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SUMMARY

ffRults of a numerical study of the natural fr4equencies and modes of

vsibration of the pressure prestressed toroidal shell are presented. The

analysis is based upon a linearized theory of vibrations of prestressed

shells. The frequencies and mode shapes are obt~apned•'y•bial andS/j 7,'/;,-/A
error in the Hlolzer fashion. The effects of wall bending stiffness on the

frequencies of shells under varying degrees of prestress are shown> \Y(./:
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NOMENCLATURE

am, bm amplitudes of ring flexural vibrations

h thickness of shell
k ( 2- v2) K

p pressure

qa DQa/R 2

r (1 - E cos a)/E

u meridional displacement (Figure 1)

v circumferential displacement (Figure 1)

w normal displacement (Figure 1)

C, N, Q, S

TT 1 ,T 12 defined functionsTO,,2. .T12

D Eh 3 /12 (1 - v2)

E Young, s modulus

E a' e' E 0 membrane strains

Ma, Me, Mao stress couples

Na, N0 , Nao stress resultants

Qa' QO transverse shear stress resultants

R radius of the generating circle of torus (Figure 1)

Sa, S0  membrane prestress forces

a meridional position angle (Figure 1)

E ratio of the two radii of the torus (Figure 1)
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0 circumferential position angle (Figure 1)

K pR/Eh, prestress parameter

Ka' Ko' K aO bending strains

2 2 2S(pR2/Ee ) W, frequency parameter

V Poisson' s ratio

p material density

Oa' 00, Oao rotations of the normal to the shell

W circular frequency

r (h/R) 2/12

A spacing between finite difference stations

Matrices

a, b, c 5 x 5 matrices

x 1 x 5 column matrix

A,B,C,D,E,F,G,H,P 4 x 4 matrices

A, B, C 3 x 3 matrices

Z 1 x 4 column matrix

Z 1 x 3 column matrix

Indices

i station

I last station

m Fourier index of ring flexural vibrations

n Fourier index of shell vibrations
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Section 1

INTRODUCTION

A study of the free vibrations of the pressure prestressed toroidal mem-

brane [1] shows that the frequencies can be grouped into four families: a

family of flexural vibrations associated with relatively low frequencies,

and three families of vibrations with high frequencies. The flexural vi-

brations are found to depend strongly on prestress. The vibrations of the

other three families are practically insensitive to prestress. Since both

the effects of prestress and the effects of wall bending stiffness enter the

fundamental equations in a similar manner (through terms whose coeffi-

cients are small compared to the coefficients associated with the membrane

terms), it can be expected that bending stiffness has a strong influence on

the frequencies of the flexural vibrations. This report presents the results

of a numerical study of the effect of wall bending stiffness on the frequencies

and mode shapes of the flexural vibrations.

Several iterative numerical methods suitable for the analysis of the free

vibrations of shells of revolution have appeared recently in the literature

[1] [2] [3]. Kalnins [2] uses a multisegment direct numerical integration

approach and Reference [1] uses finite differences to evaluate a certain

determinant corresponding to a trial value of the frequency. Cohen [31 uses

a method which iterates on the mode shape instead of the frequency. Al-

though the methods of References [2] and [3] are applied to shells of revolu-

tion without prestress, their extension to shells with prestress appears to

be straightforward. None of these methods, however, possesses a sub-

stantial advantage over the others. This study uses the numerical method

of Reference [1].



Section 2

FUNDAMENTAL EQUATIONS

The present analysis of the free vibrations of the pressure prestressed

toroidal shell is based upon a set of equations which result from the
addition of the bending terms of the Sanders linear shell theory [4] to the

prestressed membrane equations presented in Reference [1]. These are

(refer to Figure 1):

Equilibrium
aN

a (rN) + a N sin a+rQ + c asa (Ma8 a (ra) 0 0 a 2R r 8a + o

a aEa+ S9 - (Eao - Oao)+ (Ea- E0) sina ]+ rSa ( a a- a)

0 *a ao ao a 0 a 8-a ae

"+ pRr 0a + phR2 ru = 0 (1)

oN(~o r a0 cos a)Mo
rO -N+ Na+sina- osa 2R aa r C a]

a 08a a 3 0 a 0 '

8E
+ SO[ +2 0 sina + 6 cosa]j+rS - (E o+ •a)

+ pRrS + + +hR 2rv =0 (2)

aQ°

a o a (rQa)- •o+ S + 0a in Eocosa
+ rSa ( a-• + Ea) - pRr (Ea+ EO) - phRw rw = 0 (3)

aM
(rMa+ ao - M sina-RrQa = 0 (4)

aa a e

aMaM 0 a (rMa) + N sin a-RrQ0 = 0 (5)
Sao ae 0
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Strain Displacement

REa= au + w (6)
ae 8a

rRE = -=aV + u sin a - w cos a (7)
ao 80

2rREa, 0 = 'r 8v + au - sin a (8)

-
8- a (9)

Ra = 8a

rRK0  0 + 0a sina (10)

0e a 0 a

2rRia = r-aa+ a- -0 sina- (r + cos a) b (11)

R 0 - aaW + u (12)
a ~aa

-rRa w + v cosa (13)
0 0

-2rR a 8u 8 (rv) (14)
ao a80 a- (ra

Constitutive Relations

EhEa N - v N (15)

EhE0 N0 - v Na (16)

EhE ao (I+ v) Nao (17)

Eh 3 M-M (18)
12 'a a 0

Eh3

Eh 3 M- vMa (19)

Eh3  (1 + v) M (20)

12 'ao ao

5



The above constitute twenty equations for the twenty unknowns Na, No)

Nao' Ea' E0' Eao' Ma mop Mao Pa' K ao' Qa' Qo' a' o ao,

u, v, and w. The stress resultants Sa and S are known functions of

prestress.

The state of prestress is determined from a separate analysis of the

toroidal shell subjected to static internal pressure. An analysis based

on the linear membrane theory [5] gives

11 - - E cos a
Sa= pR 1 -2 Ecosa (21)

so -1 pR

Analyses of the toroidal membrane under internal pressure based upon

nonlinear theories [6, 71 show that the linear meridional stress resultant,

Sa, is in error by a negligible amount, but that the linear circumferential

stress resultant, S0, can be in error by 18%. The significant difference,

however, between the linear and nonlinear stress distributions is confined

to a small area of the torus at a = ± 7r/ 2 . Furthermore, an analysis [8]

of the toroidal shell under internal pressure based upon equations which

consider wall bending stiffness and nonlinear behavior shows that the stress

resultants do not differ substantially from those obtained from nonlinear

membrane theory. Hence, it appears that the state of prestress determined

according to the linear membrane theory is adequately accurate for the

present analysis of vibrations.

4.



Section 3

REDUCTION TO SECOND ORDER DIFFERENTIAL EQUATIONS

The solution of the fundamental equations (1-20) is started by separating

the variables. Set

N a', Ea' M a ) a' Na' u N anM, E a n, M an ' Kan , Oan' Ru n

N= 0 , KL 'ED COS n 0[NO E0' Mop Ko' Qa' w N on' Eon' Mon, K0n$ -, qan, Rwn

=0N E' sin n 0
M20' K ao' Qo' v Maon' Kaon' Qon' RVn (22)

Next, define

S = (sina)/r

C = (cosa)/r

N = n/r (23)

Then, use of equations (22) and (23) in equations (1-14) yields

N'+S(N-N)+NN D N (1 + C)
a a O ao + R ( C) Mao

+ S0 [N (Ea - ao ) + S (E a- E )] + S a(E- a)

+ pR0a + phR2 w 2u = 0 (24)

Nao+ 2SNa- NN - CQ 2 ( C)1(M SMo)

a 0 9 W 2R C)(M ad

+ S0 (- NE0 + 2SEa0 + C 0 ) + Sa(Ea'o + oa'o)

+ pRq0 + phR2 w 2v = 0 (25)
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N~CN~DN - CN0 R2D (qa' + S qa) - N Qo + So (N 0o + S4)a CEO)
a 0 R

+ Sa(0)aI + Ea)- pR (Ea+ Eo)- phR2W2w 0=0 (26)

M '+ S (Ma - Mo) + NM - qD = 0 (27)a aMoae R a

M o + 2SMao - NM -RQo=0 (28)

E = u' + w (29)

E = Nv + Su - Cw (30)

2Eao = v'- Sv- Nu (31)

RKa = 0' (32)

RK0 = So)a + No0 (33)

2R Kao = 010 - Soo - N O- (l+GC) bao (34)

Oa = - w'+ u (35)

00 = Nw- Cv (36)

2 0 ao = Nu + v' + Sv (37)

In equations (24-37) and subsequent expressions the subscript n has been

dropped. Prime indicates differentiation with respect to a.

At this point the problem has been reduced to the simultaneous solution of

the ordinary differential equations (24-37) and (15-20). Our goal is to

derive four simultaneous second order differential equations for u, v, 0 a)

and q . First eliminate Q0 from equations (25) and (26) using equation (28).

Then, substitute the strain displacement relations (29-34), two of the rota-

tion expressions (36, 37), and the constitutive relations (15-20) into the

equilibrium equations (24-27). The resulting equations together with (35)

6



constitute five equations for u, v, w, 0a' and qa" They may be written in

matrix form as

ax"+ bx' + cx = 0 (38a,b,c,de)

where

v

x

Oa

The elements of the a, b, c matrices are given in Appendix A.

We now manipulate equations (38) so that w can be eliminated using equation

(38c) (equilibrium of forces in the normal direction). In order that no deri-

vatives higher than the second derivative appear in the final equations,

eliminate v" from equation (38c) using equation (38b) (equilibrium of forces

in the circumferential directions) as follows:
1

v" - (b2 1 u+c c u + vb + C22v + w,+ w' +c wa2 2  22 2 2 23 23 23

+b 2 4 '+c 2 4 b +) (39)

Then equation (38c) reads:

b 1U, + c 1u + b 32 v, + c 2v + a +3 w,+b33W+c33w+b4Oab3 1 u+c 3 1 u~ 3 v c 3 2v a 3 3 w" b3 3w c 3 3w b3 44k

+ c3 4 a - rqa,- rSqa = 0 (40)

where the coefficients are given in the appendix. From equation (35)

W, = u -

wTI = u'- O (41)

After eliminating the derivatives of w using (41), equation (40) can be

written as

Qw = T u' + T 2 u + T 3 v, + T 4 v + Ta+ T6- rq r Sq. (42)

7



and the derivative of w can be written as

Qw' = TlU"+ (TWI+ T2 ) u'+ TW' u + T v"+(WI+ T4) v'+ TI v

+ T50,'+(Ts'+T 6) 0a+T6' -rq"-rSqa'-T(C-S2)q -Q'aw (43)5 6 a a a a

The T' s and Q are defined in the appendix.

Now, multiply equations (38a, b, d, e) by Q and eliminate Qw' from them

with equation (43). Then multiply the resulting equations by Q and elimi-

nate Qw with equation (42). The resulting four equations for u, v, Oa, and

qa may be written in matrix form as

AZ"+ BZ' + CZ = 0 (44)

where P

q a

and the elements of A, B, and C are given in Appendix A.

The basic equations (44) simplify for the case of axisymmetric vibrations,

n = 0, v = 0. The equation of equilibrium of forces in the circumferential

direction is then satisfied identically, and equations (44) become

AZ"+ BZ, + CZ = 0 (45)

where fuZ= {4a
The elements of A, B, and C are the remaining elements of A, B, and C if

the second row and column are deleted, and N is set equal to zero.

8



The fundamental equations have now been reduced to the solution of two

sets of second order differential equations as follows: 1) four equations

(44) for the general case, 2) three equations (45) for the axisymmetric

case. These differential equations will be integrated numerically by a

method described in Reference [1]. For completeness, the description

of the numerical method is reproduced in the next section.

At this point we remark that the fundamental equations (1-20) could be

more easily reduced to four second order differential equations for

u, v, w, and M in the manner of Budiansky and Radkowski [9]. However,

application of the numerical method described in the next section resulted

in a convergence of the finite differences which was too slow for practical

computation.

The fundamental equations can also be reduced to four equations for v, w,

N a, and Ma. First, derive a set of five equations for u, v, w, N and Ma

then solve the equation of equilibrium of forces in the meridional direc-

tion for u, and finally eliminate u from the remaining four equations. The

application of the present numerical analysis to these equations resulted

in efficient and accurate results except in the approximate range

2 2
n n

2 (1+ v) (1+ e)2 2 (1+ v)(I - e)

In this range the coefficient of u in the equation of equilibrium of forces

in the meridional direction has a zero.

9



Section 4

NUMERICAL ANALYSIS

Since the geometry and prestress are symmetrical about a= 0 and a= 7r,

we need to consider only one-half of the torus corresponding to the range

0 - a ::-< 7r. Let this range be subdivided by I + 1 equally spaced stations.

Then the spacing between stations is

A = 7r/I

and the position angle for the i station is

a i = A i = 0, 1,2 ........ I

The derivatives of Z at the i th station are approximated by the central

difference formulas

Z., =z 1-Z. )
I 2 Zi+ 1 i-I

,, 1 (Z - 2Z. + Z. ) (46)
1 A 2 i+ 1 1 1-I

With these formulas we obtain from equation (44) the set of difference

equations

DZi+ 1 + E.Z. + F.Zi = 0 (47)

i=0, 1,2 ........ I

where

D. A.+B.
1 A 1 1

E. 4 - A. + 2AC.
1 A 1 1

F 2 A.- B. (48)

10
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The difference equations (47) are augmented by conditions at i = 0 and

i = I. These end conditions are obtained from considerations of conti-

nuity of the displacement functions, u, v, and w. Now, the solution of

the fundamental equations (1-20), and the reduced equations (44) are such

that either v and w are even, u is odd or v and w are odd, and u is an

even function of a with respect to a = 0 and 7r. These two groups of solu-

tions will be denoted as symmetric and antisymmetric modes respectively.

Hence, the end conditions are

Z_I = + GZ

ZI+l = + GZI -(49)

where G is the diagonal matrix [1
G = l l

and plus and minus signs refer to symmetric and antisymmetric modes

respectively.

The difference equations (47) together with the end conditions (49) make up

a set of homogeneous algebraic equations. The eigenvalues of these equa-

tions are obtained by trial and error, using a special Gaussian elimination

technique devised by Potters [10].

The equations for this procedure are obtained as follows. Let

Zi = - Pzi Z. 1+ (50)

Substitute this expression into the difference equations (47), and by com-

paring the result with (50) obtain the recurrence relation

P. - F. P i11 -D.
1 = E-1 i- 1

i= 1, 2,3........ I-i (51)

11



Now, write the difference equations (47) at i = 0 and eliminate ZI using
the first of the end conditions (49). Again, by comparing the result with

equation (50) obtain

P0 = E0- 1 [DO + F 0 G] (52)

where plus and minus signs refer to symmetric and antisymmetric modes

respectively. Equations (52) together with the recurrence relation (51)

provide all the P' s up to PI - I" Finally, write the difference equations

(47) at i = I. Eliminate Z 1 + 1 using the second of the end conditions (49),

andZ _ 1 using equation (50). The result is

[EI- (FI+ DIG) P 1 ] Zl = HZI = 0 (53)

Since Z, - 0, we must require that the determinant

V = I EI- (FI + DIG)P (54)

vanish. Equation (54) is effectively a frequency equation. A value of x

which gives V = 0 is a natural frequency of vibration.

The mode shape corresponding to a natural frequency can be calculated

once a x for which V = 0 is obtained. Set the amplitude of one of the dis-

placements at i = I equal to unity and calculate the remaining unknowns

at i = I from three of the equations (53). Thus, for the symmetric modes

Z 1 (55)

For antisymmetric modes

S{0} (56)

12



where

fOilj [ H 33 H 34 ] H-157H4J(57)qal H 43 H 441 H 411

The remaining Z' s can then be calculated from equations (50) in the

reverse order.

The w displacement is obtained from equation (42). In finite difference

form the equation reads

i = i-Q, [TfA i (z'i + 1 li-Z1) + T3 , i(Z 2 , i+I- Z 2 , i- 1)

+T5,i (Z3,i+1- Z3, i-1) - r (Z4, i+1- Z4,i-1)]

T2,i Z1,i+ T4,i Z2,i +T6 Z3,i- Si Z 4, iI
i=1, 2, 3 ....... I-1 (58)

For symmetrical mode shapes
1 1

0= Q0 [ (T 1 ,0 1Z, 1 +T5 ,0Z 3 ,1- Z4 ,1)+T4,0 2,0(
W, I [_:I(TI,I Zl, I-_1 + T1Z31- I FZ4- 1) +T 4,01 (59)

I, A

and for antisymmetrical mode shapes

w0 = wI = 0 (60)

The procedure may be summarized as follows:

1. Assume a value of x ;

2. Calculate the elements of the A, B, C, D, E, F, and P
matrices at all stations from equations (44), (48), (51)
and (52);

3. Calculate the determinant V from equation (54);

13



4. Repeat steps 1-3 and plot V versus X. From this plot
determine a X for which V = 0. This X is a natural
frequency;

5. Calculate the mode shape corresponding to a natural
frequency from equations (50) and (55-60).

The equations in this procedure were programmed for the IBM 7094

computer.

A number of natural frequencies were calculated with I = 50 and 100 and

compared. The difference was found to be less than one percent. There-

fore, all results were obtained with I = 50. For this number of finite

difference spacings the IBM 7094 required approximately 1. 5 seconds to

evaluate one determinant V of the general vibrations.

14



Section 5

RESULTS

Results of the present numerical analysis are contained in Figures 2-20.

These results show the effect of bending stiffness on the vibration of shells

under 1) high prestress, K = 0.002, 2) low prestress, K = 0.0001, and

3) no prestress, K = 0. All results are for Poisson' s ratio v = 0. 3.

The modes of the flexural vibrations of the prestressed toroidal shell may

be thought to consist of two types of vibrations: 1) the modes of a torus

whose meridional curve (cross-section) is not allowed to distort (overall

ring vibrations), 2) the modes of a pressure prestressed circular ring

with radius R (cross-sectional or ring flexural vibrations). The first type

is approximated by the vibrations of a thin ring of radius R/E without

prestress [11]:

Bending modes

symmetric (in plane bending)

2 n2 (n2 _ 1) 2
2 (n 2+ 1)

antisymmetric (out of plane bending)

.2 n (n- 1)2 (62)
2 (n2 +1+ v)

Extensional modes (symmetric)

X = n 2+ 1 (63)

Torsional modes (antisymmetric)

1 2
( = •I1 + n----) (64)

1+v

15



The frequencies of flexural vibrations of a pressure prestressed ring of

radius R are derived in Appendix B:

1 _ m 2 (m 2 - 2)
I m2 1 [K + r (m -1)] (65)

6 m 2+1

The effect of bending stiffness on the frequencies of a shell with high pre-

stress are shown in Figures 2-7. These results are for n = 0, 1, and 2,

S= 0. 002 and h/R = 0. 01. It can be seen that the frequencies of the first

mode of each type of vibration shown are practically unaffected by bending.

However, the effect of bending increases with the mode number so that

the increase in frequency of the fourth mode is of the order of 10%. This

trend is forecast by the frequencies of the uncoupled ring flexural vibra-

tions given by equation (65) in which the P part increases with (mi2 - 1).

The effect of bending is larger on shells with high E (fat toroids). This is

also to be expected because for high e the mode shapes consist mostly of

local deformation of the meridional curve [1]. For E = 0.75, n = 0 sym-

metric vibrations, the mode shapes of the first four modes of a shell with

and without bending are compared in Figure 8. This figure shows that the

effect of bending on these mode shapes is small. In summary, we can say

that for shells with K = 0. 002 and h/R = 0.01 the effect of bending on the

first four modes of the n = 0, 1, 2 vibrations is only moderate.

The effect of bending on the axisymmetric, symmetric, frequencies of a

shell with K = 0.0001 and h/R = 0.01 is shown in Figure 9. In this case,

bending has increased the frequencies by approximately a factor of two

when e = 0. 75. For smaller e the increase is smaller. For a shell with

K =0. 0001 and h/R = 0. 001 the frequencies increase by less than 5%.

Frequency curves for a shell without prestress, K = 0, n = 0 and 2 and
h/R = 0.01 are shown in Figures 10-13. The dashed curves in these fig-

ures represent the frequencies of the uncoupled modes. The shell frequen-

cy curves are the solid curves. These curves exhibit transition regions

16



which occur as sharp jumps for the axisymmetric, symmetric, frequency

curve, and as more gradual changes for the axisymmetric, antisymmetric,

and n = 2 frequency curves. In a qualitative sense these frequency curves

exhibit the same features as those of the prestressed membrane when

K = 0.002 [1] (or refer to the dashed curves of Figures 2-7 of this report).

The axisymmetric mode shapes for a shell without prestress, K = 0, and

h/R = 0. 01 are shown in Figures 14 and 15. The first column of mode

shapes in these figures shows essentially the uncoupled mode shapes for E

below the transition region. In this region the overall ring mode shape

prevails for the symmetric vibrations, but for the antisymmetric vibra-

tions an irregular shape appears. The third column again shows essen-

tially the uncoupled mode shapes. These are for e above the transition

region and are one order of complexity higher than those below the transi-

tion region. The fourth column shows mode shapes for e = 0. 75 which are

predominantly local oscillations of the meridional curve. In a qualitative

sense, the mode shapes of the shell without prestress and h/R = 0. 01

exhibit the same features as those of the prestressed membrane when

K = 0. 002 [1].

Frequency curves for a shell without prestress, K = 0, n = 0 and 2 and

h/R = 0. 001 are shown in Figures 16-19. The significant feature of these

curves is their tendency to pair up with nearly the same frequencies.

Examples of the mode shapes, shown in Figure 20, associated with fre-

quencies that pair up appear to be mirror images of each other. That is,

if the mode shape of the second symmetric mode is folded on top of the

mode shape of the first symmetric mode, then the two mode shapes are

nearly the same. The third and fourth symmetric, second and third anti-

symmetric and fourth and fifth antisymmetric mode shapes shown in Fig-

ure 20 are mirror images also. Another significant feature of the mode

shapes presented in Figure 20, is the fact that the motion takes place

mainly near the crowns.

17



The paired up frequencies with nearly the same mode shapes can be ex-

plained by the following. Let the radius of the torus go to infinity (E-.0-0).

Then the torus approaches a cylindrical shell. At every natural frequency

of the cylindrical shell there are actually two identical frequencies with

identical mode shapes. These frequencies separate slightly and the mode

shapes become slightly different when imperfections (for example, when

the cylindrical shell is not exactly circular) are present. Thus the pairing

up of the frequencies of the toroidal shell are due to the weak influence of

the circumferential curvature which has the equivalent effect of imperfections

on the frequencies of the cylindrical shell.

18



Section 6

CONCLUSIONS

Fhe following conclusions are drawn from this study:

1) Bending stiffness has only a moderate effect on the natural

frequencies and mode shapes of relatively thick shells,
(h/R = 0.01) under high prestress( K = 0.002).

2) When prestress is small (K = 0. 0001) bending stiffness

increases the natural frequencies of relatively thick and

fat toroidal shells (c large, h/R = 0. 01) by as much as a

factor of two.

3) In the absence of prestress, when membrane theory pre-

dicts a continuous frequency spectrum with discontinuous

mode shapes, the consideration of bending stiffness leads

to discrete frequencies with continuous mode shapes.

4) Bending stiffness should be considered in the calculation

of the natural frequencies and mode shapes associated

with the flexural vibrations of toroidal shells.7
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APPENDIX A

Elements of Matrices

The non zero elements of the a, b, and c matrices are:

111a I +k (1+ ~C)

a 2  I G(-v)+ k(+1+!C)+g (1-v) T (1+3C)2a22 2

a 23 j= -_ v)=1+ C - a 32

a54 =

bll (1 + Ik) S

b 1 (l-v -V)
b12 N[I g(I-v1-) r'(I+C)(1+3C)]= b2 1

b13 = 1 - vC+ k(1+ 1C)+I(1-v) r(1+C)N2

13 1
b = .S[1-v+k--(1-v) r(1+3C)(5+3C)]

1

b2 = I(-v) rNS(2+3C)

b 1
24 rN[vC+(l-v)(1+3C)] =- rb 5 2

b =1 1 (-) (+C N2
b31 1 -vC+kC+(1v) r(+C)N

31 1
b32 -(l-v) rNS

b33 2

b 1 1 N2
b34 k(l+!C)+'(l+v) 21
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b35

b43 1

1(1+v) N2b5 3  2

b = S

c12 = NS 2 61 + - S (1(N+

c NS [--~1(3-v -k+ 1 21-v 1 C)( ~

c01 = S(1+C)[1+l1k-1(1-v)EN2]
13 1f 2c1 1 2k +I(I - v) I' (I+ C) N2]

014 Y [k+(-f )(+GN

c15 r

021
c G v 2 E _2x (Il-v) (C +S2) - N2-_ 1 k(2+S2+ 2 C-I C

022 = (- 2 ) 2 x YCN k(N 2+ C2)C-N 2 C2

+8 l v) rF(I+ 3C) [S2 (5+ 3C) - C (I+ 30Q]

C N - v + C + k (I+C) + FN2C + 1(1- v) r [C(1+3C) - 3S2(1+GC)123 2

1c 24 r FNS [C -f (I-V)]

c32 S[v -C- kk(l+!C)1

c2 = -Ný - v+ C+ k (1+C) +r 2 NC - 1 (1 - v) r [S2 _ "C ( ~
22 1 12 42

33 (1v)+12v C + C + f kC (3 + C) + .1 kN + FN +(1 - v)F N2C
1 v2

c34 = S [k + (3 - v) r ]

c3 = - F S
35 r

2:2



c4 = -1
c41

c44

1 N2051 = -•(1-v,)(1+G)N
c ~~ (I-• - v+(c)QN1
511

c52 = NS [C+v (1+C) + (I-v)(I+3Q]

c53 = -2N 2 S

c4 C - S22 1 N2
54= vC- (

c5 = -1
c55

The coefficients in equation (40) are:

a3 3  - a33- T 0a23

b3i = b T3i T0b2i i =1, 2, 3,4

c3i = 0 3i TT0 c2i i =1, 2, 3,4

where I

T~ = ~(1 -v)Fr(1 +3CQN
0 1 (1-v) +k (I+ C) + I(1-v) r(1+3C)2

The elements of the A, B, and C matrices are:

A11 = 2 [1+k(1+I1C)]+QT 1 T7

A12 QT 3 T 7

A13 QT 5 T 7

A14 = -Q T 7
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A2 1 = QT1T9
A = Q 2 r 1\(1 c\ic)+ 1c\1(TA2 2[ 1(1 -v) + k (1+Q +i1 (1- v) r(1I+3C)2] + Q T3 T9

22 Q 29

A23 Q T5 T9

A2 4 = -rQT 9

A = Q T1

A3 2 = Q T 3

A3 3  Q T5

A34 r Q

A41 Q1 T11

A4 2 =Q T 3 TI,
A= Q

A43 + Q T5 T1 1

A = -r Q T1 1

2 1B1 l Q S(I+-2k)+QT7 (T 1 '+T 2 )+T, T8

B1 I Q N [(1+v) - !-(1 - v) r(1+C) (1+3C)] + QT7 (T3 +T4 ) + T3 T8

B1 3 = QT 7 (T 5 '+T 6 )+T 5 T 8

B14 = -r(QST7 + T 8 )

12 1B2 2  Q S[1 -v-!(1 -v)F(1+3C)(5+3C)] +QT 9 (T3 , +T 4 )+T 3 T1 0

B = FQ2 N[vC+!-(1-v)(1+3C)]+QT 9 (T5'+T 6 )+TsT0

24



B = -r(QST +T1)
24 9 10

B3 1 = Q(TI'+T2)- Q, T1

B3 2 = (T31+T4)- Q'T3

B33 Q (T55+T6) - Q, T5

B = - r(QS - Q,)

B4 1 = TI, (TI' +T2)+T, T12

2 1+
B 4 2  Q. N + -j ([l-vv) (1+3C)]+QT 1 1 (T 3 ' +T 4 )+T 3 T 1 2

B =Q2S+QT 1 (T 5 '+T 6 )+T 5T 1
B43 + T 1 + T12

B4 4 = -" (QST 1 1 +T 12 )

c = Q 2 [1-v2)E2x+ vc S2_ 1 (1 - v)N 2 1 k(N2 +S 2) - I (1-v)r,(l+C)2 N2]

C11 Y Q8
+ Q T7 T 2 ' + T 2 T 8

C = Q 2 NS[ 1 (3)k'(1_v)r(I+C)(1+3C)+QT T4 +T TC12 NS[ (-2 -9 7k4 4

C 1 Q2 [kC+ (1-v) )r(1+C)N2 ] +QT7 +T 6 T 8C13 Y Y 7 612 T 6' T

C 14 = F[Q2 QT7 (C- S 2 ) ST8]

C2 1 = Q NS[1(3_v)+k+ (1-v)F(1+C)2 ]+QT9 T2 ' +T 2 T1 0

2(22 1 (v) (C+ S2) -N 2_ (N2 S2 C2) kC N2 C2
C2 2 = Q2 "f"f(l+2)2_ k(+S+C-k

1(1-v)r (1+3C) [S2 (5+3C) - C (1+3C)]} +QT 9 T 4I+T 4 T10

2 1

C = Q2 NS[C-I(1-v)]+QT9 T6 ' +T 6 T1 0239
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c -r[T C S2)
24 -rQ 9 (CS) 10 1

C 33 Q 2 -QT 6' -Q T 26

C3  1 (14  - Q) (IT )N24  ~, 2+T

2

C 2Q2_QT(6 - N -QQT 'T6

C34  = Qr[Q(C- S 2)-Q'S6]1

c 44 = 2 _r[T 1(-s2 T 2

wher 41 T = I-v+Ik 1-v)(1C) Q 1 +QT1 T NT2 [~+(-~(+ 121-)
12 1

C4  = QS [vCS -k (1+C '-)rN 2 1QT+ N T 6 T1 23v
2 2y

wee T = N v-vC+J-kl C-(-) +r[N 2 C+(_) (1 C vT 1 (1 )(13C)( C)]14 2 0

T 1 2 1 F

13 - 2 (1vPN-S 2 [1-v +(1-v)r(1+3C)[S2 (5+3C)]C13~

= N{l I--k1C) + f[-_ N 2O C+ 1 1-v)S2 (1-vC)(13 I
221 2F 21 22

T = 1flk r 2+ 'r T~-+1-3)

T6  2 y

T = I-vC+k(+1+ C)+ -1(1-v) r(1 +C)N 2
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1 1 2T 8 = QS (1 +C) [I + yk - - Iv N -Q

T9 =1 (1-v)rNS(2+3C)

TI0 = QN [-v+C+k(I+C)+FN2 C+ 1 (I-v)F(I+3C)(C-2S2)

1- (I-v)F(I -3C) S2 Q'T

1 2

T12= -(2N SQ +Q'T 11 )

and prime indicates differentiation with respect to a. In differentiating

N, S, and C the following formulas are useful:

N' = - NS

S' = C -S

C' = - S(2C)
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APPENDIX B

Flexural Vibration of the Prestressed Circular Ring

The vibrations of a circular ring of radius R, prestressed by pressure p,

may be determined from equations (15-21) and (24-37) by setting E = v = v

= So = 0. This results in the following equations:

Equilibrium

1 Sa(a a)+pRC 2 2
Na' + Q +S (E- + pRO +phR w u=0 (BI)

a Ra a a a a
1 2

N • Qa'+ Sa(0at + Ea)- pRE phR 2w2 w= 0 (B2)a R a, a
, 1

M' - Qa= 0 (B3)

Strain Displacement

Ea = u' + w (B4)

R~a = Oa' (B5)

Oa = - w'+ u (B6)

Constitutive Relations

N = EhE (B7)

Eh3  (8
MR = El 3 a (B8)

a 12 "a

Prestress
Sa = pR (B9)

Substitution of (B3-B9) into B1 and B2 yields

(1+K+rF) u" + 2 Xu-r'w"' + (1 + K) w' =0 (BIO)

- ru'" + ( + K) u' 1 w' KW" +(1 - 2X)w = 0 (Bll)
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which with

u = a msin m a (B.12)

w = b m cos m a (B13)

yields the following frequency equation

(E2 X) 2-_[l+ m2+ 2Km 2 + rm2 (l+ m2 )] (E2)

+ m 2(m 2-1) [K(1+ K) + Km 2 + (m 2- 1)] =0 (B14)

For K <<I1 and m not large the lowest root of this frequency equation

is approximately

L m2(m2 1) [K+ r (m 2 _1)] (B15)
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