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Summary & Outline 
This report summarizes the work and results obtained under contract FA8655-03-1-3039, 
titled “Ultracold Atoms in Optical Lattices”. The research focused on trapping ultracold 
neutral atoms in artificial periodic potentials made out of light – so called optical lattices. 
Such ultracold atoms in optical lattices form a completely novel and highly promising 
research field and find e.g. diverse applications as simulators for complex quantum many 
body systems, as e.g. initially conceived by Richard P. Feynman [1, 2]. Connected to this, 
they also show promising applications for quantum information processing. For example, 
by employing the superfluid to Mott insulator transition [3-5], a large quantum register of 
up to 100000 atoms can be initialized, where single atoms are located at each lattice site. 
Work in this contract has been directed towards analyzing the fidelity of such quantum 
registers and towards the realization of massively parallel quantum gates based on 
ultracold collisions between the atoms [6]. Novel entanglement techniques for ultracold 
atoms have also been developed that are based on spin changing collisions and could 
enable the generation of large scale & robust entanglement, with low decoherence rates. In 
recent years it has become clear that such a large scale entanglement can be seen as a 
fundamental resource for quantum computations [7, 8], so that generating and 
characterizing, as well as testing the robustness of such entanglement, is of fundamental 
importance in this respect.  
 
During the contract period our research group relocated from the Ludwig-Maximilians-
University in Munich to the Johannes Gutenberg-University in Mainz, Germany (close to 
Frankfurt) and the experiments had to be setup again in completely new laboratories. 
Although a delay in setting up the experiments again had to expected, the group completed 
the reconstructions in a very fast period, such that almost no decrease in the research and 
publication activities could be noticed during this period.  
The following pages summarize the research results obtained during the grant period and 
conclude with some novel results obtained in the last funding quarter, as well as with an 
outlook for future perspectives in this novel research field.  
 
Research topics & results covered during this grant 
 

• Realization of Neutral Atom Quantum Gates 
• Realization of Novel Many Body Quantum States – the Tonks-Girardeau Gas 
• Controlled Molecule Formation in Optical Lattices – Quantum Chemistry at the 

Quantum Limit 
• Realization of Quantum Noise Correlation Techniques for Detecting and 

Characterizing Many.Body Quantum States in Optical Lattices 
• Realization of Coherent Spin Changing Collisions for the Production of Entangled 

States 
• Characterization of the Number Squeezing Fidelity of a Mott Insulator Neutral 

Atom Quantum Register 
• Towards Single QuBit Manipulations – Mott insulators in excited states 
 

The publications (among them 3 in Nature and 6 in Physical Review Letters) that were 
obtained during the funding period are summarized at the end of this report and reprints of 
selected publications have been attached to this file. 
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Research results 

Quantum gate arrays with neutral atoms in optical lattices 
By using ultracold atoms in a Mott insulating phase of an optical lattice we have been able 
to initialize a large register of quantum bits (qubits). In order to perform quantum gates 
within such a quantum memory, it is however necessary to induce interactions between 
neighboring atoms in a controlled way. For this we have realized a quantum conveyer belt, 
which has allowed us to transport single atoms over a controlled number of lattice sites 
depending on their internal state (see Figure 1).  
 
The quantum conveyer belt has been realized by using an optical standing wave 
configuration, in which the polarization of the laser beams was controlled via electro-
optical modulators. By rotating the polarization of one of the counter-propagating laser 
beams, the atoms can be moved over a defined number of lattice sites. In the experiment a 
coherent transport of the atoms over a distance of up to 7 lattice sites has been 
demonstrated [Mandel03a].  
 

 
Figure 1 (i) Schematic sequence used for the quantum conveyer belt. A single atom on lattice site j 
can be transported over an arbitrary number of lattice sites depending on its spin state (marked as 
blue and red curves). (ii) This has allowed us to split the wave function of the atom in a coherent 
way, such that a single atom simultaneously moves to the left and to the right. The coherence of the 
split wave-packets has been demonstrated in an interference experiment. For larger distances 
between the split wave-functions, the period of the interference pattern decreases.  
 
In one of our latest experiments we have used such a quantum conveyer belt together with 
coherent collisional interactions between the atoms in order to realize a massively parallel 
quantum gate array. Starting point for the experiment is again a Mott insulating state, with 
single atoms on each lattice site. The atoms are first prepared in logic state 0  and then 

coherent microwave radiation is used to place them in a superposition of the two quantum 
logic states 0  and 1 . Now the quantum conveyer belt is activated, such that an atom in 

state 1  ( 0 ) is moved to the neighboring lattice site to the left (right). There the atom 

interacts with the neighboring atom through coherent collisions and the quantum many 
body wave-function acquires a phase shift ϕ. This collisional phase shift can be completely 
controlled through the hold time of the atoms at a common lattice site (see Figure 2a). After 
such a coherent interaction the atoms are returned to their original lattice site. 
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Figure 2 (a) Schematic sequence of the collisional quantum gate array. Neighboring atoms are 
brought into controlled contact and interact with each other through a coherent collisional 
interaction. This controlled collision is spin dependent and realizes a massively parallel quantum 
gate array. (b) When the quantum gate array is applied to the atoms in the lattice, the systems 
undergoes entanglement oscillations that are visible in the contrast of a Ramsey type experiment 
[Mandel03b]. 
 
The action of such a massively parallel quantum gate array leads to highly entangled multi-
particle states, so called “cluster states” [Mandel03b]. Such cluster states have been shown 
to be highly useful for a novel type of quantum computer, which has been devised by Dr. 
Hans Briegel at the University of Munich. In such a “one-way” quantum computer, the 
initial cluster state acts as a resource for the computation power of the quantum computer 
and an arbitrary algorithm can be implemented on such an entangled cluster through single 
particle operations only. In future research we would like to create such cluster states in 
two-dimensions and learn how to characterize the massive entanglement present in such a 
cluster. Furthermore, if we will be able to address single atoms in the cluster one could test 
the unique model of the proposed quantum computer. The main advantage of the lattice 
system lies in the natural large size of the system, which is so far unrivalled by any other 
physical system. Also the neutral atoms are very well decoupled from the environment 
such that decoherence is minimized.  
 
Realization of a new low-dimensional quantum phase - the “Tonks-
Girardeau” gas 
 
In another line of research, we have been interested in using ultracold quantum gases in 
optical lattices as model systems for challenging quantum phases of condensed matter 
physics. Here the strongly correlated quantum states, where the interactions between the 
particles dominate the behaviour of the quantum system, pose great challenges to 
experiment and theory. The Tonks-Girardeau gas, proposed about 40 years ago [9], is 
especially remarkable in this respect. In such a gas the intriguing properties of low-
dimensional Bose-systems combine with those of a strongly correlated state yielding an 
astonishing quantum behaviour [10, 11]. One of the most profound aspects of this quantum 
behaviour is the fact that bosonic particles acquire fermionic properties. We have been able 
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to prepare such a Tonks-Girardeau gas in an optical lattice and with the help of colleagues 
from theoretical physics identify this novel quantum phase. An array of 1D bosonic 
quantum gases has first been prepared in a two-dimensional optical lattice potential. The 
addition of a third lattice along the long axis of the quantum gases has allowed us to enter 
the Tonks-Girardeau regime by increasing the effective mass and thereby enhancing the 
role of interactions. We have measured the momentum distribution and compared it with 
the theoretical prediction based on a fermionization approach, observing a remarkable 
agreement. The work has been published in Nature [Widera04b]. 
 

Fully controlled molecule formation – chemical reaction at the 
quantum limit 
Two atoms placed in the ground state of a single lattice site form an ideal starting point for 
molecule formation. In one of the most recent experiments, we have been able to show that 
two such ground state atoms can be coherently coupled to a molecular state using an 
optical two-photon transition. The fascinating new aspect hereby has been that we have not 
only been able to control the internal state in which the molecule is formed, but also its 
motional quantum state can be fully addressed (see Figure 3 and Figure 4) [Rom04a]. This 
forms a chemical reaction in which all quantum degrees of freedom of the molecule are 
now under the complete control. If such a unique control can be extended to more complex 
objects, one could envisage building molecules one-by-one and completely controlling the 
quantum states in this formation process.  
 

 
 

Figure 3 (a) Using a two-photon process, one can convert two free atoms into a molecule in a 
defined ro-vibrational quantum state. (b) Moreover, with atoms in an optical lattice, one can also 
control the external quantum degree of freedom in the molecule formation process. Thereby all 
quantum degrees of freedom of the molecule are under the complete control of the experimentalist 
and an ultimate chemical reaction at the quantum limit has been realized.  
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The coupling of two atomic atoms to a molecular state, however, also has relevance to 
quantum information processing. With such a coherent coupling it should in fact be 
possible to alter the collisional properties of the atoms, similar to how this is done with 
Feshbach resonances. This would then allow us to significantly speed up the collisional 
quantum gates.  
  
 

 
 
Figure 4 (a,b) Experimental results demonstrating that we are able to address the internal and 
motional quantum degree of freedom of the molecules. The highest resonance frequency 
corresponds to molecules formed in the motional ground state, whereas the sidebands at lower 
frequency correspond to excited motional quantum states.  

Spatial quantum noise interferometry in expanding Ultracold 
atom clouds  
For now almost 9 years, absorption imaging of released ultracold quantum gases has been 
a standard detection method for revealing information on the macroscopic quantum state of 
the atoms in the trapping potential. For strongly correlated quantum states in optical 
lattices, however, the average signal in the momentum distribution that one usually 
observes, e.g. for a Mott insulating state of matter, is a featureless Gaussian wave packet. 
From this Gaussian wave packet one cannot deduce anything about the strongly correlated 
quantum states in the lattice potential apart from the fact that phase coherence has been lost. 
Recently, however, the widespread interest in strongly correlated quantum gases in optical 
lattices, has lead to the prediction of fascinating new quantum phases for ultracold atoms, 
e.g. with anti-ferromagnetic structure, spin waves or charge density waves. So far it has not 
been clear how one could detect those states. Recently a theoretical proposal by Altman et 
al. [12] (Harvard University) has shown that noise correlation interferometry could be a 
powerful tool to directly visualize such quantum states. Based on first successful 
experiments in our group in Mainz, where we have indeed observed such noise correlations, 
we are planning to explore the full potential of this powerful method for ultracold atoms in 
optical lattices. In spin-mixtures of 87Rb, we plan to engineer antiferromagnetic phases and 
spin waves that will be directly detected with this method. Noise correlation in expanding 
ultracold atom clouds can in fact be seen as a powerful way to read out the quantum states 
of an optical lattice based quantum simulator. 
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So far the detection of interesting quantum states in optical lattices has mostly relied on 
absorption imaging of expanding gas clouds. While in the regime of a Bose-Einstein 
condensate with long range phase coherence, one observes a matter wave interference 
pattern, the absorption images in a Mott insulator state however do not reveal much 
structure as the average signal is just an expanding Gaussian wave packet (from the 
localized wave packets on each lattice site).  In fact, nothing can be learnt from the average 
signal regarding the strongly correlated quantum state apart from that phase coherence is 
absent. Recently, however, Altman et al. have proposed to use noise correlations in 
expanding atom clouds as a novel detection scheme for strongly correlated quantum 
systems in optical lattices. The basic effect relies on fundamental Hanbury Brown-Twiss 
correlations in the fluctuation signal of an atomic cloud. For bosons e.g. a bunching effect 
of the fluctuations is predicted to occur at special momenta of the expanding cloud, which 
directly reflect the ordering of the atoms in the lattice.  
 
 
 

 

  
 
Figure 5 Hanbury Brown-Twiss correalations in expanding quantum gases from an optical lattice. 
For Bosonic particles that are detected at distances r (e.g. on a CCD camera), an enhanced 
detection probability exists due to the two indistinguishable paths the particles can take to the 
detector. This leads to enhanced fluctuations at special detection distances r, depending on the 
ordering of the atoms in the lattice. Detection of the noise correlation can therefore yield novel 
information on the quantum phases in an optical lattice. 

 
In a recent experiment, we have been able to observe first signals on such Hanbury Brown-
Twiss correlations in the quantum noise of an expanding atom cloud from a Mott 
insulating state of matter (see Figure 6). The weak correlation signal on a level of only 10-4 
level has been detected proving this to be a powerful and versatile way for detecting novel 
quantum phase in optical lattice. Further quantitative analysis of the correlation signals has 
so far been hindered by the low performance CCD imaging systems that we are using. A 
major funding request in this proposal is therefore dedicated towards a sophisticated CCD 
camera system that would allow us to establish noise correlation interferometry as a 
powerful and very quantitative new detection method for ultracold atoms. 
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Figure 6 Single shot absorption image including quantum fluctuations and associated 
spatial correlation function. a 2D Column density distribution of a Mott insulating atomic 
cloud containing 6x105 atoms, released from a 3D optical lattice potential  with a lattice 
depth of 50 Er. The white bars indicate the reciprocal lattice scale l defined in eq. (2). b 
Horizontal cut (black line) through the centre of the image in a and Gaussian fit (red line) 
to the average over 43 independent images each one similar to a. c Spatial noise correlation 
function obtained by analyzing the same set of images, which shows a regular pattern 
revealing the lattice order of the particles in the trap. d Horizontal profile through centre of 
pattern, containing the peaks separated by integer multiples of l. The width of the 
individual peaks is determined by the optical resolution of our imaging system. (from S. 
Fölling et al. [Fölling05a]) 

Creation and Detection of Spinwave and Antiferromagnetic phases in 
Spin Mixtures 

Some of the most interesting and intriguing phases that can be detected with noise 
correlation interferometry are antiferromagnetic phases and spin waves in optical lattices. 
We plan to create such spin-waves and antiferromagnetic states by employing the spin-
dependent transport and controlled collisions that were first demonstrated in our group [13, 
14] and initially proposed by [6, 15, 16]. In ref. [16] it was in fact explicitly suggested to 
employ the controlled collisions, which essentially allow for a controllable Ising 
interaction, to create spin waves and spin excitations in lattice systems. For some time now 
it has however not been clear how such states could be detected in the experiments. 
However, the novel idea of detecting noise correlations opens a whole new path for 
detecting many quantum states, including spin waves in optical lattice potentials. We plan 
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to use our knowledge on the spin-dependent transport [13] and on controlled collisions [14] 
to excite spin-waves by a repeated application of the collisional operation in a 3D lattice. 
Furthermore our first results on the noise-correlation interferometry show that such states 
can indeed be detected (see Figure 7).  
 

 
 
Figure 7 Different strongly correlated many body quantum states (a) Mott insulator, (b) Anti-
Ferromagnet and (c) Spin wave with quasimomentum q lead to unique correlation signals, when a 
spin dependent detection is employed. The graphs on the right hand side schematically display the 
expected HBT correlation signals in the noise of the expanding atom clouds. 
 

Visibility of the Interference Pattern of a Mott Insulator – Fidelity 
of a Neutral Atom Quantum Gate Register 
 

A fundamental aspect of ultracold bosonic gases is their phase coherence. The existence of 
long-range phase coherence, inherent to the description of a Bose-Einstein condensate in 
terms of a coherent matter wave, was experimentally demonstrated in interferometric [17, 
18]or spectroscopic [19] experiments. More recently, attention has been paid to 
fundamental mechanisms that may degrade or even destroy long-range coherence, for 
example thermal phase fluctuations in elongated condensates [10, 20], or the superfluid to 
Mott insulator (MI) transition undergone in optical lattices [3-5]. 

For a Bose-Einstein condensate released from an optical lattice, the density distribution 
after expansion shows a sharp interference pattern. In a perfect Mott Insulator, where 
atomic interactions pin the density to precisely an integer number of atoms per site, phase 
coherence is completely lost and no interference pattern is expected. The transition 
between these two limiting cases happens continuously as the lattice depth is increased. In 
the superfluid phase, a partial loss of long range coherence due to an increased quantum 
depletion has been observed for lattice depths below the MI transition [21-23]. Conversely, 
in the insulating phase, numerical simulations [24, 25] predict a residual interference, 
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although long-range coherence and superfluidity have vanished.  We observe that the 
interference pattern persists in the MI phase, and that its visibility decays rather slowly 
with increasing lattice depth. We explain this behavior as a manifestation of short-range 
coherence in the insulating phase, fundamentally due to a coherent admixture of 
particle/hole pairs to the ground state for large but finite lattice depths. 

†
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 In addition, we also observe reproducible “kinks” in the visibility at well-defined lattice 
depths. We interpret them as signature of density redistribution in the shell structure of a 
MI in an inhomogeneous potential, when regions with larger-than-unity filling form.  

 
Figure 8 A Mott insulating ground state at finite lattice depths, always possesses particle-hole 
excitations, even at zero temperatures. Such particle hole excitations are detrimental for quantum 
information purposes. For deep lattices they can however be compressed, to become negligible. In 
this work, we have shown, how the time-of-flight interference pattern of atoms released from the 
lattice potential can be used to identifiy and characterize such particle-hole defects [26]. 
 

The experimental results furthermore show that particle-hole excitations can be sufficiently 
suppressed for deep lattices, which is important for quantum information applications. In 
general it is crucial to keep track of the particle-hole pairs, when characterizing the fidelity 
of the Mott insulating state as a quantum register. Our results show that the visibility of the 
interference pattern together with other novel measurement and characterization techniques 
provide this possibility. 

Coherent Spin Changing Collisions with Neutral Atoms in Optical 
Lattices 
 
In a collisional event between two atoms in the vibrational ground state of each lattice site 
the spin of the individual atoms (m1,m2) during the collisional process can be changed into 
(m3,m4) (see Figure 9). This occurs due to an interference in the different scattering 
channels present in the hyperfine manifold of an Alkali atom and forms the basis for spinor 
dynamics in BEC systems [27, 28].  
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Figure 9 Two-atoms in the vibrational ground state of a single lattice site can undergo a spin 
changing collisions, in which the spin state of the individual atoms is changed, however, the total 
magnetization is conserved. Such coherent spin changing collisions can be described as coherent 
coupling between the initial and final state, leading to Rabi-type oscillations between the two two-
particle states. 
 
 

Here, however, both atoms occupy only a single ground state wave function and the spatial 
motion of the atom is frozen out and cannot give rise to decoherence. This has allowed us 
to observe high contrast Rabi-Oscillations between two-particle states of equal 
magnetization. An atom pair on a single lattice site with magnetic quantum number 

1 20, 0m m= =  was shown to be coherently coupled to the triplet spin pair 

1 21, 1m m= + = − , a Bell state on each lattice site [29]. Such type of Bell states have been 

shown to possess very long lived coherence times [30], making them very suitable for the 
generation of robust multi-particle entanglement. We plan to investigate the fundamental 
process for atoms in the F=1 hyperfine manifold of 87Rb, for which no loss process due to 
hyperfine changing collisions exists. Recently we have demonstrated high contrast Rabi 
floppings between the two-particle states 

( )0, 0 1/ 2 1, 1 1, 1F F F F F Fm m m m m m= = ↔ = + = − + = − = + , purely induced by 

spin-changing collision processes. Already in first experiments a high visibility of these 
coherent spin changing collisions, close to 80% was observed, demonstrating the coherent 
nature of the coupling process and the low decoherence processes present. 
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Figure 10 Coherent collisional spin dynamics. The blue datapoints display the fraction of total 
atoms in spin state 0,0  and the hollow red datapoints display the fraction of total atoms in a Bell 

state 1, 1+ − . The process has been shifted into resonance by using a “AC-Zeeman” effect, which 
allows a control of the two-body process through highly controllable microwave fields alone [31].  
 
 
One drawback of such Bell pairs on each lattice is that individual atoms cannot be 
addressed separately. A next goal will be to convert such Bell pairs into addressable Bell 
pairs, useful for quantum information.  

 

Measurement of the Atom Number Statistics in the SF-MI 
transition using Coherent Spin-Changing Collisions 
 
One of the most fundamental signatures of the Mott insulator transition undergone by 
ultracold atomic gases in optical lattices [3-5] is a drastic change in atom number statistics. 
In a very shallow lattice, ultracold bosons tend to form a Bose-Einstein condensate. In this 
case, a measurement of the probability for finding n atoms at a given lattice site would 
reveal a characteristic Poisson distribution with large on-site fluctuations. However, for 
deeper and deeper lattices, the influence of repulsive interactions, which disfavor such 
fluctuations, becomes increasingly dominant. This results in the emergence of number-
squeezed states with a sub-Poissonian atom number distribution [21]. Above a critical 
lattice depth, the ultracold gas enters the MI regime, where the number fluctuations are 
increasingly suppressed. In experiments so far, number-squeezed states due to strong 
correlations were detected through the observation of increased phase fluctuations - the 
canonically conjugate variable to number fluctuations [4, 21], or of an increased timescale 
for phase diffusion in a collapse-and-revival experiment [32].  
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Figure 11 Illustration of the number statistics measurement. Spin changing collisions turn atom 
pairs initially in the Zeeman substate m = 0 (blue) to pairs in m = ±1 states (red and grey). For one 
atom per site on average, whether this occurs depends drastically on the many-body correlations. 
For a MI state (a), only isolated atoms are found and no m = ±1 pairs are created. On the contrary, 
for a Bose-Einstein condensate (b), large on-site fluctuations create a finite number of sites with 2 
or 3 atoms, where ±1 pairs can be created. 
 
 
 
In a very recent experiment (see [33]), we have directly observed the continuous 
suppression of number fluctuations when the ultracold sample evolves from the superfluid 
(SF) regime to deep in the Mott insulator (MI) regime. The idea behind our measurement is 
illustrated in Figure 11. After producing an ultracold gas in an optical lattice, we suddenly 
increase the lattice intensity, suppressing tunneling and freezing the number distribution. A 
probe sensitive only to the presence of atom pairs at a given lattice site is finally applied. 
Close to unity filling, a non-zero probe signal is obtained only if initially large on-site 
fluctuations produce a non-zero fraction of sites with two atoms. While we observe this 
behavior for very shallow lattices, i.e. in the SF regime, the probe signal is progressively 
suppressed when approaching the Mott transition, and goes to zero for very deep lattices, 
indicating the emergence of number-squeezed states and finally of a MI with almost 
vanishing fluctuations. 

 

Motional Qubit Manipulation – Mott Insulators in Excited States 
 
The manipulation of ultracold atoms in optical lattices has so far been restricted to atoms in 
the motional ground state of each lattice site. In our most recent work, we have 
investigated the possibilities of preparing atoms in excited motional states at each lattice 
sites (see Figure 12). Such single atom controllability can become important for novel 
quantum gate schemes based on motional degrees of freedom [34], and allows the creation 
of novel quantum spin systems, where the role of the spin orientation is mapped onto a 
vibrational excitation along one of two lattice axes. The novel possibilities of many body 
physics in excited bands of the lattice, was first laid out by Isaacson and Girvin from Yale 
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university [35]. Here a particle can be made to selectively tunnel in a specific direction of 
the periodic potential by exciting it to the first excited band along this direction. For such a 
situation a strong enhancement of the tunnel coupling between the lattice sites exists, 
allowing the particle to move almost freely along such a direction (see Fig. 9).  
 

 
Figure 12 Motional quantum states of neutral atoms in optical lattices. Each of the potential wells 
of the optical lattice can be approximated by a harmonic oscillator potential, in which atoms can be 
excited to different motional states. Tunnel coupling between the different motional states leads to 
the formation of energy bands, with tunnel coupling in higher bands becoming increasingly 
stronger. 
 

 
Figure 13 Coupled 1D many body systems can be created via particles that have been selectively 
excited to the first excited vibrational state along one lattice axis. Such an arrangement allows the 
simulation of spin Hamiltonians, where the spin degree of freedom is replaced by the vibrational 
excitation degree of freedom (see [35]) 

 
 

In order to excite atoms into specific motional excited states, we have begun to use 
stimulated Raman transitions using counterpropagating laser beams, whose difference 
frequency is controlled by an acousto optical modulator. By tuning the difference 
frequency of the Raman lasers to a frequency separation of motional states, a coherent 
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Rabi flopping between those states can be induced (see Figure 15). By turning off the Laser 
coupling at a specific point in time of such a Rabi oscillation, we can transfer the 
population between different motional states or create superposition states. Examples of 
selectively exciting different motional states of the atoms in the lattice can be seen in 
Figure 16. 

 
Figure 14 Raman excitation scheme to populate different motional quantum states in an optical 
potential well. Counterpropagating laser beams are used to drive stimulated Raman transitions. 
When the difference frequency of the two lasers is tuned to the vibrational separation of the 
quantum states, atoms can be resonantly and coherently coupled to different motional states. 
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Figure 15 Coherent Rabi flopping between atoms in the motional ground and 1st excited state. 
High transfer efficiencies of more than 80% have been achieved.  

 
Figure 16 Atoms prepared in different motional quantum states. The excited state populations are 
detected by using an adiabatic mapping technique of the excited quantum state populations onto the 
Brillouin zones of the lattice (see refs. [36, 37]). Atoms have been axctied to vibrational quantum 
states (a) (nx=0,ny=1,nz=0), (b) (nx=1,ny=0,nz=0) and (nx=0,ny=1,nz=0), and (c) (nx=1,ny=1,nz=0). 
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Conclusion and Outlook 
The work demonstrated during this grant period shows some of the fascinating potential of 
using ultracold atoms in optical lattices as quantum simulators for many body systems, as 
well as their potential for applications in quantum information processing. The inherent 
parallelism and the high degree of controllability make them unique and highly promising 
for future research. It is very likely that within the next few years we are going to see 
fundamental problems of condensed matter physics, such a high-Tc superconductivity, 
being solved by neutral atom quantum simulators [38]. The addition of fermions in optical 
lattices is a next natural step and is also currently carried out in a second experiment in our 
group. A major advancement of the field would be the spatial addressability of single 
atoms at individual lattice sites. We are currently conceiving a next generation experiment, 
which will allow such an ultrahigh spatial resolution that will take the experimental 
controllability of ultracold atoms in optical lattices to a next level. Such single atom 
manipulation capabilities will be crucial for reading and writing quantum information into 
the system, to detect and reveal fundamental quantum correlations and to probe large scale 
entanglement with neutral atoms in optical lattices. Next to local atom manipulation 
possibilities, the search for robust entanglement is an important requirement for quantum 
information processing. With spin changing collisions, as explored during this contract, a 
novel way of producing robust and long lived entanglement has been discovered. In a next 
step it will become important to connect the entangled states produced in this way such as 
to create large scale and robust entangled states. Initial efforts to explore such possibilities 
are currently been set up in our laboratory. 
 
Neutral atoms in optical lattices are maturing as novel “synthetic quantum materials” and 
will profoundly enhance our understanding of complex quantum matter in the future. They 
have already now brought research at the forefront of condensed matter science together 
with research at the forefront of quantum optics and atomic physics and have led to 
important collaborations and interdisciplinary research across different research fields. In 
this way, ultracold atoms in optical lattices have begun to become important catalysts for 
solving some of the most outstanding problems in quantum many body systems, with a 
very promising future ahead and direct consequences for material science research.
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We demonstrate the controlled coherent transport and splitting of atomic wave packets in spin-
dependent optical lattice potentials. Such experiments open intriguing possibilities for quantum state
engineering of many body states. After first preparing localized atomic wave functions in an optical
lattice through a Mott insulating phase, we place each atom in a superposition of two internal spin
states. Then state selective optical potentials are used to split the wave function of a single atom and
transport the corresponding wave packets in two opposite directions. Coherence between the wave
packets of an atom delocalized over up to seven lattice sites is demonstrated.

DOI: 10.1103/PhysRevLett.91.010407 PACS numbers: 03.75.Lm, 03.75.Mn, 05.30.Jp, 05.60.Gg
depth of the lattice. By changing the polarization angle �
one can thereby control the separation between the two

(EOM) allow us to dynamically rotate the polarization
vector of the retroreflected laser beam through an angle �
Over the past few years Bose-Einstein condensates
(BEC’s) in optical lattices have opened fascinating new
experimental possibilities in condensed matter physics,
atomic physics, quantum optics, and quantum informa-
tion processing. Already now the study of Josephson
junction-like effects [1,2], the formation of strongly cor-
related quantum phases [3–5], and the observation of the
collapse and revival of the matter wave field of a BEC [6]
have shown some of these diverse applications. In an
optical lattice, neutral atoms can be trapped in the inten-
sity maxima (or minima) of a standing wave light field
due to the optical dipole force [7,8]. So far the optical
potentials used have been mostly independent of the
internal ground state of the atom. However, it has been
suggested that by using spin-dependent periodic poten-
tials one could bring atoms on different lattice sites into
contact and thereby realize fundamental quantum gates
[9–12], create large scale entanglement [13,14], excite
spin waves [15,16], study quantum random walks [17],
or form a universal quantum simulator to simulate fun-
damental complex condensed matter physics Hamil-
tonians [18]. Here we report on the realization of a
coherent spin-dependent transport of neutral atoms in
optical lattices [19,20]. We show how the wave packet of
an atom that is initially localized to a single lattice site
can be split and delocalized in a controlled and coherent
way over a defined number of lattice sites.

In order to realize a spin-dependent transport for neu-
tral atoms in optical lattices, a standing wave configura-
tion formed by two counterpropagating laser beams with
linear polarization vectors enclosing an angle � has been
proposed [9,13]. Such a standing wave light field can be
decomposed into a superposition of a �� and �� polar-
ized standing wave laser field, giving rise to lattice po-
tentials V��x; �� � Vmaxcos2�kx� �=2� and V��x; �� �
Vmaxcos2�kx� �=2�. Here k is the wave vector of the laser
light used for the standing wave and Vmax is the potential
0031-9007=03=91(1)=010407(4)$20.00 
potentials �x � �=180� � �x=2. When increasing �, both
potentials shift in opposite directions and overlap again
when � � n � 180�, with n being an integer. For a spin-
dependent transfer two internal spin states of the atom
should be used, where one spin state dominantly experi-
ences the V��x; �� potential and the other spin state
mainly experiences the V��x; �� dipole force potential.
Such a situation can be realized in rubidium by tuning the
wavelength of the optical lattice laser to a value of �x �
785 nm between the fine structure splitting of the rubi-
dium D1 and D2 transitions. Then the dipole potential
experienced by an atom in, e.g., the j1i 
 jF � 2; mF �
�2i state is given by V1�x; �� � V��x; �� and that for an
atom in the j0i 
 jF � 1; mF � �1i state is given by
V0�x; �� � 3=4V��x; �� � 1=4V��x; ��. If an atom is
now first placed in a coherent superposition of both
internal states 1=

���

2
p
�j0i � ij1i� and the polarization angle

� is continuously increased, the spatial wave packet of the
atom is split with both components moving in opposite
directions.

As in our previous experiments, Bose-Einstein con-
densates of up to 3� 105 atoms are created in the jF � 1;
mF � �1i hyperfine state in a harmonic magnetic trap
with almost isotropic oscillation frequencies of ! �
2�� 16 Hz. A three dimensional lattice potential is
then superimposed on the Bose-Einstein condensate and
the intensity raised in order to drive the system into a
Mott insulating phase [5]. The atoms are thereby local-
ized to individual lattice sites with no long range phase
coherence. Tunneling between neighboring lattice sites is
suppressed and irrelevant for the observed dynamics of
the experiment. Two of the three orthogonal standing
wave light fields forming the lattice potential are operated
at a wavelength of �y;z � 840 nm . For the third standing
wave field along the horizontal x direction a laser at a
wavelength of �x � 785 nm is used. Along this axis a
quarter wave plate and an electro-optical modulator
2003 The American Physical Society 010407-1
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by applying an appropriate voltage to the EOM (see Fig. 1).
Initially the polarization angle � is set to a lin k lin
polarization configuration. After reaching the Mott insu-
lating phase we completely turn off the harmonic mag-
netic trapping potential but maintain a 1 G homogeneous
magnetic field along the x direction in order to preserve
the spin polarization of the atoms. This homogeneous
field is actively stabilized to an accuracy of � 1 mG.
Shortly before moving the atoms along this standing
wave direction we adiabatically turn off the lattice po-
tentials along the y and z directions. This is done in order
to reduce the interaction energy, which strongly depends
on the confinement of the atoms at a single lattice site. We
can thereby study the transport process itself at a single-
particle level, without having to take into account the
phase shifts in the many body state that result from a
coherent collisional interaction between atoms.

By using microwave radiation around 6.8 GHz we are
able to drive Rabi oscillations between the j0i and the j1i
state with resonant Rabi frequencies of � � 2��
40 kHz, such that, e.g., a � pulse can be achieved in a
time of 12:5 �s. The microwave field therefore allows us
to place the atom into an arbitrary superposition of the
two internal states j0i or j1i.

During the shifting process of the atoms it is crucial to
avoid unwanted vibrational excitations, especially if the
shifting process would be repeated frequently. We there-
fore analyze the time scale for such a movement process
in the following way. First the atom is placed either in
state j0i or state j1i by using microwave pulses in a
standing wave lin k lin polarization configuration. Then
we rotate the polarization to an angle � � 180� in a linear
ramp within a time �, such that again a lin k lin polariza-
tion configuration is achieved. However, during this pro-
cess the atoms will have moved by a distance ��x=4
depending on their internal state. In order to determine
whether any higher lying vibrational states have been
populated, we adiabatically turn off the lattice potential
within a time of 500 �s. The population of the energy
bands is then mapped onto the population of the corre-
sponding Brillouin zones [21,22]. By counting the num-
FIG. 1 (color online). Schematic experimental setup. A one
dimensional optical standing wave laser field is formed by two
counterpropagating laser beams with linear polarizations. The
polarization angle of the returning laser beam can be adjusted
through an electro-optical modulator. The dashed lines indicate
the principal axes of the wave plate and the EOM.

010407-2
ber of atoms outside of the first Brillouin zone of the
system relative to the total number of atoms we are able to
determine the fraction of vibrationally excited atoms
after the shifting of the lattice potential (see Fig. 2). For
a perfectly linear ramp with infinite acceleration at the
beginning and ending of the ramp one would expect the
fraction of atoms in the first vibrational state to be given
by jc1���j

2 � 2v2=�a0!�
2sin2�!�=2�, where v � �x=�4��

is the shift velocity, a0 is the size of the ground state
harmonic oscillator wave function, and ! is the vibra-
tional frequency on each lattice site.

We have measured the vibrational frequencies on a
lattice site for different polarization angles � by slightly
modulating the lattice position and observing a resonant
transfer of atoms to the first excited vibrational state. For
atoms in the j1i state the vibrational frequencies remain
constant for different polarization angles � as the lattice
potential depth V1�x; �� remains constant. However, for
atoms in the j0i state the lattice potential depth V0�x; ��
decreases to 50% in a lin?lin configuration. In order to
reduce this effect we tilt the EOM by 3� and thereby
decrease the strength of the �� standing wave but in-
crease the strength of the �� standing wave in such a
polarization configuration. Then both trapping frequen-
cies for the j0i and the j1i state decrease to approximately
85% in a lin?lin configuration relative to their initial
value of ! � 2�� 45 kHz in a lin k lin standing wave
configuration. For such trapping frequencies of� 45 kHz
during the transport process, the excitation probability
should remain below 5% for shifting times longer than
� 2�=!x, taking into account the finite bandwidth of our
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FIG. 2. Fraction of atoms in excited vibrational states after
moving the lattice potential in a time � over a distance of �x=4.
Filled (hollow) circles denote atoms in the j1i (j0i) state.
The images show the population of the Brillouin zones when
the lattice potential was adiabatically ramped down after the
shifting process. These absorption images correspond to the j1i
state and were taken after a time of flight period of 14 ms. The
white dashed lines in the images denote the borders of the first
Brillouin zone. Atoms within this Brillouin zone correspond to
atoms in the vibrational ground state on each lattice site.
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FIG. 3 (color online). General interferometer sequence used
to delocalize an atom over an arbitrary number of lattice sites.
Initially an atom is localized to the jth lattice site. The graph on
the left indicates the EOM voltage and the sequence of �=2 and
� microwave pulses that are applied over time (see text).

FIG. 4. Observed interference patterns in state j1i after ini-
tially localized atoms have been delocalized over (a) two,
(b) three, (c) four, (d) five, (e) six, and (f) seven lattice sites
using the interferometer sequence of Fig. 3. The time of flight
period before taking the images was 14 ms and the horizontal
size of each image is 880 �m. The shift time for this experi-
ment was 50 �s.
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FIG. 5. Profile of the interference pattern obtained after
delocalizing atoms over three lattice sites with a �=2-�-�=2
microwave pulse sequence. The solid line is a fit to the inter-
ference pattern with a sinusoidal modulation, a finite visibility
( � 60%), and a Gaussian envelope. The time of flight period
was 15 ms.
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high voltage amplifier. This finite bandwidth smooths the
edges of our linear voltage ramp and thereby efficiently
suppresses the oscillatory structure in the calculated ex-
citation probability (see Fig. 2).

In order to verify the coherence of the spin-dependent
transport we use the interferometer sequence of Fig. 3. Let
us first consider the case of a single atom being initially
localized to the jth lattice site. First, the atom is placed in
a coherent superposition of the two internal states j0ij and
j1ij with a �=2 microwave pulse (here the index denotes
the position in the lattice). Then the polarization angle �
is rotated to 180�, such that the spatial wave packet of an
atom in the j0i and the j1i state are transported in
opposite directions. The final state after such a movement
process is then given by 1=

���

2
p
�j0ij � i exp�i��j1ij�1�,

where the wave function of an atom has been delocalized
over the jth and the �j� 1�th lattice site. The phase �
between the two wave packets depends on the accumu-
lated kinetic and potential energy phases in the transport
process and in general will be nonzero. In order to reveal
the coherence between the two wave packets, we apply a
final �=2 microwave pulse that erases the which way
information encoded in the hyperfine states. We then
release the atoms from the confining potential by sud-
denly turning off the standing wave optical potential and
observe the momentum distribution of the trapped atoms
in the j1i state with absorption imaging after a time of
flight period. As a result of the above sequence, the spatial
wave packet of an atom in the j0i �j1i� state is delocalized
over two lattice sites resulting in a double slit momentum
distributionw�p� / exp��p2=� �h=�x�2� � cos2�p�x0=2 �h�
�=2� [see Fig. 4(a)], where �x0 denotes the separation
between the two wave packets and �x is the spatial
extension of the Gaussian ground state wave function on
each lattice site. In order to increase the separation be-
010407-3
tween the two wave packets further, one could increase
the polarization angle � to further integer multiples of
180�. In practice, such an approach is, however, limited
by the finite maximum voltage that can be applied to the
EOM. In order to circumvent this limitation we apply a
microwave� pulse after the polarization has been rotated
to � � �180�, thereby swapping the role of the two
hyperfine states. By then returning the polarization vec-
tor to � � 0�, we do not bring the two wave packets of an
atom back to their original site but rather further increase
the separation between the wave packets (see Fig. 3).
The interlaced � pulse provides a further advantage of
canceling inhomogeneous phase shifts acquired in the
single-particle phase � in a spin-echo-like sequence.
With increasing separation between the two wave packets
the fringe spacing of the interference pattern further
decreases (see Fig. 4). We have been able to observe
such interference patterns for two wave packets delocal-
ized over up to seven lattice sites [see Fig. 4(f)]. When
010407-3



FIG. 6. Phase of the interference pattern vs the phase � of the
final microwave �=2 pulse in a �=2-�-�=2 delocalization
sequence (see Fig. 3). The absorption images show the mea-
sured interference pattern for � � 0� and � � 180� after a
time of flight period of 15 ms. The solid line is a linear fit to the
data with unity slope and a variable offset. The dashed lines in
the images correspond to the center of the envelope of the
interference pattern.
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moving the atoms over up to three lattice sites, the
visibility of the interference pattern remains rather high
with up to 60% (see Fig. 5). These high contrast interfer-
ence patterns directly prove the coherence of the trans-
port process and also show that the single-particle phase
� acquired for each atom is almost constant throughout
the cloud of atoms in our system. If the movement process
is repeated more often, inhomogeneously acquired phase
shifts over the cloud of atoms significantly decrease the
visibility.

For many further applications of the coherent spin-
dependent transport it will also be crucial that the
single-particle phase � is not only constant throughout
the cloud of atoms within a single run of the experiment
but is also reproducible between different sets of experi-
ments. We have verified this by varying the phase � of the
final microwave�=2 pulse in a sequence where an atom is
delocalized over three lattice sites. In Fig. 6 we plot the
experimentally measured phase of the interference pat-
tern vs the phase � of the final microwave pulse obtained
in different runs of the experiment. We find a high corre-
lation between the detected phase of the interference
pattern vs the phase of the applied microwave pulse which
proves that indeed the single-particle phase is constant
between different experiments and can be canceled via
the phase of the final microwave pulse.

In conclusion we have demonstrated the coherent spin-
dependent transport of neutral atoms in optical lattices,
thereby showing an essential level of coherent control for
many future applications. The method demonstrated here,
e.g., provides a simple way to continuously tune the
interspecies interactions by controlling the overlap of
010407-4
the two ground state wave functions for the two spin
states. Furthermore, if such a transport is carried out in
a three dimensional lattice, where the on-site interaction
energy between atoms is large, one could induce inter-
actions between almost any two atoms on different lattice
sites in a controlled way. Such controlled interactions of
Ising or Heisenberg type could then be used to simulate
the behavior of quantum magnets [15], to realize quan-
tum gates between different atoms [9–12], or to generate
highly entangled cluster states [10,13] that could form the
basis of a one-way quantum computer [11].

We thank Ignacio Cirac and Hans Briegel for stimulat-
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Bayerische Forschungsstiftung.
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Entanglement lies at the heart of quantum mechanics, and in
recent years has been identified as an essential resource for
quantum information processing and computation1–4. The
experimentally challenging production of highly entangled
multi-particle states is therefore important for investigating
both fundamental physics and practical applications. Here we
report the creation of highly entangled states of neutral atoms
trapped in the periodic potential of an optical lattice. Controlled
collisions between individual neighbouring atoms are used to
realize an array of quantum gates, with massively parallel
operation. We observe a coherent entangling–disentangling evol-
ution in the many-body system, depending on the phase shift
acquired during the collision between neighbouring atoms. Such
dynamics are indicative of highly entangled many-body states;
moreover, these are formed in a single operational step, inde-
pendent of the size of the system5,6.

Bose–Einstein condensates have been loaded into the periodic
dipole force potential of a standing-wave laser field—a so-called
optical lattice. In these systems, it has been possible to probe
fundamental many-body quantum mechanics in an unprecedented
way, with experiments ranging from Josephson junction tunnel
arrays7,8 to the observation of a Mott insulating state of quantum
gases9,10. Important applications of atoms in a Mott insulating state
in quantum information processing were envisaged early on. The
Mott state itself, with one atom per lattice site, could act as a huge
quantum memory, in which information would be stored in atoms
at different lattice sites. Going beyond these ideas, it has been
suggested that controlled interactions between atoms on neigh-
bouring lattice sites could be used to realize a massively parallel
array of neutral-atom quantum gates5,11–14, with which a large multi-
particle system could be highly entangled6 in a single operational
step. Furthermore, the repeated application of the quantum gate
array could form the basis for a universal quantum simulator along
the original ideas of Feynman for a quantum computer as a
simulator of quantum dynamics15–17.

The basic requirement for such control over the quantum state of
a many-body system, including its entanglement, is the precise
microscopic control of the interactions between atoms on different
lattice sites. To illustrate this, let us consider the case of two
neighbouring atoms, initially in state jWl¼ j0ljj0ljþ1 placed on
the jth and ( j þ 1)th lattice site of the periodic potential in the spin-
state j0l. First, both atoms are brought into a superposition of two
internal states j0l and j1l, using a p/2 pulse such that jWl¼
ðj0lj þ j1ljÞðj0ljþ1 þ j1ljþ1Þ=2: Then, a spin-dependent transport18

splits the spatial wave packet of each atom such that the wave packet
of the atom in state j0l moves to the left, whereas the wave packet of
the atom in state j1l moves to the right. The two wave packets are
separated by a distance Dx ¼ l/2, such that now jWl¼ ðj0ljj0ljþ1 þ
j0ljj1ljþ2 þ j1ljþ1j0ljþ1 þ j1ljþ1j1ljþ2Þ=2; where in the notation
atoms in state j0l have retained their original lattice site index
and l is the wavelength of the laser forming the optical periodic
potential. The collisional interaction between the atoms5,12,19 over a
time t hold will lead to a distinct phase shift J ¼ U 01thold/�h, when
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both atoms occupy the same lattice site j þ 1 resulting in: jWl¼
ðj0ljj0ljþ1 þ j0ljj1ljþ2 þ e2iJj1ljþ1j0ljþ1 þ j1ljþ1j1ljþ2Þ=2: Here U 01

is the onsite-interaction matrix element that characterizes the
interaction energy when an atom in state j0l and an atom in state
j1l are placed at the same lattice site and �h is Planck’s constant
divided by 2p. Alternatively, a dipole–dipole interaction has been
proposed11 for generating a state-dependent phase shift J. The final
many-body state after bringing the atoms back to their original
site and applying a last p/2 pulse can be expressed as jWl¼
1þe2iJ

2 j1ljj1ljþ1 þ
12e2iJ

2 jBELLl: Here jBELLl denotes the Bell-
like state corresponding to ðj0ljðj0ljþ1 2 j1ljþ1Þ þ j1ljðj0ljþ1 þ
j1ljþ1ÞÞ=2:

This scheme can be generalized when more than two particles are
placed next to each other, starting from a Mott insulating state of
matter9,10. In such a Mott insulating state, atoms are localized to
lattice sites, with a fixed number of atoms per site. For three particles
for example, one can show that if J ¼ (2n þ 1)p (with n being
an integer), so-called maximally entangled Greenberger–Horne–
Zeilinger (GHZ) states20 are realized. For a string of N . 3 atoms,
where each atom interacts with its left- and right-hand neighbour
(see Fig. 1), the entire string of atoms can be entangled to form so-
called cluster states in a single operational step5,6. The controlled
interactions described above can be viewed as being equivalent to an
ensemble of quantum gates acting in parallel3,5.

The experimental set-up used to load Bose–Einstein condensates
into the three-dimensional optical lattice potential (see Methods
section) is similar to our previous work10,19. Briefly, we start with a
quasi-pure Bose–Einstein condensate of 105 87Rb atoms in the
jF ¼ 1,mF ¼ 21l state in a harmonic magnetic trapping potential
with isotropic trapping frequencies of q ¼ 2p £ 14 Hz. Here F and
mF denote the total angular momentum and the magnetic quantum
number of the atom’s hyperfine state. The three-dimensional
periodic potential of an optical lattice is then ramped up over a
period of 80 ms to a potential depth of 25E r, such that the Bose–
Einstein condensate is converted into a Mott insulating state. Here

E r denotes the recoil energy E r ¼ �h2k 2/2m, with k ¼ 2p/l being the
wavevector of the laser light and m the mass of a single atom. For our
experimental parameters of atom number and harmonic confine-
ment, such a Mott insulator should consist mainly of a central core
with n ¼ 1 atoms per lattice site9,21,22. The magnetic trapping
potential is then rapidly switched off, but an actively stabilized
magnetic offset field of 1 G along the transport direction is main-
tained to preserve the spin polarization of the atoms. With the
optical standing wave along this direction, we are able to realize a
spin-dependent transport of the atoms. After turning off the
magnetic trapping field, we wait another 40 ms for the electronics
to stabilize the magnetic offset field. Thereafter, 3.5 ms before the
quantum gate sequence is initiated, we adiabatically increase the
lattice depth along this axis to 34 E r such that atoms remain in the
vibrational ground state, are tightly confined and can be moved as
fast as possible without excitations to higher vibrational states.

In the experiment, the two hyperfine states jF ¼ 1;mF ¼21l ;
j0l and jF ¼ 2,m F ¼ 22l ; j1l form the logical basis of a single-
atom qubit at each lattice site. These two states can be coupled

Figure 1 Schematic multiple quantum gate sequences based on controlled interactions.

a, A chain of neutral atoms on different lattice sites is first placed in a coherent

superposition of two spin-states j0l (red) and j1l (blue) with a p/2 microwave pulse. Then

a spin-dependent transport is used to split the spatial wave packet of an atom, and move

these two components along two opposite directions depending on their spin-state. The

wave packets are separated by a lattice period such that each atom is brought into contact

with its neighbouring atom. Owing to the collisional interaction between the atoms, a

phase shift J is acquired during a time t hold that the atoms are held on a common lattice

site depending on the spin-state of the atoms. After such a controlled collisional

interaction, the wave packets of the individual atoms are returned to their original site and

a final microwave p/2 pulse is applied to all atoms. This multiple quantum gate sequence

can be equivalently described as a controllable quantum Ising interaction6,12. b, In a slight

modification of such a sequence, the atoms are not returned to their original lattice site

j þ 1 but rather delocalized further over the j th and ( j þ 2)th lattice site after the

controlled collisional interaction. The small arrows indicate the different paths that a single

atom will follow during the multiple quantum gate sequence. Both sequences can be

viewed as multi-particle interferometers, where the many-body output state of the

interferometer can in general not be expressed as a product state of single-particle

wavefunctions.

Figure 2 Experimentally measured Ramsey fringes for different hold times t hold during

which atoms undergo a controlled collisional interaction with their neighbouring atoms.

The experimental sequence used is similar to the one in Fig. 1a, where atoms are returned

to their original lattice site after the controlled interaction. The hold times t hold are a,

30 ms, b, 210 ms and c, 450 ms. The relative number of atoms N rel ¼ N 1/N tot in the j1l
state versus the phase a of the final microwave p/2 pulse is measured. A state-selective

absorption imaging of the atom cloud is used to obtain N 1 after a time-of-flight period of

12 ms, and 110 ms thereafter the total atom number is measured to yield N tot. The solid

line indicates a fit of a sinusoidal function with variable amplitude and an offset to the data

from which the visibility of the Ramsey fringe is extracted. The change in the phase of the

Ramsey fringes for different hold times is mainly caused by the different exposure times of

the two spin-states of an atom to differential light shifts of the optical lattice that are not

perfectly cancelled in the spin-echo sequence.
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coherently using resonant microwave radiation around 6.8 GHz. A
p/2 pulse allows us to place the atom in a coherent superposition of
the two states within a time of 6 ms. After creating such a coherent
superposition, we use a spin-dependent transfer to split and move
the spatial wavefunction of the atom over half a lattice spacing in
two opposite directions depending on its internal state (see Fig. 1).
Such a movement process is carried out within a time of 40 ms in
order to avoid any vibrational excitations18 (the probability for
excitations into higher-lying vibrational states was measured to be
less than 3%). Atoms on neighbouring sites then interact for a
variable amount of time t hold. After half of the hold time, a
microwave p pulse is applied. This spin-echo type p pulse is mainly
used to cancel unwanted single-particle phase shifts, due, for
example, to inhomogeneities in the trapping potentials. It does
not, however, affect the non-trivial and crucial collisional phase
shift due to the interactions between the atoms. After such a
controlled collision, the atoms are moved back to their original
site. Then a final p/2 microwave pulse with variable phase a is
applied, and the atom number in state j1l relative to the total atom
number is recorded.

The Ramsey fringes obtained in this way are shown in Fig. 2 for
some different hold times t hold, and for a wider range of hold times
their visibility is plotted in Fig. 3. For short hold times, where no
significant collisional phase shift is acquired, a Ramsey fringe with a

visibility of approximately 50% is recorded. For longer hold times
we notice a strong reduction in the visibility of the Ramsey fringe,
with an almost vanishing visibility of approximately 5% for a hold
time of 210 ms (Fig. 2b). This hold time corresponds to an acquired
collisional phase shift of J ¼ p for which we expect a minimum
visibility if the system is becoming entangled.

For such an entangled state the probability for finding atoms in
state j1l becomes independent of the phase a corresponding to a
vanishing Ramsey fringe. This can be seen, for example, for the two-
particle case: when the phase a of the last pulse is kept variable, the
maximally entangled state for a collisional phase J ¼ (2n þ 1)p
can be expressed as: jWðJ ¼ pÞl¼ 1ffiffi

2
p ðj0lj2;alþ j1ljþ;alÞ; where

j2;al ; 1ffiffi
2

p ðc2c j0l2 c2s j1lÞ and jþ;al ; 1ffiffi
2

p ðcþs j0lþ cþc j1lÞ with

c^c ; e^iacosa and c^s ;2ð^isina2 1Þ: Here the probability for
finding an atom in either spin-state, for example, P(j1l), is indepen-
dent of a and equal to 1/2: Pðj1lÞ ¼ 1

8 {jcþs j
2
þ jc2s j

2
þ 2jcþc j

2
} ¼ 1

2 :
This indicates that no single-particle operation can place all atoms
in either spin-state when a maximally entangled state has been
created. The disappearance of the Ramsey fringe has been shown to
occur not only for a two-particle system, but is a general feature for
an arbitrary N-particle array of atoms that have been highly
entangled with the above experimental sequence3,23. A vanishing
Ramsey fringe can therefore in principle not distinguish between
two-particle or multi-particle entanglement.

For longer hold times, the visibility of the Ramsey fringe increases
again reaching a maximum of 55% for a hold time of 450 ms. Here
the system becomes disentangled again, as the collisional phase shift
is close to J ¼ 2p and the Ramsey fringe is restored with maximum
visibility.

The coherent ‘entanglement oscillations’ of the many-body
system6 are recorded for longer hold times by using the multi-
particle interferometer sequence of Fig. 1b, where the atoms are not
brought back to their original site but are rather kept delocalized18.
This allows us to observe the Ramsey fringe of the previous sequence
as a spatial interference pattern in a single run of the experiment in
analogy to a double-slit interference experiment, when a state-
selective time-of-flight detection is used. Images of such an inter-
ference pattern can be seen in Fig. 4 for different hold times thold.
The coherent evolution again indicates the entangling–disentan-
gling dynamics that the system undergoes for different collisional
phase shifts J (see Fig. 5).

Although the observed coherent dynamics in the vanishing and
re-emergence of the Ramsey fringe does not provide a rigorous
proof of a highly entangled multi-particle state, it is very indicative
of such a state. So far, we cannot employ single-atom measurement
techniques to detect correlations between individual atoms in the
cluster that would provide a quantitative measurement for the size

Figure 3 Visibility of Ramsey fringes versus hold times on neighbouring lattice sites for the

experimental sequence similar to the one displayed in Fig. 1a. The solid line is a sinusoidal

fit to the data including an offset and a finite amplitude. Such a sinusoidal behaviour of the

visibility versus the collisional phase shift (determined by the hold time t hold) is expected

for a Mott insulating state with an occupancy of n ¼ 1 atom per lattice site23. The

maximum observed visibility is limited to 55% by inhomogeneities and time-dependent

fluctuations of the lattice potentials throughout the cloud of atoms that are not perfectly

compensated by the applied spin-echo sequence (see text).

Figure 4 Spatial interference patterns recorded after applying the multiple quantum gate

sequence of Fig. 1b for different collisional interaction times t hold. The different hold

times (ms) of 30 (a), 90 (b), 150 (c), 210 (d), 270 (e), 330 (f), 390 (g) and 450 (h) lead to

different collisional phase shifts J, ranging from J < 0 (a) to just over J < 2p (h). The

vanishing and reappearance of the interference pattern is caused by the coherent

entangling–disentangling dynamics in the many-body system due to the controlled

collisions between neighbouring atoms. The state-selective absorption images were

obtained after a time-of-flight period of 11 ms.
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of the entangled many-body state. It is clear, however, that the
minimum visibility observed in the Ramsey fringes is dependent on
the quality of our initial Mott insulating state and the fidelity of the
quantum gate operations. In an ideal experimental situation with
perfect fidelity for the multi-particle quantum gates and a defect-
free Mott insulating state, this visibility should vanish for a phase
shift of J ¼ (2n þ 1)p. For a finite fidelity of the quantum gates,
caused, for example, by a 5% fractional error in the pulse areas of the
microwave pulses, the minimum visibility would already increase to
,2%. If defects are present in the initial quantum state of the Mott
insulator—for example, vacant lattice sites—then the entangled
cluster state will not extend beyond this vacancy and the visibility
of the Ramsey fringe will become non-zero owing to isolated atoms
in the lattice. We have noticed, for example, that the quality of the
Mott insulating state deteriorates owing to its prolonged uncom-
pensated exposure to the potential gradient of gravity after the
magnetic trapping potential is turned off. In addition to an
imperfect creation of the Mott state, such vacancies could be caused
by the superfluid shell of atoms surrounding the Mott insulating
core9,21,22 or spontaneous emission due to the laser light, which leads
to excitations of approximately 5% of the atoms for our total
experimental sequence times.

In our one-dimensional lattice shift the system is very susceptible
to vacant lattice sites, as a defect will immediately limit the size of
the cluster. However, the scheme can be extended to two or three
dimensions by using two additional lattice shift operations along
the remaining orthogonal lattice axes. As long as the filling factor of
lattice sites exceeds the percolation threshold (31% for a three-
dimensional simple cubic lattice system24) a large entangled cluster
should be formed, making massive entanglement of 100,000 atoms
possible in only three operational steps. For some of the appli-
cations of such a highly entangled state it will, however, be crucial to
locate the position of the defects in the lattice.

In the future, it will be interesting to explore schemes for quantum
computing that are based only on single-particle operations and
measurements on such a cluster state2. Here the large amount of
entanglement in a cluster state can be viewed as a resource for
quantum computations. But now, even without the possibility of
manipulating single atoms in the periodic potential, a quantum
computer based on the controlled collisions demonstrated here
could be able simulate a wide class of complex hamiltonians of
condensed-matter physics that are translationally invariant12,17. A

Methods
Optical lattices
A three-dimensional array of microscopic potential wells is created by overlapping three
orthogonal optical standing waves at the position of the Bose–Einstein condensate. In our

case the atoms are trapped in the intensity maxima of the standing-wave light field owing
to the resulting dipole force25,26. The laser beams for two of the periodic potentials are
operated at a wavelength of l ¼ 820 nm with beam waists of approximately 210 mm at the
position of the Bose–Einstein condensate. This gaussian laser beam profile leads to an
additional isotropic harmonic confinement of the atoms with trapping frequencies of
40 Hz for lattice potential depths of 25E r. In this configuration, we populate almost
100,000 lattice sites with an average atom number per lattice site of up to 1 in the centre of
the lattice. The lattice structure is of simple cubic type, with a lattice spacing of l/2 and
oscillation frequencies in each lattice potential well of approximately 30 kHz for a potential
depth of 25 E r.

State-dependent lattice potentials
Along a third orthogonal direction a standing-wave potential at a wavelength of
l x ¼ 785 nm is used, formed by two counter-propagating laser beams with linear
polarization vectors5,11,18. The angle v between these polarization vectors can be
dynamically adjusted through an electro-optical modulator and additional polarization
optics. Such a lin-angle-lin polarization configuration can be decomposed into a jþ and a
j2 polarized standing-wave laser field, giving rise to potentials Vþðx;vÞ ¼ V0cos2ðkxx þ
v=2Þ and V2ðx;vÞ ¼ V0cos2ðkxx 2 v=2Þ: Here V0 is the potential depth of the lattice. By
changing the polarization angle v one can control the separation Dx ¼ ðv=pÞðlx=2Þ
between the two potentials. When increasing v, both potentials shift in opposite directions
and overlap again for v ¼ np: For our experimental conditions, the dipole potential
experienced by atoms in the j1l state is given by V2(x,v) and for atoms in the j0l state, it is
dominated by the Vþ(x,v) potential18. For these laser beams, a waist of 150 mm has been
used, resulting in a maximum potential depth of 34E r and corresponding maximum
vibrational trapping frequencies of 39 kHz.
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Figure 5 Visibility of the spatial interference patterns versus different collisional

interaction times t hold. We have been able to observe up to four entangling–disentangling

cycles in the experiment. The reduced visibility for longer hold times is mainly caused by a

dephasing over the trapped cloud of atoms due to inhomogeneities in the external

potentials.
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We report on a matter wave interferometer realized with entangled pairs of trapped 87Rb atoms. Each
pair of atoms is confined at a single site of an optical lattice potential. The interferometer is realized by
first creating a coherent spin superposition of the two atoms and then tuning the interstate scattering
length via a Feshbach resonance. The selective change of the interstate scattering length leads to an
entanglement dynamics of the two-particle state that can be detected in a Ramsey interference
experiment. This entanglement dynamics is employed for a precision measurement of atomic inter-
action parameters. Furthermore, the interferometer allows us to separate lattice sites with one or two
atoms in a nondestructive way.

DOI: 10.1103/PhysRevLett.92.160406 PACS numbers: 03.75.Gg, 03.75.Lm, 03.75.Mn, 34.50.–s
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FIG. 1 (color online). Ramsey interferometer sequence
(shaded bars). Ramsey fringes are obtained by varying the
phase � of the last microwave �=2 pulse. The magnetic field
can be ramped to different magnetic field values in order to
on the scattering properties of the systems. The entangle- change the interaction properties of the atoms.
The controlled creation of entanglement is one of the
most subtle and challenging tasks in modern quantum
mechanics, with both wide reaching practical and funda-
mental implications. In neutral atom based systems, sig-
nificant progress has been made during recent years in the
generation of large spin-squeezed samples of atomic
gases [1] or the controlled creation of Greenberger-
Horne-Zeilinger (GHZ) states [2] in cavity QED systems
[3]. In addition, it has been recognized early on that in
binary spin superpositions of Bose-Einstein condensed
quantum gases (with spin states j0i and j1i) a large
amount of entanglement could be created by controlling
the difference in interaction strengths � � 1=2 �U00 �
U11 � 2U01� between the particles in different spin
states [4–8]. Here, Uij denotes the interaction matrix
element between atoms in spin states i and j. Such con-
trol can either be achieved by moving atoms on dif-
ferent sites in spin-dependent optical lattice potentials
[5,8–11] or by tuning the scattering lengths, such that
� � 0 [4,7,12]. In the latter case, the simple creation
of a coherent spin superposition, e.g., by an initial �=2
pulse, followed by a subsequent evolution of the spin
system, would automatically lead to highly spin-squeezed
or entangled N-particle GHZ-like states. Here we dem-
onstrate such entanglement dynamics with pairs of atoms
trapped in the ground state of a potential well in an
optical lattice. Such pairs form a unique and highly con-
trollable model system to study interactions between two
particles. By using a recently predicted interstate
Feshbach resonance in 87Rb [13], we are able to control
� and thus accelerate the ensuing entanglement evolution,
so that it is observable in a Ramsey type experiment
within our coherence time. We show that this dynamical
evolution of the atom pairs into entangled and disen-
tangled states can be used to obtain precise information
0031-9007=04=92(16)=160406(4)$22.50 
ment interferometer makes it furthermore possible to
separate singly occupied lattice sites from doubly occu-
pied sites in a nondestructive way.

The Ramsey interferometer sequence used in
the experiment consists of two �=2 pulses that couple
the two states j0i � jF � 1; mF � �1i and j1i �
jF � 2; mF � �1i. Here, F and mF denote the total an-
gular momentum and its projection, respectively. The
pulse separation is thold and the phase � of the last pulse
can be varied. Between the two �=2 pulses, the inter-
action behavior � of the atoms is modified by using a
Feshbach resonance occurring between atoms in hyper-
fine states j0i and j1i [13,14]. In the case of a single
isolated atom, initially in the state  i1 � j0i, the effect
of a changing interaction behavior has no consequence for
the particle since it does not interact with other particles.
After applying the experimental sequence shown in Fig. 1,
the final state reads  f1 � 1=2 �b�j0i � b�j1i� with b	 �
1	 e
i�. The probability of finding the atom in state j1i
is simply given by Pf1��� �

1
2 �1� cos��, which describes

the usual Ramsey fringes without decoherence.
2004 The American Physical Society 160406-1
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In the case of two particles, the change of inter-
action parameters leads to an additional entangling-
disentangling dynamics which is markedly different.
Let us consider two bosonic atoms in the internal state
 i2 � j0i � j0i � j00i. First, a �=2 pulse places the atoms
in a coherent superposition of the two internal states  2 �
1
2 �j00i � j01i � j10i � j11i�. After a time t, each two-
particle state obtains a phase factor e�i�ij due to inter-
actions, where �ij � �Uij= �h�thold is the collisional phase
shift, with Uij � �4� �h2aij�=m�

R

d3x j’ij
2j’jj

2 being
the on-site interaction matrix element. Here, aij repre-
sents the elastic scattering length between particles in
states i and j, ’i�j� is the ground state wave function of
an atom in spin state i�j�, andm the mass of a single atom.
For t � thold=2, the two-particle state then evolves into
 2 �

1
2 �e

�i��00=2�j00i � e�i��01=2�j01i � e�i��01=2�j10i �

e�i��11=2�j11i�, where �01 � �10. After a spin echo �
pulse, a further interaction time thold=2 and a last �=2
pulse, the final state reads  f2 �

1
2 fc

�
c j00i � cs�j01i �

j10i� � c�c j11ig, where c	c � e
i��cos�	 e�i���, cs �
i sin�, and�� � ���00 ��11 � 2�01�=2. The probabil-
ity of finding an atom in state j1i can then be expressed by
Pf2��;��� �

1
2 �1� cos� cos���, which is modulated in

amplitude compared to the case of single atoms.
Four main cases illustrate the dynamics of the two-

particle system. (i) For �� � 0 the Ramsey fringe
Pf2��;�� � 0� � 1

2 �1� cos�� is identical to the fringe
of an isolated particle as shown above. (ii) If the inter-
actions lead to a phase difference of �� � �=2, the final
state  f2 ��� � �=2� is a maximally entangled Bell-like
state. For such a state, the corresponding Ramsey fringe
Pf2��;�� � �=2� � 1

2 does not exhibit any modulation
[11]. (iii) When the phase difference is increased to �� �
�, the system is disentangled again, and the correspond-
ing Ramsey fringe Pf2��;�� � �� � 1

2 �1� cos�� is
phase shifted by � with respect to the case of a single
particle. It should be noted that for this interaction phase
the state vectors of isolated atoms and atoms being part of
an atom pair are orthogonal to each other. Therefore, by
choosing a specific single particle phase, either isolated
atoms or atom pairs can be transferred into the jF � 2i
state and removed by a subsequent resonant laser pulse.
The remaining atoms would form a pure lattice of
either single atoms or atom pairs, which again can
evolve to Bell-like pairs. For even larger phase differ-
ences, the system entangles and disentangles again, until
for (iv) �� � 2� the system exhibits a Ramsey fringe
which is in phase with the fringe of a single atom. In a
system containing N1 isolated single atoms and N2=2
isolated pairs of atoms, the total fringe will be a weighted
sum of the two distinct fringes and will have a visibility
according to:

V��� � V0e
��t=�1�f�1� n2� � n2e

��t=�2� cos��g; (1)

where we have included decoherence and two-body losses
with time constants �1 and �2, respectively, V0 is a finite
160406-2
initial visibility [15] and ni�Ni=�N1�N2�, i�1;2 with
n1�n2�1. Whereas the contribution of isolated atoms to
the fringe visibility V remains unaffected under a change
of �, the total fringe signal shows a dynamics with the
same periodicity as Pf2 . In the following, we consider the
experimentally relevant case N1>N2. For zero phase dif-
ference �� � 0, we expect to measure a Ramsey fringe
with high visibility V. The visibility decreases for in-
creasing �� and reaches a minimum for �� � � where
the fringes from single atoms and from atom pairs are out
of phase and partially compensate each other in the total
signal. For larger interaction phase differences, the total
visibility increases, until it shows a maximum for �� �
2�, where the two Ramsey fringes are completely in
phase again. It should be noted that the interaction time
tR after which �� � 2� depends on the difference in the
interaction matrix elements Uij, and for constant overlap
of the wave functions on the elastic scattering length
difference �as;� � �

1
2 �a00 � a11 � 2a01�.

The experimental setup is similar to our previous work
[16,17]. We start with a BEC of up to 3� 105 87Rb atoms
trapped in the hyperfine ground state jF � 1; mF � �1i.
We load the BEC into a pure two- or three-dimensional
optical lattice potential formed by three mutually or-
thogonal standing waves of far detuned light. For the
three-dimensional case, the system undergoes a Mott-
insulator transition [16,18] with one and two atoms per
site. The wavelengths used for the different standing
waves are 829 nm (y and z axis) and 853 nm (x direction),
with trapping frequencies at each lattice site of !x �
2�� 33, !y � 2�� 43, and !z � 2�� 41 kHz. In or-
der to preserve spin polarization of the atoms in the
optical trap, we maintain a 1 G magnetic offset field along
the x direction. The atoms are prepared in the Feshbach
resonance sensitive spin superposition by transferring the
population from the jF � 1; mF � �1i state into the
j0i � jF � 1; mF � �1i hyperfine level via a radio fre-
quency (rf) Landau-Zener sweep. We then increase the
magnetic field to 8.63 G. By applying a microwave field
around 6.8 GHz and rf radiation around 6 MHz, we are
able to coherently couple the two internal states j0i and
j1i with a two-photon transition similar to [19].

In order to locate the position of the Feshbach reso-
nance through enhanced atomic losses, we load the BEC
into a two-dimensional (x and y axis) optical lattice
potential. The atomic density is thereby strongly in-
creased compared to a simple dipole trap, thus loss pro-
cesses occur with higher probability. The magnetic field is
subsequently increased to different values within 10 "s.
After holding the atoms for 1 ms at a specific magnetic
field, we switch off all trapping potentials and magnetic
fields to measure the remaining total atom number in a
time-of-flight (TOF) measurement (see Fig. 2). The mag-
netic field has been calibrated by measuring the fre-
quency of the jF � 1; mF � �1i ! jF � 2; mF � �2i
microwave transition at different magnetic field values
and employing the Breit-Rabi formula to determine the
160406-2
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FIG. 2. Measurement of total atom number versus magnetic
field in a 2D optical lattice. The solid line is a Lorentzian fit to
the data with center at 9.121(9) G and a width of 20(5) mG. The
hold time at the various magnetic field values is 1 ms.
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actual field strength. Because of background magnetic
field fluctuations, the magnetic field calibration has an
uncertainty of 3 mG, noise of the magnetic field creating
current source introduces an uncertainty of 2 mG and an
additional systematic error of 4 mG is added by the
optical trapping potential. The measured position of
9.121(9) G of the resonance agrees well with the predicted
value of 9.123 G within our measurement uncertainty
[20]. In order to determine the ratio of single to paired
atoms in our three-dimensional lattice potential, we
monitor the loss of atoms when we hold the atomic
sample at the resonance magnetic field for a variable
time (see Fig. 3).

Lattice sites which are occupied by more than one
atom are depleted within 3 ms due to the increased
two-body collision rates and the high density at single
lattice sites. Isolated atoms, however, are protected from
collisions and remain trapped. Assuming a negligible
number of sites with three atoms, a fit with an exponential
decay yields a time constant of 1:3�2� ms and a ratio
N1=N2 � 1:1.
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FIG. 3. Time resolved measurement of the total atom number
at the measured Feshbach resonance in a 3D lattice potential.
Sites with more than one atom are emptied within 3 ms,
whereas sites with only one atom are protected from loss.
The solid line is a fit to an exponential decay with offset,
from which we find to have a ratio N1=N2 � 1:1.
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In order to determine the elastic scattering properties,
we apply the Ramsey interferometer sequence that has
been described earlier (see Fig. 1). At each magnetic field
value, we record the Ramsey fringe visibility for differ-
ent interaction times thold (see, e.g., Fig. 4 for a field of
B � 9:081 G).

The revival time tR at which the visibility shows its
maximum is determined by a fit using Eq. (1). This
revival time depends on the difference in the interaction
matrix element. A single revival of the fringe visibility
could in principle also be caused by a complete loss of
lattice sites with two atoms. We have, however, checked
that even for the more pronounced losses at the Feshbach
resonance the system exhibits dynamics due to interaction
after the first revival. In this case, losses would shift the
revival time by a few percent.

In order to extract information on the changes in the
scattering length from the revival times, one can measure
the the on-site matrix element U00 through a collapse and
revival experiment that we have demonstrated earlier
[17]. For the same experimental parameters, we find
U00 � h=396�11� "s. Using this information we can cal-
culate �=U00 � �as;�=a00, which expresses the change in
scattering length measured in units of the scattering
length a00. In order to map out the change in the elastic
scattering length on the Feshbach resonance, �as;�=a00

has been measured for several magnetic fields and is
shown in Fig. 5. Since the entanglement interferometer
can only measure absolute values of �as;�=a00, we per-
form a usual time of flight measurement to obtain infor-
mation on the sign of the scattering length differences.
For this, we leave the Feshbach field switched on for the
first 3 ms of the TOF [21]. During this time, the altered
interaction energy is converted into kinetic energy, and
the size of the atom cloud is measured. For magnetic fields
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FIG. 4. Measured visibility dynamics due to entanglement in
the system for a magnetic field value of 9.081 G. The solid line
is a fit using Eq. (1) yielding a revival time tR � 2� thold=�� �
9:5�2� ms, V0 � 0:82�4�, n2 � 0:5, �1 � 41�13� ms, and �2 �
20�5� ms. The inset is a measurement of the Ramsey sequence
for a constant magnetic field B � 8:63 G, away from the
Feshbach resonance, and the solid line is a fit describing an
exponential decay of the fringe visibility.
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below the Feshbach resonance, we have found the cloud to
be slightly larger (9% change in size) in the axial direc-
tion, whereas it is slightly smaller above the Feshbach
resonance. From this, we conclude that the interspecies
scattering length grows and shrinks below and above the
Feshbach resonance field, respectively.

Since we ramp the magnetic field through the reso-
nance in order to address the region above the resonance,
atoms acquire a small collisional phase before the hold
time starts. This is why we fit both branches of the
scattering length change separately to a dispersive profile,
with the constraint of a common center and width. The fit
yields a center of 9.128(9) G and a width of 15(4) mG, in
good agreement with our loss measurements. The two
branches show an offset from �as;� � 0, because even
far away from the Feshbach resonance, the different
scattering lengths aij do not compensate to � � 0. The
difference in sign of the offsets below and above the
resonance is artificial, since our measurement is insensi-
tive to the sign of �as;�, which has been obtained through
the TOF measurement.

The interferometric method presented allows for
high precision measurements of relative changes of the
scattering lengths. In order to demonstrate this, we as-
sume an error-free scattering length a00 � 100:4 a0 [22],
where a0 is the Bohr radius. With this, we determine the
change of elastic scattering length for B � 9:081 G to be
�as;� � 4:2�1� a0.

In conclusion, we have presented a novel interferomet-
ric method to create and investigate entanglement dy-
namics in an array of spin superpositions of neutral
atoms. The observed entanglement oscillations allow the
precise determination of interaction properties between
atoms in different spin states. We have demonstrated the
160406-4
versatility of the interferometer by characterizing the
elastic scattering properties of a recently predicted
weak interstate Feshbach resonance in 87Rb. We have
found both the elastic and inelastic channel of the mea-
sured Feshbach resonance to be in good agreement with
the theoretical prediction. The two-particle interferome-
ter furthermore enables the direct creation of arrays of
Bell states, together with the nondestructive separation of
singly from doubly occupied sites.
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after cratering events and catastrophic disruptions. The newly
created object’s orbits will gradually evolve and perhaps be trans-
ported into one of the strong resonances that can pump the orbit’s
eccentricity to Earth-crossing values. Smaller objects will migrate
faster under the influence of the Yarkovsky effect21, and once in a
resonance the dynamical lifetime of objects of any size is of the order
of only a few million years2. However, cosmic ray exposure ages tell
us that most OC meteorites are tens of millions of years old22. This
indicates that even the smallest meteoroids spend a considerable
amount of time migrating from their point of origin into the
resonances, and the larger objects that eventually become NEOs
probably require even more time. Thus, we expect that NEOs of
S-complex provenance will display a size-dependent range of
spectra ranging from Q (or OC) to S. This prediction is supported
by numerous reports in the past decade indicating Q-like spectra
and a size-dependent trend to OC-like spectra with decreasing size
in the NEO population23–26. However, space weathering in the main
belt occurs faster than the lifetimes of NEOs, as suggested by
meteoritic cosmic ray exposure ages22. Thus, observational evidence
for a large number of OC-like spectra amongst the NEOs23–26

implies that regular re-surfacing of these objects keep them looking
younger longer. A
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Strongly correlated quantum systems are among the most intri-
guing and fundamental systems in physics. One such example is
the Tonks–Girardeau gas1,2, proposed about 40 years ago, but
until now lacking experimental realization; in such a gas, the
repulsive interactions between bosonic particles confined to one
dimension dominate the physics of the system. In order to
minimize their mutual repulsion, the bosons are prevented
from occupying the same position in space. This mimics the
Pauli exclusion principle for fermions, causing the bosonic
particles to exhibit fermionic properties1,2. However, such bosons
do not exhibit completely ideal fermionic (or bosonic) quantum
behaviour; for example, this is reflected in their characteristic
momentum distribution3. Here we report the preparation of a
Tonks–Girardeau gas of ultracold rubidium atoms held in a two-
dimensional optical lattice formed by two orthogonal standing
waves. The addition of a third, shallower lattice potential along
the long axis of the quantum gases allows us to enter the Tonks–
Girardeau regime by increasing the atoms’ effective mass and
thereby enhancing the role of interactions. We make a theoretical
prediction of the momentum distribution based on an approach
in which trapped bosons acquire fermionic properties, finding
that it agrees closely with the measured distribution.

The physics of ultracold one-dimensional (1D) Bose systems is
very different from that of ordinary three-dimensional (3D) cold
gases1,2,4,5. For example, by decreasing the particle density n, a usual
3D quantum many-body system becomes more ideal, whereas in a
1D Bose gas the role of interactions becomes more important. The
reason is that at temperatures T ! 0, the kinetic energy of a particle
at the mean interparticle separation is K / n2 and it decreases with
decreasing density n faster than the interaction energy per particle,
I / n. The ratio of the interaction to kinetic energy, g ¼ I/K,
characterizes the different physical regimes of the 1D quantum
gas. For a large value of g, the gas enters the Tonks–Girardeau (TG)
regime, where the repulsion between particles strongly decreases the
wavefunction at short interparticle distances.

Achieving such a TG regime and observing ‘fermionization’ of
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the 1D Bose system is a great challenge, and it is complementary to
the current experiments in which bosonic properties are observed in
fermionic quantum gases6–9. The 1D regime is obtained by tightly
confining the particle motion in two directions to zero point
oscillations4,5,10. It was first demonstrated in experiments with
weakly interacting Bose-condensed trapped gases, where g,, 1
(see refs 11, 12). In ref. 13, a tight radial confinement was realized by
using two-dimensional (2D) optical lattice potentials to create an
array of 1D quantum gases. In later experiments with optical
lattices14,15 it has become possible to reach a 1D regime with
g < 1, that is, in between a weakly interacting 1D Bose condensed
gas and a fermionized TG gas. So far, however, it has not been
possible to bridge the last one or two orders of magnitude in g that
could bring the bosonic quantum gas fully into the TG regime.
Larger values of g could either be reached by decreasing the density
of the quantum gas or by increasing the effective interaction
strength between the particles4,5.

In this work, we propose and demonstrate a novel way to achieve
the TG regime. The main point is to include an additional optical
lattice along the 1D gas, which results in an increase of g. For a
homogeneous gas, g can be expressed as g ¼ mg/"2n, where g is the
1D interaction strength, m the mass of a single atom, and " denotes
Planck’s constant divided by 2p. The addition of a periodic
potential along the third axis increases the effective mass, and
thus leads to an increase of g. In fact, in the limit in which only
the first Bloch band is occupied, we have I ¼ Un and K ¼ Jn, where
n is the filling factor, U the on-site interaction energy and J the
tunnelling amplitude, and thus g ¼ U/J. Additionally, in order to
achieve a pure TG regime in a lattice, the filling factor n should
be smaller than unity: otherwise, doubly occupied sites would be
present, and the direct correspondence to the TG gas would be lost
(as in a recent experiment, see ref. 16). Following these ideas, we
have been able to enter the TG regime with g < 5–200. In this
regime, the bosons can be theoretically described using a ‘fermio-
nization’ approach17,18.

For g ! 1, the ground state of N bosons at zero temperature is

described by the many-body wavefunction:

W0ðx1;x2;…;xN Þ/ jdet½JiðxjÞ�j; i; j ¼ 1;2;…;N ð1Þ

where det denotes the Slater determinant, and J i(x) is the ith
eigenfunction of the single-particle hamiltonian. The presence of
the Slater determinant guarantees that the wavefunction vanishes
whenever two particles occupy the same position in space. However,
the absolute value of the determinant ensures that the wavefunction
for the bosons remains completely symmetric. This wavefunction
reflects the fundamental similarities between strongly interacting
bosons and non-interacting fermions in one dimension, with
properties such as the spatial density distribution, the density–
density correlation function, or the entropy of the gas being the
same as in the case of non-interacting fermions. More interestingly
though, several properties are strongly modified by the presence of
the absolute value of the determinant, leading to a unique behaviour
of, for example, the momentum distribution of the TG gas3. This
can be understood qualitatively in the following way: the bosonic
particles in a TG gas are not allowed to occupy the same position in
space. Owing to this restriction, they are distributed over a more
extended region in momentum space than in the case of an ideal or
weakly interacting Bose gas. On the other hand, in order to keep
themselves apart from each other, they do not need to be in different
momentum states, as would be the case for fermions.

We first describe the experimental realization together with the
measured data, and then provide a detailed theoretical analysis of
the system. In order to reach the regime of low filling factor, we start
with a rather small Bose–Einstein condensate (BEC) of approxi-
mately (3–4) £ 104 87Rb atoms in a magnetic trap. Then the BEC
is loaded into a 2D optical lattice potential (along the y- and z-axes),
such that an array of 1D quantum gases confined to narrow
potential tubes is created (Fig. 1a). The lattice potential is formed
by superimposing two orthogonal standing waves with a wavelength
of 823 nm on top of the BEC. In order to transfer the atoms into the
optical potential, the potential depth of the optical lattice is first
gradually increased to a mean final value of 27 E r (Fig. 1b). Here E r

is the recoil energy "2k2/2m, with k describing the wave vector of the
lattice laser light. During this ramp up of the lattice potentials, the
tunnel coupling between the different 1D quantum gases decreases
exponentially. This results in a decoupling of the quantum gases,
such that particle exchange between different tubes is suppressed.
For the maximum lattice depth, the gaussian shape of the laser
beams (160 mm waist) leads to an axial harmonic confinement of the
1D gases with a trapping frequency of q ax < 2p £ 60 Hz. This has
been verified by exciting a ‘sloshing’ motion of the thermal cloud
and by parametric heating measurements, which both agree with
the calculated value. Furthermore, the depths of all standing-wave
potentials have been measured by vibrational band spectroscopy19.
For such 1D quantum gases, without a lattice in the axial direction,
we have g < 0.5 near the lattice centre.

After a further hold time of 10 ms, we add an optical standing
wave along the axial direction (x axis) in order to increase g. The
intensity of the laser forming this lattice potential (operated at a
wavelength of 854 nm) is ramped up to a final depth Vax of up to
18.5 E r. The axial momentum distribution of the quantum gases is
subsequently probed by suddenly removing all optical and magnetic
trapping potentials, and by imaging the atom clouds after a time-of-
flight period of 16 ms. In order to prevent a strong expansion of
the atom cloud along the propagation axis of the imaging laser beam
(z axis), which would make the experiment more sensitive to
misalignments in the imaging axis, we reduce the confinement
along this axis by lowering the z-lattice potential to 6 E r within a
time of 100 ms before initiating the ballistic expansion sequence.
Also, along the x axis we use a ramp down, which is not fully non-
adiabatic and leads to a narrowing of the gaussian envelope in the
observed momentum distribution by ,20%. This enhances the
number of atoms in the central momentum peak. From the

 

Figure 1 Experimental sequence and momentum profiles. a, Using a 2D optical lattice

potential, we realize an array of 1D quantum gases. b, These quantum gases are created

by first increasing the optical lattice depths along the y and z axes in an exponential ramp

over a time of 160 ms (time constant t ¼ 40 ms) to a mean final value of 27 E r. After a

further hold time of 10 ms at this final lattice depth, we increase the optical lattice potential

along the x axis within a time of 20 ms (time constant t ¼ 10 ms) to a variable lattice

depth V ax. The quantum gases are then allowed to equilibrate for another 30 ms before

we probe the momentum distribution as described in the text. c, Typical time-of-flight

images after a ballistic expansion of the atom clouds over a time of 16 ms for an axial

optical lattice depth V ax ¼ 6.5 E r. The white dashed lines denote the area from which

averaged momentum profiles along the x axis are extracted (d).
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absorption images, we extract profiles of the axial momentum
distribution by averaging horizontal profiles through the centre of
the atom cloud (Fig. 1c).

In Fig. 2, we show six experimentally measured momentum
profiles (see Supplementary Information for all 12 momentum
profiles), corresponding to different values of the axial optical
lattice depth (Vax/E r ¼ 0–18.5). In Fig. 2a there is no lattice present
along the x axis, and thus no first-order diffraction peak appears.
Here, the value of g is ,0.5 at the trap centre. For the rest of
the figures (Fig. 2b–f) we can use the relation g < U/J obtaining
g < 5–200, which indicates that the TG regime is entered rather

rapidly when increasing the axial lattice depth. In Fig. 2b–f we also
plot our theoretical predictions based on fermionization at finite
temperature averaged over the different 1D tubes (see Methods).
Apart from a normalizing factor for each experimental curve, only
the atom number in the central tube is used as an overall adjustable
parameter in this model. This atom number is, however, kept
constant between different momentum profiles. The initial tem-
perature for the lowest axial lattice depth Vax ¼ 4.6 E r has been
obtained through a finite temperature fit to the corresponding
momentum profiles using our fermionization approach. From this
initial temperature, the temperatures of the quantum gases at

Figure 2 Momentum profiles of the 1D quantum gases for different axial lattice depths. In

b–f, the experimental data (blue circles) are displayed together with our theoretical

predictions (black line) based on fermionization at finite temperatures, averaged over the

different 1D tubes. In order to emphasize the linear part of the momentum profiles, an

auxiliary straight line with the corresponding slope is shown in each plot. In c, the

momentum profiles for the ideal Bose gas (green dotted lines) and the ideal Fermi gas

(yellow dashed lines) are also displayed for comparison. For all plots, an atomic

distribution characterized by an atom number N 0,0 ¼ 18 in the central tube is used, for

which we have found the best agreement with the experimental data (see Methods). In the

insets of b–f, the density profile of a single 1D tube with N ¼ 15 particles at the

corresponding temperature and lattice depth is shown for the fermionized gas (black lines

in plots b–f), for the ideal Fermi gas (yellow line in c), and for the ideal Bose gas (green line

in c). The values of the axial lattice depths V ax, the average temperatures, the slopes a of

the linear part of the momentum profiles, and the values of g ¼ U/J are: b, 4.6 E r

and k BT/J ¼ 0.5 (Tonks), a ¼ 1.90, g ¼ 5.5; c, 7.4 E r and k BT/J ¼ 0.7 (Tonks),

k BT/J ¼ 1.6 (ideal Bose gas), k BT/J ¼ 0.7 (ideal Fermi gas), a ¼ 1.4, g ¼ 13.7;

d, 9.3 E r and k BT/J ¼ 0.9 (Tonks), a ¼ 1.2, g ¼ 23.6; e, 12 E r and k BT/J ¼ 1.3

(Tonks), a ¼ 0.8, g ¼ 47.6; and f, 18.5 E r and k BT/J ¼ 3.9 (Tonks), a ¼ 0.6,

g ¼ 204.5. For the momentum profile without the axial lattice (a), we find a ¼ 2.2 and

g ¼ 0.5 at the centre of the trap.

Figure 3 Momentum profiles of a single 1D tube obtained from our fermionization-based

theory for different lattice depths. The plots are shown for axial lattice depths V ax of 5.0 E r

(a), 9.5 E r (b), and 12.0 E r (c). For all plots, the number of particles is N ¼ 15, and

b ¼ 8 £ 1024 E r (this value of b corresponds to the trapping frequency of the

experiment; see Methods). In each plot, the log–log momentum profile at k BT/J ¼ 0

(black line) is displayed together with that at k BT/J ¼ 1.0 (orange dashed line). The

density profiles at k BT/J ¼ 0 and k BT/J ¼ 1.0, together with the corresponding lattice-

harmonic potential, are shown in the inset of each plot. Note that at k BT/J ¼ 0, finite size

effects make the slope at low momenta deviate from the ideal 1/2. The slope a is larger

than 1/2 for small filling factors (a ¼ 0.79 in a), it approaches 1/2 as a Mott phase is

developed at the centre of the trap (a ¼ 0.49 in b), and it decreases to zero deep in the

Mott phase (a ¼ 0.29 in c).
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increasing lattice depth Vax have been modelled by assuming
conservation of entropy during the ramp up of the axial lattice.
For all 12 experimentally measured momentum profiles (see Sup-
plementary Information), we find excellent agreement with the
theory based on fermionization. For reference, we have plotted the
results obtained assuming an ideal Bose or Fermi gas, also averaged
over all the 1D tubes and at finite temperatures (see for example,
Fig. 2c).

The observed momentum distributions allow us to conclude that
we are dealing with a finite, non-uniform, TG gas in a lattice. Our
results show pronounced deviations20 from the generic behaviour of
the uniform TG gas at zero temperature, where one has a 1/p 1/2 low
momentum distribution3 giving a slope of 1/2 in the log–log plot. In
our experiment we observe: (1) a rather flat momentum distri-
bution at small momenta p, and (2) a linear region at larger p, with a
slope decreasing with an increase in the lattice depth. This beha-
viour is in excellent agreement with the predictions of our fermio-
nization-based theory for such a TG gas with a finite number of
particles (about 20 per tube) in a lattice, in the presence of a
harmonic trap, and at finite temperatures (see Fig. 3). Note that
already for our lowest axial lattice depths we find g .. 1, and a
further increase in the lattice depth mainly changes the average
filling factor in our system and allows us to study the behaviour of a
TG gas at different densities.

Most of the relevant physics concerning the momentum distri-
bution for our case can be qualitatively understood by considering a
uniform lattice system at the same temperature and with a filling
factor equal to the average filling factor of the trapped system. We
can then restrict the discussion to the case n # 1/2, because for
n . 1/2 the system can be viewed as a system of holes at filling factor
1 2 n. The filling factor determines a characteristic momentum
p n ¼ " £ 2pn/l related to the mean interparticle separation, where
l is the wavelength of the lattice laser light. At zero temperature, for
p ,, pn, the momentum distribution should exhibit a linear 1/2
behaviour, whereas for larger momenta short-range correlations21

tend to increase the slope. An increase in the filling factor, and
therefore a decrease in the average separation between particles,
modifies p n and can therefore lead to a change of the observed slope.
Note that for the case of n ¼ 1/2, the momentum p n is the closest to
the lattice momentum " £ 2p/l, and the momentum distribution is
the least affected by short-range correlations. At finite temperatures
a new momentum scale sets in18,22, below which the slope has a
tendency to decrease. This is the momentum p T ¼ " £ p/LT, where
LT < lJ=kBT sinpn is a characteristic length of thermal fluctu-
ations. For a small filling factor, this length coincides with the gas
phase result LT < "2n/m*kBT, in which the particle mass is replaced
by the effective mass m* ¼ 2"2/Jl2. In our experiment we have
p T < p n. Therefore, finite-temperature effects overlap with effects
of short-range correlations and we observe a rather flat momentum
distribution at small p, and a linear region with slope larger than 1/2
for larger p.

The presence of the harmonic trapping potential introduces
important changes in the observed momentum profiles. First, in
contrast to the uniform case, an adiabatic increase of the lattice
depth increases the ratio k BT/J. This increases the momentum p T,
and the flat region extends to larger momenta. Second, the slope of
the linear part decreases with the lattice depth, and the generic 1/2
value is recovered on approach to the Mott insulator transition16,23–26.
This is a fundamental feature that is present irrespective of the
number of particles and trap frequency. It is related to the fact that
in the trapped case the characteristic average filling factor of the
system increases with the lattice depth, because the tunnelling
amplitude J decreases and particles try to accumulate near the
trap centre. At the Mott insulator crossover, where the filling factor
at the trap centre is equal to unity, the average filling factor is close
to n ¼ 1/2 (see Methods). This is the value for which the effects
of short-range correlations are strongly suppressed in the homo-

geneous lattice system, and one comes closest to the generic
behaviour with slope 1/2. Last, we note that in the weakly interact-
ing regime for a trapped quasicondensate, one should have a
lorentzian momentum distribution27, which would give a slope
close to 2 for p .."£p=LT. Already, for low axial lattice depths Vax

we observe a smaller slope, which emphasizes a strong difference of
our system from previously studied 1D quasicondensates.

In summary, we have prepared a TG gas in an optical lattice. Here
the bosonic atoms exhibit a pronounced fermionic behaviour, and
show a momentum distribution that is in excellent agreement with a
theory of fermionized trapped Bose gases. In a next step, it will be
intriguing to use photoassociation in optical lattices to probe the
reduced two-body correlations, which are expected in a TG gas28.
Furthermore, by using two bosonic atomic species and tuning the
sign and strength of the atomic interactions, it should be possible to
observe a behaviour similar to strongly correlated fermions. For
example, the bosonic atoms can undergo a BCS transition and
form Cooper pairs in the same way as electrons do in a super-
conductor29. A

Methods
Description of the 1D quantum gases using fermionization
Here we develop the theoretical treatment based on fermionization that we have used
above to model the experiment. We consider N bosonic atoms moving in the lowest band
of a 1D lattice and experiencing an additional harmonic potential. This situation is
described by the Bose–Hubbard hamiltonian H ¼ H B þ V, where

HB ¼2J
X1

‘¼21

a†
‘a‘þ1 þ a†

‘þ1a‘

� �
þ b

X1
‘¼21

‘2a†
‘a‘

V ¼ U
X1

‘¼21

a†2
‘ a2

‘

The term H B describes the motion of the atoms in the combined lattice-harmonic
potential, and the term V accounts for on-site interactions. The bosonic operators a‘

annihilate one boson at the ‘ th site, and fulfil canonical commutation relations
½a‘;a

†
‘ 0 � ¼ d‘;‘ 0 : The parameter b is related to the frequency q of the harmonic potential

by b ¼ 1/8 mq2l2.
We are interested in the strongly interacting or Tonks regime, in which two atoms

cannot occupy the same lattice site. Within this regime, the bosonic operators a‘ can be re-
expressed using the Jordan–Wigner transformation30 (JWT) in terms of fermionic ones c‘

fulfilling ½c‘; c
†
‘ 0 �þ ¼ d‘;‘ 0 . Under the JWT, the interacting Bose hamiltonian H B is

transformed into a non-interacting fermionic hamiltonian H F, through the replacement
a‘ ! c‘. In order to predict the behaviour of the different bosonic observables, one has to
transform them into fermionic ones via the JWT, and then evaluate the corresponding
expectation values for the fermionic ground state. At T ¼ 0, the fermionic ground state is
given by the Slater determinant of equation (1). At a finite temperature T, the
wavefunction is a mixture of different Slater determinants characterized by the many-body
density matrix r / exp(2H F/kBT), where kB is Boltzmann’s constant.

Density and momentum distributions of fermionized Bose gases
The particle density n(x) coincides with that of non-interacting fermions, as the JWTmaps
the corresponding bosonic observable onto the same fermionic one (that is a†

‘a‘ ! c†
‘c‘).

Under the Thomas–Fermi approximation we have:

nðxÞ ¼
1

p
arccos max

m2 bx2

22J
;21

� �� �

if m 2 bx2 . 22J and zero otherwise. The size L of the cloud is L ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2J þ mÞ=4b

p
, and m

is determined by imposing the condition that the total number of particles is N. When
m $ 2J a Mott phase is produced at the centre of the trap, and n(x ¼ 0) is equal to 1. At this
point the average filling factor of the system�n ¼ lN=2L < 3=

ffiffiffi
2

p
p, a value which is close to

1/2.
The momentum distribution n̂ðpÞ is related to the one-particle correlation function

ka†
‘a‘ 0 l through:

n̂ðpÞ ¼ jFðpÞj
2

X1
‘;‘ 0 ¼21

e2ipð‘2‘
0 Þ a†

‘a‘ 0


 �

where F(p) is the Fourier transform of the Wannier function, and p denotes momentum in
units of "k. Using the JWT, the bosonic one-particle correlation function can be re-
expressed as:

a†
‘a‘ 0


 �
¼ c†

‘ð21Þ
P

‘.m.‘ 0 c†
m cm c‘ 0

D E
;‘. ‘

0

Making extensive use of Wick’s theorem, one can re-express this quantity as a Töplitz
determinant a†

‘a‘ 0


 �
¼ det½G‘;‘ 0 �, where G‘;‘ 0 is a ‘–‘

0
, ‘–‘

0
matrix with elements

ðG‘;‘ 0 Þx;y ¼ c†
‘ 0 þy21

c‘ 0 þx

D E
2 dx;y21=2.

Therefore, in order to evaluate the momentum distribution at a finite temperature T
one has to determine the one-particle correlation functions for a non-interacting Fermi
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system at that temperature. We have used the grand canonical Fermi–Dirac distribution
and the exact eigenstates Ji(x) of the single-particle hamiltonian to determine the
momentum distribution in this way.

Averaging over the array of 1D quantum gases
In order to give a quantitative prediction for the experimental situation, we have
averaged the momentum distribution for different tubes. To determine the atomic
distribution, we have assumed that during the ramp up of the 2D optical lattice
potential, tunnelling becomes negligible, and we have an array of independent 1D gases.
For each tube, we have assumed a Thomas–Fermi density profile. Minimizing the total
energy of the array with respect to the number of atoms in each of the tubes, we obtain

Ni;j ¼ N0;0 12 5N
2pN0;0

ði2 þ j2Þ
� �3=2

, where Ni,j is the number of atoms in a tube located at

position (i, j) in the 2D optical lattice, N is the total number of particles in the array, and
N0,0 is the number of particles in the central tube. It follows that the probability of having a
tube with M particles is:

PðMÞ ¼
2

3

1

N
2=3
0;0 M1=3

; M # N0;0:

Remarkably, this distribution only depends on one parameter, namely, the number of
particles in the central tube, which is the only adjustable parameter in our model.

The temperature of each 1D quantum gas has been calculated assuming adiabatic
evolution of the system during the ramp up of the axial lattice. Owing to the presence of
the harmonic confinement, the ratio k BT/J is not conserved in the adiabatic evolution.
Given the temperature at Vax ¼ 4.6 E r (see Supplementary Information), the conservation
of entropy allows us to determine the temperature at the final lattice depth Vax. The
entropy of the TG gas coincides with that of the non-interacting Fermi gas, as both have
the same spectrum and density of states. This results in the same temperatures for a TG gas
and an ideal Fermi gas, but a different temperature for the ideal Bose gas when the axial
lattice depth is increased. Note that tubes with different number of particles also have
different temperatures at the same lattice depth.
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26. Kollath, C., Schollwöck, U., von Delft, J. & Zwerger, W. Spatial correlations of trapped one-

dimensional bosons in an optical lattice. Phys. Rev. A 69, 031601 (2004).

27. Richard, S. et al. Momentum spectroscopy of 1D phase fluctuations in Bose-Einstein condensates.

Phys. Rev. Lett. 91, 010405 (2003).

28. Gangardt, D. M. & Shlyapnikov, G. V. Stability and phase coherence of trapped 1D Bose gases. Phys.

Rev. Lett. 90, 010401 (2003).

29. Paredes, B. & Cirac, J. I. From Cooper pairs to Luttinger liquids with bosonic atoms in optical lattices.

Phys. Rev. Lett. 90, 150402 (2003).

30. Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, Cambridge, 1999).

Supplementary Information accompanies the paper on www.nature.com/nature.

Acknowledgements We thank F. Gerbier, D. Gangardt and M. Olshanii for discussions, and

M. Greiner for help in setting up the experiment. I.B. also acknowledges support from AFOSR.

Competing interests statement The authors declare that they have no competing financial

interests.

Correspondence and requests for materials should be addressed to I.B. (bloch@uni-mainz.de).

..............................................................

Synthesis and characterization
of chiral mesoporous silica
Shunai Che1, Zheng Liu2,3, Tetsu Ohsuna3, Kazutami Sakamoto4,
Osamu Terasaki3 & Takashi Tatsumi5

1Department of Chemistry, School of Chemistry and Chemical Technology,
Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
2Bussan Nanotech Research Institute, 2-1 Koyadai, Tsukuba, Ibaraki 305-0074,
Japan
3Structural Chemistry, Arrhenius Laboratory, Stockholm University,
S-10691 Stockholm, Sweden
4AminoScience Laboratory, Ajinomoto Co., Inc., 1-1 Suzuki-cho,
Kawasaki 210-8681, Japan
5CREST, JST, Division of Materials Science and Chemical Engineering,
Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai,
Yokohama 240-8501, Japan
.............................................................................................................................................................................

Chirality is widely expressed in organic materials, perhaps most
notably in biological molecules such as DNA, and in proteins,
owing to the homochirality of their components (D-sugars and
L-amino acids). But the occurrence of large-scale chiral pores in
inorganic materials is rare1. Although some progress has been
made in strategies to synthesize helical and chiral zeolite-like
materials1–3, the synthesis of enantiomerically pure mesoporous
materials is a challenge that remains unsolved4. Here we report
the surfactant-templated synthesis of ordered chiral mesoporous
silica, together with a general approach for the structural analysis
of chiral mesoporous crystals by electron microscopy. The
material that we have synthesized has a twisted hexagonal rod-
like morphology, with diameter 130–180 nm and length 1–6 mm.
Transmission electron microscopy combined with computer
simulations confirm the presence of hexagonally ordered chiral
channels of 2.2 nm diameter winding around the central axis of
the rods. Our findings could lead to new uses for mesoporous
silica and other chiral pore materials in, for example, catalysis
and separation media, where both shape selectivity and enantio-
selectivity5 can be applied to the manufacturing of enantiomer-
ically pure chemicals and pharmaceuticals.

We recently discovered a templating route for preparing well-
ordered mesoporous silicas based on the self-assembly of chiral
anionic surfactants and inorganic precursors by using aminosilane
or quaternized aminosilane as a co-structure-directing agent
(CSDA)6, which provided a potential method to synthesize meso-
porous materials with inherent chirality. Among the anionic sur-
factants tested in our previous work, N-acyl-L-alanine is a chiral
organic molecule that can form a chiral nematic phase in the
presence of small amounts of decanol7,8. This phenomenon has
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We demonstrate quantum control over both internal and external quantum degrees of freedom in a
high number of identical ‘‘chemical reactions,’’ carried out in an array of microtraps in a 3D optical
lattice. Starting from a Mott insulating phase of an ultracold atomic quantum gas, we use two-photon
Raman transitions to create molecules on lattice sites occupied by two atoms. In the atom-molecule
conversion process, we can control both the internal rovibronic and external center of mass quantum
state of the molecules. The lattice isolates the microscopic chemical reactions from each other, thereby
allowing photoassociation spectra without collisional broadening even at high densities of up to
2� 1015 cm�3.

DOI: 10.1103/PhysRevLett.93.073002 PACS numbers: 32.80.Qk, 33.80.–b, 34.50.Rk
The formation of ultracold molecules is currently one
of the most actively pursued topics in atomic and mo-
lecular physics. Recently, spectacular progress in this
field has been achieved by using adiabatic sweeps over
Feshbach resonances to produce quantum gases of a vari-
ety of alkali dimers [1–6] culminating in the observation
of Bose-Einstein condensation of molecules [7–9] and
resonance superfluidity [10,11]. A complementary ap-
proach to the creation of molecules is based upon photo-
association (PA) [12–19]. Here a two-photon Raman
process can access molecular states beyond the scope of
magnetic Feshbach resonances. It has been pointed out
that the combination of photoassociation with 3D optical
lattices can considerably enhance the efficiency of the
molecule formation process [20] due to the tight confine-
ment of the atoms at lattice sites. Here we report on the
production of 87Rb2 molecules in a 3D optical lattice via
one- and two-photon photoassociation. We show that, in
addition to the internal quantum state of the molecule, the
quantum state of the external center of mass (c.m.) motion
can be controlled. Moreover, we demonstrate that two-
body loss processes induced by photoassociation can be a
sensitive tool in determining the number of atoms on the
lattice sites.

Starting from an atomic Bose-Einstein condensate
(BEC) in the optical lattice, a Mott insulator state with
a central region with two atoms per site can be formed
[21]. Thereby, a high number of identical microscopic
two-particle systems is created. Through a coherent
Raman process, one can then couple exactly two atoms
on a single lattice site to a bound molecule in a well-
defined rovibronic quantum state via an intermediate
excited molecular state, while avoiding perturbing
mean field shifts during the photoassociation process.
Furthermore, if both atoms initially occupy the lowest
internal atomic energy state, the density of the atoms can
0031-9007=04=93(7)=073002(4)$22.50 
be raised to values not achievable in the homogeneous
case, due to the absence of any two- and three-body loss
processes.

Similar to our previous experiments, we start with the
production of an almost pure BEC of approximately 3�
105 87Rb atoms in the jF � 1; mF � �1i state. This con-
densate can then be transferred into a 3D optical lattice
by superimposing far detuned optical standing waves
along three orthogonal axes. These standing waves are
formed by laser light with a wavelength of � � 840 nm
and beam waists (1=e2) of w � 150 �m at the position of
the BEC. We convert the BEC into a Mott insulator by
gradually increasing the potential depth of the 3D lattice
to a value of up to 27Er over a time of 80 ms. Here Er �
�h2k2=2m denotes the recoil energy, m the mass of a
rubidium atom, and k � 2
=� is the wave vector of the
lattice laser light. This results in trapping frequencies at a
lattice site of up to ! � 2
� 35 kHz, with peak den-
sities as high as 2� 1015 cm�3 for doubly occupied sites.
While for our experimental parameters the outer regions
of the Mott insulator should mainly consist of singly
occupied sites, the core should be mainly composed of
doubly occupied sites.

In order to obtain an accurate detuning relative to the
intermediate excited molecular state, we have first per-
formed one-photon photoassociation. This process occurs
in an ultracold atomic gas when two colliding atoms
absorb a laser photon of energy �h!a corresponding to
the energy difference between the asymptotic free atom
state and a bound excited molecular level. The coupling
strength on this transition �a is determined by the elec-
tronic Rabi frequency, multiplied by an overlap integral
between the free collisional and bound molecular wave
function according to the Franck-Condon principle. A
deep 3D optical lattice will lead not only to a quasihar-
monic confinement for the c.m. motion of the atom pair,
2004 The American Physical Society 073002-1



VOLUME 93, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S week ending
13 AUGUST 2004
but will also significantly affect the long-range part of
the interatomic potential [see Fig. 1(a)]. As a result, the
initial collisional wave function is localized in space and
thereby the Franck-Condon factor of the photoassociation
transition can be considerably enhanced. In fact, the
confinement of atoms on lattice sites turns the free-bound
transition into a bound-bound transition.

In our experiment, molecule formation is detected by
monitoring atom losses. This is done by measuring the
remaining atom number with standard absorption imag-
ing after the atoms have been illuminated for a fixed
period of time with a PA laser beam. From the reduction
in atom number, we can deduce the number of created
molecules, under the assumption that secondary loss pro-
cesses can be neglected. In order to stabilize the fre-
quency of the photoassociation laser, the laser is offset
locked relative to the D1 line of atomic rubidium. It is
tuned with an accuracy of 1 MHz to the vicinity of a
particular excited molecular level of the 0�g potential,
approximately 0.69 THz below the atomic resonance
frequency [18]. This laser beam exhibits a total power
of 3 mWand is focused to a (1=e2) beam waist of 200 �m
at the position of the quantum gas in the optical lattice.
After locating the position of the one-photon molecular
resonance, we have measured the time dependence of the
molecule formation process by placing the PA laser on
resonance with the molecular transition and recording the
atom losses vs time. Assuming only two-body losses, the
atomic loss rates can be described by

dN
dt
� �K2

Z

n2� ~r� d3r; (1)

where N is the total atom number after a time t, n� ~r� is the
atomic density, and K2 is a characteristic loss constant.

This equation displays an interesting dimensionality
effect. For a 1D optical lattice, most lattice sites contain
N � 2 atoms. Therefore, many molecules can succes-
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FIG. 1 (color online). Two-color photoassociation process of
two atoms being placed in the external ground state at a single
site of an optical lattice potential. Both the rovibrational
quantum state in the relative motion of the two atoms forming
the molecule (a) and the c.m. motional quantum state of the
molecule (b) can be controlled.
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sively be formed on one site. As more and more atoms
are converted into molecules, the remaining atom number
decreases, causing a change in the atomic density n�~r�.
This leads to a nonexponential decay in the atom number,
which we observe in the experiment (see Fig. 2). If we
impose a deep 3D optical lattice, such that we reach the
Mott insulator regime, the lattice sites are occupied by
single atoms or atom pairs for our experimental parame-
ters. As the lattice isolates atoms on different sites from
each other, only atoms on doubly occupied lattice sites
can be converted into molecules. Figure 2 shows a decay
of the remaining atom number asymptotically tending to
a constant offset. The decay is related to photoassociation
on doubly occupied lattice sites and its form is purely
exponential since the rate is independent of the total atom
number. The remaining atom number decreases as

N�t� � N1 	 2N2 exp��t=��; (2)

where N1;2 is the initial number of lattice sites occupied
by one or two atoms, respectively. From N1 and N�0� we
can conclude that for our lattice parameters the ratio of
single to doubly occupied lattice sites is 1.6(1), which is
consistent with a shell structure of Mott insulator regions
with single and double occupancy.

Having determined the resonance frequency corre-
sponding to the excited molecular level, we can now
drive a resonantly enhanced two-photon Raman transi-
tion (see Fig. 1). In this process, two colliding atoms
absorb one photon from the first laser field !a and emit
another photon into an additional stimulating laser field
!b. The second laser is phase locked with respect to the
first in order to enable the coherent two-photon transition.
Under the action of the two-photon coupling, both atoms
will be transferred to a molecule in a specific molecular
state. The rovibronic state is selected by choosing a
Raman-laser difference frequency � � !a �!b, which
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FIG. 2. Time-resolved one-color photoassociation; in 1D
(empty circles) and 3D lattice (filled circles) configurations.
The photoassociation laser is tuned to resonance with an
intensity of I � 5 W=cm2 and illuminates the sample for a
varying time, after which the total atom number is measured.
The inset shows the 1D lattice loss data in a log-lin plot.
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FIG. 3. Two-photon photoassociation of the uppermost vibra-
tional level in the electronic ground state 3�	u at �=2
 

24 MHz and at �=2
 
 636 MHz, with the quantized
c.m. motion resolved. The remaining atom number after a
photoassociation time of about 120 ms is measured for varying
difference frequencies � at a constant detuning of (a) � �
2
� 700 MHz and laser intensities of Ia � 12 W=cm2 and
Ib � 6 W=cm2 and (b) a detuning of � � �2
� 990 MHz
and Ia � 16 W=cm2 and Ib � 12 W=cm2. The solid curve is
a fit assuming four independent Lorentzian profiles and a
constant background. The difference in the vibrational level
spacings between (a) and (b) are mainly due to different lattice
depths of (a) 18Er and (b) 27Er along the optical lattice axis of
the photoassociation lasers.

VOLUME 93, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S week ending
13 AUGUST 2004
matches the binding energy of the molecular state. In our
case, a parallel polarization ensures �J � 0 transitions,
where J is the rotational quantum number. As the mole-
cules are formed in s-wave collisions, we can therefore
selectively produce molecules in the rotational ground
state. The final level is chosen to lie in the a3�	u electronic
state potential. If the virtual intermediate level of energy
�h!a is relatively close to a real molecular level, as in the
case of our experiment, the effective two-photon Rabi
frequency of the process is given by �eff � �a�b=�2��,
where �a;b are the respective one-photon Rabi frequen-
cies and � is the detuning from the intermediate level.
The one-photon Rabi frequencies include the Franck-
Condon factors for the corresponding transitions.
Therefore, the external confinement by the optical lattice
also increases the efficiency of the Raman process
through �a.

A major obstacle lies in the possibility of spontaneous
Raman scattering. A molecule that has just been formed
can absorb a single photon from either laser beam and be
excited to an intermediate molecular state, from where it
can decay via spontaneous emission to other bound or
unbound states, leading to trap losses. In order to ameli-
orate these problems, we choose a rather large detuning
j�j, which decreases the spontaneous scattering rate.
Thus far, however, we have not been able to enter a
regime, where the coherent coupling exceeds the damping
rate, such that, e.g., coherent Rabi oscillations between
atoms and molecules could be observed [1,22].

We present measurements at difference frequencies of
� 
 2
� 24 MHz and � 
 2
� 636 MHz correspond-
ing to the uppermost vibrational levels in the ground state
potential [18]. Both lasers illuminate the atomic ensemble
for a fixed time in a counterpropagating beam configura-
tion parallel to one axis of the optical lattice. Thereafter,
the remaining number of trapped atoms is again recorded
(see Fig. 3). On all spectra, we observe a progression of
resonances spaced by roughly 30 kHz. This series of
resonances corresponds to a resolved quantized
c.m. motion of the molecules formed at single lattice sites.
In fact, when the lifetime of the molecules is longer than
the c.m. oscillation period at each lattice site, it should be
possible to resolve the different c.m. motional states,
which is the case for our experimental parameters. The
highest resonance frequency recorded denotes a transition
in which a molecule in the ground state of a single lattice
site has been formed. The other resonances originate from
transitions to higher lying motional quantum states [see
Fig. 1(b)]. The appearance of these resonances confirms
that the emerging molecules are trapped on the sites of the
optical lattice. The frequency separation of the resonances
is directly given by the vibrational splitting of the
c.m. motional quantum states. It is interesting to note
that the observed trapping frequencies almost coincide
with the atomic trapping frequencies. This can be under-
stood as the polarizability of molecules formed in high
073002-3
lying rovibrational states should be close to twice the
polarizability of a single atom [23]. Since the molecules
have twice the mass of a single atom, this leads to iden-
tical trapping frequencies as in the case of free atoms.
Note, however, that the external potential for the mole-
cules is twice as deep as for the atoms and supports more
bound states. Furthermore, we observe that the spacing
between higher lying vibrational c.m. quantum states is
slightly reduced due to the anharmonicity of the trapping
potential at a lattice site.

The reduced strength of the transitions to higher lying
c.m. motional quantum states is related to an additional
Franck-Condon factor in the c.m. motion, which depends
on the initial and final motional quantum states j~vi and
j~v0i and is given by h~v0j exp�2ikz�j~vij2. The total transi-
tion rate to form molecules is then directly proportional
to the internal rovibronic and external c.m. Franck-
Condon factors. In Fig. 3, we observe a good quantitative
agreement with the expected weaker transitions to higher
lying motional quantum states to within 10% accuracy.
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FIG. 4. High resolution two-photon photoassociation of the
transition to the most weakly bound internal vibrational state in
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scan was taken at an intermediate detuning of � � �2
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Spontaneous Raman scattering mostly limits the ob-
served linewidths and, by reducing the intensities of the
corresponding laser, we have been able to observe narrow
two-photon resonance linewidths as low as 1 kHz (see
Fig. 4). Note that this high resolution spectroscopy is
carried out at high atomic on-site densities of 2�
1015 cm�3. This proves that mean field shifts are absent
in our system and do not broaden the lines, as has been
observed in [18] even for an order of magnitude lower
densities. Limits on the linewidth observed here could
be caused by a differential light shift between the atoms
and the molecules, a resonant spectral background on
our diode lasers, or mechanical vibrations. From the
observed lowest linewidths, we can deduce the life-
time of the molecules, which should be on the order
of 1 ms.

In conclusion, we have demonstrated two-photon
Raman photoassociation of 87Rb atoms from a Mott in-
sulator phase in an 3D optical lattice. By choosing appro-
priate parameters for the photoassociation laser fields, we
have achieved control over both internal and external
degrees of freedom of the molecules. A combination of
Feshbach techniques and two-color Raman transitions
could further increase the efficiency of molecule forma-
tion while allowing one to address deeply bound molecu-
lar states in future experiments [24]. A counterintuitive
photoassociation pulse sequence leading to stimulated
Raman adiabatic passage (STIRAP, [25]) could result in
a very fast and robust molecule production scheme. In
combination with a 3D optical lattice, one would then end
up with a molecular Mott insulator. The melting of this
Mott insulator [20] could then be used to create a Bose-
Einstein condensate of molecules in almost arbitrary
internal quantum states.

We would like to thank A. Altmeyer and S. Fölling for
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[6] S. Dürr, T.Volz, A. Marte, and G. Rempe, Phys. Rev. Lett.

92, 020406 (2004).
[7] M. Greiner, C. A. Regal, and D. S. Jin, Nature (London)

426, 537 (2003).
[8] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl,

S. Riedl, C. Chin, J. Hecker Denschlag, and R. Grimm,
Science 302, 2101 (2003).

[9] M.W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F.
Raupach, S. Gupta, Z. Hadzibabic, and W. Ketterle,
Phys. Rev. Lett. 91, 250401 (2003).

[10] C. A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett. 92,
040403 (2004).

[11] M.W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F.
Raupach, A. J. Kerman, and W. Ketterle, Phys. Rev.
Lett. 92, 120403 (2004).

[12] P. D. Lett, K. Helmerson,W. D. Phillips, L. P. Ratliff, S. L.
Rolston, and M. E. Wagshul, Phys. Rev. Lett. 71, 2200
(1993).

[13] J. D. Miller, R. A. Cline, and D. J. Heinzen, Phys. Rev.
Lett. 71, 2204 (1993).

[14] E. R. I. Abraham, W. I. McAlexander, C. A. Sackett, and
R. G. Hulet, Phys. Rev. Lett. 74, 1315 (1995).

[15] Y. Band and P. Julienne, Phys. Rev. A 51, R4317 (1995).
[16] C. C. Tsai, R. S. Freeland, J. M. Vogels, H. M. Boesten,

B. J. Verhaar, and D. J. Heinzen, Phys. Rev. Lett. 79, 1245
(1997).

[17] A. Fioretti, D. Comparat, A. Crubellier, O. Dulieu,
F. Masnou-Seeuws, and P. Pillet, Phys. Rev. Lett. 80,
4402 (1998).

[18] R. Wynar, R. S. Freeland, D. J. Han, C. Ryu, and D. J.
Heinzen, Science 287, 1016 (2000).

[19] C. McKenzie et al., Phys. Rev. Lett. 88, 120403 (2002).
[20] D. Jaksch, V. Venturi, J. I. Cirac, C. J. Williams, and

P. Zoller, Phys. Rev. Lett. 89, 040402 (2002).
[21] M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, and
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In a pioneering experiment1, Hanbury Brown and Twiss (HBT)
demonstrated that noise correlations could be used to probe the
properties of a (bosonic) particle source through quantum
statistics; the effect relies on quantum interference between
possible detection paths for two indistinguishable particles.
HBT correlations—together with their fermionic counter-
parts2–4—find numerous applications, ranging from quantum
optics5 to nuclear and elementary particle physics6. Spatial
HBT interferometry has been suggested7 as a means to probe
hidden order in strongly correlated phases of ultracold atoms.
Here we report such a measurement on the Mott insulator8–10

phase of a rubidium Bose gas as it is released from an optical
lattice trap. We show that strong periodic quantum correlations
exist between density fluctuations in the expanding atom cloud.
These spatial correlations reflect the underlying ordering in the
lattice, and find a natural interpretation in terms of a multiple-
wave HBT interference effect. The method should provide a
useful tool for identifying complex quantum phases of ultracold
bosonic and fermionic atoms11–15.

Although quantum noise correlation analysis is now a basic tool
in various areas of physics, applications to the field of cold atoms
have been scarce. Most of these concentrate on photon correlation
techniques from quantum optics5,16. It was not until 1996 that
bunching of cold (but non-degenerate) bosonic atom clouds could
be directly measured17, followed by the observation of reduced
inelastic losses due to a modification of local few-body correlations
by quantum degeneracy18–20.

In our experiment, we directly measure the spatial correlation
function of the density fluctuations in a freely expanding atomic

cloud7,21–23. We create an ultracold Bose gas in an optical lattice with
several hundred thousand occupied lattice sites, and record the
density distribution after sudden switch-off of the trapping poten-
tial and a fixed period of free expansion (the ‘time of flight’).
Resonant absorption of a probe laser24 yields the two-dimensional
column density of the cloud, that is, the density profile integrated
along the probe line of sight, as illustrated in Fig. 1a. It should be
noted that the density after the time of flight reflects the in-trap
momentum distribution rather than the in-trap density distri-
bution. We performed the experiment with a Bose gas initially in
the Mott insulator regime8–10, where repulsive interactions pin the
atomic density to exactly an integer number of atoms per lattice site,
typically between one and three. In this Mott insulator phase, the
average density distribution after expansion is simply given by the

Figure 1 Illustration of the atom detection scheme and the origin of quantum correlations.

a, The cloud of atoms is imaged to a detector plane and sampled by the pixels of a CCD

camera. Two pixels P1 and P2 are highlighted, each of which registers the atoms in a

column along its line of sight. Depending on their spatial separation d, their signals show

correlated quantum fluctuations, as illustrated in b. b, When two atoms initially trapped at

lattice sites i and j (separated by the lattice spacing a lat) are released and detected

independently at P1 and P2, the two indistinguishable quantum mechanical paths,

illustrated as solid and dashed lines, interfere constructively for bosons (or destructively

for fermions). c, The resulting joint detection probability (correlation amplitude) of

simultaneously finding an atom at each detector is modulated sinusoidally as a function of

d (black curve). The multiple wave generalization to a regular array of six sources with the

same spacing is shown in green. a.u., arbitrary units.

letters to nature

NATURE |VOL 434 | 24 MARCH 2005 | www.nature.com/nature 481
© 2005 Nature Publishing Group 

 



incoherent sum of all single particle wavefunctions released from
each lattice site—a featureless gaussian. However, a typical single
shot absorption image as shown in Fig. 2a and b exhibits large
fluctuations around this average. It is the purpose of this Letter to
demonstrate that these fluctuations are related to intrinsic quantum
noise and that their HBT-type correlations contain information on
the spatial order in the lattice that is absent from the average density.
To analyse the fluctuations, we introduce the spatially averaged,

normalized density–density correlation function:

CðdÞ ¼

Ð
nðxþ d=2Þ�nðx2 d=2Þ
� �

d2xÐ
nðxþd=2Þ
� �

nðx2 d=2Þ
� �

d2x
ð1Þ

which denotes the conditional probability of finding two particles at
two positions separated by a vector d, averaged over all such
positions. In equation (1), n(x) is the column density obtained
from a single absorption image and the brackets k l denote averaging
over an ensemble of independently acquired images. Uncorrelated
particles correspond to C(d) ¼ 1, whereas C(0) . 1 indicates a
tendency of particles to bunch, typical for bosons. In Fig. 2c and d,
an experimentally obtained correlation function is shown. In
striking contrast to the atomic density distribution of Fig. 2a,
sharp peaks emerge. They appear on positions corresponding to
the reciprocal lattice vectors of the original periodic trapping
potential.
We found the correlation patterns to be robust in the Mott

insulating regime, and observed them over a broad range of lattice
depths. For a planar lattice of several thousand one-dimensional
decoupled Bose gases with random phases10,25, we observed similar
density correlations. The latter case is related to a recent experi-
ment26, where single shot interference patterns were observed from
30 independent Bose–Einstein condensates with random phases.
Both these cases can be described through a classical field model,
whereas the case of a Mott insulator presented here requires a full
quantum treatment and detection of the atom number distribution
at the atomic shot noise level.
In order to explain the origin of the correlations in the density

fluctuations and their regularity, let us first consider the simple

model illustrated in Fig. 1b. Two bosonic atoms in a periodic
potential are initially localized at two lattice sites i and j separated
by n ij lattice spacings. When these particles are released from
the trapping potential, one can show7,21 that the joint detection
probability by two detectors separated by a distance d is sinusoidally
varying as a function of d (Fig. 1c). The spatial wavevector 2pnij/l of
this modulation is determined by the separation of the sources and
the characteristic length:

l ¼
h

ma lat
t ð2Þ

where t denotes the time of flight, h is Planck’s constant, m is the
atomic mass, and a lat is the lattice spacing. For a large number of
perfectly distributed but independent sources corresponding to the
individual sites of theMott insulator, the joint detection amplitudes
for all possible pairs in the source have to be added. The wave-
numbers associated with every pair formed from such a distribution
are then integer multiples of 2p/l, so that away from d ¼ 0 the
amplitudes add up constructively wherever the detector separation
is a multiple of l. A lattice pattern of sharp peaks reproducing the
reciprocal lattice therefore emerges as the number of particles
increases, each peak width being roughly determined by l/N s,
with N s being the number of occupied sites in the lattice in one
dimension. Owing to the different quantum statistics of bosons and
fermions the fundamental sine components have opposite signs,
and therefore positive peaks emerge for bosons and negative peaks
for fermions.

In the experiments, each detector in the above model is repre-
sented by a pixel of the CCD (charge-coupled device) camera, which
detects the absorption image of the atom cloud. The array of pixels
in this camera thereby samples the column density of the atomic
cloud, according to n ¼ Nbin/Apx. HereNbin is the number of atoms
detected within a column defined by the area Apx of each pixel and
the direction of propagation of the probe light. In addition, each bin
is smoothed by the point spread function of our imaging system,
which we approximate by a gaussian. In our case, its root mean
square (r.m.s.) radius j < 5.6 mm is larger than the pixel size

Figure 2 Single shot absorption image including quantum fluctuations and the associated

spatial correlation function. a, Two-dimensional column density distribution of a Mott

insulating atomic cloud containing 6 £ 105 atoms, released from a three-dimensional

optical lattice potential with a lattice depth of 50E r. The white bars indicate the reciprocal

lattice scale l defined in equation (2). b, Horizontal section (black line) through the centre

of the image in a, and gaussian fit (red line) to the average over 43 independent images,

each one similar to a. c, Spatial noise correlation function obtained by analysing the same

set of images, which shows a regular pattern revealing the lattice order of the particles in

the trap. d, Horizontal profile through the centre of the pattern, containing the peaks

separated by integer multiples of l. The width of the individual peaks is determined by the

optical resolution of our imaging system.
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(4.4 mm) and determines an effective width for each bin.
The correlation for such a coarse-grained density can still be

calculated from equation (1) by taking the integration over the
probe line of sight into account and convoluting the resulting
correlation signal with the resolution function described above
(see also Methods section). The outcome of this calculation can
be qualitatively understood from statistical considerations. One
expects the amount of relative number fluctuations in a single
detection bin to scale as 1=

ffiffiffiffiffiffiffiffiffi
Nbin

p
for Nbin..1, implying a 1/Nbin

scaling for the correlation amplitude increase above the uncorre-
lated level C(d) ¼ 1 (see equation (1)). However, in our case this
signal is distributed over Npeaks < 4p(w/l)2 correlation peaks
within the expanding density envelope of width w. To obtain the
magnitude of the signal, we calculate the average number of atoms
per bin as Nbin ¼ Natoms(j/w)

2, with Natoms representing the total
atom number. This yields a correlation amplitude per peak:

C dpeak

� �
2 1<

1

Npeaks

1

Nbin
<

1

4pNatoms

l

j

� �2

ð3Þ

The estimate in equation (3) agrees with a rigorous calculation
assuming a homogeneous Mott insulator with unity filling (see
Methods). For typical parameters of the experiments (5 £ 105

atoms, l/j ¼ 40), it yields a correlation amplitude of ,3 £ 1024,
in agreement with our observations.

To confirm our analysis, we plot in Fig. 3 the experimental
correlation signal from the Mott insulator versus expansion time
and atom number. This signal is defined by the volume under the
lateral peaks, that is, the product of the peak height times its area as
determined by a gaussian fit. The resulting ‘correlation signal’ does
not require a precise determination of the resolution, and is rather
insensitive to defocusing or calibration errors. According to
equation (3), it depends quadratically on the time of flight and
inversely on atom number for homogeneous filling. However, for a

Mott insulator in a harmonic trap, a shell structure develops for
increasing filling8,27. A model of this atom number distribution (see
Methods) predicts a reduction of the (Natoms)

21 scaling behaviour
for large atom numbers to (Natoms)

20.64. Using a combined fit to
both data sets in Fig. 3a and b, the measured exponent of atom
number scaling is 0.78 ^ 0.15, close to the expected value. However,
the amplitude of the signal is 40% lower than what would be
expected from our simple theoretical model.
For a Bose–Einstein condensate in an optical lattice, a flat spatial

correlation function is expected28. Obtaining the correlation func-
tion in this regime, however, turned out not to be experimentally
possible. In the actual experiment small fluctuations of the super-
fluid interference pattern between the individual images exist,
owing to technical reasons such as shot-to-shot atom number
variations, or excitations of the condensate by external pertur-
bations. Such fluctuations are not cancelled by the normalization
in equation (1), and the associated correlations turn out to be
stronger than the quantum noise correlations observed in the
Mott insulating case. We attribute the much more robust quantum
noise correlation signal of a Mott insulator to the gapped excitation
spectrum (with an energy gap ,3 kHz in our case), which
protects this state from external perturbations that would otherwise
degrade the correlations. We also investigated the case of a thermal
cloud significantly above condensation temperature but with no
observable population in the excited Bloch bands, for which we did
not find a correlation signal. A possible explanation for this could be
the decrease in signal (compared to theMott insulating state) due to
an increased spatial size of the system in combination with an
increased noise background due to density and temperature fluc-
tuations. We have considered the possibility that the correlation
signal we observed in theMott insulating case could be produced by
shot-to-shot fluctuations of a residual fraction of atoms with long
range coherence. In order to rule out this effect, we have checked
that the regions that would contain the peaks of the diffraction
pattern can be excluded from the analysis without significantly
affecting the noise correlation pattern.
In conclusion, we have demonstrated that spatial quantum noise

correlations in expanding atom clouds can be used to reveal the
ordering of indistinguishable particles in optical lattices. They
enable the direct and easy detection of many of the more complex
and intriguing quantum phases that have been predicted for
ultracold bosonic and fermionic atoms—for example, antiferro-
magnets or spin-waves in two-component spin mixtures loaded
into the optical lattice12,13. Antiferromagnetic ordering or charge
density waves in Fermi gases or Bose–Fermi mixtures14,15, for
example, would yield additional correlation peaks at momenta
given by half the reciprocal lattice vector7.
We note that after submission of this manuscript, we received

a preprint29 reporting the use of noise correlations in expanded
atom clouds for identifying the fragments produced by ultracold
molecule dissociation. A

Methods
Experimental sequence
Atomic Mott insulators are prepared by loading a Bose–Einstein condensate of up to
6 £ 105 atoms of 87Rb into an optical lattice potential. For this, three optical standing
waves of wavelength l ¼ 850 nm are superimposed at the position of the Bose–Einstein
condensate formed in amagnetic trap. This yields a lattice of simple cubic geometry with a
lattice constant of a lat ¼ l/2 ¼ 425 nm. After a slow ramp-up of the lattice in 160ms,
the atoms are strongly confined at the lattice sites (potential depth ,50E rec, with
E rec ¼ h2/2ml2) until they are released to free ballistic expansion by switching off all
potentials.

Following a time of flight period, the two-dimensional density profile of the cloud is
obtained by illuminating it with a resonant laser pulse and projecting the profile of the
resulting beam onto a CCD camera. A second image is taken without the atoms in the
beam, and the two resulting images are divided to determine the optical density
distribution of the cloud. The number of atoms in a column corresponding to a region of
the imaging plane can then be deduced from the integrated optical density in that region24.

 

Figure 3 Correlation signal versus expansion time and atom number. a, b, Average

correlation signal as a function of the time of ballistic expansion (a) and the number of

atoms N loaded in the lattice (b). The solid lines denote the result of a simultaneous fit to

both data sets to determine the amplitude of the signal and the power law of the decay in b

(error bars denote root-mean-square deviations).
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Analysis of images
In addition to the finite resolution, the camera system adds artefacts to the images owing
to optical interference effects of the coherent illumination light and electronic crosstalk
during readout of the CCD chip. In our case, the former results in a pattern of vertical
stripes and the latter mainly creates a periodic noise with awavelength of two pixels. As the
phase and amplitude of both periodic distortions are not constant, they can not be
cancelled by the normalization procedures and appear as periodic fluctuation in the noise
correlation plot. Images with high amplitude of such fluctuations (visible outside the atom
cloud) are removed from further analysis. The electronic noise is addressed after the
determination of the correlation function, by convolving it with a horizontal three-pixel-
wide gaussian mask for smoothing.

The correlation function as defined in equation (1) is obtained from a set of images as
follows: from each image the autocorrelation function (ACF) is calculated by Fourier-
transforming it, taking the absolute square to obtain the power spectral density and Fourier-
transforming it back. Averaging the ACF of all images yields the numerator of equation (1),
whereas the denominator is obtained by calculating the ACF of the average of all images.

Theoretical model
The origin of the correlation peaks can be understood as follows. Calculating the ACF
determines the expectation value of the operator n̂ðx1; tÞ n̂ðx2; tÞh i ¼

âþðx1; tÞ âðx1; tÞ âþðx2; tÞ âðx2; tÞh i at time t, with x1 ¼ x2 1
2d; x2 ¼ xþ 1

2d. The
operators â(x,t) at position x and time t after release relate to the on-site operators âðr jÞ for
the lattice sites j at positions rj as

âðx; tÞ ¼
j

X
wðx2 r j; tÞe

iðm=2�htÞðx2r j Þ
2

âðr jÞ

where w is the expanding wavefunction originally localized to the Wannier function at the
site. For the product of Fock states representing the Mott insulator with site occupation n i

at site i, one finds

âþðrkÞ âþðrmÞ âðr lÞ âðrnÞ
� �

¼ nk nm dkldmn þ nk nm dkn dlm ð4Þ

where the delta-term introduced through the normal ordering of the operators has been
omitted. In the correlation function C, the first term in equation (4) will create a constant
offset of 1 for large atom number N, whereas the second term introduces a spatial
dependence in the correlations, leading to:

C3DðdÞ ¼ Cðx1 2 x2Þ ¼ 1þ
1

N2
k;l

X
eiðm=�htÞðx 12x 2Þ�ðr k2r l Þnknl ð5Þ

Throughout the discussion, constant offsets of order 1/N are neglected compared to 1. For
a regular one-dimensional lattice with unity filling and spacing a lat, the sum can then be
simplified to 1+{[sin2(pNd/l)]/[N2sin2(pd/l)]}, with d ¼ x2 2 x1 and l ¼ ht/(ma lat),
analogous to the optical interference created by a regular grating. In the limit of large N,
this term corresponds to a series of peaks of height 1 and width l/N and converges to:

1þ
1

N

X1
j¼21

dðd=l2 jÞ

For a regular three-dimensional system the structure term converges to:

C3DðdÞ ¼ 1þ
1

N j

X
dððd2 p j

t

m
Þ=lÞ

where pj are the reciprocal three-dimensional lattice momenta. Because the imaging
system registers only column densities and has a finite resolution, the operators n̂(x1,2)
both have to be convolved with the inverse point spread function (approximated as a
gaussian of r.m.s. width j) and integrated along the imaging axis before being evaluated.
For unity filling this yields a smoothed two-dimensional correlation function:

CðdÞ ¼ 1þ
1

4pN

l

j

� �2

j

X
e2{½d2p j t=m�2=4j2 }

The heights of the peaks at the reciprocal lattice momenta therefore scale as N21t2 for this
simple homogeneous case. As indicated in the text, the N21 scaling is modified to N20.64

for our harmonically trapped system by the appearance ofMott domains with filling factor
larger than one for higher atom numbers. The prediction for the exponent has been
obtained by numerically evaluating the sum in equation (5) using a model distribution of
atoms in the lattice sites confined by a global parabolic potential. This distribution is
predicted assuming the system can be described in the strongly interacting limit30 with a
local density approximation.
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Progress in the fabrication of nanometre-scale electronic devices
is opening new opportunities to uncover deeper aspects of the
Kondo effect1—a characteristic phenomenon in the physics of
strongly correlated electrons. Artificial single-impurity Kondo
systems have been realized in various nanostructures, including
semiconductor quantum dots2–4, carbon nanotubes5,6 and indi-
vidual molecules7,8. The Kondo effect is usually regarded as a
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Phase coherence of an atomic Mott insulator

Fabrice Gerbier, Artur Widera, Simon Fölling, Olaf Mandel, Tatjana Gericke and Immanuel Bloch
Institut für Physik, Johannes Gutenberg-Universität, 55099 Mainz, Germany.

(Dated: March 31, 2005)

We investigate the phase coherence properties of ultracold Bose gases in optical lattices, with
special emphasis on the Mott insulating phase. We show that phase coherence on short length
scales persists even deep in the insulating phase, preserving a finite visibility of the interference
pattern observed after free expansion. This behavior can be attributed to a coherent admixture of
particle/hole pairs to the perfect Mott state for small but finite tunneling. In addition, small but
reproducible “kinks” are seen in the visibility, in a broad range of atom numbers. We interpret them
as signatures for density redistribution in the shell structure of the trapped Mott insulator.

PACS numbers: 03.75.Lm,03.75.Hh,03.75.Gg

A fundamental aspect of ultracold bosonic gases is
their phase coherence. The existence of long-range phase
coherence, inherent to the description of a Bose-Einstein
condensate in terms of a coherent matter wave, was ex-
perimentally demonstrated in interferometric [1, 2, 3] or
spectroscopic [4] experiments. More recently, attention
has been paid to fundamental mechanisms that may de-
grade or even destroy long-range coherence, for exam-
ple thermal phase fluctuations in elongated condensates
[5, 6, 7, 8], or the superfluid to Mott insulator (MI) tran-
sition undergone in optical lattices [9, 10, 11].

For a Bose-Einstein condensate released from an opti-
cal lattice, the density distribution after expansion shows
a sharp interference pattern [10]. In a perfect Mott Insu-
lator, where atomic interactions pin the density to pre-
cisely an integer number of atoms per site, phase co-
herence is completely lost and no interference pattern
is expected. The transition between these two limiting
cases happens continuously as the lattice depth is in-
creased. In the superfluid phase, a partial loss of long
range coherence due to an increased quantum depletion
has been observed for lattice depths below the MI tran-
sition [12, 13, 14]. Conversely, in the insulating phase,
numerical simulations [15, 16, 17] predict a residual inter-
ference, although long-range coherence and superfluidity
have vanished.

In this Letter, we revisit this question of phase coher-
ence focusing on the insulating phase. We observe that
the interference pattern persists in the MI phase, and
that its visibility decays rather slowly with increasing lat-
tice depth. We explain this behavior as a manifestation of
short-range coherence in the insulating phase, fundamen-
tally due to a coherent admixture of particle/hole pairs
to the ground state for large but finite lattice depths. In
addition, we also observe reproducible “kinks” in the vis-
ibility at well-defined lattice depths. We interpret them
as signature of density redistribution in the shell struc-
ture of a MI in an inhomogeneous potential, when regions
with larger-than-unity filling form. Finally, the issue of
adiabatic loading in the lattice is briefly discussed.

In our experiment, a 87Rb Bose-Einstein condensate

is loaded into an optical lattice created by three or-
thogonal pairs of counter-propagating laser beams (see
[10] for more details). The superposition of the lattice
beams, derived from a common source at a wavelength
λL = 850 nm, results in a simple cubic periodic potential
with a lattice spacing d = λL/2 = 425 nm. The lat-
tice depth V0 is controlled by the laser intensities, and is
measured here in units of the single-photon recoil energy,
ER = h2/2mλ2

L ≈ h × 3.2 kHz, where m is the atomic
mass. The optical lattice is ramped up in 160 ms, us-
ing a smooth waveform that minimizes sudden changes
at both ends of the ramp. After switching off the op-
tical and magnetic potentials simultaneously and allow-
ing for typically t = 10 − 22 ms of free expansion, stan-
dard absorption imaging of the atom cloud yields a two-
dimensional map of the density distribution (integrated
along the probe line of sight).

Four such images are shown in Fig. 1a-d, for various
lattice depths. The density distribution of these expand-
ing clouds can be expressed as [15, 16, 18]

n(r) =
(m

~t

)3 ∣

∣

∣
w̃(k =

mr

~t
)
∣

∣

∣

2

S
(

k =
mr

~t

)

. (1)

In Eq. (1), the interference pattern is described by

S(k) =
∑

i,j

eik·(ri−rj)〈â†
i âj〉, (2)

where the operator â†
i creates an atom at site i, and where

w̃ is the Fourier transform of the Wannier function w(ri).
The Fourier relation (2) shows that long-range phase co-

herence, i.e. a correlation function 〈â†
i âj〉 slowly varying

FIG. 1: Absorption images of an ultracold Bose gas released
from an optical lattice, for various lattice depths: a 8 ER, b
14 ER, c 18 ER, and d 30 ER.
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across the lattice, is necessary to observe a sharp diffrac-
tion pattern as in Fig. 1a. However, above the MI tran-
sition (Fig. 1b, c and d), the interference peaks evolve
into a much broader, cross-like structure which weak-
ens with increasing lattice depth. This slow modulation
corresponds to short-range coherence, i.e. a correlation
function 〈â†

i âj〉 whose range extends over a few sites only.
To extract quantitative information from time-of-flight

pictures as shown in Fig. 1, Eq. (1) suggests using the
usual definition of the visibility of interference fringes,

V =
nmax − nmin

nmax + nmin
=

Smax − Smin

Smax + Smin
. (3)

In this work, we measure the maximum density nmax at
the first lateral peaks of the interference pattern [19],
(i.e. at the center of the second Brillouin zone), whereas
the minimum density nmin is measured along a diagonal
with the same distance from the central peak (see inset
in Fig. 2a). In this way, the Wannier envelope is the same
for each term and cancels out in the division, yielding the
contrast of S alone (hence the second equality in Eq. (3)).
Four pairs exist for a given absorption image, and their
values are averaged to yield the visibility. In previous
studies of the MI transition [10, 14], the sharpness of
the interference pattern was characterized by the half-
width of the central peak. Such a measure is possibly
sensitive to systematic effects, such as optical saturation
and mean field broadening. We expect our measure of
contrast to be much less sensitive to these effects, since
it is calculated in regions of the image where the density
is lower.

We present here measurements of the visibility as a
function of lattice depth (typically in a range 6− 30 ER)
at a given total atom number. Each value was obtained
as the visibility averaged over approximately 10 indepen-
dent images. Different atom numbers (hence different
filling factors) were investigated, ranging from 6 × 104

to 6 × 105. Two illustrative sets of data are shown in
Fig. 2, corresponding to approximately 5.9 × 105 atoms
(black circles) and 3.6 × 105 atoms (grey circles). For
lattice depths larger than 12.5 ER, the system is in the
insulating phase [10]. Yet, the visibility remains finite
well above this point. For example, at a lattice depth
of 15 ER, the contrast is still around 30%, reducing to
a few percent level only for a rather high lattice depth
of 30 ER. We will now show that such a slow loss in
visibility is expected in the ground state of the system.

As shown in [9], the physics of ultracold atoms in an
optical lattice can be described by the Bose-Hubbard
hamiltonian, given by the sum of a tunneling term,
Ht = −t

∑

〈i,j〉 â†
i âj , plus an interaction term, Hint =

∑

i
U
2 n̂i (n̂i − 1). Here n̂i = â†

i âi is the on-site number
operator, t is the tunneling matrix element, the nota-
tion 〈i, j〉 restricts the sum to nearest neighbors only,
and U is the on-site interaction energy [11]. In the ex-
periments, an additional, slowly varying potential Vext(r)

FIG. 2: (a) Visibility of the interference pattern produced
by an ultracold cloud released from an optical lattice. The
two sets of data shown correspond to 3.6 × 105 atoms (grey
circles) and 5.9 × 105 atoms (black circles). The latter curve
has been offset vertically for clarity. Arrows mark positions
where “kinks” are visible. (b) Numerical derivative of the
above curves.

is also present, and favors the formation of a “wedding
cake” structure of alternating MI and superfluid shells
[9, 15, 20], which reflects the characteristic lobes delim-
iting the MI phases in the phase diagram of the Bose-
Hubbard model [11].

To better understand the origin of a finite visibility,
we consider a homogeneous system with filling factor n0.
In the limit of infinitely strong repulsion, U/t → ∞, the
ground state is what we call a “perfect” Mott insulator,
i.e. a uniform array of Fock states, |Ψ〉MI =

∏

i |n0〉i.
This corresponds to a uniform S = n0 and zero visibility.
To a good approximation, the actual ground state for
a finite ratio U/t can be calculated by considering the
tunneling term as a perturbation to the interaction term.
To first order in t/U , this yields

|Ψ(1)〉 ≈ |Ψ〉MI +
t

U

∑

〈i,j〉

â†
i âj |Ψ〉MI. (4)

The ground state thus acquires a small admixture of
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FIG. 3: Visibility of the interference pattern versus U/zt, the
characteristic ratio of interaction to kinetic energy. The data
are identical to those shown in Fig. 2 (5.9×105, black circles,
and 3.6×105 atoms, grey circles). The former curve has been
offset vertically for clarity. The lines are fits to the data in
the range 14 − 25 ER, assuming a power law behavior (see
text).

“particle-hole” pairs (i.e. an additional particle at one
lattice site and a missing one in a neighboring site), which
restores short-range coherence and a corresponding weak
modulation in the momentum distribution, S(k) ∝ n0 −
2n0(n0+1)t(k)/U , where t(k) = −2t

∑

ν=x,y,z cos(kνd) is
the tight-binding dispersion relation. The corresponding
2D visibility (integrated along one direction) is

V ≈
4

3
(n0 + 1)

zt

U
. (5)

In Eq. (5), z = 6 is the number of nearest neighbors in a
3D cubic lattice.

To compare with the experiment, we show in Fig. 3a
the visibility against U/zt in a log-log plot. For lattice
depths V0 ≥ 14 ER (corresponding to U/zt ≥ 8), the data
matches the inverse law expected from Eq. (5). This has
been verified by fitting the data in this range to a general
power law A(U/zt)α (solid lines in Fig. 3). We obtain an
average exponent α = −0.98(7) in agreement with the
prediction (see Fig. 4a). In Fig. 4b, the fitted prefactor
is plotted as a function of atom number. Inspired by Eq.
(5), we compare it to 4(n + 1)/3, where n is the average
filling factor calculated at a lattice depth of 30 ER using
a mean-field approximation [21, 22]. We find that this
extrapolation of Eq. (5) to our trapped system indeed
yields the correct order of magnitude (see Fig. 4b). We
thus consider the agreement between our experimental
results and the simple relations derived above as a con-
clusive evidence for the presence of particle-hole pairs,
characteristic of the ground state of the Bose-Hubbard
hamiltonian.

In addition to the smooth decay discussed above, the
visibility shows small “kinks” at specific lattice depths
(indicated by arrows in Fig. 2a). They are systemati-
cally observed in our data, and their positions are re-
producible. In the derivative plot (Fig. 2b), they ap-

FIG. 4: Exponent α (a) and prefactor A (b) extracted from
a power law fit A(U/zt)α to the visibility data in Fig. 3,
plotted versus total atom number. The solid line indicates
the expected exponent α = −1. In (b), we also indicate the
prefactor expected for uniform MI with filling factor n0 = 1
(dashed line) and n0 = 2 (dotted line), as well as an extrap-
olation for the average filling calculated at a lattice depth of
30 ER (solid line).

pear as narrow maxima on a smoother background. We
obtained the kink positions by taking the middle point
between two adjacent gaussian peaks with negative am-
plitudes fitted to the data. The most prominent kink
occurs on average for a lattice depth of 14.1(8) ER, with
a statistical error indicated between parentheses. For the
largest atom numbers (4.2 × 105 and 6 × 105), a similar
but much weaker kink is also visible around 16.6(9) ER

(see upper curves in Fig. 2). These values are close to
14.7 ER and 15.9 ER, the lattice depths where MI re-
gions with filling factor n0 = 2 or 3 are respectively ex-
pected to form for our parameters [22]. We thus propose
that the observed kinks are linked to a redistribution in
the density as the superfluid shells transform into MI
regions with several atoms per site. We were recently
informed that similar features were reproduced numeri-
cally for one-dimensional trapped systems with a small
number of particles [23].

We have considered the dependence of the visibility
on the time over which the optical lattice was ramped
from zero to its final value, for a specific lattice depth
of V0 = 10 ER. The visibility was considerably de-
graded for the shortest ramp time of 20 ms, but reached
a ramp-independent value for ramp times larger than
Tad ∼ 100 ms (to be compared to the 160 ms time used
in visibility experiments). We note that Tad for this lat-



4

tice depth of V0 = 10 ER is significantly longer than the
microscopic time scales of the system, such as the tun-
neling time or the trapping periods. We note also that
at the largest lattice depth we use here (V0 = 30 ER),
the observed visibility is systematically above the power
law fit in Fig. 3, indicating a breakdown of adiabaticity.
By comparing the data to the fitted curve, we expect
this to occur for V0 ≈ 29 ER (U/zt ≈ 200), which agrees
with the calculated depth of 32 ER for which the ramping
time 160 ms becomes smaller than the calculated tunnel-
ing time h/zt.

Although a complete study is beyond the scope of this
Letter, these observations suggest that different dynam-
ical processes are involved in the loading, depending on
whether the gas is in the superfluid or in the MI phase.
In the superfluid phase, the ramp time has to be slow
enough not to excite long-lived collective excitations. In
the MI phase, these excitations acquire an energy gap,
which makes single particle tunneling the dominant dy-
namical process. In this case, the final tunneling time in-
creases with final lattice depth, and eventually becomes
so long that the system basically freezes out at some lat-
tice depth, estimated here to be 29 ER.

In conclusion, we have studied the visibility of the in-
terference pattern produced by an ultracold Bose gas re-
leased from a deep optical lattice. A non-vanishing visi-
bility in the MI phase is observed and explained by the
coherent admixture of particle-hole pairs to the insulat-
ing ground state, which preserves local phase coherence.
This intrinsic limitation to the “quality” of a MI has
important implications for various quantum information
processing schemes, where the MI plays a central role
[24, 25, 26]. In addition, we observe small but repro-
ducible kinks in the visibility curve. We interpret them as
the signature of density redistribution in the shell struc-
ture of the cloud as MI with several atoms per site are ex-
pected to form. Finally, a recent paper [27] suggests that
in a planar array of one-dimensional Bose gases, the vis-
ibility might be further reduced when correlations build
up in each tube, i.e. upon entering the Tonks-Girardeau
regime. Experimental study of these effects seems within
reach with the methods presented in this paper.
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[3] I. Bloch, T. W. Hänsch, and T. Esslinger, Nature 403,
166 (2000).

[4] J. Stenger, S. Inouye, A. P. Chikkatur, D. M. Stamper-
Kurn, D. E. Pritchard, and W. Ketterle, Phys. Rev. Lett.
82, 4569 (1999).

[5] D. S. Petrov, G. V. Shlyapnikov, and J. T. M. Walraven,
Phys. Rev. Lett. 85, 3745 (2000).

[6] S. Dettmer et al., Phys. Rev. Lett. 87, 160406 (2001).
[7] S. Richard, F. Gerbier, J. H. Thywissen, M. Hugbart,

P. Bouyer, and A. Aspect, Phys. Rev. Lett 91, 010405
(2003).

[8] D. Hellweg, L. Cacciapuoti, M. Kottke, T. Schulte,
K. Sengstock, W. Ertmer, and J. J. Arlt, Phys. Rev.
Lett 91, 010406 (2003).

[9] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and
P. Zoller, Phys. Rev. Lett. 81, 3108 (1998).

[10] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and
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Coherent collisional spin dynamics in optical lattices

Artur Widera,∗ Fabrice Gerbier, Simon Fölling, Tatjana Gericke, Olaf Mandel, and Immanuel Bloch
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We report on the observation of coherent, purely collisionally driven spin dynamics of neutral atoms in an
optical lattice. For high lattice depths, atom pairs confined to the same lattice site show weakly damped Rabi-
type oscillations between two-particle Zeeman states of equal magnetization, induced by spin changing colli-
sions. This paves the way towards the efficient creation of entangled atom pairs in an optical lattice. Moreover,
measurement of the oscillation frequency allows for precise determination of the coupling parameters of the
collisional interaction. For smaller lattice depths, we observe an increased damping of the coherent oscillations,
which we attribute to the onset of spin transport in the Mott-insulator regime.

PACS numbers: 03.75.Lm, 03.75.Gg, 03.75.Mn, 34.50.-s

The creation and manipulation of spinor Bose-Einstein con-
densates (BEC) in optical traps [1, 2, 3, 4, 5, 6] has opened
a wide field of fascinating phenomena originating from the
spin degree of freedom. Spinor systems have been pro-
posed for the investigation of quantum magnetism phenom-
ena [7, 8, 9, 10, 11] such as spin mixing properties [12, 13]
and spin waves [14, 15], or the generation of entangled
states [16, 17]. More recently, a variety of strongly cor-
related ground states have been predicted in optical lattices
[18, 19, 20], opening the possibility for studying spin hamil-
tonians in a wide range of parameters not accessible in solid
state physics [21]. The fundamental mechanism responsible
for many of these spin phenomena is a coherent collisional
process in which the spin of each colliding particle is changed
while the total magnetization is preserved.

In this Letter, we investigate this microscopic collision pro-
cess in an ensemble of isolated atom pairs localized to lat-
tice sites of a deep optical lattice. We observe coherent os-
cillations between two-particle Zeeman states, coupled bythe
spin-changing interaction. We show that for a broad range
of parameters this dynamics can be described by a Rabi-
type model. Our system allows for a precise measurement
of the coupling parameters for spin changing collisions. Fur-
thermore, for decreasing lattice depths, but still in the Mott-
insulator, we observe an increase in the damping of the coher-
ent oscillations, which we attribute to the onset of spin trans-
port in the system.

Let us consider a pair of87Rb atoms, localized in the vi-
brational ground state of a deep trapping potential, as shown
in Fig. 1a. The trapping frequencyω is assumed to be
much larger than the typical interaction energy, so that ex-
citations into higher vibrational levels are suppressed. The
atom pair can then be solely described by a spin wavefunc-
tion | f1,m1; f2,m2〉, where fi ,mi are the total angular mo-
mentum and its projection onto thez-axis, andi = 1, 2 la-
bels the first and second atom, respectively. In the follow-
ing, we assume that both atoms are in the upper hyperfine
ground state withf1 = f2 = 2, and abbreviate the non-
symmetrized two particle states as|m1,m2〉. In the absence of
an external radio-frequency (rf) field, interatomic collisions
drive the spin evolution of this system. In a collision be-

tween two alkali atoms, the projection of the total angular
momentum on the quantization axis is conserved, even in a
finite magnetic field [1, 2, 3, 7, 8, 12, 13]. The interaction
thus couples an initial state|φi〉 ≡ |m1,m2〉 to a final state
|φ f 〉 ≡ |m3,m4〉, provided the total magnetization is conserved,
i. e. m1 + m2 = m3 +m4. Furthermore,s-wave collisions be-
tween spinf = 2 bosons are characterized by three scattering
lengthsaF for the collision channels with total angular mo-
mentumF (F = 0, 2, 4) [7, 9, 10]. The matrix elementΩi f

of the interaction hamiltonian between states|φi〉 and |φ f 〉 is
proportional to 4π~aeff/m, whereaeff is a weighted difference
of theaF ’s that depends on the specific values of the magnetic
quantum numbers. For example, in the case|φi〉 = |0, 0〉 and
|φ f 〉 = | + 1,−1〉, one findsaeff = (−7a0 − 5a2 + 12a4)/35. It
should also be noted that since the two particles at a certain
lattice site are indistinguishable, the final state is an entangled
state|φ f 〉 = (| + 1,−1〉 + | − 1,+1〉)/

√
2 [16, 17].

Due to the localization in the vibrational ground state and
to the constraint of a conserved magnetization, for a given ini-
tial state only a few final two-particle states participate in the
spin evolution (see Fig. 1b). In the case where only one final
state is available (relevant for most experiments described be-
low), the dynamics reduces to a Rabi-like model. The atom
pair then oscillates between initial and final state at the ef-
fective Rabi frequencyΩ′i f = [Ω2

i f + δ
2
i f ]

1/2. We stress how-
ever that differently from “usual” single-particle Rabi oscilla-
tions driven by an external rf field, in this Letter we investi-
gate the coherent coupling between two-particle states. The
Rabi model is parameterized by a coupling strengthΩi f dis-
cussed above, and a detuningδi f = δ0 + δ(B2) between the
initial and final states, whereB is the value of the static ex-
ternal magnetic field. As the magnetization is conserved, the
initial and final states experience the same first order Zeeman
shift which has no influence on the spin dynamics. However,
the second order Zeeman shifts are different and introduce the
B2-dependent detuning. The constant detuningδ0 originates
from the difference in interaction energies in the initial and
final states.

In our experiment we investigate an array of localized atom
pairs. We prepare a Mott-insulator in a combined optical
and magnetic trap similar to previous work [22], and sub-
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FIG. 1: (a) Two atoms localized in the vibrational ground state of a
common lattice well can change their spin orientation whilepreserv-
ing total magnetization. The atoms remain in the lowest vibrational
state at all times. (b) The process can be described as a coherent cou-
pling between two-particle Zeeman states|φi〉, |φ f 〉 and |φ f ′ 〉, where
the coupling constantΩi f depends on the choice of initial and final
state, and the detuningδi f can be varied by the second order Zeeman
shift.

sequently load the sample of around 2× 105 87Rb atoms in
| f = 1,mf = −1〉 in a pure optical lattice [23]. In order to
preserve spin polarization of the atoms, a homogeneous mag-
netic field of approximately 1.2 G is maintained [24]. The spin
dynamics is initialized by transferring the sample into either
| f = 2,mf = 0〉 or | f = 2,mf = −1〉, and the magnetic field is
subsequently ramped to a final value between 0.2 G and 2 G.
After time evolution for a variable timet the optical trap is
switched off. In order to spatially separate the different mag-
netic substates, a magnetic gradient field is switched on during
the first 3 ms of time-of-flight (TOF) [1, 2, 3, 4, 5]. The popu-
lation Nmj of each magnetic sublevelmj is then detected after
7 ms TOF with standard absorption imaging.

We first consider the case where we start with both atoms in
|φi〉 = |0, 0〉. This state couples to|φ f 〉 = | + 1,−1〉 and|φ f ′〉 =
| + 2,−2〉. The coupling constant for|φi〉 ↔ |φ f ′〉 is calculated
to be two orders of magnitude smaller than for|φi〉 ↔ |φ f 〉,
and can be neglected. However, a two-step coupling channel
|φi〉 ↔ |φ f 〉 ↔ |φ f ′〉 is also possible, with a coupling constant
comparable to the|φi〉 ↔ |φ f 〉 process. Although present at
low magnetic field [3, 5], this two-step process is increasingly
suppressed as the magnetic field is increased due to the large
detuning. ForB > 0.6 G, the system mostly oscillates between
|0, 0〉 and | + 1,−1〉. This is shown in Fig. 2 for the case of
B = 0.8 G and a lattice depth of 40Er . HereEr = h2/2mλ2

is the single photon recoil energy,m the atomic mass andλ =
840 nm the lattice laser wavelength. The relative populations
in Fig. 2 have been calculated asN0/Ntot for |0, 0〉 and (N+1 +

N−1)/Ntot for | + 1,−1〉, whereNtot is the total atom number.
For the other initial state|φi〉 = | − 1,−1〉, however, no third
level exists to which the final state|0,−2〉 could couple while

preserving magnetization, and the dynamics can be described
by a two level system even for low magnetic fields.
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FIG. 2: Spin dynamics of atom pairs localized in an optical lattice
at a magnetic field ofB = 0.8 G. The atoms are initially prepared
in |φi〉 = |0, 0〉 and can evolve into|φ f 〉 = | + 1,−1〉. Shown are
the populations inmf = 0 (�) and mf = ±1 (�) together with a
fit to a damped sine. The extracted oscillation frequency isΩ′i f =
2π × 278(3) Hz.

In order to describe the oscillations we use a Rabi-like
model, where the transition probability to the final state is[25]

Pf =
Ω2

i f

Ω′2i f

1
2

(

1− cos
(

Ω′i f t
)

e−γi f t
)

, (1)

with γi f being the damping rate. The measured population in
mf = ±1 can be written as

N+1 + N−1

Ntot
= n Pf , (2)

wheren is the fraction of atoms localized in doubly occu-
pied lattice sites. In order to check the validity of the Rabi
model, spin oscillations have been observed for various mag-
netic fields up to 2 G, corresponding to different detunings,
and for the two initial two-particle states|0, 0〉 and| − 1,−1〉.
The measured oscillation frequency is plotted versus magnetic
field B in Fig. 3. The measured frequencies are fitted to the ex-
pected behaviour of the effective Rabi frequencyΩ′(B) with
varying detuning (solid lines in Fig. 3), with which we ob-
serve an excellent agreement. As explained above, for small
magnetic fieldsB ≤ 0.6 G, the process| + 1,−1〉 ↔ | + 2,−2〉
starts to play a role. A Fourier transform of the measured spin
oscillations allows for the extraction of the effective Rabi fre-
quency of the second process| + 1,−1〉 ↔ | + 2,−2〉. The
coupling parameters for the different processes determined
by the fits are summarized in Table I. We find a general
agreement between the measured oscillation frequencies and
the frequencies calculated from two recently available sets of
scattering lengths [10, 23, 26].

The visibility of the oscillation shown in Fig. 2 is smaller
than expected from the Rabi model (1) alone for this detuning.
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Process Ωi f /2π δi f /2π Ω′i f (B = 0)/2π

|0, 0〉↔| + 1,−1〉 233(4) Hz 62(7) Hz 241(8) Hz
| − 1,−1〉↔|0,−2〉 211(1) Hz 27(3) Hz 213(3) Hz
| + 1,−1〉↔| + 2,−2〉 – – 340(40) Hz

TABLE I: Summary of measured coupling parameters at 40Er lattice
depth.

This fact can be explained by the atom number distribution in
the lattice. The overall harmonic confinement of the system
leads to the creation of Mott-shells with different filling fac-
tors [27]. Only those atoms that are in lattice wells with a
filling of two or more contribute to the spin dynamics, which
is accounted for by Eq. (2). Since the relative populations are
normalized with respect to the overall number of atoms, this
leads to an artificial decrease of the visibility observed com-
pared to the Rabi prediction. With the extracted values ofΩi f

andδi f we fit the amplitude of the spin oscillation in Eq. (2),
where only the fraction of atomsn remains as a free parameter.
The measured amplitudes, together with the fits, are shown in
Fig. 4a for|0, 0〉 ↔ | + 1,−1〉 and | − 1,−1〉 ↔ |0,−2〉. The
measured fraction resulting from the fit isn = 0.43(3) for
|0, 0〉 ↔ | + 1,−1〉 andn = 0.41(3) for | − 1,−1〉 ↔ |0,−2〉.
Using the same model for the atom number distribution as in
[22] we calculaten ≈ 50% for our trapping parameter, close
to the measured values.

This explanation for the artificial decrease in visibility sug-
gests that the contrast can be enhanced by selectively discard-
ing all atoms from the measurement which are in sites with
unity filling. This is accomplished by first evolving the sys-
tem for one half period of spin-oscillation, at which the oc-
cupation of the| + 1,−1〉-state is maximal, whereas unpaired
atoms remain in themf = 0 state. Those atoms are then trans-
ferred into thef = 1 hyperfine state and remain undetected
while the subsequent spin dynamics is recorded. The result-
ing high contrast oscillations are shown in Fig. 4b for the case

of B = 0.6 G and 40Er lattice depth. The visibility of approx-
imately 72(3)% for|0, 0〉 is close to the maximum expected
contrast of 81% for this detuning.
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FIG. 4: (a) Oscillation amplitude vs. magnetic field for the processes
|00〉 ↔ | + 1,−1〉 (�) and| − 1,−1〉 ↔ |0,−2〉 (�). The lines are fits
to (2), where only the fraction of atomsn remains as free parame-
ter. The upper curve has been offset by 0.2. (b) High contrast spin
oscillations between|0, 0〉 (�) and | + 1,−1〉 (�) at 0.6 G and 40Er .
Here, only atoms in sites with a filling larger than one are counted
(see text).

The picture of isolated atom pairs coherently oscillating
between two-particle states does not allow to understand the
damping of these oscillations, clearly seen in Fig. 2. In par-
ticular, we estimate the inhomogeneous dephasing rate to be
too low to account for it. To investigate the damping mecha-
nism, we record the decay rate as a function of lattice depth at
B = 0.6 G (see Fig. 5). Here, the depth has been changed be-
tween 20Er and 54Er in both horizontal lattice axes, whereas
the vertical axis depth stayed fixed at 40Er. For high lattice
depths the damping rate levels at a finite value, whereas it
increases for decreasing lattice depths. We interpret thisin-
crease as the enhanced probability to emit spin excitationsin
the lattice. In a Mott-insulator, particle exchange processes
between two neighboring wells, such as|n = 1〉i ⊗ |n = 1〉 j →
|n = 0〉i ⊗ |n = 2〉 j , are supressed due to a large offset in in-
teraction energy [28]. However, spin exchange processes like
from | + 1,−1〉i ⊗ | + 1,−1〉 j to | + 1,+1〉i ⊗ | − 1,−1〉 j can oc-
cur, because the spin-dependent interaction is much smaller
than the spin independent one. This is reminiscent of usual
ferro- or antiferromagnetic insulators, where density excita-
tions are suppressed by an energy gap, whereas spin excita-
tions are gapless [29]. From a simple Fermi’s Golden rule
argument, we deduce the excitation probability to be propor-
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tional to the tunneling matrix elementJ. A fit to the damping
rate of the formα J/h + γ0 returns a proportionality constant
α = 9(1) and a constant offsetγ0 = 37(3) s−1 (see solid line
in Fig. 5 for the fit and dashed line for the offset). This offset
can be explained by the atom loss rate in the lattice. The inset
of Fig. 5 shows a curve of atom loss in the optical lattice. For
this experiment, the sample was prepared in the|0, 0〉 state in
a 40Er deep lattice, and spin dynamics was suppressed by a
magnetic field around 10 G. The initial loss rateγ1 = 35(5) s−1

is attributed to two-body loss processes with a measured two-
body loss coefficientK2 = (8.8±1.5)×10−14cm3/s. Note that
the overall atom losses are strongly supressed at longer times,
where only sites with one atom per site remain [30]. For lat-
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FIG. 5: Damping rate of spin oscillations vs. lattice depth for |0,0〉 ↔
| + 1,−1〉. The solid line is a fit toαJ/h + γ0 with γ0 = 37(3) s−1

(illustrated as dashed line). The inset shows atom loss vs. hold time
at a 10 G magnetic field, where spin dynamics is suppressed. The fast
loss rate ofγ1 ≈ 35(5) s−1 coincides with the offsetγ0 of the damping
rate even at high lattice depths.

tice depths smaller than 20Er , but still in the Mott-insulator,
the coherent oscillations could not be recorded any more.

We have also detected spin dynamics in thef = 1 hyperfine
manifold between the two-particle states|0, 0〉 ↔ | − 1,+1〉
and find a coupling constant which is roughly one order of
magnitude smaller than inf = 2 [23].

In summary, we have observed coherent spin dynamics be-
tween two-particle states in the upper hyperfine ground state
of 87Rb due to spin changing collisions. The observation
of high contrast Rabi-type oscillations make this system a
promising starting point for quantum information purposes. In
this work we have demonstrated a method to create an array of
entangled atom pairs similar to the long-lived Bell pairs pro-
duced in ion traps [31]. This is the first step towards the cre-
ation of pair-correlated atomic beams as proposed in [16, 17].
Another intriguing question is the evolution of quantum corre-
lations upon melting the Mott-insulator. A possible outcome
would be a non-local condensate of Bell-like pairs delocal-
ized over the entire cloud. This highly entangled state could
be distinguished from a coherent superposition of condensates
through counting statistics.
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The evolution of on-site number fluctuations of ultracold atoms in optical lattices is experimentally
investigated by monitoring the suppression of spin-changing collisions across the superfluid-Mott
insulator transition. For low atom numbers, corresponding to an average filling factor close to unity,
large on-site number fluctuations are necessary for spin-changing collisions to occur. The continuous
suppression of spin-changing collisions is thus direct evidence for the emergence of number-squeezed
states. In the Mott insulator regime, we find that spin-changing collisions are suppressed until a threshold
atom number, consistent with the number where a Mott plateau with doubly occupied sites is expected to
form.

DOI: 10.1103/PhysRevLett.96.090401 PACS numbers: 03.75.Hh
a

b

Ω2

Ω3 δ3

δ2

d

c

FIG. 1 (color). Illustration of the number statistics measure-
ment. Spin-changing collisions turn atom pairs initially in the
Zeeman substate m � 0 (no arrow) to pairs in m � �1 states (up
and down arrows). This process happens for sites with n � 2 (a)
or n � 3 (b) atoms. For one atom per site on average, whether
this occurs depends drastically on the many-body correlations.
For a Bose-Einstein condensate (c), large on-site fluctuations
create a finite number of sites with 2 or 3 atoms, where �1 pairs
can be created. On the contrary, for a MI state (d), only isolated
atoms are found and no m � �1 pairs are created.
One of the most fundamental signatures of the Mott
insulator (MI) transition undergone by ultracold atomic
gases in optical lattices [1–13] is a drastic change in
atom number statistics. In a very shallow lattice, ultracold
bosons tend to form a Bose-Einstein condensate. In this
case, a measurement of the probability for finding n atoms
at a given lattice site would reveal a characteristic Poisson
distribution with large on-site fluctuations. However, for
deeper lattices, the influence of repulsive interactions,
which disfavor such fluctuations, becomes increasingly
dominant and results in the emergence of number-
squeezed states with suppressed number fluctuations.
Above a critical lattice depth, the ultracold gas enters the
MI regime, where the number fluctuations almost vanish.
In experiments so far, interaction-induced number-
squeezed states were detected through the observation of
increased phase fluctuations, the canonically conjugate
variable to number fluctuations [1–3], or through an in-
creased time scale for phase diffusion [4].

In this Letter, we directly observe the continuous sup-
pression of number fluctuations when the ultracold sample
evolves from the superfluid (SF) regime to deep in the MI
regime. The idea behind our measurement is illustrated in
Fig. 1. After producing an ultracold gas in an optical
lattice, we suddenly increase the lattice intensity, suppress-
ing tunneling and freezing the number distribution. A
probe sensitive only to the presence of atom pairs at a
given lattice site is finally applied. Close to unity filling, a
nonzero probe signal is obtained only if initially large on-
site fluctuations produce a nonzero fraction of sites with
two atoms. While we observe this behavior for a gas
initially in the SF regime, the probe signal is progressively
suppressed when approaching the Mott transition, indicat-
ing increasingly number-squeezed states.

The specific two-particle probe used in this work are
spin-changing collisions (see [14], and references therein),
which convert at each lattice site pairs of spin f � 1 atoms
in the m � 0 Zeeman sublevel to pairs with one atom in
m � �1 and the other in m � �1. In principle, other
06=96(9)=090401(4)$23.00 09040
schemes, e.g., measuring the interaction energy [11] or
monitoring atom losses due to Raman photoassociation
[15,16] or Feshbach resonances [17], could be suitable
for this measurement. Spin-changing collisions have ad-
vantages when used as a probe for atom pairs: they are
nondestructive (see also [18]), and they can be resonantly
controlled using the differential shift between Zeeman
sublevels induced by an off-resonant microwave field
[19–21]. We show that this technique allows one to mea-
sure selectively doubly occupied sites in the optical lattice.

Our experimental setup has been described in detail in
[14]. We first load a degenerate gas of 87Rb atoms in the
jF � 1; m � �1i Zeeman sublevel into a combined mag-
netic trap plus optical lattice potential at an initial lattice
depth V0. The intensities are then rapidly increased from
V0 to Vf � 40Er within tup � 1 ms (see Fig. 2). Here Er �
h2=2M�2 is the single photon recoil energy, and � �
842 nm the lattice laser wavelength. Immediately after
this ramp, the magnetic potential is switched off, and the
cloud is held for 60 ms in order to let the magnetic bias
1-1 © 2006 The American Physical Society
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field stabilize to its final value B � 1:2 G. The atoms are
then prepared in the m � 0 state using microwave transfer
pulses, and held for a variable time tosc, during which a
collisional spin oscillation takes place. This coherent evo-
lution is detected experimentally as a reversible exchange
between the populations in the m � 0 and m � �1
Zeeman sublevels, measured by absorption imaging after
12 ms of free expansion.

Spin-changing interactions in deep optical lattices have
been described in detail in [14]. We consider spin f � 1
atoms and assume that tunneling can be neglected, so that
the lattice sites are isolated from each other. At a single
lattice site, the spin-changing collisions are critically sen-
sitive on the filling n of the well. For sites with filling n �
0 or 1, spin-changing collisions cannot occur. The first
nontrivial case corresponds to doubly occupied wells. In
this case, only two spin states (one with both atoms inm �
0 and the other with a single m � �1 pair) are accessible
[see Fig. 1(a)]. Therefore, the atom pair undergoes Rabi-

like oscillations at the effective Rabi frequency
������������������

�2
2 ��2

2

q

.
The energy mismatch (‘‘detuning’’) between the two states
is @�2 � ���Us, where �� � ��1 � ��1 � 2�0 corre-
sponds to the difference in Zeeman energies �m. The spin-
dependent interaction energy Us depends on atomic and
lattice parameters [14], and also determines the coupling
strength as �2 � 2

���

2
p
Us. Sites with n � 3 atoms behave

in a similar way [Fig. 1(a)], however, with an energy
difference @�3 � ���Us and a coupling strength �3 �

2
���

6
p
Us.

In principle, site occupancies n > 3, whose spin dynam-
ics involve more than one m � �1 pair, are also possible.
However, during the hold time thold indicated in Fig. 2,
those sites can be emptied by three-body (3B) recombina-
tion events at an event rate �n � �3Bn�n� 1��n� 2� [22],
with �3B � 0:5 s�1 for our parameters. Therefore, sites
with n � 4 are efficiently removed after the wait time.

In our experiment, we produce large ensembles of atoms
in the optical lattice with spatially inhomogeneous atom
number distribution. The inhomogeneity results from an
additional trapping potential Vext present on top of the
optical lattice [23]. In the MI regime, this potential leads
to the formation of flat Mott plateaus with a well-defined
09040
atom number per site [5,7,24]. Also, the local fluctuations
have an inhomogeneous distribution. Experimentally, we
measure the ‘‘spin-oscillation amplitude’’ for the entire
atomic cloud, i.e., the global population Aosc � �N�1 �
N�1�=N of the m � �1 states after an evolution time tosc,
normalized to the total atom number N. This amplitude is
related to the probability �P n of finding n atoms per lattice
site, averaged over the cloud spatial profile.

Let us suppose that we are able to tune the single-
particle detuning to �� � �Us, such that doubly occupied
sites are exactly on resonance. Then, neglecting sites with
n � 4, the oscillation amplitude is obtained by summing
the contribution from sites with n � 2 and n � 3,

A osc �
�P 2sin2

�

�2tosc

2

�

�
6

7
�P 3sin2

�

���

7

8

s

�2tosc

�

: (1)

From Eq. (1), we conclude that atom pairs and triplets
oscillate essentially out of phase. By choosing �� �
�Us and t� � �=�2, all doubly occupied sites are con-
verted to m � �1 pairs, whereas the conversion efficiency
for triplets is around 3%. Recording the amplitude of the
spin oscillations thus allow one to probe the distribution of
atom pairs alone. This is reminiscent of cavity quantum
electrodynamics [25,26], where Fock states of the cavity
field could be discriminated due to different coupling
strengths to an atomic transition. In particular, choosing
�� � Us would allow one to measure the fraction of triply
occupied sites remaining after three-body decay.

To achieve full conversion of doubly occupied sites, it is
necessary to tune the spin oscillations for doubly occupied
sites into resonance, i.e., set �� � �Us. In a magnetic
field B, the quadratic Zeeman shift contributes a positive
amount to ��. Hence, if Us > 0 (which is the case for
87Rb), the interaction energy Us leads to a residual detun-
ing in zero magnetic field that prevents reaching the reso-
nance. For this reason, we introduce a different technique
using the differential level shift induced on the individual
Zeeman sublevels by a far off-resonant microwave field
(‘‘ac-Zeeman shift’’). With a suitable choice of polariza-
tion, detuning, and power, the detuning �� can be tuned at
will in the range of interest, and allows one to compensate
the magnetic field contribution to �� plus the interaction
term Us. In this work, the microwave field is detuned by
several hundred MHz to the red of any hyperfine resonance
to suppress population transfer to f � 2. Indeed, no such
transfer is observed within our experimental sensitivity.

In Fig. 3, the fraction of atoms found in m � �1 is
plotted as a function of the microwave power for a fixed
tosc � 15:5 ms � t�, corresponding to maximum conver-
sion. These data were taken for constant initial lattice depth
(V0 � Vf � 40Er) and atom number (N � 2:6	 105). For
very low microwave powers, the spin dynamics is sup-
pressed by the quadratic Zeeman detuning (�� � 2�	
207 Hz), much larger than the spin-dependent interaction
Us � 2�	 10:7 Hz. The ac-Zeeman shift can compensate
1-2



P
op

ul
at

io
ns

in
Z

ee
m

an
st

at
es

Microwave power (a.u.)

1

0.8

0.6

0.4

0.2

0
0.6 0.8 1

FIG. 3. Resonance curve of the spin-oscillation amplitude in
the far-detuned microwave field, measured at a magnetic field
B � 1:2 G and at a fixed hold time thold � 15:5 ms. Solid (open)
circles denote the population in the Zeeman substate m � 0
(m � �1).

PRL 96, 090401 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
10 MARCH 2006
for this detuning and for the interaction part, inducing a
resonance in the number of m � �1 pairs shown in Fig. 3.
The oscillation amplitude, close to the expected Aosc �
0:5, indicates that nearly all atom pairs are converted into
�1 pairs, in agreement with further experiments discussed
in a companion paper [21].

We now turn to the measurement of number statistics.
We choose tosc � 15:5 ms and a dressing field tuned to
resonance, as in the previous paragraph. At a given lattice
depth V0, we have recorded the oscillation amplitude in a
broad range of atom numbers, from about 104 to a few 105

[27]. The experiment is then repeated for various lattice
depths, from the SF regime (V0 � 4Er) to deep in the MI
regime (V0 � 20Er and 40Er). As shown in Fig. 4, at low
lattice depths, the spin oscillations occur for any atom
number N, with an amplitude slowly increasing with N.
FIG. 4 (color). Amplitude of the spin oscillation vs atom number an
thin dashed lines show the prediction of a theoretical model, whe
approach at T � 0 (see text). The thin solid lines show only the fracti
lines are guides to the eye. In (f), the vertical lines indicate where M
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For small atom number, the oscillation amplitude is in-
creasingly suppressed with increasing lattice depth, and
completely vanishes for large lattice depths. This qualita-
tive behavior is consistent with the behavior expected from
the Bose-Hubbard model [5–13]. On approaching the Mott
transition, the ground state adapts to an increased interac-
tion energy by reducing its number fluctuations, eventually
producing an array of one-atom Fock states at each site
where spin-changing collisions cannot occur.

Within the MI regime [Figs. 4(d)–4(f)], we observe that
the suppression of spin oscillations persists up to some
threshold atom number [6:0�3� 	 104 for the data in
Fig. 4(f)]. This is consistent with the expected formation
of Mott plateaus with increasing atom number, as the cloud
expands in the trapping potential. A Mott plateau with n
atoms per site forms when the cloud radius reaches the
size Rn where the potential energy Vext�Rn� matches the
on-site interaction energy U�n� 1�. For a harmonic po-
tential with trapping frequency !ext, this happens at a
threshold number [29] Nn � N2

Pn
k�1 k

3=2. Above N2 �

4�=3�m!2
extd

2=2U��3=2, a core with two atoms per site
starts to grow, thus enabling the spin oscillations. For the
parameters that correspond to Fig. 4(f) (!ext �
2�	 80 Hz and V0 � 40Er), we calculate Nth 
 6:8	
104, close to the measured value. For even higher atom
number (corresponding to N3 
 3	 105), a shell of triply
occupied sites start to form, reducing the fraction of atoms
in the n � 2 shell. This can be seen in Fig. 4(f), where we
indeed observe a decrease of the spin amplitude above this
number.

In order to compare our experimental results with the
prediction of the Bose-Hubbard model [5], we solve this
d different lattice depths: V0 � 4; 8; 11; 13; 20; 40Er (a)–(f). The
re the atom number distribution is deduced from a mean-field
on of atom pairs calculated from the same model. The thick solid

ott plateaus with 2 and 3 atoms per site are expected to form.
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model numerically within a mean-field approximation at
zero temperature [30,31]. Accounting for losses during
the hold time thold (wait time plus oscillation time), we
obtain the distribution �P n. For each filling n and a given
tosc, we calculate the conversion efficiency ��1�n� to
m � �1 pairs, and obtain the total spin amplitude from
Aosc �

P

nn��1�n� �P n. The results of this calculation,
indicated by the thin dashed lines in Fig. 4, lie very close
to the fraction of pairs �P 2 predicted by the same model
(thin solid lines), in agreement with the arguments leading
to Eq. (1). Deep in the MI regime [Figs. 4(e) and 4(f)], the
calculations agree well with the measurements. For lower
lattice depths, although the qualitative trend is still repro-
duced, we find discrepancies. Near the Mott transition
[Fig. 4(d)], the mean-field calculations predict an ampli-
tude lower than observed, a behavior consistent with the
study of number correlations beyond mean-field reported
in [12]. Below the transition point [Figs. 4(a)–4(c)], the
model predicts an oscillation amplitude higher than ob-
served. Deviations from the initial distribution may arise in
this low lattice depth regime if excitations are generated
during the preparation phase and result in an increased
populations in the low-density regions of the cloud, which
barely participate to the spin oscillations. Such ‘‘finite
temperature’’ effects have possibly less influence in the
MI regime, where the many-body system is protected by an
interaction gap.

In conclusion, we have shown how spin oscillations
can be used to probe number squeezing in optical lattices
via the detection of the fraction of atom pairs. Our obser-
vations confirm the expected scenario: near-Poissonian
fluctuations for shallow lattices, strongly suppressed fluc-
tuations for deep lattices, and a smooth interpolation in
between. Moreover, the observed behavior is consistent
with the expected formation of Mott plateaus, a signature
of the incompressibility of this system. Our results indicate
that number squeezing is robust with respect to experimen-
tal manipulations, such as transfer to the purely optical
trap. In this sense, they are promising to employ those
number-squeezed states, e.g., in Heisenberg-limited atom
interferometry [32].
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(London) 419, 51 (2002).

[5] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and
P. Zoller, Phys. Rev. Lett. 81, 3108 (1998).

[6] J. Javanainen, Phys. Rev. A 60, 4902 (1999).
[7] V. A. Kashurnikov, N. V. Prokof’ev, and B. V. Svistunov,

Phys. Rev. A 66, 031601(R) (2002).
[8] K. Burnett, M. Edwards, C. W. Clark, and M. Shotter,

J. Phys. B 35, 1671 (2002).
[9] M. Shotter, J. Phys. B 35, 3019 (2002).

[10] R. Roth and K. Burnett, Phys. Rev. A 67, 031602(R)
(2003).

[11] D. C. Roberts and K. Burnett, Phys. Rev. Lett. 90, 150401
(2003).

[12] J. J. Garcia-Ripoll et al., Opt. Express 12, 42 (2004).
[13] L. I. Plimak, M. K. Olsen, and M. Fleischhauer, Phys.

Rev. A 70, 013611 (2004).
[14] A. Widera et al., Phys. Rev. Lett. 95, 190405 (2005).
[15] T. Rom et al., Phys. Rev. Lett. 93, 073002 (2004).
[16] C. Ryu et al., cond-mat/0508201.
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