
This paper appeared in Proceedings of the Fifth IEEE Conference on High Performance Distributed
Computing (HPDC5), pp. 551-561, Syracuse NY, August 1996.

Abstract

The Legion project at the University of Virginia is an
architecture for designing and building system services
that provide the illusion of a single virtual machine to
users, a virtual machine that provides secure shared object
and shared name spaces, application adjustable fault-tol-
erance, improved response time, and greater throughput.
Legion targets wide area assemblies of workstations,
supercomputers, and parallel supercomputers. Legion
tackles problems not solved by existing workstation based
parallel processing tools; the system will enable fault-tol-
erance, wide area parallel processing, inter-operability,
heterogeneity, a single global name space, protection,
security, efficient scheduling, and comprehensive resource
management.

This paper describes the core Legion object model,
which specifies the composition and functionality of
Legion’s core objects—those objects that cooperate to cre-
ate, locate, manage, and remove objects in the Legion sys-
tem. The object model facilitates a flexible extensible
implementation, provides a single global name space,
grants site autonomy to participating organizations, and
scales to millions of sites and trillions of objects.

1. Introduction

The next several years will see the widespread introduc-
tion and use of gigabit wide area and local area networks.
These networks have the potential to transform the way
people compute, and more importantly, the way they inter-

act and collaborate with one another. The increase in band-
width will enable the construction of wide area virtual
computers, or metasystems. However, just connecting
computers together is insufficient. Without easy-to-use and
robust software to simplify the environment, the network
will be too complex for most users.

The Legion project at the University of Virginia is an
architecture for designing and building system services that
provide the illusion of a single virtual machine to users, a
virtual machine that provides secure shared object and
shared name spaces, application adjustable fault-tolerance,
improved response time, and greater throughput. Legion
tackles problems not solved by existing workstation based
parallel processing tools; the system will enable fault-toler-
ance, wide area parallel processing, inter-operability, heter-
ogeneity, a global name space, protection, security,
efficient scheduling, and comprehensive resource manage-
ment.

Legion will consist of workstations, vector supercom-
puters, and parallel supercomputers connected by local
area and wide area networks. The total computation power
of such an assembly of machines approaches a petaflop,
but so far this enormous potential is unrealized. The
machines are currently tied together in a loose confedera-
tion of shared communication resources used primarily to
support electronic mail, file transfer, and remote login.
However, the resources could be used to provide far more
than just communication services; they have the potential
to provide a single seamless computational environment in
which processor cycles, communication channels, and data
are all shared, and in which the workstation across the con-
tinent is no less a resource than the one down the hall.

The Core Legion Object Model

Mike Lewis and Andrew Grimshaw

{mlewis,grimshaw}@Virginia.edu
Department of Computer Science

University of Virginia
Charlottesville, VA 22903

• This work is partially funded by NSF grants ASC-9201822 and CDA-8922545-01, and ARPA grant J-FBI-93-116.

• Many people have contributed to the design of the Legion core. The other current members of the Legion team include professors Wil-
liam A. Wulf, James C. French, Paul F. Reynolds, Jr., and Alfred C. Weaver, research associate Charles Viles, research scientist Mark
Hyett, and graduate students Adam Ferrari, John Karpovich, Darrell Kienzle, Anh Nguyen-Tuong, and Chenxi Wang.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 1996 2. REPORT TYPE

3. DATES COVERED
 00-00-1996 to 00-00-1996

4. TITLE AND SUBTITLE
The Core Legion Object Model

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Virginia,Department of Computer Science,151 Engineer’s
Way,Cahrlottesville,VA,22094-4740

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

11

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

We envision a system in which a user sits at a Legion
workstation and has the illusion of a single very powerful
computer. When the user invokes an application on a data
set, it is Legion’s responsibility to transparently schedule
application components on processors, manage data trans-
fer and coercion, and provide communication and synchro-
nization. System boundaries, data location, and faults will
be invisible.

2. Objectives

From our Legion vision we have distilled ten design
objectives that are key to the success of the project—site
autonomy, an extensible core, a scalable architecture, an
easy-to-use and seamless computational environment, high
performance via parallelism, a single global name space,
security for both users and resource providers, manage-
ment and exploitation of resource heterogeneity, multi-lan-
guage support and inter-operability, and fault tolerance.
These ten objectives are discussed at length in a companion
paper in these proceedings [8]; four of the objectives are
particularly relevent to the design of the core and are
described below.

Site autonomy: Legion will not be a monolithic system.
Legion will comprise diverse resources owned and con-
trolled by an array of different organizations. These organi-
zations, quite properly, insist on having control over their
own resources by specifying how much of a resource can
be used, when it can be used, and who may and may not
use the resource.

Extensible core: We cannot know the future or all of the
many and varied needs of users. Therefore, mechanism and
policy must be realized via extensible, replaceable, compo-
nents. This will permit Legion to evolve over time and will
allow users to construct their own mechanisms and policies
to meet specific needs.

Scalable architecture: Because Legion will consist of
millions of hosts, it must use a scalable software architec-
ture. This implies that there must be no centralized struc-
tures, and that the system must be totally distributed.

Single global name space: One of the most significant
obstacles to wide area parallel processing is the lack of a
single name space for data and resource access. The exist-
ing multitude of disjoint name spaces makes writing appli-
cations that span sites extremely difficult.

In addition to the ten objectives, three constraints influ-
ence our design—we cannot replace host operating sys-
tems, we cannot require privileged access to participating
hosts, and we cannot legislate changes to the interconnec-
tion networks. Operating system replacement would
require organizations to rewrite many of their applications
and to retrain many of their users, possibly resulting in
incompatibilities with other systems in the organization.

Requiring privileged access to participating hosts would be
asking for more trust than most organizations will be will-
ing to give us, especially during the initial deployment
stages of Legion. Much as we must accommodate operat-
ing system heterogeneity, we must live with the available
network resources. However, we can layer better protocols
over existing ones, and we can state that performance for a
particular application on a particular network will be poor
unless the protocol is changed. Our experience with Mentat
[8] indicates that it is sufficient to layer a system on top of
an existing host operating system.

In addition to the purely technical issues, there are also
political, sociological, and economic ones. These include
encouraging the participation of resource-rich centers and
discouraging the human tendency to free-ride. We intend to
develop mechanisms that facilitate accounting policies that
encourage good community behavior.

2.1. The core object model

This paper describes the core Legion object model. The
model specifies the composition and functionality of
Legion’s core objects—those objects that cooperate to cre-
ate, locate, manage, and remove objects from the Legion
system. The model reflects the underlying philosophy and
objectives of the Legion project. In particular, the object
model facilitates a flexible extensible implementation, pro-
vides a single global name space, grants site autonomy to
participating organizations, and scales to millions of sites
and trillions of objects. Further, it offers a framework that
is well suited to providing mechanisms for high perfor-
mance, security, fault tolerance, and commerce.

Legion specifies the functionality, not the implementa-
tion, of its core objects. The Legion system designers can-
not predict the many and varied needs of users. Therefore,
the object core will consist of extensible, replaceable com-
ponents. The Legion project will provide implementations
of the objects that comprise the core, but users will not be
obligated to use them. Instead, Legion users will be
encouraged to select or construct objects that implement
mechanisms and policies that meet the users’ own specific
requirements.

To facilitate the development of applications that span
multiple sites, a single global name space will unite the
objects in the Legion system; this will make remote files
and data more accessible. Site autonomy will be provided
by distributing control of Legion resources among an
extensible set of core user-level Legion objects. Control-
ling a resource includes making decisions about which
Legion objects can access it, and to what extent. Placing
this responsibility in the hands of objects that users can
build themselves gives sites the autonomy that they prop-
erly require.

The Legion system will be fully scalable. Although the
object model includes, and relies on, a few single logical
Legion objects, access to these objects will be limited due
to heavy caching and hierarchical organization of lower
level objects. Legion objects can be replicated to further
reduce contention. Thus, the system will be configured
such that an increase in the number of Legion computing
resources will not impact contention for the few “central-
ized” Legion objects.

The initial design phase of Legion has been completed
and is presented in this paper, which describes the core
Legion object model, characterizes its main components,
describes the mechanism it is intended to support, and
addresses the issue of scalability. The model is still evolv-
ing and includes several aspects that have yet to be
addressed in detail, or that are addressed in other docu-
ments [18][11].

Implementation of the core model has just begun and is
expected to take approximately one year. In the interim,
application and tool developers at the University of Vir-
ginia use our existing prototype system, the Campus Wide
Virtual Computer (CWVC) [10]. The CWVC is based on
the Mentat object-oriented parallel processing system [8];
it contains over one hundred hosts of five different archi-
tecture types, spanning several different file systems and
university departments. Applications developed using the
CWVC will be source code compatible with the eventual
fully developed Legion system.

3. Related work

The vision of a seamless metacomputer such as Legion
is not novel; worldwide computers have been the vision of
science fiction authors and distributed systems researchers
for decades. However, to our knowledge no other project
has the same broad scope and ambitious goals of Legion.
Fortunately, it is not necessary to develop all of the
required technology from scratch. A large body of relevant
research in distributed systems, parallel computing, man-
agement of workstation farms, and pioneering wide area
parallel processing projects, will provide a strong founda-
tion on which to build.

OSF/DCE [13] is rapidly becoming an industry stan-
dard. Legion and DCE share many of the same objectives,
and draw upon the same heterogeneous distributed com-
puting literature for inspiration. Consequently, both
projects use many of the same techniques, including an
object-based architecture and model, IDL’s to describe
object behavior, and wrappers to support legacy code.
However, Legion and DCE differ in several fundamental
ways. First, DCE does not target high-performance com-
puting; its underlying computation model is based on
blocking RPC between objects. Further, DCE does not sup-

port parallel computing; instead, the emphasis is on client-
server based distributed computing. Legion, on the other
hand, is based upon a parallel computing model, and one of
our primary objectives is high performance via parallel
computation. Another important difference is that Legion
specifies very little about the implementation. Users and
resources owners are permitted—even encouraged—to
provide their own implementations of “system” services.
Our core model is completely extensible and provides
choice at every opportunity—from security to scheduling
to fault-tolerance. Despite these differences, we recognize
that DCE is here to stay for the foreseeable future. Our
intention, therefore, is to support DCE-like services and
DCE compatibility modules so that applications developed
in a DCE environment can be easily ported to Legion.

Several other projects have also begun to address some
of the same issues that Legion does. For example, Nexus
[6] provides communication and resource management
facilities for parallel language compilers. Castle [3] is a set
of related projects that aims to support scientific applica-
tions, parallel languages and libraries, and low-level com-
munications issues. The NOW [1] project provides a
somewhat more unified strategy for managing networks of
workstations, but is intended to scale only to hundreds of
machines instead of millions. Globe [16] is an architecture
for supporting wide area distributed systems, but does not
yet seem to address important issues such as security and
site autonomy. Finally, CORBA [4] defines an object-ori-
ented model for accessing distributed objects. CORBA
includes an Interface Description Language, and a specifi-
cation for the functionality of run-time systems that enable
access to objects. But like DCE, CORBA is based on a cli-
ent-server model rather than a parallel computing model,
and less emphasis is placed on issues such as object persis-
tence, placement, and migration. Thus, while each of these
projects—and others like them—addresses some, or even
many, of the issues that are necessary for the realization of
wide area parallel computing, none aspires to deal as com-
prehensively with all of the issues that Legion does.

4. The Legion core

Legion is an object-oriented system comprising inde-
pendent, logically address space disjoint objects that com-
municate with one another via method invocation. The fact
that Legion is object-oriented does not preclude the use of
non-object-oriented languages or non-object-oriented
implementations of objects. Method calls are non-blocking
and may be accepted in any order by the called object.
Each method has a signature that describes the parameters
and return value, if any, of the method. The complete set of
method signatures for an object fully describes that object’s
interface, which is determined by its class. Legion class

interfaces can be described in an Interface Description
Language (IDL). Initially, two different IDL’s will be sup-
ported by Legion: the CORBA IDL [4], and the Mentat
Programming Language (MPL) [14].

In the Legion object model, each Legion object belongs
to a class, and each class is itself a Legion object. All
Legion objects export a common set of object-mandatory
member functions, including may_I(), save_state(), and
restore_state(). Class objects export an additional set of
class-mandatory member functions, including create(),
derive(), and inherit_from().

The power of the Legion object model comes from the
important role of Legion classes. In Legion, much of what
is usually considered system-level responsibility is dele-
gated to user-level class objects. For instance, Legion
classes are responsible for creating and locating their
instances and subclasses, and for selecting appropriate
security and object placement policies. The core Legion
objects simply provide mechanisms for user-level classes
to implement the policies and algorithms that they choose.
Assuming that we define the operations on core objects
appropriately (i.e. that they are the right set of primitive
operations to enable a wide enough range of policies to be
implemented), this philosophy effectively eliminates the
danger of imposing inappropriate policy decisions, and
opens up a much wider range of possibilities for the appli-
cation developer.

4.1. Security

Legion is intended to be used by a wide variety of users
with a correspondingly wide variety of security concerns.
Thus, it is not possible to dictate a single standard policy by
which all users must abide. Any compromise position
would most likely either degrade performance to a degree
unacceptable to many users, or be too insecure for an
equally large number.

To appeal to the widest range of users, Legion must
allow users to define whatever degree of security they
deem necessary in a manner that is simple to implement
and that does not penalize other users unnecessarily. One
alternative is to have a number of existing approaches from
which users can select. Another—the one we have cho-
sen—is to provide users with the tools necessary to build
robust security measures that provide the required degree
of security. A number of approaches will be provided so
that users can customize as much or as little of their secu-
rity mechanism as they wish.

Legion security is divided into three components. The
message layer is responsible for inter-object communica-
tion and authentication. The discretionary layer allows the
user to provide a function, called may_I(), that acts as an
access control predicate. Before any other object can

invoke any method on an object it must gain approval from
the may_I() function. This approach permits any discre-
tionary policy to be defined, concentrates all discretionary
security in one location, and frees the implementation of
the object’s functionality from being cluttered with security
concerns. Finally, the mandatory layer enables Legion
objects acting as Security Agents to monitor other Legion
objects in order to enforce security policies that the objects
themselves cannot be trusted to abide by. A Security Agent
can restrict the forms of communications that objects under
its scrutiny can undertake. It can also implement dynamic
information flow policies by tracking the flow of secure
information to other objects.

The Legion security model is elegant and powerful.
Using its basic mechanisms, it will be possible to imple-
ment CORBA, DCE, Kerberos, MLS, NFS, and other
existing systems. Further, the flexibility of the mechanism
allows entirely new forms of security policies to be devel-
oped and enforced. The Legion security model is described
in detail in [18].

4.2. Core class objects

Legion defines the interface and functionality of several
core class objects, including LegionObject, LegionClass,
LegionHost, LegionVault, and LegionBindingAgent.
LegionObject provides the full set of object-mandatory
member functions. All Legion objects are instances of
classes that are eventually derived from the class Legion-
Object, and thus they inherit all of the member functions
defined in LegionObject. LegionClass provides the full set
of class-mandatory member functions. All Legion classes
are eventually derived from LegionClass, and thus they
inherit all of the member functions defined in LegionClass.
LegionClass is derived from LegionObject; thus, classes
are objects in Legion. Classes may alter the functionality of
object- or class-mandatory member functions by overload-
ing them, by redefining them, or by explicitly “re-inherit-
ing” their implementation from class objects other than
LegionObject and LegionClass.

LegionHost, LegionVault, and LegionBindingAgent are
base classes for Legion’s core class types—Hosts, Vaults,
and Binding Agents. The core classes set the minimal
interface that the core objects should export. Every core
object is an instance of some class that is eventually
derived from one of the class objects above. For example,
as shown in Figure 1, UnixHost and SPMDHost will be
two different Legion classes derived directly from class
LegionHost. More specific host classes will be derived
from each of these. A Sun workstation would run an
instance of class UnixHost, whereas a Silicon Graphics
Power Challenge would run an instance of UnixSMMP, a
class derived from UnixHost. Similar class hierarchies will

develop for Vaults and Binding Agents. The roles of the
core objects are described later in the paper.

4.3. Naming and binding

LOID’s : Every Legion object is named by a Legion Object
Identifier (LOID). An LOID comprises four different
fields—a Format, a Class Identifier, an Instance Number,
and a Public Key extension. The Format field makes up the
first 32 bits of the LOID, and although the other three fields
are expected to be contained in all LOID’s, their size, for-
mat and use can vary with different formats. The Class

Identifier indicates the class of the object that the LOID
names. LegionClass is ultimately responsible for handing
out unique Class Identifiers to each new class. The Instance
Number field can be used by classes to provide a unique
LOID to each instance of the class, but this use is not man-
dated by Legion—a class object can assign Instance Num-
bers in any way it chooses. The Public Key extension field
allows the entire LOID to be a public key for the object,
and is used for security purposes [17][18]. Our initial
implementation will support fixed size LOID’s that contain
64-bit Class Identifiers, 64-bit Instance Numbers, and 128-
bit Public Key extensions. Other LOID formats will
emerge.

Legion will use standard protocols and the communica-
tion facilities of host operating systems to support commu-
nication between Legion objects. However, LOID’s have
meaning only at the Legion level. Consequently, Legion
must provide a mechanism by which LOID’s can be bound
to names that have meaning to these underlying protocols
and communication facilities. The general problem is that
one object, A, has the LOID of another object, B, and A

wishes to invoke member functions on B. A physical
Object Address for B must be obtained before the commu-
nication can take place.

Object Addresses: An Object Address is a list of Object
Address Elements, along with semantic information that
describes how to utilize the list. An Object Address Ele-
ment contains two basic parts—a 32-bit Address Type
field, and the address itself. The Address Type field indi-
cates the type of address (e.g. IP, XTP, etc.) that is con-
tained in the address specific field, whose size and format
will vary depending on the Address Type. The first (and
probably the most common) type of Object Address will
consist of a single Object Address Element that comprises
a 32-bit IP address and a 16-bit port number.

The Address Semantic field is intended to encapsulate
various forms of multicast communication. For example,
the field could specify that all addresses should be sent to,
that one of the addresses should be chosen at random, that
k of the N addresses in the list should be used, etc. The
composition and meaning of the full set of options that will
be defined by Legion have not yet been identified, but pro-
visions for extending the list with user-definable Address
Semantics will likely be made.

Bindings: Bindings from LOID’s to Object Addresses in
Legion are implemented as simple triples. A binding con-
sists of an LOID, an Object Address, and a field that speci-
fies the time that the binding becomes invalid. This field
may be set to some value that indicates that the binding
will never become explicitly invalid. Bindings are first
class entities that can be passed around the system and
cached within objects.

Binding Agents: Binding Agents are derived from the
Abstract class LegionBindingAgent. A Binding Agent acts
on behalf of other Legion objects to bind LOID’s to Object
Addresses. That is, given an LOID for an object, a Binding
Agent is responsible for returning a binding to an Object
Address for the object that the LOID names. The persistent
state of each Legion object contains the Object Address of
its Binding Agent.

Legion does not mandate how any particular Binding
Agent performs its duty. Typically, however, a Binding
Agent will maintain a cache of bindings that it will consult

SPMDHost

LegionHost

UnixHost

CM-5 CrayT3DUnixSMMP

U2

M1 T1

U1

S2S1

FIGURE 1. The Legion class LegionHost is the root of all
classes whose instances are Legion Hosts. In this figure,
UnixHost and SPMDHost are derived directly from
LegionHost. UnixSMMP is derived from UnixHost, and
CM-5 and CrayT3D are derived from SPMDHost. The figure
shows six different Legion Hosts: two instances of both
UnixHost and UnixSMMP, and one instance of both CM-5
and CrayT3D.

Instance
Number

Class
Identifier

Public
Key

FIGURE 2. An LOID comprises a Format, a Class Identifier,
an Instance Number, and a Public Key extension.

Format

Address Semantic

Address Type address
Number of addresses

Address Type address
{
{

{
32 bits

Object
Address
Elements

Object
Address

FIGURE 3. An Object Address comprises a list of physical
addresses and semantic information that describes how the
list is to be used.

in response to binding requests from other objects; Legion-
BindingAgent’s member functions reflect this fact. Any
particular Binding Agent may also consult other Binding
Agents, and may employ any other means to locate a bind-
ing for a given LOID. If all else fails, the Binding Agent
can consult the class of the object, which must be able to
return a binding if one exists. A more in-depth discussion
of a typical binding procedure is included in Section 5.1.
LegionBindingAgent has the following member functions:
• binding get_binding(LOID),

binding get_binding(binding): The overloaded method
get_binding() is passed an LOID or a binding, and
returns a binding. Passing an LOID as the parameter
requests that the Binding Agent bind it to an Object
Address. Passing a binding requests that the Binding
Agent return a different binding than the one passed as
a parameter. For instance, if the Object Address in the
binding parameter matches the one in the Binding
Agent’s local cache, the Binding Agent might contact
the class object for an updated binding. Thus, the object
employing the Binding Agent can explicitly request
that a binding be refreshed; it will typically do so when
the binding that it has doesn’t work.

• invalidate_binding(LOID),
invalidate_binding(binding): The overloaded method
invalidate_binding() tells the Binding Agent to remove
bindings from its cache. The first form requests that the
Binding Agent remove an LOID’s binding, if any
exists, from its cache. The second form requests that it
remove a binding if it matches exactly the binding that
is passed as an argument.

• add_binding(binding): add_binding() is used to add a
binding to the cache of bindings that the Binding Agent
maintains. It can be used by Binding Agents, or any
other Legion objects, to explicitly propagate binding
information for performance purposes.

4.4. Object states

The full set of Legion hosts will be unable to simulta-
neously provide each Legion object with a process to
implement the disjoint address space model. Therefore, a
Legion object can be in one of two different states, Active
or Inert. When an object is Active, it is running as a pro-
cess (or set of processes) on a Legion Host, and it can be
accessed via an Object Address. When an object is Inert, it
exists in persistent storage that is controlled by a Legion
Vault, it is described by an Object Persistent Representa-
tion (OPR), and it can be located using an Object Persistent
Address (OPA). Throughout their lifetime, objects can be

moved between Active and Inert states by other Legion
objects.

Object Persistent Representations and Addresses: An
OPR is associated with an Inert object and can be used to
restore the state of the object. Every Legion object will
export save_state() and restore_state() member functions.
Save_state() will be called just before an object is deacti-
vated, and restore_state() will be called as the first member
function after the object is activated. Thus, objects are
given the opportunity to carry their state information with
them when they are migrated between hosts [5]. The OPA
of an Inert object is analogous to the Object Address of an
Active object. An OPA gives an object a handle on the
OPR that the object reads and writes to save and restore its
state information. Typically, an OPA will be a file name,
and will only necessarily be meaningful to the Legion
Vault that controls it, and to the object with which it is
associated.

Legion Hosts: A Legion Host is a host’s representative to
Legion. It is responsible for executing objects on the host,
reaping objects, and reporting object exceptions. Thus, the
Legion Host is ultimately responsible for deciding which
objects can run on the host it represents. Since Legion
Hosts can be implemented by the users who offer their
resources to Legion, and since our security model is one in
which security is built into the object by its implementor,
Legion users can select the policy and mechanism that
restrict access to their own hosts. In a Unix-like implemen-
tation, all Legion objects that execute on a host will execute
with the same privilege as the Legion Host. Therefore,
Legion Hosts will typically execute with minimal privilege.
Individual sites may choose to grant Legion Hosts a higher
privilege if they desire.

A Legion Host is associated with a single logical
machine, not necessarily a single physical machine. This
allows resource providers to aggregate multiple machines
into a single logical resource, which can be helpful in for-

Disk I

Host 1

Host 2

ActiveInert

Disk J

Disk K

A

B

B
B

Adeactivate()

activate()

deactivate()

Host 3

FIGURE 4. A sample subset of Legion comprising three
disks (I, J, and K) and three hosts (1, 2, and 3). Objects A and
B are moved between Active and Inert states. Object A has
been deactivated into an Object Persistent Representation on
Disk I, and B has been migrated from Host 2 to Host 3
through Disk I

mulating a cohesive security or scheduling policy for the
set of machines. It can also reduce the complexity of the
environment for other objects in Legion.

Legion Hosts are started from outside Legion, for exam-
ple from a command line or shell script in the host operat-
ing system. This is because Hosts are the mechanism by
which objects are started; there is no Legion object to start
Hosts. When new Legion Hosts are activated, they are
responsible for registering themselves with the LegionHost
class object. Hosts export member functions that start or
restart processes, that suspend processes that are currently
running, and that restrict access to the host on which they
run.

Legion Vaults: Vaults hold OPR’s for other Legion
objects. In response to save_state() and restore_state()
member functions, an object reads and writes its state from
and to its OPR, which typically exists on persistent storage.
A Vault has access to the OPR’s it holds via mechanisms
outside of Legion (e.g., a shared Unix file or directory).
When an object is created, a Vault for the object is chosen
by the object’s class, and the Vault supplies an empty OPR.
The object’s save_state() method can then write its state
into this OPR before being deactivated, and its
restore_state() method can read it out upon being reacti-
vated. Sometimes an object’s class (or the Placement Map-
per on behalf of that class) might want to migrate an object
to another Legion Host. This could require moving the
OPR to a Vault that can share an OPR with an object run-
ning on the new host. It is up to the class (or Placement
Mapper) to select such a Vault, and up to the Vaults to
transfer the OPR. The mechanism for saving and restoring
state in Legion is described in more detail in [5].

4.5. Class objects

Each class object exports class-mandatory member
functions to create new instances (create()) and subclasses
(derive()), to delete instances and subclasses (delete()), and
to find instances and subclasses (get_binding()). A class
object is responsible for assigning LOID’s to its instances
and subclasses upon their creation. For its instances (non-
class objects), the class object can construct the LOID
completely locally; it assigns the Class Identifier portion to
match its own Class Identifier, and uses the Instance Num-
ber field in any way it sees fit, most likely as a sequence
number to guarantee that all LOID’s are unique. To assign
an LOID to a new subclass, the class object contacts
LegionClass to obtain a new Class Identifier. This allows
LegionClass to be an authority for finding class objects.
Conventionally, the Instance Number portion of a class
object’s LOID is set to zero.

To perform the functions for which it is responsible,
each class object must logically maintain a table whose
entries contain fields for an LOID, an Object Address, a
Placement Mapper, a Current Vault Set, and a Candidate
Vault Set. In practice, the class object may employ other
Legion objects, such as database servers, to maintain some
or all of the information that class objects are required to
maintain in what we refer to as the “logical table.” Each
row in the table corresponds to an object that the class
object created—an instance or a subclass. The intended
uses of each field are described below:
• LOID: The LOID names the object for which the entry

contains information.
• Object Address: The Object Address field contains

either the Object Address of the object (if the object is
currently Active and the class knows its Object
Address), or NIL (if the object is currently Inert). This
field is used to respond to get_binding() requests from
Binding Agents and other Legion objects.

• Placement Mapper: The Placement Mapper field con-
tains the LOID of the object that is responsible for
assigning the object entered in the table to a Legion
Host when it is about to be activated. This mapping
decision is intentionally left out of the core object
model, except for a few “hooks” (including this one)
that allow other Legion objects to implement schedul-
ing policies. It is expected that each class will have a
default Placement Mapper that is inherited by each of
its objects unless a different Mapper is explicitly speci-
fied.

• Current Vault Set: The Current Vault Set field contains
a list of Vaults that currently have Object Persistent
Representations for an object. Typically, only one
Legion Vault will have a copy of the Object Persistent
Representation of an object.

• Candidate Vault Set: The Candidate Vault Set field indi-
cates the Vaults that may be given responsibility for the
object. This field could be implemented as a simple list,
but more likely it will need to encapsulate more sophis-
ticated information, such as “no restriction” or “all
Vaults with a given security policy.”
Objects may be given the opportunity by their class to

directly manipulate these fields. In this way, the Legion
class mechanism is reminiscent of reflective architectures.

5. Mechanism

The components described in the previous sections are
intended to support the operations that are necessary for
wide area parallel processing. Two of the most common
and important of these operations—binding and object cre-
ation—are described in detail below.

5.1. Binding

This section describes a typical process by which a
Legion Object Identifier gets bound to an Object Address.
Recall that LOID’s are meaningful only at the Legion level,
and that the underlying communication facilities upon
which Legion relies must be given lower level names in
order to allow objects to communicate. Thus, LOID’s must
be bound to Object Addresses, which can in fact encapsu-
late names that are meaningful to underlying facilities.

The binding process is intended to be completely hidden
from the vast majority of Legion users. Thus, it will typi-
cally be carried out by the various compilers and run-time
systems that comprise Legion. A user will write a Legion
application program in her favorite language, and will typi-
cally name Legion objects with string names. The program
is compiled within a particular “context” by a Legion-
aware compiler. The compiler uses the context to map
string names to LOID’s, which then become embedded
within Legion executable programs. As the object exe-
cutes, the run-time system interprets the LOID’s and binds
them to Object Addresses as described below. The reader
should keep in mind that the binding model is key to the
scalability of Legion—a poor design would seriously limit
scalability.

The model: A class is ultimately responsible for providing
bindings to its instances and subclasses. But to make the
binding process scalable, and to distribute functionality,
control, and responsibility appropriately, the object model
introduces other objects to the binding process. Suppose
that object A wishes to bind the LOID for object B, which
is an instance or subclass of class C. The following Legion
objects are potentially involved in the binding process: A,
A’s Binding Agent, C, and LegionClass. The role of each of
these objects is described below.

Details: Object A begins the binding process by generating
a reference to the LOID of B. Since A is a Legion object, it
contains a Legion-aware communication layer which
implements a binding cache. Therefore, A will often have a
cached binding for B, and external objects will be unneces-
sary. If A does not contain a cached binding, it invokes the
get_binding() member function on its Binding Agent, for
which it is guaranteed to have an Object Address as part of
its persistent state. The Binding Agent may have a binding
for B’s LOID in its cache, in which case it simply responds
to A with a binding for B. If the Binding Agent does not
have a cached binding, it may undertake any process it
wishes in order to generate or locate a binding for B’s
LOID. In particular, the Binding Agent may consult other

Binding Agents, which may be organized in a hierarchy to
allow the binding process to scale.

Sometimes, a Binding Agent will be unable to locate a
binding for B by any means other than contacting class
object C. Recall that B is an instance or subclass of C,
which is therefore responsible for finding B. We delay the
discussion of how to find C until the next section, and
assume for now that it can be done. A’s Binding Agent
invokes the get_binding() member function on C, which in
turn consults its logical table (Section 4.5). If the Object
Address field for the appropriate entry in the logical table
is not empty, then C can construct and return a binding.
The returned binding is passed back through the objects,
each of which may cache it.

Finding the responsible class object: Omitted from the
above discussion is an explanation of how C, the class
responsible for locating B, is itself located. At first glance,
this would seem to be as difficult as finding B. However,
several characteristics of the object creation process and of
Legion classes combine to make it a different problem—
one that can be solved in a efficient and scalable fashion.

Recall that B is either an instance or a subclass of C.
Therefore, C is a class object with an associated unique
Class Identifier, which was assigned by LegionClass. Thus,
LegionClass can be the authority for locating class objects.
LegionClass does not directly maintain the bindings;
instead, it delegates that responsibility to other class
objects. To do so, LegionClass maintains a mapping of
LOID pairs. The existence of pair <X,Y> indicates that X
is responsible for locating Y. When a new class object D is
created, the creating class C contacts LegionClass for a
new Class Identifier to assign to the class. At this time,
LegionClass can record that C is responsible for locating D
by constructing and maintaining the pair <C,D>. When
objects are trying to locate class object D, LegionClass can

Binding Cache

Object A
BA

Binding Agent BA

Binding Cache

BA.get_binding(B)

Object B

Class C

BA

LOID

Logical Table

C.get_binding(B)

LOID for B

B

FIGURE 5. A typical binding process. Object A generates a
reference to B, and contacts its Binding Agent for a binding.
The Binding Agent checks its local cache, and then consults
C, the class that created B. Table entries that are filled with
diagonal lines show the places where a binding for B may be
cached.

OA

LOID

LOID

OA

OA

point them toward C. When objects are trying to locate a
non-class object N, the process is even simpler; the LOID
of the responsible class can be determined by setting the
Class Identifier field to match that of N, and by setting the
Instance Number field to zero.

Notice that we now have the LOID of the responsible
class C. Thus, the binding process may need to be repeated
in order to locate C, and again to locate C’s superclass, and
so on. Since all classes are eventually derived from Legion-
Class, the process can end when the responsible class is
LegionClass itself. In this case, LegionClass simply hands
out the appropriate binding which, as a class object, it is
responsible for maintaining.

While this process may seem to scale poorly, extensive
caching of both bindings and “responsibility pairs” ensures
that the vast majority of accesses occurs locally. A more
extensive argument for the scalability of the binding pro-
cess is included in Section 6.

5.2. Object creation

As with the binding process described above, the cre-
ation of Legion objects is intended to be initiated by nor-
mal Legion programs via the mechanisms that the
programs’ implementation languages support. In C++, for
instance, the creation of a non-class object might be trig-
gered by the use of the keyword “new.” The creation of a
new class object might result from using the C++ inherit-
ance mechanism to derive a new class. The Legion-aware
compiler for the language creates code to call the create()
or derive() member function on the appropriate class
object, using the local context to map a string name to the
intended Legion LOID.

When a class object receives a request to create a new
instance or subclass, it must do so with the cooperation of
the Legion Host for the host on which the new object will
initially run. Selecting these two objects is a scheduling
decision that is left up to the class, which may choose to
employ the services of a Placement Mapper [11]. Some
classes may allow the creating object to suggest a Legion
Vault, a Legion Host, or both. At any rate, the actual cre-
ation of the object is carried out by the Legion Host, which
is given enough information by the class to allow it to cre-
ate the new object. This information could take the form of
an executable program, the name of an executable, a list of
steps to follow, etc.

Once the Legion Host has physically created the new
object, using information provided by the class, the Legion
Host returns the Object Address of the newly created
object. The class object then stores the information for
future use and returns the new LOID to the object that
issued the request to instantiate. Alternatively, the class
object could choose a different semantics in which, rather

than creating a new instance in response to a request to
instantiate, it “reuses” an existing object and either returns
the existing object’s LOID or a new LOID that maps to the
same physical object. Another option is to multiplex multi-
ple LOID’s to the same object address to conserve address
spaces or to improve inter-object communication.

The point is that the class object can implement what-
ever semantics it desires for either intantiating objects or
binding LOID’s to Object Addresses. We will provide
default implementations that will be good enough for most
classes, but the ability to reimplement core functionality
provides a tremendous amount of flexibility to the class
designer.

6. Scalability

Scalability is an important challenge to a system that is
intended to contain millions of sites and trillions of objects.
Before a system can be described as scalable, a precise def-
inition of exactly what it means to be scalable must be for-
mulated—scalability is a term that is used in different ways
by different people. Typically, a scalable architecture refers
to one that has the property that as the number of proces-
sors increases, the granularity of computation does not
need to increase to keep the machine balanced. Thus, the
machine can be scaled up to an arbitrary number of proces-
sors. Architectural scalability is claimed by many different
architectures, including hypercubes, meshes, tori, and
rings. But as Reed [15] points out, scalability of an archi-
tecture must be claimed with respect to a particular appli-
cation and the communication patterns that the application
exhibits. For example, a two dimensional torus or mesh is
scalable with respect to 2-D nearest-neighbor stencil appli-
cations such as computational fluid dynamics. However,
the architectures are not scalable with respect to applica-
tions that exhibit random communication patterns. The
hypercube, however, is scalable with respect to random
communication.

In distributed systems, scalability is best summed up by
the “distributed systems principle”—that is, the number of
requests to any particular system component must not be
an increasing function of the number of hosts or objects in
the system. Our claim is that as the number of Legion hosts
and objects increases, no component will become a bottle-
neck that limits performance and restricts growth.

We make two assumptions about the Legion system.
First, we assume that most accesses will be local. By local,
we mean within the same organization, for instance within
a department or university campus. If this assumption does
not hold, then the scalability of Legion will depend on the
scalability of the underlying interconnect. We do not
expect the underlying wide area network to be scalable in
the parallel architecture sense. The second assumption is

that class objects will not migrate frequently, and further,
that they will tend to stay active for long periods of time
relative to instance objects.

With these assumptions in mind, let us examine where
communication and interaction in Legion occur. First, con-
sider communication that occurs between user level objects
inside of an application. This communication may or may
not contain a bottleneck. The user may have chosen an
implementation with a centralized object that acts as shared
memory for a large number of workers. The object could
very easily become a bottleneck and limit application per-
formance. This does not mean that Legion is not scalable;
it simply means that the application is not scalable. Legion
does not guarantee that all applications written using
Legion as the underlying fabric will be scalable.

Instead, our claim to scalability refers to communication
traffic that is required as a part of the Legion implementa-
tion model. This traffic is concentrated in two areas—
LOID binding lookups from objects to Binding Agents,
and Binding Agent traffic required to satisfy object binding
requests. We consider each separately below.

Object to Binding Agent traffic : Each Legion object will
maintain a cache of bindings. Therefore, an object’s Bind-
ing Agent will only be consulted on a local cache miss, or
when a stale binding is encountered. The Legion system
will include many Binding Agents, and each object may
select its Binding Agent based on its charge rate, its perfor-
mance, or other criteria. As the load on a particular Binding
Agent increases, or as the domain serviced by a particular
agent enlarges, more Binding Agents may be created.
Thus, each Binding Agent can be set up to service a
bounded number of clients, ensuring that object to Binding
Agent traffic is scalable.

Traffic induced by Binding Agents: Recall that on a
cache miss, a Binding Agent must find a binding. If all
requests went to a single “master” Binding Agent, the sys-
tem would not scale. Instead the Binding Agent consults
the class object of the object for which it needs a binding.
Thus, the load is distributed to the class objects. This raised
two concerns: (1) Given the way that class objects are
located, won’t LegionClass become a bottleneck, and (2)
Won’t commonly used classes—for instance file classes—
also become a bottleneck?

The Binding Agent can acquire the binding for a class
object by consulting LegionClass, or by consulting another
Binding Agent. Under the assumptions that class bindings
change very slowly and Binding Agents cache class object
bindings, the traffic to LegionClass will be reduced. Fur-
ther, by constructing a k-ary tree of Binding Agents, elimi-
nating traffic from “leaf” Binding Agents to LegionClass,
we can arbitrarily reduce the load placed on LegionClass.

In essence, Binding Agents could be organized to imple-
ment a software combining tree [19].

The problem of popular class objects becoming bottle-
necks can be alleviated by “cloning” class objects when
they become heavily used. The cloned class is derived from
the heavily used class without changing the interface in any
way. New instantiation and derivation requests are passed
to the cloned object, making it responsible for the new
objects. Further, several clones can exist simultaneously,
with the different clones residing in different domains.

Thus, Legion is scalable in the sense that the underlying
mechanisms mandated by the system model have imple-
mentations that will scale to an arbitrary number of hosts
and objects. However, it does not promise scalability for all
applications—no architecture can do that.

7. Summary

This document has described the core Legion object
model. The model places system-level responsibility in the
hands of classes and objects that users can create and
define themselves. Legion specifies the intended function-
ality of the core objects—LegionObject, LegionClass,
Legion Hosts, Legion Vaults, and Binding Agents—which
cooperate to create, locate, and manage the objects in the
system. But Legion encourages users to implement and
select replacements that meet the users’ own particular
requirements. This policy, in concert with the Legion secu-
rity model, enables site autonomy by allowing resource
providers to control their own resources. The Legion nam-
ing system—comprised of LOID’s, Object Addresses, and
bindings—unites the objects in the system, thereby facili-
tating access to remote files and data.

8. References

[1] Thomas E. Anderson, David E. Culler, David A. Patterson,
and the NOW team, “A Case for NOW (Networks of Worksta-
tions),” December 9, 1994, to appear IEEE Micro.

[2] Grady Booch, Object Oriented Design with Applications, The
Benjamin/Cummings Publishing Company, Inc., Redwood
City, California, 1991.

[3] The Castle Project, University of California, Berkeley, http://
http.cs.berkeley.edu/projects/parallel/castle/castle.html.

[4] Digital Equipment Corporation, Hewlett-Packard Company,
HyperDesk Corporation, NCR Corporation, Object Design,
Inc., SunSoft, Inc., The Common Object Request Broker:
Architecture and Specification, OMG Document Number
93.xx.yy, Revision 1.2, Draft 29, December 1993.

[5] Adam J. Ferrari, Andrew Grimshaw, “Persistent Object State
Management in Legion,” University of Virginia Computer
Science Technical Report CS-95-36, in progress.

[6] Ian Foster, Carl Kesselman, Steven Tuecke, “Nexus: Runtime
Support for Task-Parallel Programming Languages,”

Argonne National Laboratories, http://www.mcs.anl.gov/
nexus/paper/.

[7] Adele Goldberg, Smalltalk-80: The Language and its Imple-
mentation, Addison-Wesley, Reading, Massachusetts, 1983.

[8] Andrew Grimshaw, William A. Wulf, “Legion—A View from
50,000 Feet,” High Performance Distributed Computing-5,
August 1996.

[9] Andrew Grimshaw, “Easy to Use Object-Oriented Parallel
Programming with Mentat,” IEEE Computer, pp. 39-51, May
1993.

[10] Andrew Grimshaw, Anh Nguyen-Tuong, William A. Wulf,
“Campus-Wide Computing: Results Using Legion at the Uni-
versity of Virginia,” University of Virginia Computer Science
Technical Report CS-95-19, March 27, 1995.

[11] John F. Karpovich, “Support for Object Placement in Wide
Area Heterogeneous Distributed Systems,” University of Vir-
ginia Computer Science Technical Report CS-96-03, January
16, 1996.

[12] Mike Lewis, Andrew Grimshaw, “The Core Legion Object
Model,” University of Virginia Computer Science Technical
Report CS-95-35, August 1995.

[13] H.W. Lockhart, Jr., OSF DCE Guide to Developing Distrib-
uted Applications, McGraw-Hill, Inc. New York 1994.

[14] The Mentat Research Group, Mentat 2.8 Programming Lan-
guage Reference Manual, Department of Computer Science,
University of Virginia, 1995.

[15] Daniel A. Reed, Richard M. Fujimoto, Multicomputer Net-
works: Message-Based Parallel Processing, The MIT Press,
Cambridge, Massachusetts, 1985.

[16] M. van Steen, P. Homburg, L. van Doorn, A.S. Tanenbaum,
and W. de Jonge. “Towards Object-based Wide Area Distrib-
uted Systems”. In L.-F. Carbrera and M. Theimer, (eds.), Pro-
ceedings International Workshop on Object Orientation in
Operating Systems, pp. 224-227, Lund, Sweden, August
1995.

[17] Chenxi Wang, William A. Wulf, “A Distributed Key Genera-
tion Technique,” University of Virginia Computer Science
Technical Report CS-96-08, March 1996.

[18] William A. Wulf, Chenxi Wang, Darrell Kienzle, “A New
Model of Security for Distributed Systems,” University of
Virginia Computer Science Technical Report CS-95-34,
August 1995.

[19] Pen-Chung Yew, Nian-Feng Tzeng, Duncan H. Lawrie,
“Distributing Hot-Spot Addressing in Large-Scale Multipro-
cessors,” IEEE Transactions on Computers, Vol. C-36(4),
April 1987.

