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abstract

PACS numbers:

I. INTRODUCTION

It is well-known that the contribution of radiative
transport to thermoconductivity of majority of solids is
important only at rather high temperatures of the or-
der of a few thousands K. At much lower temperatures
the radiative transport is usually small because is small
the density of photon states which have an energy of the
order of kBT . The energy of the transverse photons, re-
sponsible for the radiative transport (we assume that the
medium is isotropic), is E(k) = h̄ck/

√
ε, where c is the

velocity of photon in vacuum, k is its wave vector and ε is
the dielectric constant of medium. The density of states
is proportional to k2( dk

dω ) or (for transverse photons) to
ω2 what is a smooth function of ω and small for small ω.

The situation changes if to take into account the de-
pendence of dielectric constant on ω which may be strong
in the region of dipole allowed resonances. In this re-
gion of spectrum the interaction of dipole active quasi-
particles (transverse optical phonons) with transverse
photons (retardation effect) is responsible for the appear-
ance of a new quasi-particles, so called phonon-polaritons
[1,2]. For these quasi-particles most important is vicinity
of transverse optical phonon frequency where dielectric
constant has a resonance. The polariton dispersion in
the region of isolated resonance ( a dependence of its fre-
quency on wave vector) can be found from the relation

k2c2

ω2
= ε(ω), (1)

ε(ω) = εb

ω2 − ω2
‖

ω2 − ω2
⊥

, (2)

where ω‖ and ω⊥ are frequencies of longitudinal and
transverse optical phonons. For some crystals the
transverse-longitudinal splitting ∆ = ω‖ − ω⊥, which is
proportional to the oscillator strength at the resonance
frequency ω⊥, can be rather large. For example, for
SiC crystal4,5 ω⊥=793cm−1, ω‖=969 cm−1 and, thus,
∆=176cm−1, for crystal MgO6, where ω⊥=396cm−1,
ω‖=719cm−1 this splitting is even larger: ∆=323cm−1

If we take into account the dissipation or scattering
of polaritons we can use for dielectric constant a more
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FIG. 1:

general expression

ε(ω) = εb

ω2 − ω2
‖

ω2 − ω2
⊥ − 2iγω

, (3)

The approach to calculate the polariton heat conductiv-
ity is dependent on the relation between size of sample
and the length of polariton mean-free-path. If this length
is larger than the sample size it is necessary to consider
polaritons in ballistical regime. If, however, the size of
sample is large in comparison with the length of polariton
mean-free -path we can use the same statistical random
walks approach which usually is in use in calculation of
phonon heat conductivity in solids. In this note below
we consider crystals MgO and SiC at temperature

T ≈ 1000K. At this temperature the states of po-
laritons with energy E ≈ 0.1eV are mainly populated
and statistical approach in calculation of polaritons heat
conductivity can be justified because for these phonon-
polaritons in mentioned crystals a mean-free- path is
rather small. For example, as it follows from the mea-
surements of absorption in MgO crystal[3], the absorp-
tion coefficient at temperature T ≈ 1000K changes in
wide interval values up to 105cm−1 but in all cases it is
larger than 102cm−1 at least in the interval of wave num-
bers 150 − 1500cm−1 (unfortunately, we have no other
measurements). It means that a polariton mean-free-
pathΛ for these wave numbers is less than value of or-
der of ≈ 1

150 ≈ 0.07cm and similar situation we meet for
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many another crystals as it follows from experimental
data on light absorption. It means that for calculation of
polariton thermoconductivity of the sample with thick-
ness of order of 1cm we can use statistical theory taking
into account the contribution to thermoconductivity the
phonon-polaritons with the mean-free-path smaller than
the sample size. We will show that this restriction is
important for the temperature interval where the statis-
tical theory can be used. The total thermoconductivity
is the sum, roughly speaking, of two parts arising from
ballistical and diffusive propagation of polaritons. Thus,
in comparison with experimental data it is necessary to
take into account that the part of total thermoconductiv-
ity arising from statistical approach can determine only
the lower limit of its total value.

II. THERMAL CONDUCTIVITY

The thermal conductivity κ(T ) can be calculated by
the using of following well-known expression

κ(T ) =
1
3

∑
p

∫
C(ω)v(ω)Λ(ω)dω, (4)

where ω is the polariton frequency, C(ω) is its thermal
capacity , v(ω) is its the group velocity, and Λ(ω) is its
mean-free-path. The sum is carried out over two trans-
verse polariton polarizations p.

In order to determine κ(T ) we firstly have obtained C,
v, and Λ. The polaritons energy at thermal equilibrium
can be written as

E(ω, T ) = h̄ω
D(ω)

exp(h̄ω/kBT )− 1
, (5)

where the density of states D(ω) is given by

D(ω)
V

=
4πk2

(2π)3
dk

dω
. (6)

Therefore, the thermal capacity can be written as

C(ω) =
1
V

dE

dT
=

=
D(ω)

V

(h̄ω)2eh̄ω/kBT

kBT 2(eh̄ω/kBT − 1)2
. (7)

As the absorption is rather weak we can express the group
velocity as

v(ω) =
dω

dk
. (8)

The last quantity to determine is the mean free path.
Since the intensity I is proportional to the squared elec-
trical field we have

I ∼ |E|2 ∼ ei2kz = ei2(n′+in′′)ωz/c ∼ e−2n′′ω/c = e−z/Λ(ω)

(9)

thus,

Λ(ω) =
c

2ωn′′(ω)
. (10)

Using the relation

k2(ω)c2

ω2
= (n′ + in′′)2 = ε(ω) = ε′ + iε′′, (11)

and assuming weak absorption ((n′′)2 ' 0) one can ob-
tain

ε′(ω) = ε∞

(
1 +

(ω2
‖ − ω2

⊥)(ω2
⊥ − ω2)

(ω2
⊥ − ω2)2 + 4Γ2ω2

)
, (12)

ε′′(ω) = ε∞

(
2Γω(ω2

‖ − ω2
⊥)

(ω2
⊥ − ω2)2 + 4Γ2ω2

)
, (13)

n′(ω) =
√

ε′(ω), n′′(ω) =
ε′′(ω)
2n′(ω)

. (14)

In order to check the approximation considered here for
the calculation of Λ(ω) we plot in Fig. 1 the absorbance
obtained from (11) and experimental values for the MgO
crystal. We can notice a reasonable agreement between
them.
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FIG. 2: Absorption spectra of MgO. Experimental points cor-
respond to the MgO crystal at T=305 K with 0.16 mm thick7.
The dotted line just connects the points.

Grouping (8), (9), (11), and (13)-(15) and summing
over two photon polarizations, the thermal conductivity,
considering polaritonic resonance, becomes

κ(T ) =
k3

BT 2

3π2h̄2c

[∫ x⊥

0

h(x)dx +
∫ ∞

x‖
h(x)dx

]
(15)

where

x(T ) ≡ h̄ω

kBT
, x⊥(T ) ≡ h̄ω⊥

kBT
, x‖(T ) ≡ h̄ω‖

kBT
, (16)
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and

h(x) ≡ x3ex

(ex − 1)2
3
√

ε′(x)
ε′′(x)

(17)

III. RESULTS AND DISCUSSIONS

We have used data for SiC and MgO in order to estab-
lish a comparison with the thermal conductivity values
obtained here. The experimental data considered were:
εb = 6.7, ω⊥=793 cm−1, ω‖=969 cm−1, and Γ=4.76
cm−1 for SiC4,5, and εb = 2.96, ω⊥=396 cm−1, ω‖=719
cm−1, and Γ=7.60 cm−1 for MgO6. Experimental values
of thermal conductivity were extracted from8 for SiC (p.
279) and for MgO (p. 283).

Figure 2 presents the thermal conductivity as function
of temperature considering one polaritonic resonance.
Experimental data are also shown. For T > 300K, κ(T )
behaves as κ(T ) ∼ T 5.
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FIG. 3: Thermal conductivity as function of temperature.
The lines were obtained using the expression (16). The inset
graph is the zoom for the region 600 K< T <2200 K.

IV. CONCLUSIONS
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