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Abstract

We suggest the M|G|oo input process as a viable model for network traf-
fic due to its versatility and tractability. To gauge its performance, we study
the large buffer asymptotics of a multiplexer driven by an M|G|oo input pro-
cess. We identify the process as short or long-range dependent by means of
simple tests. The decay rate of the tail probabilities for the buffer content
(in steady—-state) at the multiplexer is investigated using large deviation tech-
niques suggested by Duffield and O’Connell. The appropriate large deviations
scaling is found to be related to the forward recurrence time for the service
time distribution, and a closed—form expression is derived for the correspond-
ing generalized limiting log-moment generating function associated with the
input process. Two very different regimes are identified. We apply our re-
sults to cases where the service time distribution in the M|G|oo input model is
(i) Rayleigh (ii) Gamma (iii) Geometric (iv) Weibull (v) Log-normal and (vi)
Pareto — cases (v) and (vi) have recently been found adequate for modeling
packet traffic streams in certain networking applications. Finally, we comment
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on the insufficiency of the short or long-range dependence in the process in
clearly describing buffer dynamics.

1 Introduction

Several recent measurement studies have concluded that classical Poisson-like traf-
fic models are ill-equipped to account for time dependencies observed at multiple
time scales in a wide range of networking applications, including Ethernet LANs
[12, 16, 26], VBR traffic [13], WAN traffic [25]. As the resulting temporal corre-
lations are expected to have a significant impact on buffer engineering practices,
this “failure of Poisson modeling” has generated an increased interest in a num-
ber of alternative traffic models which capture observed (long-range) dependencies.
Proposed models include the fractional Brownian motion input model [20] and the
fractional Gaussian noise input process [1]; already both have exposed clearly the
limitations of traditional traffic models in predicting storage requirements, conges-
tion control and other measures of traffic performance.

In this paper we focus instead on the class of M|G|oo input processes as potential
traffic models. An M|G|oo input process is understood as the busy server process of
a discrete-time infinite server system fed by a discrete-time Poisson process of rate
A (customers/slot) and with generic service time o distributed according to G. We
argue that M|G|oo input processes provide a viable alternative to existing traffic
models; reasons which range from flexibility to tractability, are briefly presented
below. A lengthier discussion, given later in the body of the paper, is based mostly
on the results developed in the papers [23, 24]; we refer the reader to these references
for proofs as well as for additional information:

Firstly, the M|G|oo input model has been succesfully investigated as a model for
some wide area applications, e.g., Paxson and Floyd [25] report a good fit to TEL-
NET and FTP data using a log-normal service time [25]. However, the relevance
of the M|G|oo input model to network traffic modelling is perhaps best explained
through its connection to an attractive model for aggregate packet streams pro-
posed by Likhanov, Tsybakov and Georganas [18]. They combine traffic generated
by several on—off sources with a Pareto distributed activity period, and show that
increasing the number of sources yields a limiting behaviour identical to the M|G|oco
input stream with a Pareto distributed o. As should be clear from their analysis,
the limiting result holds for arbitrary activity period distributions, thereby provid-



ing a rationale for the view that M|G|oo input processes could provide a natural
alternative to existing traffic models, at least for certain multiplexed applications.
This limiting argument is similar to that of using the Palm—Khintchin Theorem to
justify the Poisson model for interactive data traffic.

Secondly, the class of M|G|oo input processes has the desirable property of being
stable under multiplexing, i.e., the superposition of several M|G|oo processes can
be represented by an M|G|oo input process.

Thirdly, the M|G|oo model is extremely versatile in that, dependencies over a
wide range of time scales can be exhibited simply by controlling the tail behaviour of
o [Prop. 3.1]: If I'(h) denotes the autocovariance of lag h for the stationary version
of the M|G|oo process, then

T'(h) = AE[o]e ™, h=0,1,... (1.1)

where v, = —InP [¢ > h] and G is the forward recurrence time (2.5) associated with
o. This relation already indicates the tremendous amount of flexibility in modeling
positive correlation structures. The degree of positive correlation exhibited by an
M|G|oo input process can be further characterized by the sum of the autocovariances
(1.1), or index of dispersion of counts (IDC). We show [Prop. 3.2] that

o0
IDC= )Y T(h) = 2g [o(c +1)] (1.2)
h=0 2
and the process is short-range dependent (i.e., IDC finite) if and only if E [¢?] is
finite.

Temporal correlations of M|G|oo input processes are known to affect queueing
performance [17]. Insights into this phenomenon can be gained by analyzing the
behaviour of a multiplexer fed by an M|G|oco input process. For simplicity, we
model the multiplexer as a discrete—time single server system consisting of an infinite
sized buffer and a server with a constant release rate ¢ (cells/slot). The number of
customers in the input buffer at time ¢ is denoted by ¢;. Our performance index
is the steady-state buffer tail probability P [ge > b], as this quantity is indicative
of the buffer overflow probability in a corresponding finite buffer system with b
positions.

Computing these tail probabilities, either analytically or numerically, represents
a challenging problem in the absence of any underlying Markov property for M|G|oo

inputs. Instead, we focus on the simpler task of determining the tail behaviour of



the queue-length distribution in some asymptotic sense. More precisely, we seek
results of the form

1 .

for some positive constant v* and mapping h : Ry — IR,; these quantities are
characterised by A, G and ¢, and should be computable fairly easily. In Section 6
we carry out the calculations for several distributions, thin—tailed as well as heavy—
tailed ones. Drastically different behavior emerge depending on whether v; = 0(¢)
or v; = o(t) [Thms. 5.1 and 5.2].

Limits such as (1.3) provide a fair idea of the tail of the queue-length distribution,
and suggest approximations of the form

P [goo > b] ~ PO (b o0). (1.4)

Of course, the use of the right handside of (1.4) to estimate P [go > b] may be
fraught with difficulties [5]. Nonetheless, (1.3) already provides some qualitative
insights into the queueing behavior at the multiplexer, and could in principle be
used to produce guidelines for sizing up its buffers.

Our focus here is primarily on large deviations techniques in order to obtain
(1.3). This approach has already been adopted by a number of authors [9, 14, 15].
Applying recent results by Duffield and O’Connell [9] we can compute h(b) and v*
under reasonably general conditions. Further, for a large class of distributions, we
can select h(b) = vy, and the asymptotics (1.3)—(1.4) then take the compact form

Plgoo > b ~P[F > B (b ). (1.5)

Hence, in many cases, including the Pareto, log-normal and Weibull service times,
doo and & (thus o) belong to the same distributional class as characterized by tail
behavior.

Sometimes, in lieu of (1.3), these large deviations techniques yield only weaker
asymptotics in the form

1
. . - > . *
hbrgg)lf 0 InP [goo > b] > —v*. (1.6)

This situation typically occurs when ¢ is heavy—tailed, in which case large deviations
excursions are only one of several causes for buffer exceedances [15]. Results such
as (1.6) as still useful in that they provide bounds on decay rates.

Comparison of (1.5) with results from [20] and [22] points already to the complex
and subtle impact of (long-range) dependencies on the tail probability P [g, > b].
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Indeed, in [20] the input stream to the multiplexer was modeled as a fractional Gaus-
sian noise process exhibiting long-range dependence (in fact, self-similarity), and
the buffer asymptotics displayed Weibull-like characteristics. On the other hand,
by the results described above, an M|G|oo input process with a Weibull service time
also yields Weibull-like buffer asymptotics although the input process is now short—
range dependent. Hence, the same asymptotic buffer behavior can be induced by
two vastly different input streams, one long-range dependent and the other short—
range dependent! To make matters worse, if the pmf G were selected to be Pareto
instead of Weibull, the input process would be long-range dependent, in fact asymp-
totically self-similar [22], but the buffer distribution would now exhibit Pareto-like
asymptotics. To reiterate the main conclusion of [22}, the value of the Hurst param-
eter as the sole indicator of long-range dependence (via asymptotic self-similarity)
does not suffice for characterizing buffer asymptotics. Furthermore, buffer sizing
cannot be determined adequately by appealing solely to the short versus long-range
dependence characterization of the input model used, be it of the M|G|oo type or
otherwise. Of course, long-range dependence (and its close cousin, self-similarity)
are determined by second-order properties of the input process, while aymptotics
of the form (1.3) invoke much finer probabilistic properties. The finiteness of E [0?]
(needed in (1.2)) is obviously a poor marker for predicting the behavior of the
sequence {vt, ¢ = 1,2,...} (which drives (1.3)). To close, the diverse queueing
behavior, demonstrated here and tied to the tail behavior of o, not only confirms
the versatility of M|G|oo inputs as network traffic models, but also points to the
need for a very careful and cautious approach in modeling network traffic when time
dependencies are either observed or suspected.

The paper is organized as follows: We introduce both the class of M|GI|oo inputs
as well as the multiplexer model in Section 2 along with various preliminaries. We
discuss the correlation structure of the M|GI|oo input process in Section 3. Section
4 develops general results on buffer asymptotics which are applied to our specific
model in Section 5. Finally, Section 6 illustrates the asymptotic results for various
selections of distribution function G.

A few words on the notation used in this paper: All rvs are defined on some
probability triple (@, F,P), with E denoting the corresponding expectation opera-
tor.



2 A multiplexer driven by M|GI|co inputs

We model the multiplexer as a discrete-time single server queue with infinite buffer
capacity which operates at a constant rate and in a first—come first—served manner:
Let g; denote the number of cells remaining in the buffer by the end of slot [t —1,¢),
and let by denote the number of new cells which arrive at the start of time slot
[t,t + 1). If the multiplexer output link can transmit c cells/slot, then the buffer
content sequence {q;, t =0,1,...} evolves according to Lindley recursion

W0=¢ G+1=q+bs—cT, t=0,1,... (2.1)

for some initial condition gq.

Here, we account for time dependencies in the cell input stream by modelling
the arrival process {b;, t = 0,1,...} as the busy server process of a discrete-time
M|G|oco system. During time slot [¢,¢ + 1), Bty1 new customers arrive into the
system. Customer ¢, ¢ = 1,...,08;41, is presented to its own server and begins
service by the start of slot [t 4+ 1,% + 2); its service time has duration o;41;. Let
b; denote the number of busy servers, or equivalently of customers still present in
the system, at the beginning of slot [t,¢ + 1), with b denoting the number of busy
servers initially present in the system at ¢ = 0.

The IN-valued rvs b, {$;+1, t =0,1,...} and {os;, t =0,1,...; i =1,2,...}
satisfy the following assumptions: (i) The rvs are mutually independent; (ii) The
rvs {Bi+1, t = 0,1,...} are i.i.d. Poisson rvs with parameter A > 0; (iii) The rvs
{ots, t=1,...;i=1,2,...} are i.i.d. with common pmfG on {1,2,...}. We denote
by o a generic IN-valued rv distributed according to the pmf G, and throughout we
assume E [0] < oo.

No additional assumptions are made on the rvs {og;, ¢ = 1,2,...} which rep-
resent the (residual) service durations of the b customers present in the system at
the beginning of the slot [0,1). Various scenarios can thus be accommodated within
this M|G|oo model: If the initial customers start their service at time ¢ = 0, then it
is appropriate to assume that the rvs {09, ¢ = 1,2,...} are also i.i.d. rvs which are
distributed according to the pmf G. On the other hand, if we take the viewpoint that
the system has been in operation for some time, then these rvs {og;, i = 1,2,...}
may be interpreted as the incomplete work (expressed in time slots) that the b
“initial” customers require from their respective servers before their service is com-
pleted. In general, the statistics of the rvs {o¢;, i = 1,2,...} cannot be specified in



any meaningful way, except for the situation that corresponds to the steady—state
regime.

Many properties of M|G|oco input processes derive from the decomposition
b= +b, t=0,1,... (2.2)

where the rvs b§°) and b§“) describe the contributions to the number of customers in
the system at the beginning of slot [¢,¢ + 1) from those initially present (at ¢ = 0)

and from the new arrivals, respectively. It is plain that
b
B0 =3 1[00; > 1], t=0,1,... (2.3)
i=1

and that the rv bga) can also be interpreted as the number of busy servers in the
system at the beginning of slot [¢,¢ + 1) given that the system was initially empty
(i.e.,, b=0).

In the next proposition we state conditions for the queueing system (2.1) to admit
a steady-state regime when driven by the busy server process {b;, ¢ = 0,1,...}.
Weak convergence is denoted by =>.

Proposition 2.1 If AE [0] < ¢, then there exists an R, -valued rv q such that
g: =t Qoo for any choice of the initial conditions g, b and {og;, i = 1,2,...}. The
system is then said to be stable.

In general, the busy server process {b;, t = 0,1,...} is not a (strictly) stationary
process, and Proposition 2.1 will not follow directly from the well-known stability re-
sult of Loynes [19] for Lindley recursions driven by stationary and ergodic sequences.
The characterization of stability flows instead from an extension of Loynes’ result to
the case of driving sequences which couple with their stationary and ergodic versions
[2]. To that end, we show [21] that the busy server process {b;, t =0,1,...} indeed
admits a stationary and ergodic version, thereafter denoted by {b}, ¢t = 0,1,...}, and
with which it couples for any choice of the initial conditions b and {09, i = 1,2,...}.
This stationary version {bf, t =0,1,...} can represented through (2.3) with

b
O =%"1[6.>1, t=0,1,... (2.4)

n=1

where (i) the rvs {G,, n = 1,2,...} are independent of the rv b which is Poisson
distributed with parameter AE [o], and (ii) the rvs {6,, n=1,2,...} are i.i.d. rvs



distributed according to the forward recurrence time & associated with o. This
distribution is given by

Plo > 7]

’g‘rEP[c?:r]:W,

r=1,2,... (2.5)

Throughout, we assume at a minimum the conditions of Proposition 2.1, and
write r;, = AE [0] to stress the fact that AE [o] indeed represents the average input
rate into the multiplexer. This will come in handy when comparing the effect on
the multiplexer of several traffic streams distinguished by different distributions for
o with a given value for r;, such that r;;, < c.

3 Correlation properties

We write
vw=-—-InP[E>1], t=1,2,... (3.1)

where the forward recurrence time & associated with the service time rv o, is dis-
tributed according to (2.5). The following properties of {b}, ¢t = 0,1,...} are dis-
cussed in [6, 7, 21].

Proposition 3.1 The stationary and ergodic version {bf, t =0,1,...} of the busy
server process has the following properties:
1. For eacht =0,1,..., the rv b} is a Poisson rv with parameter AE [o];

2. Its covariance structure is given by

T(h) = covloh, byl
= B0~ ]
= ME[o]e™", t,h=0,1,2,... (3.2)

with the convention vy = 0.

Proof. Fix h=1,2,...: The first expression for I'(h) is well known [7]. Next, note
that

D(h) = XE[(o—h)']

= )\iP[(a—h)“L > 7]

r=0



= )\iP[a>h+r]

r=0

= A f: Plo > 7]
r=h+1

= AE|[0] Z Pl =r]
r=h+1

AE [0] P [6 > h]

and (3.2) follows from (3.1). ]

The strength of the positive correlation exhibited by the sequence {6}, ¢t =
0,1,...} can be formalized as follows: We say that the sequence {bf, t = 0,1,...}
exhibits short-range dependence if

> T(h) < oo. (3.3)

Otherwise, the sequence {bf, ¢t =0,1,...} is said to be long-range dependent 3, 4].

For M|G|oo processes this dependence can be characterized through the scaling
{vt, t=1,2,...}, or alternatively through the finiteness of E [02]. First, from (3.2)
we readily conclude that

Proposition 3.2 Assume lims,o 15 = K. If K <1 (resp. > 1), then the station-
ary sequence {b}, t =0,1,...} is short-range (resp. long-range) dependent.

Proposition 3.3 We have the relation
) A
> T(h) = AE[0]E[5] = 2Blo(o +1)], (3.4)
h=0

so that the stationary sequence {b}, t = 0,1,...} is short-range (resp. long-range)
dependent if and only if E [0?] is finite (resp. infinite).

Proof. From (3.2) we see that

Y T(h) = AE[a]iP[&>h]
h=0 h=0

= AE[¢]E[5]

9



= )\E[U]ZTP [6=r]
r=1

= AE[o](E[o])™? irP [0 > 7]
r=1
= )\iriP [ =t]
r=1 t=r

- Sre=o(5)

t=1 r=1

Il
Do | >
8

—

tt+1)P[o =1

o

and the conclusion (3.4) is now immediate. [ |

4 General Results on Buffer Asymptotics

Several authors [9, 14, 15] have derived asymptotics such as (1.3) by means of large
deviations estimates associated with the sequence {S; —ct, t =0,1,...}, where

So=0; Sy=b+...+b t=12,... (4.1)

These results have been obtained in varying degrees of generality, and are summa-
rized below as they apply to the present context.

To fix the terminology, consider a monotone increasing IR-valued sequence {v;, t =
0,1,...} such that tl_l)xgo vy = 0o. A sequence of R—valued rvs {z;, t = 0,1,...} is
said to satisfy the Large Deviations Principle under scaling v, if there exists a lower—
semicontinuous function I : IR — [0, 0o] such that for every open set G,

. |
- ;gé I(z) < lltlgcl)glfv—t InP [z; € G] (4.2)
and for every closed set F,
1
i — < —i . .
hﬁigp o InP[z; € F] < ;Ielg‘I(x) (4.3)

The rate function I is said to be good if for each r > 0, the level set {z € IR :
I(z) < r} is a compact subset of IR.

10



In many situations of interest, the rate function can be expressed as the Legendre—
Fenchel transform A* of another mapping A : R — (—o00, 00|, namely

A*(z) = sup{fz — A(#)}, z€R. (4.4)
9eR
The reader is referred to the monograph (8] for additional information on the subject
matter of Large Deviations.
Consider two monotone increasing R..—valued sequences {v;, t = 0,1,...} and
{at, t =0,1,...} increasing at infinity, i.e., lim;_,oo v; = limy_,o a; = 00, For each
t=1,2,..., we define

AO) = vitlnE [exp (ovtsta_t “)] , 0€R. (4.5)

If we can show the existence of functions g, h : R, — IR, such that h is monotone

increasing with lim h(b) = oo and the limit
b—o0

L7

holds, then the following theorem obtained by Duffield and O’Connell in [9] applies.

Proposition 4.1 Assume the arrival sequence {bsy1, t =0,1,...} to be stationary
and ergodic, and to satisfy the following conditions:

1. For each 0 in R, the limit A(0) = lim;—,o A¢(6) exists (possibly as an extended
real number);

2. The process {a; }(Sy—ct), t = 1,2, ...} satisfies the Large Deviations Principle
with good rate function A* under scaling v;.
Then, for each y > 0 we have

1
im inf — > — inf A*(z). :
lim inf 0] InP (g0 > b] 2 —g(y) inf A*(z) (4.7)
If the (convex) rate function A* is continuous on [0,00), then Proposition 4.1
immediately implies the lower bound

1
. . —_ > - * .
lim inf 7o) InP [goo > 8] > —7 (4.8)
with v* given by
7" = Inf g(y)A*(y). (4.9)

11



In [9], under additional conditions to the ones of Proposition 4.1, a companion
upper bound to (4.7)—(4.8) is derived. Proposition 4.2 below incorporates these
conditions with a few adjustments. A different approach to calculating the upper
bound is discussed in [24], and yields identical bounds.

Proposition 4.2 Assume the arrival sequence {b;+;, t = 0,1,...} satisfies the
specifications of Proposition 4.1 as well as the following conditions:

1. infz50 g(z)A*(z) < oo;

2. For every v > 0, there exists y = y(v) > 0 such that

1 o0
limsup ——In e "k | < —inf g(z)A*(z);
Yy

ii.

1 b
li —1 12y = 0;
1znsup 0 ne (=)

A (@) .
% 38 Twag) B I@N(@)

iii.

Then, we have

1
i — _InP b] < — inf g(y)A*(v). 4.10
llirisc}olp Ok [goo > 8] < ;gog(y) (v) (4.10)

When the conditions of both Propositions 4.1 and 4.2 are satisfied, the asymp-
totics distribution take the form (1.3) (with v* usually given by (4.9)).

When the pmf G is heavy-tailed, the conditions of Proposition 4.1 hold whereas
those of Proposition 4.2 do not, leaving us without an upper bound. Going back to
the heuristics given in [15], we attribute this to the fact that now buffer exceedances
cannot be explained entirely by large deviations excursions in the arrival stream,
as there is a need to take into consideration the effect of a single customer with a
large workload. Hence, any argument based on large deviations techniques alone
is bound to fall short. However, we conjecture that (1.3) still holds with scaling h
as specified through (4.6) but of course with a different value for yv*. Work on this
issue is in progress.

5 Evaluation of v* and A(b)

The key step in applying the results of the previous section consists in finding two
monotone increasing R, —valued sequences {v;, t =0,1,...} and {a;, t =0,1,...}

12



increasing at infinity, such that the limit
A(G) = t!l}lg) A9), B€eR (5.1)

exists (possibly as an extended real number). It is helpful to view a; as the scaling
representative of a law of large numbers and v, as a large deviations type scaling.
In the context of M|G|oo processes, it is natural to begin with the selection
a; = t. In the paper [23], we show that the appropriate large deviations scaling
{vt, t=1,2,...} is given by (3.1). To state the results more conveniently, we set

Api(0) = vitlnE [exp(%HSt)] , 0eR (5.2)

for each ¢t = 1,2,.... Obviously, if the limit

Ap(0) = tl_lglo Aps(0), 6€R (5.3)
exists, so does (5.1) with
A@) =Ap(6) —cf, O€R (5.4)

and it suffices to concentrate on finding (5.3). The main facts along these lines are
developed in the next two theorems; proofs are available in [21, 23].

Theorem 5.1 Assume v; = O(t) with lim_,ov¢/t = R > 0. Then, for each 6 in
R, the limit Ay(0) = lim;_, oo Ap+(6) exists and is given by

A,,w)_{ el (45 50 00 <

where
5(6) = 14 (1 - ) <Zexp< R——))), HcR. (5.6)

Moreover, %(0) is finite for 6 < 1.

We say that the sequence {v;/t, t =1,2,...} is monotone decreasing in the limit
if there exists a finite integer T' such that the tail {v;/t, t =T + 1,7 +2,...} is
monotone decreasing.

Theorem 5.2 Assume v; = o(t) with {v/t, t = 1,2,...} monotone decreasing in
the limit. Assume further that there exists a mapping I' : IN — IN such that (i)

13



L(t) <tforallt=12..., (i) imco w2 = oo and (iif) limsseo %30 = 0

Then, for each 0 in R, the limit Ay(0) = lim;_,c Ap1(0) exists and is given by

AE[0]6 iff <1

5.7
00 if6 > 1. (57)

Ay(6) = {

Neither of the above-mentioned theorems deals with the case 8§ = 1. However,

it can be shown [21] that lim;_, Ap¢(1) does exist for the examples discussed here.

In fact, a little thought indicates that the ezistence of this limit suffices for our

purpose, in that its specific value is not of any consequence in evaluating v* as given

by (4.9). Indeed, in that case, under the assumptions of either Theorem 5.1 or 5.2,
we see from (4.4) and (5.4) that

A(z) = sup{fz — (Ay(6) — cf)}

fcR
= ggg{(c +2)0 — Ap(6)}
= 80211){(6 +2)0 —Ap(8)}, z€eR (5.8)

where in the last step we have used the fact limgy; Ap(6) < Ay(1). Moreover, in the
case vy = o(t), further computations are possible under Theorem 5.2: From (5.8)
and the stability condition AE [o] = 7, < ¢, we get

A*(z) = sup(z—(AE[o]—¢))0

6<1
= z+4+cCc—Tim, 2>0, (5.9)
whence
v* = inf g(y)(y + ¢ — Tin)- (5.10)
y>0

As becomes apparent through the examples discussed in [24], the term v; often
takes on a form which is computationally inconvenient when checking the various
technical conditions. Fortunately, only the asymptotic behavior of v; matters. More
precisely, consider another R —valued sequence {w;, ¢t = 1,2,...} which is asymp-
totically equivalent to {v;, ¢t =1,2,...} in the sense that

lim 2 = 1. (5.11)

t—00 v
In reference to (4.6), we now seek mappings h,g : Ry — R, such that

i w[b/ yl

Am 20 =g(y), y>0. (5.12)
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It is then easy to check from (5.11) that

bl—lglo Q;FE;S] - bl-lglo ";L[_fl/)z)/_] blifgo % =9W) >0 (5.13)
and these mappings also satisfy (4.6)! A similar approach applies when checking
conditions (i)—(iii) in Theorem 5.2. Here, suppose that we have found a mapping
[':IN — IN such that (i) I'(¢) < t for all t = 1,2,..., (ii) limye0 wtﬂtﬂ = oo and
(i) Limg—yo0 % 5ok
Again, the asymptotic equivalence (5.11) implies that I" satisfies conditions (i)—(iii)

= 0 — in other words, conditions (i)—(iii) with respect to w;.

(with respect to v;) in Theorem 5.2.

In short, in applying the results of Sections 4 and 5, we see that the appropri-
ate conditions can all be checked by replacing v; by any other scaling w; which is
asymptotically equivalent to it in the sense of (5.11), and hopefully more tractable
analytically. We shall refer to any such scaling as an auxiliary scaling, and will use
it to check various conditions.

If the function u : Ry — R is regularly varying and monotone, then

o (/D) _

; 14
=) 9(y), y>0; (5.14)

in fact, it is well known [11] that
9(y) =y’, y>0; —00<p< oo (5.15)

This suggests a natural choice for h as follows: Denote by w : Ry — Ry the
piecewise-continuous inperpolation of the auxiliary scaling sequence {w;, t = 0,1,...}
(with wy = 0). If w is regularly varying, then we can select h(b) = w(b) for all b > 0,
in which case the asymptotics (1.4) takes the form

Plge > b ~P[F>b8" (b— o). (5.16)
A closer look at (5.16) indicates that for a number of distributions the tail behaviours
of the service time o and of the queue length g, are of the same type.
6 Examples

We illustrate these asymptotic results for various choices of the pmf G; in each
case we identify h(b) and compute v* in closed form (whenever possible). When a,
simple expression is not provided for *, it should be understood that its numerical
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value can obtained by solving an easy one-dimensional optimization problem. The
results are presented in order of increasing weight on the tail of G, or equivalently, in
order of increasing time dependence. We begin with the Rayleigh distribution which
exhibits the least degree of time dependence and proceed to discuss the Gamma,
geometric, Weibull and log-normal cases, all of which are short range dependent.
Finally, we discuss the Pareto distribution which exhibits long-range dependence
(in fact asymptotic self-similarity). Details of the calculations are available in [24].

A rv X is described as having a Rayleigh distribution with parameter o > 0 if

2

PX<z]=1-e2, z>0. (6.1)

The pmf G = {g,, r = 1,2,...} of the rv o is said to be an (integer—valued)
Rayleigh distribution with parameter o > 0, if o =4 [X], whence

_(7"‘1)2 ___1'2
gr=¢€ 22 —e 27 r=12... (6.2)

Proposition 6.1 If G is a discrete Rayleigh distribution with parameter a where

a > (0, then

1
b2
for some finite constant Yg,yicigh-

blifgo InP [q°o > b] = _’ﬁ({ayleigh (63)

A rv X has a Gamma distribution with parameters ¢ > 0 and b > 0 if

Q(b, cz)
TG 2 (6.4)

PX<z]=1-

where o
Q(n,z) E/ et1ldt, 7 >0, z>0

T

is the incomplete I'-function and I'(n) = Q(n, 0).
The pmf G = {gr, 7 = 1,2,...} of the rv o is said to be an (integer—valued)
Gamma distribution with parameters ¢ > 0 and b > 0 if ¢ =g [X], which yields

9gr = ﬁ (Qb,c(r —1)) — Q(byer)), r=1,2,... (6.5)

Proposition 6.2 IfG is a discrete Gamma distribution with parameters ¢ > 0 and
b > 0, then .
bllglo b InP [goo > b] = —VGamma (6.6)

where Y§,mma 15 @ finite constant.
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The geometric pmf G = {g,, r = 1,2,...} with parameter 0 < ¢ < 1, is given by

=Plo=r]=(1-q¢qd*, r=12,... (6.7)

Proposition 6.3 If G is a geometric pmf of parameter q, with 0 < q < 1, given by
(6.7), then

Jim $10P [goo > b = ~7aometrc (6.9

where Ygeometric 1S @ finite constant.

A rv X is said to be a Weibull rv with parameters a and 8, >0and 0 < 8 < 1,
if
PX<z]=1-¢e%" 2>0 (6.9)
The pmf G = {g,, r =1,2,...} of the rv o is said to be an (integer—valued) Weibull
distribution with parameters a and 8 if 0 =5 [X], in which case we have

gr=e o1 _mar’ g9 (6.10)

Proposition 6.4 If G is a discrete Weibull distribution with parameters a and £,
a>0and0< (<1, then

. 1
bll{go W InP [goo > b] = —Vieibun (6.11)

where

a (M>l_ﬂ. (6.12)

X P —
YWeibull 3 1-3

A rv X is said to be a log-normal rv if X =, exp(Y) where Y is a Gaussian
rv with mean p and variance 62. The pmf G = {g;, 7 = 1,2,...} of the rv 0 is
said to be an (integer—valued) log—normal distribution with parameters p and ¢ if
o0 =g | X]. It is easy to check that

g = Plr—-1<X <]

@(%1:;(%))—@(%111(’";%1)), r=1,2,... (6.13)

where m = e#, and ® is the cumulative distribution function of a Gaussian rv with

zero mean and unit variance.
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Proposition 6.5 If G is a discrete log-normal distribution with parameters p and
& as described above, then

.. 1
hbrr_1>1£f (ln—b)z— InP [QOo > b] 2 _'7Itognormal (6'14)
where
C—T;
'Yiognormal =9 62m. (6.15)

In all the cases considered so far, E [02] is finite, and the process {b},t = 0,1,...}
is therefore short-range dependent by virtue of Proposition 3.3. However, in the log—
normal case, we have only obtained the lower bound. Going beyond the technical
conditions, we explain this departure from previous short-range dependent cases
by the following argument: Although the log-normal distribution has finite second
moment, thereby insuring short-range dependence (though barely as it turns out),
its tail has become too heavy (v; = o(t)) to neglect the effect of a single cutomer
with a large workload.

Finally, the pmf G = {¢,, 7 = 1,2,...} is said to be a Pareto distribution with
parameter o, 1 < a < 2, if

. Plo>r]
For the sake of concreteness we use
g=Plo=r]=r"*-(r+1)7%, r=12,... (6.17)

so that E [¢] < oo while E [0%] = 00, and we conclude to the long-range dependence
of the process {b},t =0,1,...}.

Proposition 6.6 IfG is a discrete Pareto distribution with parameter o, 1 < a < 2,

then
1

libl’il’glf m InP [qOO > b] 2 _'ﬁk’areto (6'18)
where
71§areto = (Ol - 1) (C - "‘in) . (6.19)

As a final word we recall our earlier comments at the conclusion of Section 4;
when the service time is heavy-tailed as illustrated by the log-normal or Pareto
cases, the conditions of Proposition 4.2 are not all satisfied. The investigation of

the buffer asymptotics for such processes will require that we look beyond the large
deviation techniques used thus far.
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