the worst case, the timing constraints are
satisfied by any permutation ofS and the scheduling problem
is solved in timeO(N22N ) as discussed in [6]. The easiest
case is when there exists only one feasible sequence that
can meet the timing constraints. Then, as soon as the layer
structure is determined, the optimal sequence is found.

The dynamic programming algorithm described above
can be used to solve general AAR scheduling problems.
Moreover, according to the structure of the cost function
in equation (1), we have two rules that greatly reduce the
computation time.

Proposition 2.3:Suppose at stagej − 1, Ωj−1 is the fea-
sible set of layerj− 1 for the given sequence{ij , · · · , iN}.
For anym, n ∈ Ωj−1, if τm = τn andpm < pn, then

T (0,mj−1)+d(mj−1, ij) < T (0, nj−1)+d(nj−1, ij). (11)
Proposition 2.4:Suppose at stagej − 1, Ωj−1 is the fea-

sible set of layerj− 1 for the given sequence{ij , · · · , iN}.
For anym, n ∈ Ωj−1, if pm = pn andτm < τn, then

T (0,mj−1)+d(mj−1, ij) > T (0, nj−1)+d(nj−1, ij). (12)
According to these propositions in each recursive step,

starting from the end of the queue and moving forward,
we pick the node with the least priority from those feasible
nodes with the same refueling time, or pick the node with
the largest refueling time from those with the same priority.
These two propositions can reduce the complexity of the
scheduling problem.

Following is an example showing how the dynamic pro-
gramming algorithm works. Suppose there are4 UAVs
waiting for refuelling. Table I lists all the parameters of the
problem and Table II is the layer structure. The nodes in
each column compose the feasible node setSj . Those nodes
in bold form the optimal sequence. Node3 is the only one in
layer4, so it must be selected. Then at layer3, node1 and4
have the same refueling time. According to Proposition 2.3,
node1 is selected. After comparing the sequences{2, 4} and
{4, 2}, we obtain the optimal sequence as{4, 2, 1, 3} with
the cost of98.

TABLE I

PARAMETERS OFUAV S IN THE REFUELING SEQUENCE.

UVA index i 1 2 3 4

Max. waiting timewi 14 6 22 12
Refueling timeτi 5 6 4 5

Prioritiespi 2 1 2 3

TABLE II

LAYER STRUCTURE OF INITIAL SCHEDULING.

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

0 1 1 1 3 -1
2 2 3
3 3 4
4 4

III. S IMILARITY METRIC BETWEEN UAV SEQUENCES

For the AAR problem, the number of UAVs may change
from time to time. We assume that UAVs do not join or
leave the queue simultaneously and the interval between
any two arrivals or departures is long enough such that the
new echelon formation is already formed before the next
UAV joins or leaves. In this section, we focus on how to
rearrange the sequence when a new UAV joins. We assume
that, at first step, the new UAV is appended to the end of the
echelon formation. Then, after the new optimal sequence is
found, the formation is reconfigured accordingly. Intuitively,
the similar the new optimal sequence is to the old one, the
less reconfiguration is needed.

A metric is defined to quantify the similarity between
two sequences that have the same nodes. Suppose there is
a node setM which hasN nodes. A permutation group
is a sequence groupG whose elements are all permutation
sequences ofM . Any element x ∈ G is a sequence
with N nodes. For each nodeei ∈ M in the sequence
x = [e1, e2, · · · , eN ] there exists two adjacent nodes(el

i =
ei−1, e

r
i = ei+1). For the first nodee1 and the last node

eN , the adjacent node pairs are(el
1 = ∅, er

1 = e2) and
(el

N = eN−1, e
r
N = ∅), respectively, where∅ means

“None”. For any elementx ∈ G, the adjacent node pair of
nodeei is (x(ei)l, x(ei)r). For anyx1, x2 ∈ G, we assume
that the setk1 is composed of the nodes that have identical
neighbors; the setk2 is composed of the nodes that only
have the same left neighbors; the setk3 is composed of the
nodes that only have the same right neighbors; and the set
k4 is composed of the nodes that have different neighbors.
It is clear that|k1|+ |k2|+ |k3|+ |k4| = N .

For a permutation groupG and node setM , supposex1,
x2 ∈ G, a metricD(x1, x2) is defined as

D(x1, x2) =
N∑

i=1

E(ei) (13)
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whereei ∈ M and

E(ei) =





2, if x1(ei)l 6= x2(ei)l andx1(ei)r 6= x2(ei)r

1, if x1(ei)l 6= x2(ei)l andx1(ei)r = x2(ei)r

1, if x1(ei)l = x2(ei)l andx1(ei)r 6= x2(ei)r

0, otherwise
(14)

For example, supposeM = {1, 2, 3, 4, 5}, andG has5! =
120 elements. Letx1 = [1, 3, 4, 5, 2] andx2 = [3, 4, 5, 1, 2],
then D(x1, x2) = 5 since both neighbors of node1 are
changed, the left neighbors of3 and2 are changed and the
right neighbor of5 is changed.

Fig. 2 shows the distribution of the metricD for a
permutation group of seven nodes. We pick the sequence
[1, 2, 3, 4, 5, 6, 7] as the original sequence. The metric dis-
tanceD from this origin to all the other sequences inG is
calculated and theY axis represents the number of sequences
which have the same metric distances from the origin.
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Fig. 2. Distribution of metric

We will now discuss some of the general properties of
this metric. According to the definition,D(x1, x2) = 0 if
and only if x1 = x2. Also, D(x1, x2) = D(x2, x1). The
next lemma shows thatD satisfies the triangle inequality.

Lemma 3.1:For anyx1, x2, and x3 ∈ G, D(x1, x2) +
D(x2, x3) ≥ D(x1, x3)

Proof: Suppose that, forx1 and x2, there exist four
node sets ask1, k2, k3, andk4 that are defined before. So,

D(x1, x2) = |k2|+ |k3|+ 2|k4|. (15)

For x2 and x3, there exist the similar node sets ask̂1, k̂2,
k̂3, and k̂4. Thus,

D(x2, x3) = |k̂2|+ |k̂3|+ 2|k̂4|. (16)

Now suppose that the intersection ofk1 and k̂1 hasr nodes,
then betweenx1 andx3, there are at leastr nodes that have
identical neighbors. We rewritek1 and k̂1 as

{ |k1| = r + α

|k̂1| = r + β.
(17)

Note that theseα nodes must belong tôk2

⋃
k̂3

⋃
k̂4. Since

nodes ink̂2, k̂3, or k̂4 make different contributions toD, we
assume that there aren1 nodes inα that belong tôk2

⋃
k̂3

andn2 nodes that belong tôk4. Thus, we have

α = n1 + n2
D(x1, x2) = n1 + 2 · n2 + Ψ1.

(18)

For the same reasons, we have

β = m1 + m2
D(x2, x3) = m1 + 2 ·m2 + Ψ2.

(19)

For x1 andx3, we have

D(x1, x3) ≤ n1 + 2 · n2 + m1 + 2 ·m2 + Ψ1 + Ψ2

= D(x1, x2) +D(x2, x3).
(20)

Lemma 3.2:If x1, x2 ∈ G and x1 6= x2, then 4 ≤
D(x1, x2) ≤ 2N .

The previous lemma can be proved easily according to the
metric definition.

IV. T RANSFER BETWEENSEQUENCES

Transferring a sequence to another one, by using efficient
shuffle steps, is the main topic of this section. The answer
directly affects the echelon formation sequence reconfigu-
ration, whenever a UAV joins or unexpectedly leaves the
refueling queue. Due to the expected severe flight safety
requirements near the tanker we assume that the reshuffling
is performed for one UAV at a time.

The single-node shuffle is defined as:
Definition 4.1: A single-node shuffle for any element of

the sequencex in the permutation groupG, is transferring
one node from it’s position in the sequence to a different
one, while the ordering of the other nodes is unchanged.

For example, we have a sequence with five nodes as
x1 = [1, 2, 3, 4, 5]. Moving node4 to the position between
1 and 2 results with a new sequencex2 = [1, 4, 2, 3, 5].
Multiple single-node shuffle steps may be needed for a
sequence transformation. Thus, for anyx1, x2 ∈ G, an
efficient reshuffle algorithm generates a sequence of single-
node shuffle steps such that, by implementing these shuffle
steps,x1 can be transferred intox2.

A. Reshuffle algorithm one

Suppose the initial sequence isx1 = [a1, a2, · · · , aN ]
and the finial sequence isx2 = [b1, b2, · · · , bN ]. Reshuffle
algorithm one is:

• Let k=1 andx̂ = x1;
• From thekth node inx̂, from left to right, find the node

ai in x̂ such thatai = bk. If ak = bk, keep x̂ and
directly jump to the next step. Otherwise, implement a
single-node shuffle by movingai to the kth place and
generate a neŵx, then go to next step.

• Let k=k+1 and repeat the previous step untilk = N .

It is easy to show that, in the worst case, this algorithm
needsN − 1 single-node shuffle steps andN(N − 1)/2
comparisons to transferx1 into x2. The disadvantage of this
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algorithm is that it cannot guarantee to find the minimum
single-node shuffle steps for a sequence transformation. For
example, supposex1 = [1, 2, 3, 4, 5] andx2 = [2, 3, 4, 5, 1].
The algorithm needs four shuffle steps to transferx1 to x2.
Obviously, the minimum number of single-node shuffle step
is one by moving node1 to the right side of node5.

B. Reshuffle algorithm two

In order to find a better reshuffle algorithm, we introduce
the concept of subsequence. Forx1, x2 ∈ G, there exists
a subsequence partition such that each elementδ in this
partition is the largest non-empty subsequence in which the
nodes keep the same order forx1 and x2. For example,
supposex1 = [1, 2, 3, 4, 5] andx2 = [3, 4, 5, 1, 2]. It is easy
to see that{[1, 2], [3, 4, 5]} is the subsequence partition ofx1
andx2. By switching the position of these two subsequences,
x1 can be transferred intox2. We define a subsequence
shuffle as:

Definition 4.2: A subsequence shuffle of sequencex is
moving a subsequenceδ to a different location which is
composed by|δ| single-node shuffles. The node order inside
δ is not changed.

The subsequence shuffle is like shuffling a deck of cards
by moving multiple cards together. The single-node shuffle is
a specific case of the subsequence shuffle. Thus, a sequence
transformation can be treated into two levels: subsequence
level and node level.

For a sequence transformation, it is important to find the
subsequence partition. Similar to the single node, we define
the left subsequence neighbor of subsequenceδ in x asx(δ)l

and the right subsequence asx(δ)r. All the elements of the
partition can be put into three subsequence setsΛ1, Λ2, and
Λ3. Elements inΛ1 only have the same left subsequence
neighbors inx1 andx2. Elements inΛ2 only have the same
right subsequence neighbors. Elements inΛ3 do not have
any same subsequence neighbor inx1 andx2. Finding Λ1,
Λ2, andΛ3 can be done systematically. Suppose we already
havek1, k2, k3, andk4 which are defined in Section III. Let
us start from the nodes ofk1. Suppose nodea ∈ k1, then
subsequenceδ = [x1(a)l, e, x1(a)r] does not change its node
order in the transformation fromx1 to x2. If x1(e)l ∈ k1,
then δ extends by addingx1(e)l’s left neighbor on its left
side until this left neighbor is∅. If x1(e)l ∈ k3, then δ
cannot extend itself on the left side. The same extending
process can be done forx1(e)r. Eventually,δ is extended to
be the largest subsequence includinga. During this process,
the nodes used to formδ are eliminated fromk1, k2, andk3.
Whenk1 = ∅, we check any single-node subsequence ink2.
If a nodeb belongs tok2 and its left neighborx1(b)l 6= ∅,
thenx1(b)l must belong tok3 sincek1 = ∅. Thus,[x1(n)l, n]
is formed and belongs toΛ3. After the extending processes,
we can find all the elements ofΛ1, Λ2, andΛ3.

Lemma 4.3:|Λ1| ≤ 1 and |Λ2| ≤ 1.
Proof: The only possible element inΛ1 is the largest

subsequence that locates on the first position from left inx1
andx2. The same result holds forΛ2.

SupposeΛ1, Λ2, and Λ3 are subsequences sets for the
sequence transformation fromx1 to x2. Reshuffle algorithm
two is:

• Find the smallest subsequenceδ in Λ3 with the condi-
tion that no node inδ has not been moved before.

• According tox2, find the left subsequencex2(δ)l and
the right subsequencex2(δ)r;

• Implement a subsequence shuffle step such that

– If x2(δ)l ∈ Λ1 or if x2(δ)l /∈ Λ1 and |x2(δ)l| ≥
|x2(δ)r|, then putδ on the right side ofx2(δ)l to
form a new subsequence.

– If x2(δ)r ∈ Λ2 or if x2(δ)r /∈ Λ2 and |x2(δ)l| <
|x2(δ)r|, then putδ on the left side ofx2(δ)r to
form a new subsequence.

• UpdateΛ1, Λ2, andΛ3 according to these new subse-
quences.

• Repeat the previous steps untilΛ3 = ∅;
For reshuffle algorithm two, the most important part is

moving subsequences inΛ3 to generate longer subsequences
and to reduce the number of elements ofΛ3. Whenever one
subsequenceδ is moved, the number of elements ofΛ3 is
decreased at least by one. This algorithm can be executed in
polynomial time. However, it still cannot guarantee to find
the minimum number of single-node steps.

C. Reshuffle algorithm three

By using the principle of optimality, we develop the
reshuffle algorithm three to find the minimum number of
single-node steps.

SupposeΛ1, Λ2, andΛ3 are subsequences sets forx1 and
x2 where Λ3 has m elements. The minimum single-node
shuffle steps we need is represented byT (m). We have

T (m) = min
δi∈Λ3

(
min(T (m̂)l + |δi|, T (m̂)r + |δi|)

)
(21)

whereT (m̂)l is the minimum single-node shuffle steps we
need afterδi is moved to the right side of its left subsequence
neighbor, and the same forT (m̂)r. The subsequence setΛ3

needs to be updated at each recursive step. Letm̂ represent
the size ofΛ3 after updating. Sometimes, movingδi to the
right side of its left neighbor is also connecting it to its
right neighbor. In that case, these three subsequences are
formed into one larger subsequence and the elements number
of Λ3 is reduced by two. This recursive algorithm stops when
m̂ = 0.

By using reshuffle algorithm three,T (m) is guaranteed
to be the minimum number of single-node shuffles. The
computation time of this recursive algorithm depends onm,
i.e., how may elements exist inΛ3. In the worst case, the
results are found in timeO(m!).

D. Comparison

In order to verify the feasibility of these algorithms, we
tested them on permutation groups with different number
of nodes. The algorithms were coded in Matlab and run on
a desktop with a Xeon(TM) CPU at2.66 GHz and 1.00
GB of RAM. For each permutation group, we randomly
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picked one sequence as the initial one and calculated the
shuffle steps that transfer this initial sequence to all the other
sequences in the permutation group. Fig. 3 shows the average
number of shuffle steps for the three different algorithms.
Fig. 4 shows the average computation time for different algo-
rithms. According to the simulation results, algorithm three
guarantees the least amount of shuffle steps for a sequence
transformation, but it needs much more computation time to
find solutions than the other two algorithms.
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V. SEQUENCERECONFIGURATION FORAAR

We assume that the reconfiguration of the UAV echelon
formation is performed by shuffling the location of one UAV
at each time. This method can naturally ease the collision
avoidance issue. The cost of the reconfiguration is related
to how many shuffle steps are needed; but the shuffle steps
can be calculated by the algorithms of section IV only after
the new sequence is determined. This means that we cannot

directly consider the number of shuffle steps into the dynamic
programming algorithm of section II. However, it is intuitive
that the similar two sequences are, the less shuffle steps are
needed. The metricD defined in section III can represent this
similarity. The relationship between the metric distance and
the minimum number of shuffle steps is investigated next.

We pick the sequence[1, 2, 3, 4, 5, 6, 7] as the original
sequence for a permutation group of seven nodes and use
the algorithms from section IV. The average values and
standard deviation of single-node shuffle steps w.r.t. the
value of the metricD are shown in Fig. 5 and Fig. 6. It
is apparent that, on average, the bigger the metric distance
is, the more single-node shuffle steps are needed. This is
true for other permutation groups with different number of
nodes. Fig. 7 and Fig. 8 show the results of algorithm three
for different permutation groups. Since the metricD is an
additive function over the nodes, it can be easily integrated
into the dynamic programming algorithm. Thus, we choose
the metricD to indicate the cost of the reconfiguration.
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Fig. 5. Mean values of shuffle steps w.r.t. metric

Suppose the initial refueling sequence is[i1, · · · , iN ]. For
each nodeij , the two adjacent nodes are(ilj = ij−1, i

r
j =

ij+1). When a new UAV joins the queue, we assume that
a new nodeiN+1 is appended to the end of the queue
and πo = [i1, · · · , iN , iN+1]. The new optimal sequence
is indicated byπn. We redefine the total cost function for
refueling scheduling as:

J = K1

∑N+1
i=1

(
pi ·

∑fn(i)
k=1 τf−1

n (k)

)
+ K2D(πo, πn)

= K1

∑N+1
i=1

(
pi ·

∑fn(i)
k=1 τf−1

n (k)

)
+ K2

∑N+1
j=1 E(ij)

(22)
where fn(·) is the new scheduling mapping function, the
second term represents the metric distance, and(K1,K2) are
the weight coefficients. Also, there areN+1 time constraints
listed below:

wi ≥
fn(i)−1∑

k=1

τf−1
n (k), ∀i ∈ {1, · · · , N + 1}. (23)
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Fig. 6. Standard deviation of shuffle steps w.r.t. metric
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Fig. 8. Standard deviation of shuffle steps for different permutation
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The additive property of the new cost function makes the
dynamic programming algorithm in section II still effective.
The costd(ij−1, ij) in each recursive step is calculated by

d(ij−1, ij) = K1 · τij−1 ·
N∑

n=j−1

pin + K2 · E(ij) (24)

andd(0, i1) = K2 · E(i1).

VI. CONCLUSIONS

In this paper, a dynamic programming algorithm was
developed for the AAR scheduling problem. In this problem
one tanker needs to refuel multiple UAVs flying in an echelon
formation. The optimal sequence is based on the UAVs
parameters, including timing constraints. When refueling
time constraints are tight, a prior examination and feasibility
tests in each recursive step are necessary to reduce the search
space and thus make the search more efficient.

When a UAV joins, or leaves unexpectedly, the queue, the
optimal sequence needs to be recalculated. We introduced a
metric to indicate how similar the new sequence is to the old
one and chose it as the reconfiguration cost. The additive
property of the metric makes it possible to add it to the
dynamic programming algorithm as an additional cost term.
It was shown, for several group sizes, that there exists a good
correspondence between this metric and the number of single
shuffle steps needed for the reconfiguration.

Efficient algorithms for the reshuffling have also been
proposed, including a computationally intensive one that
provides the minimum number of shuffle steps.
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