
N ASAu`CO NTRACTOR < CR34
RE PO0R T

"1N

) 'SPECTRAL ANALYSIS OF
NONSTATIONARY SPACECRAFT

by Allan ,G. Piersol L* 2006051 604
Preparcd under Contract No. NAS 5-4590 by

(,ý)MEASUREMENT ANALYSIS CORPORATION

I'(/Los Angeles, Caliif.

Jor.,lGoddard Space Flight Center>

"', NATIONAL AERONAUTICS AND SPACE ADMINISTRATION -WASHINGTON, D. C. -NOVEMBER 1965



NASA CR-341

SPECTRAL ANALYSIS OF NONSTATIONARY SPACECRAFT

VIBRATION DATA

By Allan G. Piersol

Distribution of this report is provided in the interest of
information exchange. Responsibility for the contents
resides in the author or organization that prepared it.

Prepared under Contract No. NAS 5-4590 by
MEASUREMENT ANALYSIS CORPORATION

Los Angeles, Calif.

for Goddard Space Flight Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information
Springfield, Virginia 22151 - Price $4.00



ABSTRACT

1This document is concerned with practical procedures for desy 5-'b

ing and analyzing the frequency composition of spacecraft launch v r1ira ? /Y'

data. Since such data are generally nonstationary, conventional analysis

techniques based upon time averaging individual sample records of data

can produce misleading results. To help clarify the basic problems, the

concept of stationarity is reviewed, and theoretical methods for describing

the frequency composition of nonstationary data are summarized. Both

ensemble averaging and time averaging procedures are discussed with

emphasis on the various errors associated with each approach. Experi-

mental studies of actual spacecraft launch vibration data are then pursued

to seek out typical or common trends which can be exploited to improve

practical time averaging analysis procedures. Based upon the experi-

mental studies as well as theoretical ideas, a specific procedure is recom-

mended for the spectral analysis of nonstationary spacecraft vibration

data, based upon time averaging short selected sample records of data.
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1. INTRODUCTION

The spectral analysis of flight vehicle vibration data is relatively

well defined and straightforward, at least in theory, so long as the

vibration data are "stationary" in nature. In practical terms, stationary

vibrations are those whose average characteristics do not change with

time. For example, the vibration environment in a jet airplane during

a continuous cruise at a fixed altitude with constant airspeed and invariant

atmosphere conditions would probably be stationary for the duration of the

cruise. The measurement and interpretation of power spectral density

functions for stationary vibration data is discussed in Reference 1 and

elsewhere.

Unfortunately, not all flight vehicle vibration environments are

stationary during pertinent flight phases. For example, the vibration

environment in a spacecraft during launch is generally nonstationary, i. e.,

the characteristics of the vibration change continuously throughout the

launch phase. The measurement and analysis techniques outlined in

Reference 1 are not strictly applicable to such data (although they are

widely used), because those techniques are based upon time averaging

procedures which inherently assume stationarity.

From a theoretical viewpoint, nonstationary data should be analyzed

by ensemble averaging procedures; i. e., by averaging over a collection

of sample records at specific instances of time. However, as will be

illustrated later, ensemble averaging requires data from a large number

of repeated experiments. Although ensemble averaging is the most

straightforward approach to the problem, it is often difficult in actual

practice to acquire data from a sufficiently large number of repeated experi-

ments. This is particularly true for spacecraft applications where only a



few or perhaps just one experiment (test launch) may be performed due to

the high cost of such experiments. Hence, for practical reasons, it is

usually necessary to employ some sort of time averaging procedure for

the analysis of spacecraft vibration data, regardless of the fact that such

data are generally nonstationary.

The most common procedure currently used to analyze spacecraft

launch vibration data is to compute individual time averaged power spectra

for short time intervals covering significant launch events, such as lift-

off, transonic flight and maximum dynamic pressure flight. Another approach

is to compute a "time varying spectrum" over the entire launch phase. This

is accomplished by continuous averaging (usually with a lowpass RC smooth-

ing filter) at each frequency of interest, where the averaging time used is

short relative to the length of pertinent events during launch. For this

case, a parallel filter type instrument is desirable, although the same

results can be obtained by repeated playback through a single filter instru-

ment where the filter is shifted in frequency by one bandwidth for each

playback. This general approach is suggested in References 2 and 3.

The above procedure produces "usable" information in the sense that

the resulting "time varying spectrum" can be readily translated into a

vibration test specification. The usual procedure is to form a "maximum

spectrum" based upon the highest level observed at each frequency of the

"time varying spectrum. " A stationary vibration test is then performed

using the "maximum spectrum. " This approach to the problem may be

completely acceptable. However, certain theoretical and practical questions

do arise. For example, how do the above "time varying spectra" and the

resulting 'haximum spectra" relate to theoretical spectral representations

for nonstationary data? How long should sample records be and where should

they be selected during the launch phase? How long should the averaging time

be? How can statistical errors be minimized in practical terms? The

purpose of this document is to help answer these important questions.
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2. CLASSES OF NONSTATIONARITY

2. 1 REVIEW OF BASIC DEFINITIONS

Any sample time history record of a random physical phenomenom

will represent a unique set of circumstances that are not likely to be

repeated. In other words, a given sample time history record is merely

a special example out of a large set of possible records that might have

occurred. The collection of all possible records that might have occurred

is called an ensemble which forms a random process. Hence, a given

sample record of a random physical phenomenom may be thought of as a

single physical realization of a random process. Hypothetically, for con-

tinuous phenomena such as mechanical vibrations, the number of possible

physical realizations (sample records forming the random process) would be

infinitely large.

Let y(t)4 denote the ensemble of sample records forming a random

process, and let yk(t) be the kth sample record from the ensemble.

The properties of the random process may be computed by taking averages

over the ensemble at any instant of time ti , as illustrated in Figure 1.

For example, the mean value at time t and the autocorrelation function at

times t1 and tI +T for the random process Qy(t)J would be given by

N

_i (t 1 Y k(tl) (1a)
y 1 N-_+coD ~

N

R (t , t + T) = lim 7 yk(tl) y(t + ) (lb)
y 1 N-+1o k=N k 1
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Figure 1. Ensemble of Sample Records

For the general case where the properties defined in Eq. (1) vary with

time t 1 , the random process is said to be nonstationary. For the special

case where the properties defined in Eq. (1) do not vary with time, the

random process is said to be weakly stationary. That is, if

Yi (t I = L4
•yt) 1 FJy(t 2z) = y

Ry(tI, tI +T) =Ry(t2, t2+ T) = Ry(T)

then &y(t)} is weakly stationary. If all higher order moments of the random

process determined by ensemble averaging are also time invariant, the

random process is said to be strongly stationary. In most cases, verification

of weak stationarity is sufficient to justify an assumption of strong stationarity.
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If a random process is stationary, then with few exceptions in

practice, the ensemble averages in Eq. (1) can be replaced by time

averages over any one sample record from the ensemble. That is, if

{y(t)) is stationary,
T

1Y = fln T y(t) dt (2a)

T

R (T) lim y(t) y(t+T) dt (Zb)
y T-.. oo

The justification for the above relationships evolves from the "ergodic

theorem, " which effectively states that time averages can replace ensemble

averages for a wide class of stationary random processes. Note that the

ergodic theorem does not apply to nonstationary random processes.

2. 2 PRACTICAL INTERPRETATIONS

When flight vehicle vibration data are gathered and analyzed, the ulti-

mate objective is to obtain information concerning the vibration environment

to be expected during future missions for that and all similar vehicles.

However, the measurements obtained from data for a single flight of one

vehicle will strictly describe only the vibration environment in that vehicle

for that interval of time in the past when the data were obtained. If such

data are to be used as predictors for the vibration environment during future

missions for that and other similar vehicles, it is necessary to make

certain assumptions involving stationarity and ergodicity.

In order to place the concepts of stationarity and ergodicity into a mean-

ingful physical context, consider the specific case of a vibration response

at some point on the structure of a flight vehicle. Assume a continuous

time history record of that vibration response is obtained for a

given mission of the flight vehicle. That time history record is actually a

sample record from a random process which represents the vibration

5



response at that point. The other sample records needed to completely

define the random process can be visualized as the time history records

for the vibration responses at that same point during identical missions

performed by an infinitely large collection of identical flight vehicles.

The hypothetical ensemble of sample records described above cannot,

of course, be physically realized. However, such a collection of sample

records could be simulated by collecting data from repeated flights of one

or more flight vehicles of the same type and performing similar missions.

All sample records would be assigned a common time base where the start

of the flight would be t . The result would be a physical approximation to

an ensemble forming a random process. In this context, stationarity and

ergodicity are interpreted as follows. The mean value and autocorrelation

function for the vibration at any instant of time measured from the start

of the flight could be estimated by averaging over the collection of sample

records. If these estimated properties did not vary significantly from one

instant of time to another, at least during some specific phase of the flight,

then the vibration during that flight phase would be considered stationary.

An ergodic assumption means that the vibration during that flight phase for

one mission of one flight vehicle may be considered representative of the

vibration which will occur during that flight phase for all similar missions

of all flight vehicles of the same type.

Now consider the case of nonstationary vibration data such as would

occur in a spacecraft during launch. In classical terms, an ergodic

hypothesis is not valid here since the data is not stationary, even for

limited time intervals. At first glance, this would seem to imply that the

vibration recorded during one launch cannot be considered representative of

the vibration during any other launch. However, it is known intuitively as

well as from experience that this implication is not necessarily true. For

example, assume the rms value for the vibration response at some point

6



on a spacecraft structure is measured over each of a contiguous series of

one second long time intervals covering the entire launch phase. The

result would be a sequence of rms values which describe an 'rms value

time history" for the vibration. Further assume that similar rms value

time histories are obtained at the same location for several different

launches of spacecraft of the same type under the same conditions. One

would intuitively expect these rms value time histories to be similar from

launch to launch, and indeed they will be as indicated in Figure 2. This

figure presents three broadband rms value time histories for the vibration

response measured at the same location on three different ATLAS-AGENA

vehicles during launch.

The results in Figure 2 clearly illustrate that the nonstationary vibra-

tion data for one spacecraft launch is at least somewhat representative of

the data for other launches of similar spacecraft. Obviously, something

similar to an ergodic hypothesis appears justified. This is true because a

special type of nonstationary random process is involved, where each

sample record has a common underlying time varying characteristic. In

other words, there is clearly a deterministic factor in the nonstationary

random process which describes the vibration in a spacecraft during

launch. It appears reasonable that this nonstationary random process might

be represented by a stationary random process with deterministic time

varying parameters. Assuming the time varying parameters can be

identified and separated out, the data from one launch can be used to deter-

mine the properties of the vibration for all other launches.

2. 3 SPECIAL NONSTATIONARY MODELS

Various types of nonstationary random processes have been considered

in the past as models for specific physical phenomena. For example, a

simple model for a nonstationary random process with a time varying mean

7
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value is given by a process (y(t)) where each sample record is of the form

y(t) = A(t) + x(t) (3)

Here, A(t) is a deterministic function and x(t) is a sample record from a

stationary random process (x(t)) . Illustrations of interest in this model

are presented in References 4 and 5.

As a second example, a common model used to describe a nonstationary

random process with a time varying mean square value is given by the process

(y(t)) where each sample record is of the form

y(t) = A(t) x(t) (4)

Again, A(t) is deterministic and x(t) is a sample record from a stationary

random process (x(t)) . Studies of this model are presented in References

6 and 7. As will be shown later, the model of Eq. (4) leads to an important

special case. Specifically, if the fluctuations of A(t) are very slow rela-

tive to the fluctuations of (x(t)) , then the spectral characteristics of (y(t))

can be described by a time varying power spectrum approximated by

G yt, f) - A2(t)Gx(f) (5)

Assuming (x(t)) has a mean square value of unity, the function A(t) is

the time varying root mean square (rms) value of the nonstationary process

(y(t)) . Nonstationary random processes of this form are referred to in

Reference 8 as being "locally stationary." A locally stationary random

process can be visualized as one whose power spectrum varies with time

such that the mean square value (area under the power spectrum) changes

while the general shape of the power spectrum remains unchanged.

9



For the case of spacecraft vibration data, the mean value of the data

can usually be considered time invariant. It is the mean square value of

the vibration which is the significant time varying parameter. Furthermore,

the variations in the mean square value are usually very slow relative to

the instantaneous fluctuations of the vibration. Hence, a model similar to

Eq. (5) might be a suitable representation for spacecraft vibration data, at

least for certain time intervals during the launch phase. If so, the measure-

ment and description of spacecraft vibration environments would be greatly

simplified, as will be discussed later. These possibilities are pursued in

this document.

10



3. THEORETICAL BACKGROUND

3.1 SPECTRAL REPRESENTATIONS FOR NONSTATIONARY DATA

From the viewpoint of both engineering interpretation and physical

simulation, the single most valuable descriptive property for stationary

vibration data is a power spectrum, or some similar measure of frequency

composition. It follows that some type of spectral representation would

also be valuable for nonstationary vibration data. Several such spectral

repres'entations have been suggested over the years, including the following.

3. 1. 1 Instantaneous Power Spectrum

One of the earlier methods for describing the spectral composition

of nonstationary data is in terms of a Fourier transform of a time varying

autocorrelation function. From Eq. (ib), the autocorrelation function for a

nonstationary random process, IyMt) I may be defined by

N

Ry(t, t)= lirm 1(y 1 2 N-..n N Z Yk(tl)ykt 2 ) (6)

By making the change of variables, T = t 2 - tI and t = (tI +t 2 )/2, Eq. (6)

reduces to

N

R (t,T)- lim - ) y t+T) (7)
y N--oo N k= 1

An expression which is a function of time and frequency can then be obtained

by taking the Fourier transform of R y(t, T), as follows.

00

Sy(t, f) =f Ry(t, T) cos 2wfT dT (8)

-O1



Note that s (t, f) is defined for both positive and negative values of f.Y

The quantity s y(t, f) in Eq. (8) is called the instantaneous power spectral

density function for the process (y(t)). This spectral function can take

on negative values for certain cases. However, an integral of the function

over either time or frequency will always yield nonnegative results which

are physically meaningful.

The instantaneous power spectral density function is not

directly measurable in the frequency domain. An experimental

estimate for the function can be obtained only by, 1) computing the

time varying correlation function R (t, T) from an ensemble average
y

at each value of t and T of interest and, 2) computing the Fourier

transform for each value of t of interest. See References 9, 10, and

11 for more extensive developments and discussions.

3. 1. 2 Generalized Power Spectrum

A second method for describing the spectral composition of

nonstationary data is in terms of a double Fourier transform of the

time varying autocorrelation function defined in Eq. (6). The result

is a double frequency expression as follows.

co co j2r(fltI-f2t2)

S(fl,) f 2)= f . f Ry(tl, t.) e dtI dt2 (9)

-CO -O0

Note that ,y (fl) f2) is defined for both positive and negative values of

I and f2 The quantity ly (fl, f2 ) in Eq. (9) is called the generalized

power spectral density function for the process (y(t)) . This spectral

description for nonstationary data is of great value for analytical treat-

ments of nonstationary problems. However, like the instantaneous power

spectral density function, it cannot be directly measured in the frequency

domain. See Reference 7, pages 2-7, for more detailed discussions.

12



3. 1. 3 Time Varying Power Spectrum

A third method for describing the spectral composition of non-

stationary data is in terms of an expression given by

1 2
G (t, f) 1 2 _y (t, f, B) (10)

y By
2

where p2j (t, f, B) is the instantaneous mean square value of that part of

(y(t)) which is passed by a narrow bandpass filter with a bandwidth of

B and a center frequency of f. Note that 2 (t, f, B) is defined only2 Y
for positive values of f. The value of j (t, f, B) is given theoretically

y
by

2 co j2Tr(fI -f 2 )t
*p(t, f, B) = If f H(fl)H-(f 2 ) ,y(f , f )e df df (11)
y 1~ 2 y 12 1 2

-c0 -OD

where H(f) is the frequency response function of the narrow bandpass

filter, H"(f) is the complex conjugate of H(f), and (f f) is the

generalized power spectral density function for (y(t)). The quantity

G (t, f) in Eq. (10) is called the time varying power spectral density

function for the process (y(t)) . This function will always be nonnegative.

The time varying power spectral density function is directly

measurable in the frequency domain by ensemble averaging procedures.

Specifically, the bandwidth limited mean square value is given in terms

of an ensemble average by

2 (t, f, B) = lim 1y(t, f, B) (12)
y N---cno R Z k

k=l

where yk(t, f, B) is the value of the kth sample record after narrow

bandpass filtering with a bandwidth of B and a center frequency of f.

Hence, a time varying spectrum can be experimentally estimated by

computing ensemble averages at specific times for a finite collection

of records. See Reference 7, pages 7-10, for more detailed discussions.

13



The concept of the time varying power spectrum involves one

serious restriction. This concerns the specification of the bandwidth

B in Eq. (10). On the one hand, B should be very narrow so that

G (t, f) will present properly resolved spectral information for ally

values of f. On the other hand, B should be sufficiently wide to

permit proper response to nonstationary time trends in the data. That

is, if B is too narrow, time trends in the data will be smoothed out

since the narrow bandpass filtering operation is equivalent to taking a

weighted time average. In more practical terms, if G (t, f) is to
y

properly describe the time trends in the nonstationary data, the

narrow bandpass filter must have a rise time which is very rapid

compared to such time trends. The rise time for an ideal rectangular

bandpass filter with a bandwidth of B cps is approximated by

Tf I/B (13)

3. 1. 4 Short Time Averaged Power Spectrum

A final method for describing nonstationary spectra involves the

computation of a time varying power spectrum as defined in Eqs. (10)

and (12), except the ensemble average is replaced by a short time average.

The result is a short time averaged power spectral density function

given by

- 1 2
G (t, f, T) = y (t, f, B, T) (14)

y B

where

t

y (t, f, B, T) = J y2(ý, f, B) dý

t-T

14



The term y(ý, f, B) is the value of the sample record being investigated

after narrow bandpass filtering with a bandwidth of B and a center fre-

quency of f. The operations in Eq. (14) define the currently used

procedure to analyze nonstationary data, as discussed in References 2 and

3, and here in Section 1.

A short time average power spectrum is clearly much easier to

measure in practice than the time varying power spectrum discussed

in Section 3. 1. 3. Only one sample record of the nonstationary process

of interest is required (there is no ensemble averaging). Furthermore,

the smoothing effect introduced by the narrow bandpass filter is less

of a problem since time averaging is desired. On the other hand, the

nonstationary process in question must be such that all time trends are

deterministic and, hence, represented in every sample record which

might be obtained. Also, the time averaging operation introduces a bias

error which can be reduced only at the expense of increased variability

errors. These matters are discussed further in the next section.

As the averaging time T in Eq. (14) is increased, the time

varying spectral characteristics of the data are blurred such that

G (t, f, T) is no longer a function of time t. In the limit where the
y

averaging time includes the entire record length, a time averaged power

spectral density function is obtained. In terms of the three previously

defined spectra, the time averaged power spectral density function for

the process (y(t)) is given by
T

G (f) lim f sy(t, f) dt (15)
y T-ooT

G (f) z 2 4 (f, f) ; (f1  f 2  f) (16)

y y

T-1 r
G (f) lim -J G (t, f) dt (17)

y T-o-co Y
0

15



Equations (15), (16) and (17) will yield identical results. Note that the

quantity G (f) is physically realizable (defined for positive frequenciesy

only). This is accomplished in Eqs. (15) and (16) by folding over the

negative frequencies to obtain the following relationships.

G-(f) (t, f)= 2T (t, f) ; f> 0 (18)
y y y

G (f) y (f, f) ? 2 y (f, f) ; f > 0 (19)
y y y --

One final point should be noted here. The computation of a time

varying power spectrum could also be accomplished by curve fitting

procedures instead of either ensemble or short time averaging procedures.

Specifically, the bandwidth limited mean square value in Eq. (10) could

be estimated at each frequency by making a "best" fit over the record

length with a set of orthogonal polynomial functions. This approach is

suggested and studied theoretically in References 5 and 6.

3. 1. 5 Experimental Illustration

For purposes of illustration, consider a nonstationary random

process (y(t)) where each sample record is given by

y(t) = A cos 2Trf 0t x(t) (20)

Here, x(t) is a sample record from a stationary process (x(t). A time

dependent autocorrelation function for (y(t)) is obtained by substituting

Eq. (20) into Eq. (7) as follows.

R (t, T) =A cos 27rf 0 (t - Ti cos 2Trf0 t + Rx(T) (21)

Here, Rx (T) is the autocorrelation function for the stationary random

process, (x(t)) . Noting the identity, cos (a - b) cos (a+ b) 1 (cos Za + cos Zb),

Eq. (21) reduces to
2

R (t, T)= (cos 2Trf0T + cos 4Trf0t) R X(T) (22)
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The instantaneous power spectral density function for (y(t)} is

obtained by substituting Eq. (22) into Eq. (8) as follows.

0O

s (t, f) A - 0 (cos Zrf T + cos 4Trf t) cos 2WfTR (T) dT
y 2 f 0 0 x

-O2
(23)

A2 02

A j [cos 2n(f-f )T + cos 2 r(f+fo)T + 2cos 2lffT cos 4 f0ot]Rx(T) dT

-Oo

Since R (T) is an even function of T, the integral of cos [I2r(f + f0)T] R (T)

is simply a Fourier transform of R x(T) which equals S x(f + f 0 ). Hence,

Eq. (23) reduces to

s (t, f)= [Sx(f - f 0 ) + S(f + f 0 )] +A Sx(f) cos 4rf 0 t] (24)

where S (f) is the power spectral density function (defined for both positive
x

and negative frequencies) for the stationary random process tx(t). From

Eqs. (16) and (19), the physically realizable time averaged power spectrum

is given by A _2
G Mf) = 4 G (f - f0 ) +G (f +f 0 ) (25)

In words, Eq. (25) states that the time averaged power spectrum for

Sy(t)I consists of two sidebands, each offset in frequency by +f 0 , and

each having the same power spectrum (excluding a gain factor) as lx(t).

This well-known result is the basis for the heterodyning principle

employed by most analog spectrum analyzers to translate an applied

signal in frequency past a single fixed bandpass filter. Note that the same

result could have been obtained from either the generalized power spectrum

or the time varying power spectrum using Eqs. (17) or (18).
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The theoretical result in Eq. (25) is illustrated for actual experi-

mental data in Figure 3. Here, (x(t)) is narrow bandwidth Gaussian noise

with an approximately rectangular bandpass characteristic having a

bandwidth of B = 20 cps and a center frequency of f = 100 cps. For

convenience, a constant of A = F is used so that the mean square value

of (x(t)) and (y(t)) are equal. The time averaged power spectrum for a

sample record y(t) is computed using an averaging time which is very

much longer than each nonstationary cycle. A detailed discussion of the

test set-up and measurement parameters is presented in Appendix A.

In Figure 3(a), the modulating frequency is zero; i. e., a DC voltage

was used for A(t). Hence, this case constitutes the spectrum of the

underlying stationary process (x(t)) , since each sample record y(t) = x(t).

In Figure 3(b), the modulating frequency is f 0 = 1 cps. In this case, the

spectrum for (y(t) is not significantly different from the spectrum for

(x(t)) because the two sidebands are offset by only + 1 cps. As the

modulating frequency increases, the power spectrum for (y(t)) gradually

changes, as seen in Figures 3(c) through 3(e), and finally breaks into two

distinct sidebands, as seen in Figure 3(f).

The illustration presented in Figure 3 constitute only one case.

However, the frequency shifting or heterodyning displayed in Figure 3 will

occur for any desired spectral characteristics of(x(t)) , although the results

may not always be so obvious. For example, assume (x(t)) is white noise;

i. e., a random process with a uniform power spectral density function over

all frequencies. In this case, by definition, G(f - f 0 G(f) for all f0'

Hence, from Eq. (25),

A 2
G (f)A G (f) (26)

y 2 x

In words, the time average power spectrum for (y(t)) will be identical

(excluding a gain factor) to the power spectrum for (x(t)) , independent of fo.
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3. 2 ERRORS IN NONSTATIONARY SPECTRA MEASUREMENTS

3. 2. 1 Stationary Power Spectrum

Before discussing errors in nonstationary spectra measurements,

it is desirable to review the errors associated with stationary power

spectra measurements. The power spectral density function for a stationary

random process (x(t)) may be defined by

1 2Gx(f) - lima • b f B) (2.7)
x B-0 B

where

T
2 1 2(t ,Bd

ýx (', B) -- lim - t fB)d

0

The term x(t, f, B) is the value of the sample record being investigated

after narrow bandpass filtering with a bandwidth of B and a center fre-

quency of f.

The limiting operations in Eq. (27) cannot, of course, be achieved in

practice. Hence, the power spectral density function can only be estimated

based upon a finite bandwidth and averaging time, as follows.

T
A 1 (2 (8
G (f) x x(t, f, B)dt (28)

x BT f
0

The resulting estimate will include two types of errors. The use of a

finite bandwidth for the filtering operation introduces a systematic or

bias error in the estimate. The use of a finite time interval for the averaging

operation introduces a variability or random error in the estimate. These

two errors are now discussed.
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Assume a stationary random process, (x(t)) , has a true power

spectral density function of Gx (f). Further assume an estimate G(f 1 )

is computed at frequency fI using a finite bandwidth B. Although the

resulting estimate applies only to a frequency interval, it is usually

associated with some specific frequency for convenience of presentation.

The specific frequency used is often the center of the bandwidth B. The

result is a bandwidth bias error IL b) as illustrated in Figure 4.

G (f)
x

G (f1 )

G X(f 1 )

f" fl fl + B-

Figure 4. Illustration of Bandwidth Bias Error

From Reference l2,Chapter 5, the bandwidth bias error described in

Figure 4 is approximated by

2
B G i(f) (2)

b -24 x
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I I

where G (f) is the second derivative of G (f) with respect to f. Hence,x x

the bandwidth bias error is a function of the shape of the spectrum as well

as the bandwidth B. For a fixed bandwidth, tb becomes small as G (f)

becomes more smooth. In the limit where G'x (f) is a constant, tb = 0

independent of B. For a given power spectrum, ýi b becomes small as B

becomes small. In the limit where B is zero, b = 0 independent of Gx (f).

Now consider the case where a stationary random process (x(t))

is repeatedly sampled to obtain M number of independent sample records,

xk(t); k = 1, 2, 3, ... , M. Assume an estimate of the power spectral

density function at frequency f is computed from each of the sample records

using the same bandwidth and averaging time. Since each sample record

represents a unique set of circumstances, the estimates will vary from

one sample record to another, as illustrated in Figure 5.

G (f )x1

44/--A 4  AM

------ A-F

1 2 3 5 T

Figure 5. Illustration of Random Error
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The variation in the sample estimates illustrated in Figure 5 con-

stitutes a random error. The magnitude of this random error may be

described by the standard deviation of the sample estimates, which by

definition is

M

a- lim -A. (30)M M- 1 T Ak
M-oo k=l

where Ak is the deviation of the kth estimate from the true value at

frequency f . From Reference 12, Ch. 5, this standard deviation is

approximated by

G(f) (31)

where B is the bandwidth of the narrow bandpass filter in cps and T is

the averaging time in seconds. Hence, the random error is a function of

both the bandwidth and the averaging time.

A comparison of Eqs. (29) and (31) immediately reveals the conflicting

requirements on the selection of a proper bandwidth B for a power spectral

density analysis of stationary random data. Specifically, the bandwidth

bias error becomes large as B becomes large while the random error

becomes large as B becomes small. Assuming the available sample re-

cord length T is limited, the selection of an analysis bandwidth B is

always a compromise between these two errors. Of course, if the available

sample record length is unlimited, both errors can be made as small as

desired by increasing T while reducing B to obtain a large value of the

product BT with a small value of B.
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3. 2. 2 Time Varying Power Spectrum

Now consider the time varying power spectral density function,

G (t, f), defined by Eq. (10). Assume G (t, f) is estimated using a finitey y

bandwidth B which is sufficiently wide to avoid any significant smoothing

of nonstationary time trends in the data. Further assume the ensemble

average is performed over a finite number of sample records, N. That is

N
1y BN " Yk(t, f B) (32)

The resulting estimate will again include two types of errors. The use of

a finite bandwidth for the filtering operation introduces a bandwidth bias

error 4 b) and the use of a finite number of records for the averaging

operation introduces a random error a. These two effects are analogous

to the results for estimating power spectra of stationary data, as discussed

in Section 3. 2. 1. In fact, the nature of the errors at any instant of time

will be as illustrated in Figures 4 and 5. An exact expression for the

bandwidth bias error has not been established, although Eq. (29) should

provide a reasonable approximation in most cases. Noting that the time

varying power spectrum is effectively a collection of ensemble averaged

mean square values, the random error at any instant of time is given

from Reference 6, pp. 15-18, as

o - G (t, f) (33)
Ny

It is important to note here that the random error a- and the bias

error pb are independent. Hence, the bias error can be controlled by

reducing the bandwidth of the filtering operation without adversely effecting

the random error. On the other hand, the random error can be reduced

only by increasing the number of sample records. The acquisition of a

sufficient number of sample records may be difficult to accomplish in

practice. For example, if the estimate is to have a standard deviation equal

to 10% of the quantity being measured, then cr/G(t, f) = 0. 10, and the

number of sample records required is N = 200.
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3. 2. 3 Short Time Averaged Power Spectrum

Finally, consider the short time averaged power spectral density

function, G (t, f, T), defined by Eq. (14). Assume G (t, f, T) isY Y

estimated using a finite bandwidth B which is sufficiently wide to have

an effective averaging time less than the finite averaging time T (T > I/B).

It follows that

t
G (t, f, T) _f y 2 ( , f, B) (34)

y BTf

t-T

The resulting estimate will include, as before, a bandwidth bias error

introduced by the use of a finite bandwidth for the filtering operation, and

a random error introduced by the use of a finite time interval for the

averaging operation. These two effects are again analogous to the results

for estimating power spectra for stationary data, as discussed in

Section 3. 2. 1. However, there is another source of bias in the short

time averaged power spectrum introduced by the averaging operation.

This additional bias error is illustrated in Figure 6.

G y f 1 )

Gy(tl) fl)•

II t
I Gy(tl' fl) T)

I
II
II

1 t 1ttI l T t1

Figure 6. Illustration of Time Interval Bias Error
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Assume a nonstationary random process, (y(t)) , has a true time

varying power spectral density function at any frequency flI, as illustrated

in Figure 6. Further. assume a short time averaged power spectral density

estimate Gy(t I f' T), is computed over a time interval from t 1 - T to

t 1 . Although the resulting estimate applies only to a time interval, it is

usually associated with some specific instant of time for convenience of

presentation. The specific time used is often the end of the interval T,

as noted in Figure 6. Of course, any other instant of time such as the

center of the interval or the beginning of the interval could also be used.

In any case, the result is a time interval bias error, p..t'

It is clear that the time interval bias error is a function of the time

trend in the data as well as the averaging time T. For a fixed averaging

time, p.t becomes small as (y(t)) becomes more stationary. In the limit

where (y(t)) is stationary, •t = 0 independent of T. For a given time

trend, p.t becomes small as T becomes small. In the limit where T

is zero, p.t = 0 independent of (y(t)),

From the above discussion, it is desirable to make the averaging time

T short to minimize the bias error lit. However, as T becomes short,

the random error a- becomes large. An exact expression for the random

error has not been established, although the general form of the error is

similar to the error expression for stationary data given by Eq. (31).

That is, in most cases, the random error of the estimate can be reduced

by increasing either the bandwidth B or the averaging time T. On the

other hand, increasing B will increase the bandwidth bias error b$ and

increasing T will increase the time interval bias error .t' Hence, the

selection of a bandwidth B and an averaging time T for a short time

averaged power spectral density measurement is always a compromise

between a random error and a bias error. The same situation exists for
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power spectra measurements of stationary data, as discussed in Section

3. 2. 1. For the stationary case, however, both the bias and random errors

can be reduced to any desired level by increasing the averaging time T,

since ptt = 0 for stationary data measurements. This is not true for

nonstationary data measurements.
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3. 3 SPECIAL APPLICATIONS

Consider the product type nonstationary random process defined in

Eq. (4). The autocor'relation function for this process at any two times,

tI and t is given by

N

Ryit t lim Ak xk)(t) (35)

N--oo k= 1

Letting tI = t - T/2 and t. = t + T/2, Eq. (35) reduces to
1 2

R (t, T) = A(t -- T) A'r +T) Rx(T) (36)
y 2 2 (

where R x(T) is a stationary autocorrelation function. If the fluctuations of

A(t) are relatively slow compared to the fluctuations of (x(t)) , then
T T

A(t + T) - A(t - T) for all values of T where R (T) is significantly
22 x

different from zero. Thus, for this case,

R (t, T) = A 2(t) R (T) (37)
y x

which is a time varying autocorrelation function of a form referred to as

being "locally stationary. " A time varying power spectral density function

for this case is given by the Fourier transform of R (t, T), as follows.
Y

G (t, f) A 2(t) G (f) (38)
y x

For example, consider the cosine product type nonstationary random

process defined in Eq. (20). For this case, A(t) = A cos 27rft. By a

rather lengthy development presented in Reference 12, Chapter 9, which

assumes the bandwidth of the data is wide compared to f0o the time

varying power spectrum for this model is given by
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f+(B/2)

G (t, f) - f f-f0)+Gxff+f0) df+ G (f)T- cos 4Trf t (39)
y 4 f-(B/2) x x

Assume the modulating frequency is very low compared to the lowest data

frequency of interest (f 0 << f), and that the spectral density measurements

are highly resolved (B much narrower than any spectral peaks in the data).

The time varying power spectrum is then given approximately by

Gy(t, f) A 1 + cos 4Trft Gx(f) [A cos Z2rf 0 t Gx(f)= A 2 (t)Gx(f) (40)

The same result can be arrived at directly using the instantaneous power

spectrum given by Eq. (24). For f0 << f, Eq. (24) reduces to

s (t, f)%' I + cos 41Tfoft Sf) (41)
y x

Hence, the cosine product nonstationary random process reduces to the

locally stationary form defined in Eq. (38) as f0 becomes small compared

to f.

The important point to be observed here is as follows. Assuming a

nonstationary random process defined by Eq. (4) is locally stationary,

a short time averaged power spectrum for a sample record will yield

from Eq. (40)

-G i t, f , T) = A 0it, T) G x(f) (42)

where
t

A02 (t, T) A 2(Q) d
0 fJ

t-T
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Thus, the power spectrum computed by a time average will be the same

(except for a gain factor) as the time varying power spectrum, independent

of the averaging time.

The above result can often be applied to improve the quality of non-

stationary vibration data analysis as follows. If the nonstationary vibration

data of interest fits a locally stationary model, at least over some defined

time interval, then a time varying power spectrum for the data during that

time interval can be established by two simple steps. The first step is to

measure an over-all rms value (or mean square value) time history for the

data during the locally stationary time interval. The second step is to

measure a power spectrum by time averaging over the entire locally

stationary time interval. The result will be as indicated in Figure 7.

A(t) G (f)
x

(a) rms value time history (b) time averaged power spectrum

Figure 7. Illustration of Description for Locally Stationary Spectrum

30



From Figure 7, the area under the power spectrum is established by

plot (a) while the shape of the power spectrum is established by plot (b).

The advantage 6f the above analysis procedure over the measurement

of a conventional short time averaged power spectrum is that, for a given

frequency bandwidth bias error and time interval bias error, the random

error in the measurement at any time and frequency will be very much less.

This is true because the random error is minimized for a given time interval

bias error by using the entire bandwidth of the data to determine the time

varying characteristics in plot (a), and minimized for a given bandwidth

bias error by using the entire length of the data to determine the spectral

characteristics in plot (b).
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4. EXPERIMENTAL STUDIES

4. 1 GENERAL APPROACH

The theoretical discussions in Section 3 indicate that analysis of non-

stationary data can be greatly simplified if a locally stationary assumption

is applicable to the data. Hence, it is desirable to establish whether or

not this assumption is applicable to spacecraft vibration data during any

portion of the launch phase. Because of the complexities and uncertainties

of available analytical models for spacecraft vibration, a direct experimental

investigation is considered to be the most practical way to approach the

problem.

Typical launch vibration environments for spacecraft (or missile pay-

loads) may be broadly attributed to three principal sources, as follows.

1. Acoustic excitation generated by the rocket engine.
This source is most pronounced at lift-off.

2. Transonic excitation generated by combined shock
wave and boundary layer activity at Mach 1.

3. Aerodynamic excitation generated by boundary
layer turbulence. This source is most pronounced
at maximum dynamic pressure (max "q") flight.

There are, of course, other sources of excitation which might contribute

significantly to spacecraft vibration environments. For example, self-

excited oscillations such as resonant burning and "pogo" may produce

intense periodic vibrations which are more damaging than the vibration

produced by all of the above listed sources combined. Self-excited

oscillations, however, are easy to detect and can generally be analyzed

by conventional periodic data reduction procedures, as outlined in

Reference 1. A more common although less severe problem is the transient

modal response of the launch vehicle to lift-off and control system loads.

Nonstationary data of this type is sometimes quite pronounced during lift-

off, as will be seen later.
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There are also some very short duration transients which contribute

to spacecraft dynamic environments. Included are ignition shocks, staging

shocks, and explosive device operations. These short duration transients

are not considered in this study.

Because of the widely different nature of the sources produ~cing vibration

during lift-off, transonic flight, and max "q"I flight, it is unlikely that a locally

stationary assumption would apply to all three of these launch phase events

together. On the other hand, it is feasible that the assumption might

apply to one or more of the events individually. It is on this basis that an

experimental investigation is approached. Specifically, if the spacecraft

launch vibration data is locally stationary over the time interval for one of

these events, then the power spectra measured over short contiguous time

intervals covering the event should differ only by a constant gain factor.

Hence, a procedure to determine whether or not actual data is locally

stationary is as follows:

a) Measure the short time averaged power spectrum for each

of a series of contiguous time intervals which together

cover the launch event of interest.

b) Normalize the area under each measured spectrum by
dividing the spectral level at each frequency by the mean

square value of the data for that time interval.

c) If the data is locally stationary, the resulting normalized

spectra should not differ, except for variations due to

statistical sampling considerations.
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4.2 VEHICLES AND MEASUREMENTS

The procedure of Section 4.1 is applied here to seven individual vibra-

tion time history records collected during the launch of five different launch

vehicle-spacecraft configurations. The specific vehicles and measurement

locations for the vibration data were as follows.

Spacecraft Launch Location MeasurementVehicle Designation

1. Engine mount at station 409 NIMBUS,
longitudinal direction. Location 1

NIMBUS- I THOR-
AGENA 2. Forward interface of AGENA- NIMBUS,

spacecraft adaptor at station Location 2
220, lateral direction.

I. Base of spacecraft, lateral OGO,
Orbiting ATLAS- direction Location 1
Geophysical AGENA

Observatory 2. Base of spacecraft, OGO,

(OGO - 1) longitudinal direction Location 2

Orbiting THOR- Interface between forward motor
Solar DELTA shoulder and payload attach fit- OSO
Observatory ting, longitudinal direction.
(OSO - B2)

ECHO A-12 THOR Base of spacecraft adapter, AVT
(AVT - 2) longitudinal direction.

Re-entry MINUTE- Base flange of A and F shelf, MINUTE-
Vehicle MAN longitudinal direction MAN

Table 1. Vehicles and Locations for Vibration Measurements

The NIMBUS, OGO, OSO, and AVT measurements represent typical

spacecraft launch vibration environments. Note that both lateral and
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longitudinal data are included. The MINUTEMAN Re-entry Vehicle

measurement provides an example of launch vibration where the effects of

transonic excitation and maximum dynamic pressure excitation are clearly

separated. This situAtion did not occur so distinctly in the other available

measurements.

Power spectra for each of the seven vibration measurements were

computed over short contiguous time intervals covering those portions of

the launch phase where lift-off, transonic, and/or max "q" vibrations were

pronounced. The approximate times after lift-off when Mach 1 and max "q"

occurred for each vehicle were as follows.

Approximate Time After Lift-Off, Seconds
(to = time at lift-off)

Measurement

Mach 1 max 1"q"1

NIMBUS t 0 + 52 t0 + 70

OGO t0 + 55 tO + 75

OSO t0 + 40 t0 + 60

AVT t0 + 39 to + 50

MINUTEMAN t0 + 18 to + 37

Table 2. Approximate Times to Mach 1 and Max "q'"
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The actual measurements of power spectra were accomplished using

a one-third octave band filter set with a true rms value detector, an RC

type lowpass filter avrager, and a logarithmic readout. All vibration

records were analyzed by obtaining continuous rms time history plots of

the data in each of the one-third octaves where pertinent data existed.

The averaging time constant used for the analysis was selected to be as long

as possible without introducing observable time interval bias errors. Details

are presented in Appendix B.

The continuous rms time histories were converted into discrete

values at specific times by recording the instantaneous rms values noted at

equally spaced time intervals. The interval between readings was selected

to be at least 5 RC averaging time constants (5K) to assure that each rms

value was reasonably independent of the preceding or following value. The

discrete rms values were then converted into mean square values in decibels

relative to the over-all mean square value by dividing the one-third octave

values at each time by the over-all value at that time. Since the data were

recorded in terms of a logarithmic ordinate (decibels), the division was

actually accomplished by subtracting the over-all value in db from the one-

third octave values in db at each time (there is no difference between mean

square and rms values on a db scale). The resulting relative mean square

values in the one-third octave bands were finally converted into normalized

power spectra (when desired) by subtracting off the frequency bandwidth

for each third octave expressed in db. Instrumentation and data reduction

details are presented in Appendix B.

Note that all vibration time history records were retrieved by use

of radio telemetry where lowpass filtering operations were involved. The

lowpass cut-off frequencies varied from 750 to 2000 cps depending upon the

telemetry channel used. This fact, however, is not pertinent to the

experimental studies of interest here.
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4. 3 RESULTS

The over-all rms time history and the relative mean square value

time histories for the pertinent one-third octave levels are presented in

Appendix C. Note that the data measured during lift-off are presented on

separate plots from the data measured during transonic and max "q" flight

so that the time scale for lift-off can be expanded. Data are presented only

for those cases where the indicated vibration levels exceeded the background

noise by at least 5 db, which explains why data are omitted in certain octaves.

A summary of the location of data in Appendix C is presented in Table 3 below.

Figure Numbers in Appendix C

Lift-Off Data Transonic and Max "q" Data

Measurement Over -all One - Third Over -all One-Third

RMS Time Octave Band RMS Time Octave Band
History Levels Relative History Levels Relative

to Over-all to Over-all

NIMBUS, C-1 C-2 C-9 C-10
Location 1

NIMBUS, C-1 C-3 C-9 C-11
Location 2

OGO, C-4 C-5 C-12 C-13
Location 1

OGO, C-4 c-6 C-12 C-14
Location 2

OSO C-7 C-8 None* None*

AVT None* None* C-15 C- 16

MINUTEMAN None* None* C-17 C-18

not included because date were of poor quality or repetitious of other available
data.

Table 3. Summary of Reduced Data
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To translate the data in Appendix G from relative mean square values

to normalized power spectra, the bandwidth in db for each one-third octave

must be subtracted from the relative mean square value for that one-third

octave. A list of bandwidths in db for one-third octaves is presented in

Table 4.

Center Bandwidth Center Bandwidth
Frequency Frequency

cps cps .db cps cps db

12.5 2.9 4.6 125 29 14.6

16.0 3.7 5.6 160 37 15.6
20.0 4.6 6.6 200 46 16.6
25.0 5.8 7.6 250 58 17.6
31.5 7.3 8.6 315 73 18.6
40.0 9.2 9.6 400 92 19.6
50.0 11.6 10.6 500 116 20.6

63.0 14.5 11.6 630 145 21.6
80.0 18.0 12.6 800 180 22.6

100.0 23.0 13.6 1000 230 23.6

1250 290 24.6
1600 370 25.6
2000 460 26.6

Table 4. One-Third Octave Bandwidths
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5. DISCUSSION OF EXPERIMENTAL RESULTS

5. 1 STATISTICAL EVALUATION TECHNIQUES

If the vibration data summarized in Appendix C are locally stationary,

then the relative mean square value time histories for the one-third octave

band levels should not differ "significantly" from one time to another.

Because the basic data are random in nature, the relative mean square

measurements are also random variables. Hence, variations due to

statistical sampling considerations (random errors) should be expected

in the results. The problem is to establish a criterion for deciding whether

or not observed variations among a collection of measurements are signifi-

cant, or simply the result of random error.

There are several types of tests for significant differences which could

be applied here. The simplest of these is the F test, which is nowmax

described. Consider N sample records of vibration data, each of which

has a mean value of zero and a mean square value of ip. (i = 1, 2, ... , N).
2 .

Assume a sample mean square value, s. (i = 1, 2, ... ,N), is measured for
1

each of the N sample records, where a similar averaging time is used for

each measurement. Let s 2 be the largest of the sample mean square
2 max

values and smin be the smallest. If the sample records are obtained

from the same random data (that is, if L1ý2 = ... = Y, then the

sampling distribution for the maximum to minimum mean square value ratio

is given by the F distribution. That is,max

2
s
max

2 F m(43)2 max
s

mrin

The distribution for F is a function of N, the number of sample meanmax

square values, and n, the number of degrees-of-freedom for each sample

value.
The F distribution may be applied as a test for significantmax

differences among a collection of N mean square values as follows.

Determine the maximum and minimum of the N mean square values. A

100 (1 - a) % confidence interval for this ratio is given by the 100 (1 - a)
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percentile point (or 100a percentage point) of the F distribution, denoted
2 2max

by F (- •) Now, if the ratio of s 2 to s is greater than
max; a) max min

Fmax; (1 - a)' the differences among the N mean square values would be

considered significant at the a level of significance. If the ratio of
2 2

Smax to smin is less than Fmax; (1 - a)' the differences among the N

mean square values would not be considered significant.

A table of 100 (1 - a) = 99 percentile values (a = 0. 01) for F max

is presented in decibels for various values of N and n in Table 5.

For example, assume N = 8 mean square values are measured where

each has n = 12 degrees-of-freedom. Further assume that the ratio of

the maximum to minimum value is 8. 7. Does this constitute a significant

difference? From Table 5, the difference is not significant at the

a = 0. 01 level of significance since F = 9.6. Hence, theremax; 0. 99

is no reason to believe that the measurements were obtained from

different random processes.

99 Percentile Values for F in Decibels'
max

n 2 3 4 5 6 7 8 9 10 11 12

3 16.8 19.3 20.8 21.8 22.6 23.3 24.0 24.5 24.9 25.3 25.6

4 13.7 15.7 16.9 17.7 18.4 19.0 19.5 19.9 20.3 20.5 20.8

6 10.4 11.9 12.8 13.4 14.0 14.3 14.8 15.1 15.3 15.6 15.7

8 8.8 10.0 10.7 11.2 11.6 12.0 12.3 12.5 12.8 13.0 13.2

10 7.7 8.7 9.3 9.8 10.2 10.5 10.7 10.9 11.1 11.3 11.4

12 6.9 7.9 8.4 8.8 9.1 9.4 9.6 9.8 10.0 10.1 10.3

15 6.1 6.9 7.4 7.8 8.1 8.3 8.5 8.6 8.8 8.9 9.0

20 5.2 5.8 6.3 6.6 6.9 7.1 7.2 7.4 7.5 7.6 7.7

30 4.2 4.8 5.2 5.4 5.6 5.7 5.8 5.9 6.0 6.1 6.2

60 2.9 3.4 3.6 3.8 3.9 4.0 4.1 4.2 4.3 4.3 4.3

* The data in this table are obtained from Reference 13, pages 468,469.

Table 5. 99 Percentile Values for F Distribution
max
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For the experimental data of interest here, the F distributionmax

can be applied as a test for significant differences among N relative mean

square values in one-third octaves if two assumptions are permitted. The

first assumption is that the statistical variability or random error in rela-

tive mean square value measurements for locally stationary data is the

same as for stationary data. The second assumption is that the power

spectral density function for the vibration data within one-third octaves is

reasonably uniform. Neither assumption is rigorously valid, but the lack

of validity of either assumption should tend to produce greater variability

than predicted by the F distribution. Hence, the F test shouldmax max

yield conservative results.

With the above assumptions, the degrees-of-freedom for a relative

mean square value measurement in a one-third octave bandwidth is given

from Reference 1, Appendix A, as

n = 4BK (44)

where B is the one-third octave bandwidth and K is the equivalent RC

averaging time constant. Equation (44) assumes K is very much less than

the available record length.

5.2 LIFT-OFF VIBRATION DATA

Referring to Figures C-i through C-6 in Appendix C, it is seen that the

lift-off vibration levels for the NIMBUS and OGO measurements display

definite common characteristics. Specifically, the over-all rms vibration

levels are constant (within one db) for the first few seconds after tot

and then fall off gradually as the lift-off is accomplished. The relative

mean square values in one-third octaves tend to remain constant during the

time intervals that the over-alls are constant (about the first two seconds

after to for NIMBUS and the first four seconds after t for OGO). Hence,

during the few seconds after t 0 , the data is not just locally stationary, but

completely stationary in terms of absolute values as well.
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To further illustrate these results, consider the summary of power

spectra for the OGO measurements presented in Figure 8. These plots

represent the range of eight power spectra for the vibration levels at 1/2

second intervals from t to t + 3. 5 seconds. Note that the data in

Figure 8 is for absolute power spectra values, and not for normalized

power spectra values. A 99 percentile interval for the expected statistical

scatter among the measurements at any frequency (based upon an F max

distribution) is also included to help indicate the significance of apparent

differences among the eight power spectra in each plot. If the vibration

is stationary during the interval in question, there should be no significant

differences among the power spectra computed during that interval.

It is clear from the data in Figure 8 that an assumption of

stationarity is acceptable for the OGO vibration measurements during the

first three and one-half seconds of lift-off. Similar results are obtained

for the NIMBUS vibration measurement during the first two seconds of

lift- off.

Referring to Figures C-7 and C-8, the lift-off vibration levels for

the OSO measurement present a completely different situation from the

NIMBUS and OGO data. The over-all level during lift-off peaks and then

falls off immediately. There is no significant time interval over which the

lift-off vibration is stationary. Furthermore, the predominant vibration

energy is in the low frequencies (below 100 cps) rather than in the high

frequencies. In fact, most of the vibration energy is in the one-third octave

centered at 16 cps. This result is due to a strong transient response of the

launch vehicle in a longitudinal normal mode which is excited by the lift-off

shock. Such longitudinal response is common for certain types of launch

vehicles (the AVT measurement displayed similar characteristics during

lift-off). High frequency vibration is probably present as it is for the

NIMBUS and OGO measurements, but this data is completely masked by the

intense low frequency vibration and lost in the background instrument noise.
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From Figure C-8, it is seen that the relative mean square values

in the one-third octaves display considerable variation. However, because

the data is concentrated at low frequencies where the one-third octave

bandwidths are narrow, and because the averaging time constant was

relatively short (K = 0. 03), the variations do not constitute significant

differences. For example, consider the 63 cps one-third octave where

the variation is 14 db among only four measurements. The bandwidth is

B 14. 5 cps and the averaging time constant is K = 0. 03, which gives

n ( 2. From Table 5, a 99 percentile level for this case is over 20 db.

Hence, a 14 db variation is not significant. Similar results are obtained

for the other one-third octaves. On this basis, there is no reason to

believe the data are not locally stationary over the first two seconds of

lift-off. However, the power of this decision is very weak because of the

small sample size. For various practical reasons, it is believed that the

data would probably fail a locally stationary test under more stringent

conditions. This means that a power spectrum computed by time

averaging over such transient data could produce misleading results.

There is another problem posed by the use of conventional power

spectra techniques for the analysis of such data. Because the data is

heavily concentrated in a narrow frequency interval, the bandwidth of the

bandpass filter used for a power spectral density analysis would have to

be very narrow to avoid large bandwidth bias errors, as discussed in

Section 3. 2. 1. In practice, it perhaps would be better to describe such

data in terms of an rms value time history for some defined bandwidth

.(rather than normalizing the measurement to a mean square value per cps).

Another suitable approach is to simply define the data in terms of an

instantaneous value time history for some defined bandwidth. Since the

data is concentrated in the lower frequencies, this can be accomplished

easily using standard galvonometer type oscillographs. Such information

can be used to establish an "equivalent" sinusoidal simulation of the tran-

sient if one is prepared to accept a peak criterion for equivalent.
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5. 3 TRANSONIC VIBRATION DATA

Referring to Figures C-9 through C-18 in Appendix C, it is seen that

vibration levels for all measurements are neither stationary nor locally

stationary through the transonic region. There is a common trend in all

data for the over-all vibration to peak near Mach I and to shift in frequency

composition with energy moving from lower to higher frequencies. These

effects are most obvious for the AVT and MINUTEMAN measurements.

To further illustrate these general results, consider the summary of

normalized power spectra for the AVT measurements presented in Figure 9.

Plot (b) represents the range of seven normalized power spectra for the

vibration levels in a 10-second interval covering Mach 1, which occurs at

t + 39 seconds. Plot (a) gives the range of seven normalized power spectra

for the vibration levels in the preceding 10-second subsonic interval, and

Plot (c) gives the range of seven normalized power spectra for the vibration

levels in the following 10-second supersonic interval. A 99 percentile interval

for the expected scatter among the measurements at any frequency (based

upon an F distribution) is included to help indicate the significance ofmax

apparent differences among each group of seven normalized power spectra.

Three principle trends are indicated by the data in Figure 9. First,

the range of normalized power spectra values is greatest for the 10-second

interval covering Mach 1. In this interval, the range of values constitutes

a significant difference at nearly all frequencies, meaning the vibration is

not locally stationary in the transonic region. Second, the range of values

in the 10-second subsonic interval and the 10-second supersonic interval

do not constitute a significant difference at any frequencies, meaning a

locally stationary assumption is acceptable for the vibration measurements

during these time intervals. Third, the vibration energy shifts sharply up

in frequency from the subsonic interval to the supersonic interval. Similar

results occur for all the vibration measurements in Appendix C.

45



00
4H U

~U)

P4 0 ~ 1

~ ~ 0 0
+'o-

C o 0

H k~

04 +

0 0U

'-4 4- 0)

0' ril Cd
a'4 __ _ _ _ _ k__ _ _ _

0_ _ -t 4-a

0 - 0 P

U)' + 0U

LN u

4-J

- P S
44

U) 0

Lf) k )

U) 0 C 0

Ul bf

~ 0 m -

~LO

0~ 0

N

46



The above results are particularly significant because the transonic

vibration levels are often the most severe which occur during the launch

phase. For such cases, a sample record which straddles the maximum

vibration level is usually selected for analysis. It is effectively assumed

that the data is reasonably stationary during this interval. However, this

assumption is not valid, as illustrated by the AVT vibration djata summary

in Figure 9. Because of the sharp shift in the frequency composition of

the vibration data as the vehicle passes through Mach 1, a power spectrum

computed from a sample record covering Mach 1 may mask important

re sults.

It should be emphasized that the above conclusions apply even when

the over-all rms value for the data is reasonably constant through the

transonic interval. For example, consider the over-all rms time history

for the NIMBUS , Location 1, vibration data presented in Figure C-9 of

Appendix C. It is seen that there is about a 15-second time interval around

Mach 1 where the over-all vibration level is constant within 1. 5 db. A

first impulse would be to consider the vibration data stationary during this

interval, meaning a sample record selected for any segment of this time

interval will represent the entire interval. This is not true, as is illustrated

in Figure 10.

Figure 10 includes three highly resolved (narrow bandwidth) power

spectral density measurements for NIMBUS, Location 1, vibration data.

All three power spectra were measured from 4-second long sample records

covering intervals with similar over-all rms values near Mach 1, which

occurs at about t 0+ 52 seconds.

The first power spectrum, Plot (a) was measured over the time inter-

val from t 0+ 48 to t 0+ 52 seconds, which is at the start of the transonic peak
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where the vehicle is still subsonic. The second power spectrum, Plot (b),

was measured over the time interval from t + 54 to t0 + 58 seconds, which

is at the center of the transonic peak just past Mach 1. The third power

spectrum, Plot (c), was measured over the time interval from t + 62 to

t + 66 seconds, which is at the end of the transonic peak where the vehicle

is supersonic.

From Figure 10, the shift in the spectral composition of the data is

apparent, particularly at the low frequencies. -For example, Plot (a)

includes a relatively intense spectral peak at about 225 cps with a density
2 2

of 0. 0008 g2/cps. In Plot (b), the peak appears with a density of 0. 0001 g 2

cps, or 9 db less than in Plot (a). In Plot (c), the peak is no longer signifi-

cant. Hence, although the over-all rms vibration level did not change

appreciably during the interval from t + 50 to t + 65 seconds, the

spectral composition of the data did.
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5.4 MAX "Q" VIBRATION DATA

Referring again to Figures C-9 through C-18 in Appendix C, the

over-all vibration levels for all measurements, except MINUTEMAN, fall

off rather smoothly through the region of max "q". One might expect to

see a distinct peak at max "q',' since dynamic pressure is a key parameter

in the vibration produced by aerodynamic boundary turbulence. However,

for the NIMBUS, OGO, and AVT data, the rise into a max "q" vibration

peak is masked by the after effects of transonic excitation, which is much

more intense than the max "q11 excitation for these cases. In the

MINUTEMAN data where max "q" effects are more pronounced, the

expected rise to a distinct max "q" vibration peak is present, as seen in

Figure C-17.

Now consider the relative mean square values in one-third octaves

for the time interval around max "q" . In all cases, the relative mean square

values are seen to remain reasonably constant over time intervals of 10 to

20 seconds, in spite of the fact that the over-all vibration levels have

dropped over 10 db in some cases during this interval. This point is illus-

trated by the summary of normalized power spectra for the supersonic AVT

measurements presented previously in Plot (c) of Figure 9. The range of

normalized power spectra values in Plot (c) represents seven power

spectra measurements over a 10-second time interval which includes

max "q" at t0 + 50 seconds. As concluded in Section 5. 3, the range of

normalized power spectra values does not constitute a significant difference,

meaning a locally stationary assumption is acceptable for this time interval.

To further illustrate this point, consider the summary of normalized

power spectra for the NIMBUS measurements presented in Figure 11. The

range of normalized power spectra values in Figure 11 represents eleven

power spectra measurements over a 20-second time interval from 10

seconds before max "q" to 10 seconds after max "q". This range of values
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does not constitute a significant difference at any frequency. Similar

results occur for all other measurements in Appendix C. Hence, a locally

stationary assumption appears to be acceptable for the nonstationary

vibration data in the region of max "q" for time intervals of as long as 20

seconds.

The above results indicate that the vibration data in the region of

max "q" may be defined by the procedure outlined in Section 3. 3. Specifically,

the power spectrum shape can be computed from a long sample record

covering the max "q" region, and the area under the power spectrum at any

instant of time can be determined from an over-all rms value time

history (area = rms2).

To illustrate this fact, consider Figure 12 which includes four highly

resolved power spectra computed for NIMBUS, Location 1, max "q"

vibration. The four power spectra are computed over four contiguous

intervals, each of five seconds duration, which together cover the period

from t + 65 to t + 85 seconds (max "q"1 occurs at about t + 70 seconds).

Now, the data is definitely nonstationary during this total period with an

over-all rms level that falls from about 0. 8 g's average for the first

interval to about 0. 35 g's average for the fourth interval. *However,

based upon the over-all rms time history, the ordinate of all four power

spectra is set up as if the over-all rms level was 0. 8 g's in all cases.

Note that the power spectral density at each frequency represents a mean

square value measurement with n = 2BT = 140 degrees-of-freedom.r

A 99 percentile level for the scatter among the four measurements at any

frequency is estirrated from Table 5 to be about 2. 5 db (a ratio of 1. 8 to 1).

With this in mind, it is clear that there are no significant differences

among the four plots.
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6. CONCLUSIONS AND RECOMMENDATIONS

Experimental studies in this document indicate that the nonstationary

vibration data associated with spacecraft launch vibration environments

display certain important typical characteristics. These typical character-

istics may be summarized as follows.

1. For those cases where lift-off vibration is due principally to
to acoustic excitation generated by rocket engine noise, the
vibration data during lift-off can be considered stationary for
time intervals of two seconds or longer. For those cases
where the lift-off vibration is due principally to a longitudinal
modal response of the launch vehicle to lift-off shock, the

vibration data during lift-off will be nonstationary with the
energy concentrated around the frequency of the responding

normal mode.

2. The vibration data during transonic flight is highly nonstationary.

A pronounced shift in the vibratory energy from lower to higher

frequencies occurs as the spacecraft passes through Mach 1.
A locally stationary assumption, however, appears to be

acceptable for the vibration data which occurs before and after

Mach 1.

3. The vibration data during max "q" flight is nonstationary, but
a locally stationary assumption is generally applicable to the
data for time intervals of up to 20 seconds.

Based upon the above conclusions, specific procedures are now

suggested for the analysis and description of spacecraft launch vibration

data. The suggested procedures are intended to produce the most accurate

and representative measurements practical for the pertinent characteristics

of the data. Emphasis is placed upon the proper selection and detailed

analysis of individual sample records covering critical time intervals,

rather than a general analysis of the entire launch phase vibration. The

selected sample records can be analyzed either by one pass through a
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multiple filter type power spectral density analyzer, or by recirculation

through a single filter type power spectral density analyzer. Of course,

the sample records could be analyzed on a digital computer as well.

1. Compute an over-all rms (or mean square) value time history
record for each vibration measurement over the entire launch
phase interval. Compute the rms value time history using an
averaging time which is just short enough to make time
interval bias errors negligible. See Appendix B-2 for
details and illustrations.

2. If there is an interval of one second or more during lift-off
when the over-all rms vibration level is reasonably uniform,
compute the power spectrum by averaging over this entire
stationary interval. If there is no significant time interval
during lift-off when the over-all rms vibration level is rea-
sonably uniform, then the data is probably narrow in
bandwidth and concentrated around the frequency of a
launch vehicle normal mode. See Section 5. 2 for a dis-
cussion of possible analysis procedures.

3. If significant transonic vibration occurs, as it usually will,
compute a power spectrum from a sample record which
terminates just prior to Mach 1. The sample record should
be two to five seconds long, depending upon the flight profile.
Note that the time at which any measurement point on the
spacecraft passes through Mach 1 can usually be identified
by listening to an audio playback of the vibration signal
recorded at that point. The typical sharp shift in the com-
position of the vibration data at Mach 1 is clearly detectable
by ear.

4. If significant max "q"t vibration occurs, compute a power
spectrum for the max "q" vibration data from a sample
record which covers the max "q" region. The length of
the sample record should be reasonably long, at least five
seconds, to minimize statistical errors. The length may be
as long as 10 to 20 seconds depending upon the flight profile.
In many cases, transonic vibration will be completely domi-
nant over max "q"' vibration to the point where no distinct
max "q' peak is visible in the over-all rms time history.
If this occurs, a post-Mach 1 sample record which covers
the time of max "q" should still be analyzed.

56



5. All short duration transients such as ignition shocks,
staging shocks, etc. , must be detected from a plot of
either the instantaneous vibration time history or the
rms value time history, and analyzed separately by
appropriate techniques. The same is true for self-
excited oscillations such as resonant burning or "pogoV'
when they occur. The analysis procedures presented above
do not apply to these cases.

The data obtained in Steps 1 through 4 above can be used to describe

the time varying spectral characteristics of the pertinent launch vibration

environment, as illustrated in Figure 13.

A(t)

12 3

t

Lift- Off Mach 1 Max "Q"

G (f) G2 (f) G3 (f)

1 3f f

Figure 13. Spectral Representation for Spacecraft Launch Vibration Data

57



In words, the pertinent vibration during the launch phase can be described

by three relative power spectra representing lift-off, pre-Mach 1, and

post-Mach 1 (max "q") time intervals. The area under each power spectrum

at any instant during the appropriate time interval is equal to the mean

square value at that time from the over-all rms value time history plot.

If it is desired to reduce the launch vibration data to a single

"11maximum spectrum" as defined in Section 1, this can be accomplished

as follows. Compute the highest level power spectra for the lift-off, pre-

Mach 1, and post-Mach 1 (max "q") time intervals by adjusting the area

under the relative power spectrum for each interval to equal the highest

mean square value which occurred during that interval. For the pre-Mach 1

interval, the highest mean square value will usually be at Mach 1. For

the post-Mach 1 interval, the highest mean square value may occur at

either Mach 1 or max "q". In any case, superimpose the three spectra

and record a single over-all power spectrum which covers the highest

levels of all three. The result is a "maximum spectrum" which can be

used as a conservative environmental specification for either vibration

tests o'r design requirements.

One final point should be mentioned. Laboratory vibration tests are

usually performed by applying a stationary vibration input to the test

article of interest. This is true even for spacecraft components where the

actual environment is nonstationary in nature. For this case, the "maximum

spectrum" would normally be used to specify the test levels. Nonstationary

vibration testing procedures have rarely been used to date. However, the

studies herein indicate that nonstationary vibration tests could easily be

implemented to simulated spacecraft vibration environments. Specifically,

the nonstationary vibration for each launch event of interest could be

simulated as illustrated in Figure 14.
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Figure 14. Block Diagram for Nonstationary Testing Machine

The function generator in Figure 14 would produce a signal propor-

tional to the rms value time history during one of the locally stationary

time intervals. The equalizing filters would be used to shape noise to

have the relative power spectrum associated with that time interval. The

multiplier would produce the desired nonstationary vibration signal to be

delivered to the shaker.
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APPENDIX A

EXPERIMENTAL STUDIES OF THEORETICAL MODELS

The experimental studies of the cosine product model for nonstationary

random data were performed in the Dynamics Section Data Reduction Labora-

tory of the Norair Division, Northrop Corporation. The test set-up used to

study the cosine product model of Eq. (20)is illustrated schematically in

Figure A-1.

A B C

RANDOM NARROW TRUE

NOISE ------- BANDPASS RMS
GENERATOR FILTER VOLTMETER

yx~t)G F D-1

POWER SPECTRAL y(t) A(t) SINE WAVE

ANALYZERER

E

CATHODE RAY
OSCILLOGRAPH

Figure A-1. Block Diagram for Studies of Cosine Product Model

The random noise generator (Item A) was used as a source of a sample

record from a stationary random process. The bandpass filter (Item B) was

used to shape the power spectrum of the sample record to a sharply defined
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narrow bandwidth of 20 cps. The voltmeter (Item C) was used to establish

the narrowband random signal level. The sine wave generator (Item D-l)

was used to supply the cosine function for the model, while the battery

(Item D-Z) was inserted when a zero frequency product was required. The

cathode ray oscillograph (Item E) was used to establish the sine wave or DC

signal level. The multiplier (Item F) was used to form the product A(t) x(t)

which gave the desired nonstationary signal. The power spectral density

analyzer (Item G) was used to obtain a conventional time averaged power

spectrum.

The instruments employed for the experiments are summarized in

Table A- i.

Item Des cription Manufacturer Number

A Random Noise Generator General Radio Co. 1390A

B Narrow Bandpass Filter Spectral Dynamics Corp. 101A

C True RMS Voltmeter Bruel & Kjaer Instruments 2409R

D-1 Sine Wave Generator Hewlett Packard 200AB

D-2 Battery Fabricated

E Cathode Ray Oscilloscope Tektronix, Inc. 531

F Multiplier Technical Products Co. 645

(626
G Power Spectral DensityAnalyzer Technical Products Co. 633

627

Table A-1. Instruments Used for Experiments.

The time averaged power spectra for y(t) = A(t) x(t) presented in Figure 3

were computed using an analyzer filter bandwidth of B = 6 cps and an RC averag-

ing time constant of K = 8 seconds. This produced an estimate with a standard

deviation at any frequency of a = Gy (f)/ V_ 0. I G y(f) or 10% of the true

value. The scan rate used was R = B/(4K) ý_ 0.2 cps/second.
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APPENDIX B

DATA REDUCTION PROCEDURES

B. 1 INSTRUMENTS AND BASIC SET-UP

The experimental studies of actual launch vibration data were performed

in the Dynamics Section Data Reduction Laboratory of the Norair Division,

Northrop Corporation. The data reduction set-up is illustrated schematically

in Figure B-1.

A. C. D.
MAGNETIC TAPE 1/3 OCTAVE BAND TRUE RMS

PLAYBACK UNIT FILTER SET LEVEL RECORDER

B. E.
LOOP POWER SPEC TRAL

TRANSPORT DENSITY ANALYZER

Figure B-i. Block Diagram for Studies of Launch Vibration Data

The magnetic tape playback unit (Item A) was used to recreate the

vibration data signals. When using the 1/3 octave band equipment, each

record of the launch phase vibration was played back repeatedly from start

to finish. When using the power spectral density analyzer, selected intervals

of each record were removed and spliced into a loop for continuous playback

by recirculation with a loop transport (Item B). The 1/3 octave band filter

set (Item C) and the true rms level record (Item D) were used to measure

and record rms time histories in 1/3 octave bands. The power spectral

density analyzer was used to measure finely resolved (narrow bandwidth)

power spectra for the data.
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The instruments employed for the data reduction are summarized in

Table B- 1.

Model
Item Description Manufacturer Mber

Number

A Magnetic Tape Playback Honeywell LAR-7300
Unit

B Loop Transport Ampex Corp. LR-100

C 1/3 Octave Band Filter Set Bruel& Kjaer Instruments 2112

D True rms Level Recorder Bruel& Kjaer Instruments 2305

E Power Spectral Density Technical Products Co. 626

Analyzer L'645

Table B-1. Instruments Used for Data Reduction
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B. 2 BANDWIDTH AND AVERAGING TIME SELECTIONS

As discussed in Section 3. 2. 1, the measurement of a short time

averaged power spectrum will include a random error T-, a bandwidth

bias error b' and a time interval bias error .t" The selection of a

bandwidth and averaging time for the measurement involves a compromise

between these various errors. For the experiments outlined in Section 4,

a highly resolved power spectrum (small b) is not considered necessary

to arrive at the desired conclusions. Hence, 1/3 octave bandwidths

(B = 0. 22f) are used rather than narrower bandwidths which would make

1b smaller, but also make a- larger for a given averaging time.

The selection of an averaging time now reduces to a compromise

between the random error a- and the time interval bias error ýt The bias

error .t is considered to be more detrimental to the desired conclusions

since this error tends to mask the time trends in the data which are of

principal interest here. Hence, the selection of an averaging time is based

upon making the bias error [t negligible. For the special case of nonsta-

tionary data where the time trend is slow relative to the instantaneous

fluctuations of the data (as in general true for spacecraft vibration data),

this desired averaging time selection may be accomplished as follows.

Determine the rms value time history for the data using a very short

averaging time. Repeat the rms value time history measurement using a

longer averaging time. The result should be two rms value time history

plots with similar trends but with less uncertainty fluctuation for the longer

averaging time, as indicated in Figure B-2. This procedure can be repeated

with increasing averaging time until it is clear that the basic time trend in the

data is being altered or smoothed, as again indicated in Figure B-2. That

averaging time which is just short enough to avoid noticeable smoothing of the

under-lying time trend constitutes the maximum averaging time which can be

used without introducing a significant time interval bias error. The critical
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rms
shorter averaging time

longer averaging time

averaging time
too long

t

Figure B-Z. RMS Value Time Histories for Different Averaging Times

requirement, of course, is to be able to distinguish between actual time

trends in the data and inherent statistical uncertainty fluctuations (random

errors).

The above procedure was employed here to select averaging times for

the power spectra measurements summarized in Appendix C. An illustration

of the actual selection procedure for a NIMBUS measurement is presented

in Figure B-3. The first rms value time history in Figure B-3 was obtained

using a very short averaging time (K=O. 005 second). The extreme uncertainty
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Figure B-3. Averaging Time Constant Selection for NIMBUS, Location 1,

Measurement
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fluctuations about a basic underlying trend are clearly seen, The second rms

value time history was obtained using a ten-fold larger averaging time

(K = 0. 05 second). The uncertainty fluctuations have been strongly suppressed

while the basic underlying trend has not been significantly altered. The third

rms value time history was obtained using a still larger averaging time

(K = 0. 12 second). It is now obvious that the averaging time is too long. The

basic underlying trend has been significantly altered producing a large time

interval bias error in the rms value time history data.

The averaging time selections used for all measurements are summarized

in Table B-2. Note that longer averaging times could have been used in some

cases for the transonic and max "q" data. However, the averaging time required

for proper measurements of the lift-off data was employed throughout the launch

phase for convenience.

Approximate Averaging Time
Constants, Seconds

Measurement Lift-Off Transonic and
Data Max "Q" Data

Over-all 1/3 Octave Bands Over-all 1/3 Octave Bands

NIMBUS 0. 05 0.08 0. 05 0. 08
Location 1

NIMBUS 0.05 0.08 0. 05 0. 08
Location 2

OGO 0.05 0.08 0.05 0.08
Location 1

OGO 0.05 0.08 0. 05 0.08
Location 2

OSO 0.03 0.03 ----

AVT ---- ---- 0.05 0.05

MINUTEMAN ---- ---- 0. 05 0.05 to 0. 08

Table B-2 Averaging Time Constant Selections
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APPENDIX C

MEAN SQUARE VALUE TIME HISTORY DATA

Location 1
10:-

I A

I I T

0

'~-20

Q-)

%.4

Location 2

0

'.44

t i I eo atri-o

r ITU

i f 'ý I 1 1

-- k: -- - I 4t

' - 20 - 1 0 2 ,3 4 5 6

tie seod afe ift-off ~

Figure C-1. Over-all RMS Time History for NIMBUS Lift-off Vibration
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Figure G-2a. Relative Mean Square Values in 1/3 Octave Bands for NIMBUS,
Location 1, Lift-off Vibration
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Figure C-2b. Relative Mean Square Values in 1/3 Octave Bands for NIMBUS,
Location 1, Lift-off Vibration
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Location 1, Lift-off Vibration
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Figure G-3b. Relative Mean Square Values in 1/3 Octave Bands for NIMBUS,

Location 2, Lift-off Vibration
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