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1. INTRODUCTION

This5 report describes an improved linear analytical model and
-4

digital program developed for the calculation of axisymmetric launch

vehicle steady-stage response to applied axisymmetric sinusoidal loads.//•

The detailed computer programming manual for the digital program is

contained in Volume II of this report.

In the evaluation of launch vehicle behavior, it is necessary to study

the response of the entire vehicle to a wide variety of dynamic loadings to

insure the structural integrity and stability of the system. Much effort

has already gone into the development of techniques to calculate the vehicle

response to lateral and longitudinal loadings using distributed and lumped

spring-mass models and techniques for theoretical and empirical modeling

of the vehicle behavior. ' 2 However, experimental data indicate that

these procedures are unsatisfactory in several respects. For example,

accurate representation of important structural shell characteristics and

realistic coupling of the fluids with the detailed structural behavior of

tank walls and bulkheads are omitted.

The approach described herein overcomes the above noted defi-

ciencies. A finite element technique is utilized to construct the total

launch vehicle stiffness matrix [K] and mass matrix [M] by subdividing

the prototype structure into a set of (1) axisymmetric shell components,

(2) fluid components, and (3) spring-mass components. In this way, it

is possible to represent as separate shell units the fairing, interstage

structure, bulkheads, tank walls and engine thrust structure, and to con-

veniently provide for the inertial and stiffness characteristics of equip-

ment, engines and vehicle supporting structure.

The stiffness and mass matrices-'or the complete launch vehicle

are obtained by superposition of the stiffness and mass matrices of the

individual shell, fluid and spring-mass components which are computed

using a Rayleigh-Ritz approach. Fluid motions are assumed to be con-

sistent with the shell component distortions. The superposition technique

assures displacement compatibility and force equilibrium at the joints

between components. After the complete system stiffness and mass
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matrices have been formulated, displacement boundary conditions are

introduced by removing appropriate rows and columns corresponding to

points on the vehicle and its supports which are rigidly restrained from

motion.

The coupled system natural frequencies and mode shapes are

obtained from the eigenvalue equation constructed with the total stiff-

ness and mass matrices

[K] (a)-p 2 [M] (a)=o (1.1)

in which p is the circular frequency of the system and (a.) is the modal

vector whose components are the longitudinal, radial and rotational dis-

placements at discrete points on the vehicle. The steady-state response

due to simple harmonic loads is determined using a standard modal re-

sponse procedure which expresses the total displacement, velocity,

acceleration and force responses as the linear superposition of the in-

dividual modal responses based on an assumed modal damping.

The procedure will handle shell components with a wide range of

geometries. It includes shell effects in the tank and bulkhead structure,

but avoids the need for including detailed local deformation, such as at

shell discontinuities, which are unimportant in determining the total

dynamic behavior of the vehicle. The approach has the capability of rep-

resenting the tank or stage of most interest in great detail and those of

least interest with minimum detail, as desired, thereby minimizing the

computation time required and remaining within the maximum limitations

of standard eigenvalue routines. The formulation of the problem is sub-

divided into well-defined portions, leading to efficient coding and easy

modification for later incorporation of asymmetric shell behavior and

even more detailed treatment of the fluid behavior.

The analytical procedure discussed herein is summarized in Figure 1.

The launch vehicle analytical model is discussed in Section 2. The equations

for the shell and fluid component stiffness and mass matrices are developed

in Sections 3 and 4, respectively. The coordinate representation which

forms the framework for the vehicle model, and the construction of stiff-

ness and mass matrices for the complete launch vehicle, are discussed

1.2



in Sections 5 and 6, respectively. The method for computing the dynamic

response is discussed in Section 7. The computer program arrangement

is described in Section 8 and detailed input data requirements for the com-

puter program are itemized in Section 9. A complete list of symbols is

provided in Section 10.
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START WITH GIVEN CONFIGURATION

1) GEOMETRIC AND ELASTIC CONSTANTS
2) FORCE AND DISPLACEMENT

BOUNDARY CONDITIONS

I. SUBDIVIDE VEHICLE INTO COMPONENTS

'() SHELL COMPONENTS
(2 LIQUID COMPONENTS

SPRING-MASS COMPONENTS

Ir. COMPUTE SYSTEM COMPONENT PROPERTIES

(1) STIFFNESS
(2) MASS INERTIA

M. ASSEMBLE TOTAL VEHICLE MATRICES

(1) STIFFNESS
(2) MASS INERTIA

I1. SOLVE THE EIGENVALUE FORMULATION

(1) NATURAL FREQUENCIES
(2) MODE SHAPES

'.' COMPUTE THE STEADY-STATE HARMONIC RESPONSE

I 1) DISPLACEMENTS

2) VELOCITIES
3) ACCELERATIONS

(4) FORCES

Figure 1. Summary of Technical Approach
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2. ANALYTICAL MODEL

As illustrated in Figure 2, the vehicle structure is subdivided into

a consistent set of shell components, a, fluid components, b, and multi-

coordinate spring-mass components, c. The total vehicle which may be

represented is limited to one with not more than six (6) fluid components.

The total number of shell components which may be represented shall not

exceed forty (40). The characteristics of the spring-mass components

representing such equipment as engines and mass-elastic supports are

provided directly by low order (< 10) stiffness and mass matrices. The

total number of spring-mass components may not exceed thirty (30).

The vehicle behavior is described in terms of motions of discrete points

on the vehicle located at intersections of shell components, at lumped

masses, and at intermediate points on the shell elements. The number

of nonfixed degrees-of-freedom by which the behavior of the system is

described may not exceed eighty (80).

The specific shell components to be used are conical frustums

(which include cylindrical shells as a special case) and ellipsoidal bulk-

heads (which include hemispherical shells as a special case). Within

the domain of thin shell theory, the shell components may have ortho-

tropic properties and a linear thickness variation in the meridional

direction. Local thickening of a shell at a bulkhead or wall joint may be

handled by using an equivalent local hoop stiffener which is provided as

input in the form of an additional spring-mass component. Initial static

stresses based on membrane theory are accounted for in determining the

stiffness matrix for the shell components.

The most general fluid component may be in contact with an ellip-

soidal upper bulkhead, a conical tank wall, and a conical or ellipsoidal

lower bulkhead. The bulkhead shell elements may be convex down or up

with fluid at any desired depth on either side, both sides or neither side.

The tank configurations which are considered are illustrated in Figure 3.
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LONGITUDINAL
VEHICLE AXIS FAIRING

FAIRING PAYLOAD

PAYLOAD

I NTERSTAGE

BULKHEAD

WALL
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,,,•,•BU LK HEAD

PROPE LLANTS 
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6 BULKHEAD

SUPPORT
EN( • . ENGINE

A. LAUNCH VEHICLE B. SYSTEM COMPONENTS

Figure 2. Vehicle Components
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SIMPLE TANKS

INVERTED UPPER BULKHEAD TANKS

INVERTED LOWER BULKHEAD TANKS

Figure 3. Tank Configurations
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3. SHELL COMPONENT STIFFNESS AND MASS MATRICES

The displacements of an individual shell component (Figure 4) are

approximated in the Rayleigh-Ritz manner by a finite series of functions

having the form

U(0) = a k Uk(0) , <_ I

k=l
(3.1)

V

V =I

in which ý is a dimensionless variable and 0 < <_ 1. For conical frustums,

Figure 5, • = s/f sin 00" For convex upward ellipsoidal shells, Figure 6,

= /0o' and for convex downward ellipsoidal shells, ý = (r - 0)/(T - 0o0

The assumed mode shapes uk(O) and vk(Q) consist of polynomial

terms sufficient to represent all modes of shell distortion, including

longitudinal stretching, radial dilatation and rigid body displacements.

The specific shape of the assumed modes is determined within the

limitations of a tenth order polynomial, as follows:

10
n nU k() = akn n

(3.2)
10

vQ)= b n

n=0

in which [akn] = [A] (U x1) and [bn] = [n](Vx 11) define the poly-

nomial functions associated with the local coordinates (ak) and

respectively. LA] and [B] are furnished as input to provide maximum

flexibility in the selection of the assumed coordinate functions. It should

be understood that the ak and the 1 are the unknown generalized coordi-

nates associated with the shell component, whereas the akn and bIn are

definite arbitrarily specified coefficients which determine the functions

uk( ) and v,

3.1



3.1 SHELL STIFFNESS MATRIX

The shell stiffness matrix is constructed from the potential energy

function V derived in Appendix A. For the generalized displacement

(Equation 3. 1), the stiffness matrix is defined by

a2V a2V 82V 2V

82V _ _ 82V 02VI .aI 8aIa I aI8ý

a2 V a2 V 82 V aZV

8au1a 1  DWUaC1 ao.u10 I a10pv

r• - - -•

IIa] 1( Vx~T)---------------------------(3.3)

a2V a2V a 2 V D2V

apDaa apD 0-g pa, I Df3Df3

2 2 22a V aDV -8V aV

which is consistent with the Rayleigh-Ritz procedure and in which, for

example

DakV 1pi1f aaft k a kJ aDE aak &L k -

aKO + K0O aKO + )34 a44 E) -k 013

+ 33 &+ 0 34 -34 - + -4
kC aa k a D-C L D -,a-k Daa k aDp

+No-ak EP ds, (3.4)
Doaak D '1J
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and

k=l. .. U

The strains (E of, E), curvatures (Ko, Ke) and meridional rotation p are

defined in terms of the displacements in Appendix A by Equations (A. 13)

through (A. 17). The quantities ClI, C12, 22, C 33 C 34 and C44 are

the orthotropic stress-strain coefficients which are functions of the

dimensionless parameter ý. For the present analytical model, these

coefficients are approximated by the following polynomial equations:

= C2() =~())+ g(())-(0C(0))) (3.5)

"C2 2 1Q)

"C33W•

(-()3 = 134() = -())

C44W )

are provided as input.

N 0 is the initial meridional stress caused by tank pressures and

longitudinal vehicle accele rations (pr estress and static longitudinal

acceleration stress). These initial stresses are derived in Appendix B

using membrane theory, which is a reasonable first order approximation,

except in very localized areas where the bending stresses predominate.
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This simplifies the calculation of the initial stresses which are readily

obtained from the membrane equations of equilibrium. Expressions

for the initial stresses for conical shell components are given in

Equations (B. 1) through (B. 6), for the upright ellipsoidal bulkheads in

Equations (B. 7) through (B. 11), and for the inverted ellipsoidal bulkheads

in Equations (B. 12) through (B. 15). The computation of these stresses

is included as an integral part of the digital program.

After substitution of the displacements (3. 1) into (3. 3), the shell

component stiffness matrix becomes

[~~ar z~ (Kl . (,a). (j,)T + K2( ) .) + K3 ['CZi}- (,a)T +71i.(.T

+ K4 [(v) - (.,)T + (ir) . (vT] + K5 (v). (vT + K6 ()()T

+ K7(Q7).( + K8 [(ir). (..)T + (p). (T]

+ K[(v). (.)T + (ai). (v)T] + K 0[(-r) {T+ (iT . ?)T]

+ KilII[(7) . (.h)T + (.) .(47}T]I + Kl?- [(ir) - {.)T + (,a). (9)T]

+ K13[(ý -{ {..)T + (a). (_7)T] )rdf (3. 6)

in which

"Ul()1 01

(u) 0 (v) v --

oIV vv1W
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1 d [ } i[](,n}r 1  (u) .

r I a . . 0
rI d~ (vk ( (Uk) [=

1[ -- ]-- =L1F•1r~

r1 do V I-f L](,n

id 0 9h1]51f'

'0 0 0 . . . 0

1 0 0 .0

o 2 00

0 0 0 10 0
(I1lxii)

and

D I for convex upward ellipsoid,
1ro

_ 1 for convex downward ellipsoid, (3.7)
r 1(o -0

s i n 0a
-/ for a cone.
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The constants K1 - K13 are defined as follows:

Ki = [ in + C 3 3 - in + -- cos

2 Cos 0~
- Cs _r~ in +o4 + NO0cos2.-20

34 rrl in •+cos) + C44 2

2.
K2 = C 3 3 cos 2

K3cos = sin + riCo + C
33 rl r-I 3 4  r

K4 =C Cos
12 r

1K5 = C2.2
22 2

r

2

2 1
K6 = C 1 1 cos 0 + C 3 3 r2 (Cos- r 1sin

r1

2 sin 0 cos - 1 2os 2 sin

+ C4 rr -sin + C 0 N. sin 234 rr1  (C r )44 r

2
K7 = C 3 3 sin 2

Sl sin sin2 COS

K8 _=_ n os -- sin + C33 rr r

sin
12 r
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K I0 = -GII sin 0 cos 0 - C3 3  r E os 0 rl I s + r 00

osin cos 2 Co r i_ C34sn rlO in 0 + -rl Co. + C4 osr--- r1 i
34 rr I ( r 1  0)+ 3 4  rro1 (C r 51 )

sin+ N sn •c3
+ C sinlCO os +-rN40 sin 0cos 044 2

I lsin 0 cos 0KII = -C3 -I in 0 + --ICos sin 0 + C3
r1

K12= 3 o sin cos =rl +C 3 4 C cor s33 r1C r 1  r 1 34 r

K 13 = C33 sin 0 cos 0 (3.8)

3. 2 SHELL MASS MATRIX

The shell mass matrix associated with the generalized coordinates

ak' P, is derived by operating on the expression for the kinetic energy T.

For each shell component, the mass matrix is defined by

3.7



2 2
8aT 8aT

C• 1 •a ac 1 a-U

I (Zero)

82 T
___T 8T I

aa~i--cl18 a u•a a-u-

((U+V) x(U+V))

a2T a2T
I ___I 8 T383

(Zero)

a 2 2

(3.9)

After substitution of Equations (3. 1) into the kinetic energy expres-

sion in Equation (3. 9), the mass matrix assumes the form 3

['-a] = 2"aftr uT + {v). (V}T) ds (3.10)

where -ya is the shell mass density.

The detailed equations for the calculation of the stiffness and mass

matrices of the shell components are presented in Appendix D. The

equations are written in matrix notation to accommodate the Gaussian

weighted matrix 5 integration scheme.
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x

IV

Sds = rl1d j

d;

vw r

Figure 4. Displacements of Shell of Revolution

x

LONGITUDINAL
UPPER EDGE OF ,- VEHICLE AXIS

SHELL COMPONENT
- 2

ds

qbo 
L

I r2

LOWER EDGE OF
SHELL COMPONENT R2 No

(TRANSVERSE CROSS-SECTION THROUGH LONGITUDINAL AXIS)

Figure 5. Conical Shell Component
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LONGITUDINAL
VEHICLE AXIS

x S ds

tt 2

OUTER EDGE OF 1... t

SHELL COMPONENT 6

(TRANSVERSE CROSS-SECTION THROUGH LONGITUDINAL AXIS)

Figure 6. Ellipsoidal Bulkhead Component
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4. FLUID COMPONENT MASS MATRIX

In addition to the mass and stiffness matrices for the shell compo-

nents, the inertial effects due to the presence of liquid propellants in the

vehicle fuel tanks must be considered. The linear analytical model does

not include, however, the effective fluid stiffness caused by changes in

the fluid head during shell distortions as this is a higher order nonlinear

effect.

The general fluid component b is enclosed by three shell components,

consisting of conical and ellipsoidal shells of revolution. The specific tank

configurations which are included in the present model have been illustrated

in Figure 3. For a typical fluid component, as shown in Figure 7, the tank

is divided into three shells in which the upper bulkhead is referred to as

shell al, the tank wall as shell a2, and the lower bulkhead as shell a3.

The fluid motions are a function of the generalized displacements

for shell components, al, aZ and a3. For the uk(ý) or vf(g) of each shell

element defined by Equation (3. 2), there is an associated fluid motion
AA A-+-

AUm(x) and vm(x, r), where l_=m-- W and W = (U + V)al + (U + V)a 2 +

(U + V)a3. am(x) is the fluid displacement parallel to the x-axis (longitudi-

nal axis of the vehicle) associated with the tank shell generalized displace-
A A

ment m. v m(x, r) is the fluid displacement parallel to the r-axis (radial
axis of the vehicle) associated with the tank shell generalized displace-

ment m.

The general form of the fluid mass matrix consistent with the fluid
3

displacement may be expressed as

fH frA

(4. 1)

where

ui(x)) *• , {O(x, r) - (4.2

uW(xJ vL W(x, r)

4is the fluid mass density and matrix [abIis of order W.

4. 1



A A
The fluid motion Um (x) is assumed independent of location r and is

obtained by treating the fluid as incompressible and inviscid. From these

assumptions, Um(x) is equal to the change in volume below a given loca-

tion x divided by the corresponding tank cross sectional area. Thus (see

Figure 7),

-.2 f r~cot( )dx (4.3)
r 

b+ OT,

where

u and (v{t)b 01

UU() °0-a

01

0- V ;V

U u () UZ (4.4)

01 vI(g)

0 2 VV2W

001

uu (•) °0-

01 Vl(•)

° 3 ( xl) V 3() (Wxl)
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Fluid sloshing motions which disturb the planar character of the

assumed longitudinal motion are beyond the scope of this treatment, but

may be superimposed as generalized sloshing modes independent of the

shell distortions. Consistent with the assumed longitudinal fluid motion

Uk(x) and the axisymmetric nature of the linear model, the radial fluid
A A A

motion Vk(X, r) varies linearly with space coordinate r. At a particular

longitudinal location x, the radial fluid motion is a function of the radial

motion of the adjacent tank shell boundary and of the longitudinal fluid

motion. Thus
A

(x i) = (cot 0 (u(P)b + (v()b - cot 0 (x)) (4.5)

Upon substituting Equations (4.3) and (4.5) into (4. 1) and integrating

with respect to r, one obtains

_b =WYb f( 4 (x) A ~(x +1 (x r){(r (x )))d

(4.6)

where

N3

and

{(x, r)} = r cot 'p (Tu-O) + r-v()b - r cot ' {Unex) (4.7)

The detailed expressions developed for evaluating Equation (4.6) for

various cases are summarized in Appendix C.
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Figure 7. Definition of Fluid Motions
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5. LAUNCH VEHICLE COORDINATE SYSTEMS

5.1 LOCAL COORDINATE DISTORTIONS

The matrices for the shell and fluid components are derived in Sec-

tions 3 and 4, respectively, using a system of generalized coordinate dis-

placements (local coordinates), as given by Equations (3. 1) and (3.2) to

describe the shell distortion. These equations may be written in matrix

notation in the following form:
Tu)- aJ [A](O • [A] (ak) (5.1)

and = IT

adV(0) = [Pjj [B]{) ~ [B]J(iJ) (5.2)

where

S(5.3)

U and V are constants provided as input which define the number of local

coordinates selected for representing shell distortions in the longitudinal

and radial directions, respectively, for a particular component.

5.2 SYSTEM COORDINATE POINT DISPLACEMENTS

In order to work with reference to a space frame, however, it is

necessary to transform the generalized coordinates to space coordinates

designated as system coordinates. The system coordinates represent dis-

placement and rotations at specific points on each shell component, con-

nections of spring-mass components, and applications of force inputs at

arbitrary stations along the vehicle.

For each shell component, system coordinates are provided to repre-

sent displacements in the longitudinal and radial directions at equally spaced

intervals along the shell meridian, and tangential rotations at the edges of

the shell (see Figures 8, 9 and 10). Longitudinal displacements (u(gi))
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at locations •i (U- i)/(U- 1), where i = 1, 2, ... , U are expressed [using

Equation (5. 1)] as

where

11 . .. (ýJ)I°

[U]= (5.5)

1U ýU... y 0

Longitudinal displacements (v() at locations •j = (V - j)/(V - 1),

where j = 2, .... V, are similarly expressed (using Equation (5.2) as

(v(y.)(X) EV []B] T (7) (5.6)

where -
11 10

[v]= (5.7)
1 10

1IV ýV " " (ýV )I 0

The scalar quantities U and V are constants provided as input which

define the number of system coordinate point displacements to be provided

in the longitudinal and radial directions, respectively, for a given shell

component. These are related to U and V, as discussed in Section 5.3.

The shell rotations, pl and pý, are evaluated at t = 1 and 0, respectively,

and by Equation (A. 17) can be shown to have the following form:
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where
0 1 . . . 9 10

[1 0 . . .: 0 ](2x l)

and

1 0 0xl) (5.9)

D cos o sin 00 for conical frustumsDI- L

(rs) 0 0 for convex upward ellipsoidal bulkheads, and

Cos 0 0 for convex downward ellipsoidal bulkheads

N 0o0O- 77r

. 2
s in •

D = L for conical frustums,

sin €o
sin 0 0for convex upward elipsoidal bulkheads, and(ro T-0

0

sin o

(r) (00 - for convex downward ellipsoidal bulkheads.

0

where (rl) is rI evaluated at =o

The total vector of system coordinates displacements for shell 'com-

ponent "a" is defined from Equations (5.4), 5.6) and 5.8) as

5. 3



vl(t) (5.10)(a(u+V)xl1

p2

As indicated in Figures 8, 9 and 10, each displacement and rotation

coordinate is identified by a number C where 1 = C = NC and NC is defined

as the total number of system coordinates used in the vehicle model. The

identification numbers C may be arbitrarily specified on the vehicle inde-

pendent of location and, hence, must be identified with the vector ( -aa)

components in the input data. For this purpose, a vector (Ca) is provided

for each shell component a with the identification numbers illustrated in

Figures 8, 9 and 10 arranged consistent with Equations (5.4), (5.6) and

(5. 10). Thus, in general,

".C1

c U

SU+ (5.11)

CU+v

C l

CP2

For ellipsoidal bulkhead components, vector elements CU+V and

C PZ are omitted.

5.3 LOCAL TO SYSTEM COORDINATE TRANSFORMATION
FOR SHELL COMPONENT

The local coordinate displacements for shell component "a" are re-

lated to the system coordinate displacements by the transformation [Ta]

as follows:

Consolidating the arrangement of local coordinate displacements, as

defined in Equations (5. 1), (5.2) and (5. 3), let
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) = (5.12)

Consistent with the system coordinate displacement vector (aca) given by

Equations (5.4), (5.6) and (5.8), the transformation matrix (Ta] which

relates local to system coordinates, is defined by the equation

(~a}a [T]{ a) (5. 13)

where, in general,

i 0

[Ta] 0 LA - --- (5.14)

[D j ID?1 0 [B]T

Thus

a a) = [T](a] ) (5.15)

It is apparent that computation of the matrix [Ta] requires inversion

of the matrix [Ta]-l which must therefore be nonsingular, square, and

of order (U + V). This may require modification of the general Equation

(5. 14), as discussed below. Special attention must be given the scalar

quantities U, V, U, V and the matrices [A], [B], [DI], [D,]to satisfy the

above conditions consistent with the shell component boundary conditions.

For ellipsoidal bulkheads, the [A] and [B] matrices are selected so

that the displacement v(O) and the rotation pZ are equal to zero to satisfy

the conditions imposed by axial symmetry. This implies that for ellip-

soidal bulkheads U = U, V = V, which requires that the last row of [V],

[DI] and [D.] in Equation (5.14) be removed. For a conical bulkhead, [B]

is selected so that v(O) is zero. This case requires that the last row of

[V be removed, and U + 1 = U, V = V. For cylindrical shells, U = U,

V = V - 2. For other cases, U + V + 2 = U + V is a necessary condition.

The following example matrices fulfill the above requirements.
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For nonbulkhead components:

1 0 0 0 0 0 0 0 0 0 0

1 1 ) = 0 100 1 0 0 . ... . . . .

0 0 1 0 ..... . ....

0 0 0 1 . .• 0

(Illustrated for U = 4)

1 0 0 . . . . . . . 0

0 1 0 0 . .. . . . .

0B 0 0 1 0 0 . .. . .
[B(VXll1) = ........... (5. 17)

0 0 0 0 1 0 . . . . .

0 0 0 0 0 1 0 . . . .

(Illustrated for V = 6)

For ellipsoidal bulkhead components:

1 0 0 ......... .. 0

[AJ(Ux11) 0 0 1 0 ........ . 0.(5.18)
00 0 0 1 . .0

0 0 0 0 1 . . . . . 0

(Illustrated for U = 4)

0 1 0 0 . . . . . . 0

[B] 0 0 1 0 .. .......... (5.19)

0 0 0 1 0 . . ......

0 0 0 0 1 . . . . . 0

(Illustrated for V 4)
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For the simple unit diagonal LA] and [B] matrices illustrated, the

matrix [Ta]- may be poorly conditioned and difficult to invert accurately

if U and/or V are equal to or greater than six (6). For these cases it is

recommended that Shifted Chebyshev Polynomial Coefficients 10 (see

Table 1) be used for the [A] and[B] matrices to improve the accuracy of

the matrix [Ta] calculation. Using Table 1, Equations (5.16), (5.17),

(5. 18) and (5. 19) become, respectively,

For nonbulkhead components:

1 0 0 0 0 0 0 0 0 0 0

A] 1 (5.20)
1-8 8 0

-1 18-48 32 .O.......... 0

(Illustrated for U = 4)

"1 0 0 • • • 0

-1 2 0 0 . .

1 -8 8 0 0 •

(Vxl I) -1 18 -48 32 0 0.•

1 -32 160 -256 128 0

-1 50 -400 1120 -1280 512 0 •

(Illustrated for V = 6)

For ellipsoidal bulkhead components:

1 0 0 ......... . 0

1 0 8 0.... . . .. 0

(Ux) = -1 0 -48 32 0 .

1 0 160 -256 128 . . . . . 0

(Illustrated for U = 4)
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0 2 0 0 . .0

0 -8 8 0 . .. . .

(x) 0 18 -48 32 0 ... ..

0 -32 160 -256 128 .. . 0

(Illustrated for V = 4)

5.4 LOCAL TO SYSTEM COORDINATE TRANSFORMATION
FOR FLUID COMPONENT

As illustrated in Figure 7, and discussed in Section 4, the distor-

tion of each fluid component "b" is a function of the distortion of the three

enclosing shell components al, a2 and a3. The local to system coordinate

transformation matrix [Tb] for the fluid component is thus obtained as a

combination of the shell component transformations [Ta] for a = al, a2 and

a3, as follows:

Consolidating the arrangement of local coordinate displacements,

as defined by Equations (4.4) and (5. 12), let

a b3 a (a2} (5.24)

(L a33)

Consistent with Equation (5. 10), let the consolidated vector of system

coordinate displacements be

a al)

(CLb3 (aaZ) (5.25)

58a33
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Corresponding to Equations (5.15), (5. 24) and (5. 25), the transformation

matrix [Tb] is defined by

a b)= [Tb] (~b} (5.26)

where

[Tl] 0 0

[T b]= [T] _j T 2Ij -0- (5.27)

o 0 : [T 3
0 (WV 0)

From Equations (5. 10) and (5. 25), it is noted that the coordinate identifica-

tion vector for fluid component b is obtained as a combination of the shell

coordinate identification vectors (Ca)' defined in Equation (5. 11), for

a = al, a2 and a3, as follows:

(Cal)

(C b)= (C 2 ) (5.28)

(. a3)
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6. LAUNCH VEHICLE STIFFNESS AND
MASS MATRIX SYNTHESIS

In order to construct the total vehicle stiffness and mass matrices

referenced to a common coordinate system, the individual component

stiffness and mass matrices are expressed in terms of the system coor-

dinates developed in Section 5. 2. For each shell and fluid component e,

the matrices, transformed4 to system coordinates, become

[Ke] = [Te]T[Ke] [Te]

and (6. 1)

[Me] = [Te] T [Me] [Te]

where [Te] is the transformation matrix defined in Equation (5. 13) for

shell components and in Equation (5. 26) for fluid components. ['te] and

[Me are the stiffness and mass matrices related to the local coordinate

system. The stiffness and mass matrices for the spring mass components

do not undergo the transformation Equation (6. 1), since they already

exist as input data in terms of the system coordinate displacements.

The total system stiffness and mass matrices are synthesized by

expanding each of the component matrices Equation (6. 1) into an enlarged

matrix which is of the same order as the total system matrix and which

is related to the set of system coordinates for the total vehicle, as shown

in Figure 11. This is accomplished by superimposing each of the com-

ponent matrices after an additional transformation, as described below.

As indicated in Figures 8, 9, 10 and 11 and discussed in Section 5. 2,

each system displacement and rotation coordinate is defined by an identi-

fication number C(C = 1, 2, .. . , N c) arbitrarily specified to suit the

convenience of the analyst. It is desirable, however, to reserve the

identification numbers (N ), (N - I), ... , (N - N + 1) for the N

system coordinates to be used for rigid supports to preserve a one-to-one

correspondence in the digital program output between the identification

numbers and the coordinate row-column location in the total system matrices.
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The arrangement of the coordinates in the total system displacement

vector (CL) of order N is made to coincide with the coordinate identi-

fication numbers C. Thus, the transformation matrix [A] relating

the total system displacements (CL) to the component e system displace-

ments (ýCe) is defined as

(Ce) = [A] (a). (6.2)

The elements 6 rs of [A el are determined to be zero or unity from

the relations

6 = I when s Crs r

(6. 3)
= 0 when s / C

r

where Cr is the r-th element of the coordinate identification vector ( C)

for component e [see Equations (5.11) and 5. 28)].

The total stiffness and mass matrices are obtained using transfor-

mation matrices [Ae] in the following summation equations

N S NM

IK] (Nc xN) a= Nl C]] j ][J N [lT ~K[ j (64

and

NS NF

[M] (N xN) Z [A aIT [Ma]l[Aal + Z [ AbT [Mbl [Ab]

N M

+ Z- [Ac]IT [M1]FA1]
c=1 cJc (6.5)

in which N., NS, NF and NM are the total number of system coordinates,

shell components, fluid components and spring-mass components, re-

spectively. The matrices [KJ , [M a] and [Mb] are, respectively, the

stiffness and mass matrices for the shell components and the mass matrix

for the fluid components, as defined by Equation (6. 1).
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The superposition technique assures displacement compatibility

and force equilibrium at the joints between components. Displacement

boundary conditions are imposed on the total stiffness and mass matrix

by removing appropriate rows and columns of coefficients corresponding

to points on the vehicle and its support which are rigidly restrained from

motion. Due to storage limitations in the digital program, the order of

the resulting total stiffness and mass matrix must not exceed 80.

Additional limitations are placed on the size of the component

matrices utilized in Equations (6.4) and (6.5). The shell component

stiffness and mass matrices, [K] and [Mla must have an order no

larger than 22. For the fluid mass matrix, [Mb], the order must not

exceed 35, and for the spring-mass component stiffness and mass

matrices, [Kc] and [Mr], the order must not exceed 10.
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7. DYNAMIC RESPONSE EQUATIONS

7. 1 NATURAL FREQUENCY EQUATIONS

The total stiffness and mass matrices which are derived in

Section 6 are used for computation of the natural frequencies and mode

shapes from the eigenvalue equation

[K] (c -P Im [M(a3 = 0 (7.1)

in which p is the circular frequency of the launch vehicle and (a) is the

modal vector whose elements are the longitudinal, radial and rotational

system coordinate displacements defined in Section 5 and illustration in

Figure 11. This equation is solved to obtain the natural frequencies Pt

and the mode shapes for all modes, t, which are arranged in a square

modal matrix (a)3 of order N c - N 0. Each column, (a~t}, of [a.], is the

mode t displacement vector with system coordinate elements, whereas

each row, LasJ' of [a]I is the system coordinate s displacement vector

with natural mode elements.

7.2 STEADY-STATE RESPONSE EQUATIONS

The steady-state response due to simple harmonic loads of fre-

quency w0 is determined using a standard modal technique. The elements

of the load vector (P3 of order (Nc - No) represent axisymmetric forces

(longitudinal and radial) or moments, depending on whether the associated

coordinate is a displacement or a rotation. The displacement response

(R3 at coordinates s(•s 1, 2, ... , (N - No) on the launch vehicle is

expressed as the linear superposition of the individual modal responses

based on an assumed modal damping factor ýk which is the ratio of the

actual damping to the critical damping for each mode and has the form4

where (R3 = sin (Wt -

Q ft gin~t• 6a tQ 2~ 6

( ( {.(ptt + mt(p 'zt}

7.1



()=tan 1  Q tCos 6 t(7.3)

( 

L 
t sin 

6

c m t (pt2zt)]

t ("t)T M (Pi)

Pot (= -t + T ( t½<)

p2zt[p2_w)2+42 12W212 (7.4)

and

6t = tan 1 2 _ 1

In these equations, 6t = Tr whenpt = 0, and 6t = 0 when Pt 0 , = 0.

(T) and (M) represent, respectively, the vectors of steady-state dis-

placement amplitude and the phase angle by which the forcing function

leads (+) or lags (-) the response. The velocity (k) and acceleration

{ R} responses are obtained from the relations

(I• =¢0 R"sin (0t - (Tr + )

(7.5)
(ft} 2 (Ti sin (wt-

The internal forces (or moments) (Sa) acting at each point along

the vehicle on each shell component a are obtained from the equation

(S a) ) (gsin (wt- 6)) (7.6)
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where

( U2 ( ([K [ (K sin =)) + ([Ka] [Aal (CR os g}))

S { t nl sin T)(7.7)

(S) and (6) represent, respectively, the amplitude and phase angle of

the internal forces. IK i is row s (s=1, 2, ' , (U +V)a) of the shell

element stiffness matrix [Ka]. {(aR) (a ) are obtained from

Equation (7.3).
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8. DIGITAL PROGRAM ARRANGEMENT

The analytic model developed in the previous sections is used as

the basis for a digital computer program to determine the vibration

characteristics and steady-state response of a launch vehicle subjected

to axisymmetric sinusoidal loads. The program is written in Fortran IV

language for use on an IBM 7094 computer having 32K magnetic core

storage locations. The functional operations and the overall program

arrangement are illustrated in Figure 12. Each of the operations en-

closed by a block represents an independent link in the computer program.

This feature facilitates thetask of making future modifications or expan-

sions of the program.

The input data necessary to inititate the program sequence is dis-

cussed in detail in Section 9. After the data has been processed, the

program proceeds to develop the stiffness and mass matrices for each

of the shell components. The functional operations required to perform

these computations and the form of the equations used in the digital pro-

gram are provided in Appendix D. Consistent with the matrix formulation

of the basic equations, the numerical integration is performed using a

sixteen point Gaussian5 weighted matrix integration scheme.

In a similar fashion, the fluid mass matrix for each fluid compo-

nent is constructed. The functional flow diagram and the basic equations

required to describe the three fluid tank configurations considered in the

present analytical model are presented in detail in Appendix E. Unlike

the formulation for the shell stiffness and mass matrices, the equations

for the fluid mass matrix involve a double integration. For this compu-
.6

tation, a double Lagrangian weighted matrix integration scheme was

found most suitable. This technique employs two 11-point Lagrangian

weighting matrices in sequence to provide a 22 point approximation.

The component matrix construction is concluded with the setting up

of the stiffness and mass matrices, provided as input data, of the spring-

mass components.
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The shell, fluid and spring-mass component stiffness and mass

matrices are then synthesized into a total vehicle system stiffness and

mass matrix, according to the steps presented in Section 6. Utilizing

these matrices, the natural frequency equation, Equation (7. 1), is for-

mulated and subsequently solved using a standard digital eigenvalue

routine which solves matrices up to order 80.

The program user now has the option of 1) continue the analysis

and move directly to the computation of the steady-state response, or

2) to temporarily stop the solution after the free vibrations stage for

the purpose of examining the output before proceeding with the compu-

tation of the steady-state response. This option enables the user to

examine the results of the computation for the natural frequencies and

mode shapes before determining the input for the modal damping and

for the frequencies at which the launch vehicle is forced.

Checks on the accuracy and consistency of the various computations

are performed throughout the program. The shell component stiffness

matrices are subjected to longitudinal rigid body displacements to estab-

lish automatically that equilibrium is satisfied. For each shell compo-

nent, the "equilibrium check" appears as output in the following form

Equilibrium _ Z Longitudinal Rigid Body Displacement Forces
Check U (8.1)

i= 1

where k.. are the diagonal components of the shell component stiffness

matrix [Ka] associated with the system coordinates and U is defined

in Section 5. 2 as the total number of longitudinal system coordinates

associated with component a. If equilibrium is satisfied, Equation (8. 1)

will be equal to zero.

In a similar manner, the mass matrices for the shell and fluid

components are subjected to unit accelerations to verify that the rigid

body mass characteristics have been accurately represented. The

"mass check" also appears as output and has the form

M.
Mass Check = M input (8.2)

computed
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where M is the total mass of the element, provided as input, andinput

Mcomputed is the rigid body mass computed in the program. The ele-

ments of the mass matrix [M ] are corrected by the "mass check"

factor to provide the correct total mass representation for the structural

component e, since Mcomputed' in general, will not agree with Minput

due to the physical nature of the problem.

An additional check on the accuracy of the program is provided in

the form of a [Ta] "inverse check." In developing the [Ta] transforma-

tion, Equation (5. 15), it is necessary to take the inverse of [Ta]-l. An

indication of the conditioning of this matrix is furnished by the product

Inverse Check = [Ta] [T] - (8.3)

which appears as output. The deviation of this product from a unit diago,-

nal matrix provides an estimate of the accuracy of the computation for

LTJ - The incorporation of the three checks discussed above is a useful

aid in assuring the reliability of the digital solution.

An additional feature which is incorporated in the program is the

capability to stack cases, i. e., to solve numerous related problems in

sequence by simply stacking the data input for each of the cases. The

stacking capability can be utilized for

1) the solution of the complete problem, which may include
the steady-state response or

2) the solution of the steady-state response using natural
mode data previously stored on tape.

This feature provides for an efficient use of machine time by eliminating

the need for reloading the program deck for successive cases.
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9. DATA SETUP

9.1 VEHICLE SUBDIVISION

In order to prepare the input data, it is first necessary to subdivide

the launch vehicle into a consistent set of axisymmetric shell components

a, fluid components b, and spring-mass components c. Size limitations

of the program require that

1) The total number of shell components shall not exceed
forty (40),

2) The total number of fluid components shall not exceed
six (6),

3) The total number of spring-mass components shall not
exceed thirty (30), and

4) The order of the spring-mass stiffness and mass matrices
must not exceed ten (10).

Subsequent to the vehicle subdivision, the location of the system

coordinate displacements must be determined. The internal operations

of the digital program require that

1) Longitudinal, radial and rotational coordinate displacements
must be placed at each junction of two or more shell elements

2) Longitudinal and radial coordinate displacements are placed
at each point lying on the vehicle longitudinal axes.

These locations are defined as the terminal points of each shell

element. Additional longitudinal and radial coordinate displacements may

be placed, as desired, at intermediate points uniformly spaced between

the terminal points. Longitudinal, radial and rotational coordinates may

also be used to describe the motions of the spring-mass elements.

The coordinate displacements are then identified by a consecutively

numbered sequence. The arrangement of these numbers on the vehicle is

arbitrary and is left up to the discretion of the analyst. However, the

radial coordinate points lying on the vehicle axis are not to be identified

with a number. This is necessary because the program must assume these

displacements equal to zero, as is required by the axisymmetry of the ve-

hicle, and thus they do not contribute to the degrees-of-freedom of the
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system. These are defined as "unnumbered" coordinates and are utilized

only in the preparation of the data input sheets for determining the value

of U and V (see Figure 11).

In general, for a supported structure, some of the "numbered" co-

ordinates may be assumed fixed or restrained from motion. The total

number of "numbered" coordinates which are not fixed must not exceed

eighty (80). In addition, the numbering sequence should be arranged so

that the fixed coordinates are numbered last to insure consistency in the

program output identification with the coordinate identification numbers.

The total number of coordinates for a shell component may not exceed 22,

of which in general the number of longitudinal displacement coordinates may

not exceed 11, and the number of lateral displacement coordinates may not

exceed 10 (see Section 5.3). For the case of three shell components sur-

rounding a fluid component, the total number of coordinates for the com-

posite tank structure may not exceed 29.

9.2 INPUT DESCRIPTION

System Input Data

1) Heading

HHEAD is one line of BCD characters which will

be printed as the title of the printed out-

put. The number of BCD words (6 char-

acters per word) must not exceed 11.

2) Input Parameters

"NC is the total number of system coordinates

which include the fixed coordinates N .

NC - N must not exceed 80.

"NS is the total number of shell components.

NS cannot be zero and must not exceed 40.

"NF is the total number of fluid components.

N F must not exceed 6.

"NM is the total number of spring-mass com-
ponents. NM must not exceed 30.
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N0  is the total number of fixed coordinates.

NC - N0 must not exceed 80.

3) Applied Loads and Forcing Frequencies (Section 7.2)

NL is the total number of discrete applied

loads. NL must not exceed 80.

C. is the applied load coordinates CI, C 2 ,1
C3,..-*, CNL.

P. is the discrete applied loads PI' P2' P3
• ,PNL.

Nw is the number of sets of forcing function

frequencies.

f., Af., m. f is the frequency of the forcing function
1 1 1

incycles per second(w =2Trf). Thisprogram

will compute the steady-state response for the

frequencies f., f. + Afi, f. + ZAf., ...1 1 1 1

f. + (mi - 1) Af., i = 1, 2, , Nw

4) Modal Damping Factor

NET is the number of input -q. Program will

generate a complete table of ri by setting

I(NET+1)' "(NET+2)''' "(Nc-NO) equal

to 11 NET

Ilk is the ratio of the assumed damping to the

critical damping in mode k

Tj Is'12]' 113' "''INET

5) Ratio of Acceleration

g is the ratio of the vehicle acceleration to

the acceleration of gravity.
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6) Steady-State Response Option

S is a fixed point word which controls the

option of computing steady-state response.

S 0 indicates that the computation of the steady-

state response is not included. The nec-

essary data for the steady-state computa-

tion is saved on Tape I and 2.

S = 0 indicates that the computation of the steady-

state response is included.

S 0 is the option to compute the steady-state

response only. The necessary data should

be available on Tape 1 and 2. In addition

the following System Input Data must be

provided:

S = 1, Heading [Item 1)], Input Param-
eters [Item 2)], and Modal Damping
Factors [Item 4)].

S = 2, Heading [Item 1)], Input Param-
eters [Item 2)], Applied Loads and
Forcing Frequencies [Item 3)],
Modal Damping Factors [Item 4)],
and the option word opt4 .

7) Print Options

opt1  is an option word which controls the output

of stiffness matrix and mass matrix of the

shell and the fluid components.

opt, = 1, print the component matrices

opt, = 0, suppress the printing of com-
ponent matrices.

opt 2  is an option word which controls the

printing of total stiffness matrix and total

mass matrix.

opt 2 = 1, print the total stiffness and mass
matrices.
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opt 2 = 0, suppress the printing of total
stiffness and mass matrices.

opt 3  is an option word which sets the rigid

body frequency to zero for computing the

response.

opt 3 = 1, set the first frequency to zero.

opt 3 = 0, do not set the first frequency to
zero.

opt 4  is an option word which controls the com-

putation and printing of forces for the

steady-state response.

opt 4 = 1, compute and print the forces.

opt 4 = 0, do not compute and print the
forces.

NEI is the number of frequencies, mode shapes,

velocities and accelerations that will be

printed as the final output.

8) Polynomial Matrices (Section 5.3)

Np Pis the total number of polynomial matrices.

Uk is the number of rows of polynomial matrix
[A) Ukl.(k- i

V k is the number of rows of polynomial matrix

Vk[B] V k xl1 (Vk = 11)

[A] k i s U k x 11 polynomial matrix.

[B] k is Vrk x 11 polynomial matrix.

k = 1, 2, 3, " N',

The input sequence of the polynomial ma-

trices establishes the identification number

k which is referred by the shell components.
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The subscript k is used as the polynomial

matrix identification number by the shell

components.

Shell Component Input Data

1) I.D. Number

a is the identification number for shell com-

ponent a where 0 - a _f Ns

+ a indicates a conical shell component

- a indicates an elispoidal shell component

2) Coordinates

U, V are the total number of system coordinates.

U, V are the total number of local coordinates

U, V must not exceed 11.

3) Coordinate I.D. Vector (Figures 8, 9, and 10)

(ID). is the identification vector which is used

to position the elements for building total

stiffness and mass matrices. The length

of the vector must be equal to U + V and

the number must not be greater than N 0 .

4) Polynomial Matrix Identification Number

k is the polynomial matrix identification

number which refers to polynomial matri-

ces LA] k and [B] k in the system input data.

5) Shell Geometric Data (Figures 4 and 5)

is the meridional angle for conical shell

and is the edge meridional angle for ellip-

soidal shell. 4o is input in degrees.

L is the height of conical shell

+ L indicates converging upward

- L indicates converging downward

L = 0 for ellipsoidal shell input
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R 2  is the lower radius of conical shell

R2 = 0 for ellipsoidal shell input

b is the height of ellipsoidal shell

+ b indicates convex upward

- b indicates convex downward

b= 0 for conical shell input

"a is the radius of the base of ellipsoidal

shell, ' = 0 for conical shell input

6) Orthotropic Shell Constants and Thickness (Equation 3.5)

(C 1 1 ) are orthotropic shell constants at two

points g = 0, 1 which are represented by
(C 1 2p p = 1, 2, respectively.

(C 2 2 )p

(C 3 3) are orthotropic shell constants at four

points ý = 0, 1/3, 2/3, 1 which are
(34 p represented by p = 1, 2, 3, 4, respectively.

(C 4 4 )p

(t) are shell thickness at two points • = 0, 1

which are represented by p = 1, 2,

respectively.

7) Mass Density and Total Mass

Ya is the mass density of the shell component.

M is the total mass of the shell component.a

M =/= 0, the ratio of the total mass M to
a a

the computed mass M will be used as thea

scaling factor for the mass matrix. When

opt, = 1, the scaling factor will be printed

as the mass check of the mass matrix.

M = 0, no scaling factor will be used fora

the mass matrix. When opt 1 = 1, the

computed mass will be printed.
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8) Initial Stress Data (Figures (B. 1), (B. 2) and )B. 3))

H. is the depth of interior fluid.

w. is the weight density of interior fluid.

p. is the uniform interior pressure.

H is the depth of exterior fluid.e

w is the weight density of exterior fluid.e

Pe is the uniform exterior pressure

W is the reactive force at upper edge of

conical shell.

+ W produces tensile stresses.

- W produces compressive stresses.

W = 0 for ellipsoidal shells.

Fluid Component Input Data

1) I.D. Number

b is the identification number for fluid

component b where 0 -b _ NF,

2) Associated Shell Components (Figure 7)

a,, a., and are the identification numbers of the

a 3  associated shell components

3) Fluid Data (Figure C. 1)

H is the depth of fluid component.

Y is the mass density of fluid component.

M is the mass of fluid component. M 4=- 0,

the ratio of the total mass M to the com-

puted mass M will be used as the scaling

factor for the mass matrix. When opt, = 1,

the scaling factor will be printed as the

mass check of the mass matrix.

9.8



M = 0, no scaling factor will be used for

the mass matrix. When optI = 1, the

computed mass will be printed.

Spring-Mass Component Input Data

1) I.D. Number

c is the identification number of spring-

mass component c where 0 - c - NM.

2) Stiffness and Mass Matrices

n is the order of the spring-mass component

n must not exceed 10.

[K] is n x n stiffness matrix of spring-mass

component.

[H is n x n mass matrix of spring-mass

component.

3) Coordinate I.D. Vector

IDC is the identification vector which is used

to position the elements for building the

total stiffness and mass matrices. The

length of the vector must be equal to n

and the number must not be greater than

NC.

9.3 SAMPLE INPUT DATA SHEETS

Sample input data sheets are included to illustrate the input format.

The data must be arranged in the order shown, that is,

1) System input data

2) Shell component input data

3) Fluid component input data

4) Spring-mass component input data
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THE SYSTEM INPUT DATA

SPACE TECHNOLOGY LABORATORIES, INC.
DATE ......... ......... COMPUTATION AND DATA REDUCTION CENTER PAQE - OF

NAME PRIORITY

PROBLEM NO. KEYPUNCHED BY

NO, OF CARDS VERIFIED By•

1 73

"1 2 7 17'

3738 4] ,

L5 56 ,61 71 7

SYMBOL LOC. VALUE EXP

INS

N T. NL ...

ILDCRD

p -AIOAD

I NW

7iJ~i

ZOMEGA

iii
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SPACE TECHNOLOGY LABORATORIES, INC.

DATE . _COMPUTATION AND DATA REDUCTION CENTER PAGE-OF

NAME _"__ _ _ _PRIORITY

PROBLEM NO. KEYPUNCHED UY

NO. OF CARDS VERIFIED BY

"" 27 737

2 7 17il 19 20 25 35I 37 38 43 1

SYMBOL LOC. VALUE EXP.

2 G~
opt

J ?

o Ij I UDAR

____WI VIM

.____.____,_

, -[.], iL,. \•LY 11,1 .

DT 3P.1 1
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SPACE TECHNOLOGY LABORATORIES, INC.
DATE __COMPUTATION AND DATA REDUCTION CENTER PAGE -OF

MAUI PRIORITY

PROBLEM NO. KEYPUNCHED BY

NO. Of CARDS VERIFIED mY

73

clf)

"1 2 717
10 202
____ 6_ at 71 2

SYMBOL R, LOC. VALUE EXP.

k=i,2,3 3 ,

L
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THE SHELL COMPONENT INPUT DATA

SPACE TECHNOLOGY LABORATORIES, INC.
DATE COMPUTATION AND DATA REDUCTION CENTER PAGE 0F

NAME 
PRIORITY

PROBLEM NO._ --___--_____- KEYPUNCHED BY

NO. OF CARDS __ _ V VERIFIED BY

7 73

I9S 202 275 35

37 38 43 83 7
SYMBOL RE LOC. VALUE EXP.

a INA

I IV

(ID Ii i __ _ __ _ __

(ID). "I IDVT

-k I INK _____

Poj PHIN
L XL" • 2 R 2 1 N , , ; ,

BBAR 1

0aii

C12)1 C121 __

0"22 1 C221

7J H __(cop)p p 31I
1 C331

-7 - c34.1
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SPACE TECHNOLOGY LABORATORIES, INC.

DATE COMPUTATION AND DATA REDUCTION CENTER PAGZ - OF '

NAME PRIORITY

PROBLEM No. KEYPUNCNFD mY__________

NO. OF CARDS .. 7 VERIFIED BY

j ,9 20 25s ,3
35 433

55 5fil 71 73

SYMBOL IF LOC. VALUE EXP.

____ I FT1
_____ DESTA

I'l 
1010!•

W, DFSTF

__ ~t1__ _ _,T I __ ________

9.1

-a • DI•STA' "_____ .. ..__

_ _ _ I ........__ __ .____ __

* i i j _ _I • .. . ..

- I i.D•T

.- __ -- L -E T' .__ _ - _ _._

Pc [ I PR9.



THE FLUID COMPONENT INPUT DATA

IV-11

SPACE TICHINOLOGY LAI(JRATOHIES, INC.
DATE COmPUTATION AND DATA REDUCTION CENTER PAGE -Of -

NAME PRIORITY

PROBLEM NO. KEYPUNCHED BY

NO. OF CARDS _,_VERIFIED 
By

3 6 8 43 5|
55 56 al 71 73

SYMBOL 'RE LOC. VALUE EXP.

b I I •

_ K _

al i] _ _ _ __D_ _ _ _ _ _

a -I -- I.DA?9

r i• DESTFI

m Im

E ND

drw<

t9 1



THE SPRING-MASS COMPONENT INPUT DATA

TIlE SPRING-MASS COMPONENT INPUP DATA IV-12
SPACE TECHNOLOGY LABORATORIES, INC.

DATE COMPUTATION AND DATA REDUCTION CENTER PAGE -OF

NAME RPIORITY

PROBLEM NO. KEYPUNCHED BY

NO. OF CARDS VERIFIED BY

7 73

2 7 17
19 20 25 55
37 38 43 $ --
55 8s 1 7___ _

SYMBOL RE LOC. VALUE EXP.

c I INC
n I IN

[K3 M CK 10, 10
01, oj

[M~ __ -Qc _ __z

;m cm C O , 10

IDC t _ _ _

ND-
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10. NOTATION

L J (ixj) Row matrix of order j

S(ix) Column matrix of order i

[C] Rectangular matrix with i rows and j(ixj) columns

a, b, c Identification number for the shell, fluid and
spring-mass components respectively

a, b Semimajor and semiminor axes, respectively,
of an ellipsoidal bulkhead

a, SB Edge radius and height, respectively, of an
ellipsoidal bulkhead

al, a2, a3 Identification numbers for the shell components
which enclose a fluid component

[A](Uxl i) = [_akn] Polynomial matrix associated with Uk(ý)

[B] (Vxl 1) [b]n] Polynomial matrix associated with v• ,)

(C),e Coordinate identification vector for
component e

Cr rth component of (Ce)

Cl 1  C?(o, C 1 22(•) Orthotropic stress-strain coefficients

C 3 3 (g), C 34 (g), C44(ý) Orthotropic moment- curvature coefficients

ds Differential meridional distance along shell

( ) d) Derivative with respect to meridional
distance s

D 1 , D2  Constants used to determine the rotation
vector {p)

LD]x , [D2] Matrices used in the definition of the
(1rotation vector p
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e General identification number for vehicle com-
ponents which may stand for a or b

g Ratio of vehicle acceleration to acceleration
of gravity

H Total fluid level measured positive upward
from the base of a2

His H2 ) H3 Fluid levels associated with tank shell
sections al, a2, a3

[K] (NcXN Total launch vehicle stiffness matrix

[Ka] Stiffness matrix for shell component a
((U+V)x(U+V)) associated with the system coordinates

[Kaa] Stiffness matrix for shell component a
((U+)x(U±)) associated with the local coordinates

[Kc] Stiffness matrix of spring-mass component c
associated with the system coordinates

Iýs] Rows (s= 1, 2,. (U +V))of[K a]

K* Shell meridional curvature

* 0 Shell hoop curvature

L Length of conical shell

m t Generalized mass for mode t

[M] Total mass matrix for the launch vehicle

[Ma] Mass matrix for shell component a
"- associated with the system coordinates

[Maj Mass matrix for shell component a
associated with the local coordinates

[Mb] Mass matrix for fluid component b
associated with the system coordinates
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[Ab] Mass matrix for fluid component b
associated with the local coordinates

[Mc] Mass matrix for spring-mass component c
associated with the system coordinates

NC Total number of system coordinates used in
the vehicle model

NF Total number of fluid components used in
the vehicle model

NM Total number of spring-mass components
used in the vehicle model

N Total number of fixed coordinates

NS Total number of shell components used in
the vehicle model

No 0 Initial meridional stress

p Circular frequency of the vehicle

Pt Circular frequency of the vehicle for mode t

{P) ((Nc-No)xl) Applied load vector

Qt Generalized force acting on mode t

r Radial distance from the vehicle longitudinal
axis to each point on the shell

Ar Radial distance from the vehicle longitudinal
axis to each point in the fluid

rI Meridional radius of curvature of the shell

r2 Hoop radius of curvature of the shell

(R)(N xl) Displacement response vector

(R) Displacement response amplitude vector
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{sa (+V)xl Vector of internal forces or moments acting
at each point of shell component a

() Amplitude vector of internal forces (S a)

t Identification number for a particular mode
of vibration

t Time

[Ta] ((U+V)x(U+V)) Transformation matrix which relates local

to system coordinates in shell component a

rTbl Transformation matrix which relates local
J(WxW) to system coordinates in fluid component b

(U) ((j+Vr)xl)' (}V)((U+V)xl) Longitudinal and radial displacement vectors,
respectively, for shell components

Uk(g), v(g) Generalized longitudinal and radial displace-

ments, respectively, for shell components

{A Vx} 1W) ={ (x))
u --

and Longitudinal and radial fluid displacements,

A r))A ( l)= {Vm(x, A > respectively

U, V Total number of longitudinal and radial
system coordinates, respectively, associated
with each shell component

U, V Total number of longitudinal and radial local
coordinates, respectively, associated with
each shell component

[U](U131 ) [v]Vxll) Constant matrices used in the definition of
the system coordinates

w., we Fluid weight densities interior and exterior,
i e respectively, to each shell component

wis w e Effective fluid weight densities equal to,
respectively, gwi and gwe

W The sum of U + V for the three shells
surrounding a fluid component
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x Longitudinal axis of the launch vehicle

z t Structural impedance for mode t

(a a)i Modal vector whose components are the

a (U+ )x1 longitudinal, radial and rotational system

coordinate displacements for shell com-
ponent a

'a)U l Consolidated vector of local coordinates
aj((:F+7i)x 1)

(ak]} , 3(Generalized coordinates in the longitudinal
(Uxl) ( ( (Vxl) and radial directions, respectively

[a] (NcNo)x(Nc _No) Modal matrix with each column representing

a vehicle mode shape

L a cEach row of [a] which is a system coordinate
IN (Ix(Ny_0) "S" displacement vector with natural mode

elements

{a'" Each column of [a] which is a mode "t"
tj (Nc-No)xl displacement vector with system coordinate

elements

'Ya' ,b Mass densities for shell and fluid components
respectively

(6(NcNo )x Vector of steady-state displacement phase
angles

Vector of phase angles for the internal
forces of each shell component

l ((U+V = [ j Transformation matrix relating total system

UsxC) displacements to component 3 system

displacements

E02 E Meridional and hoop strains, respectively,
for the shell components

lit Ratio of actual damping to the critical damping
for each mode t

{•} Nondimensional variable describing location
on each shell component
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p Meridional rotation of the shell components

0 Meridional angle

w Frequency of the forcing function in radians
per second
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APPENDIX A

SHELL GEOMETRY AND ENERGY EXPRESSIONS

The additional potential energy of a shell of revolution due to axisym-

metric deformations is given in the form

V f ZTr(Noe +Noeo +MOK +MeKe+N00PZ) ds (A. 1)

in which the last term represents the work done by the initial meridional
o 7stress, N . The initial hoop stress does not make a similar contribution

to the potential energy since there is zero rotation in the hoop direction.

In the notation of Flugge,8 the strains (eo, e ), curvatures (K , K0)and the

meridional rotation p are expressed in terms of the displacements vandw

(see Figure A. 1) as follows:

I - -r (A. 2)

I 1Vct0+ý- (A. 3)

2

K - - P (dv (A. 4)

where rI and r 2 are the radii of curvature of the shell in the meridional

and hoop directions, respectively. Hookes law for an orthotropic shell

with the principal directions in the hoop and meridional directions takes

the form:9
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N CI1 C12 0 0 0

N 0  C 1 2  C 2 2  0 0

(A. 7)

M 0 0 C 3 3  C 3 4  K10

M 0 0 C 3 4  C4 4 - K@

The shell configurations to be considered for the bulkheads and the tank

walls are listed below with their corresponding geometric parameters

defined:

1. Conical Shell (Figure A. 2)

a) General Case

S= 00

r I = 00 (A. 8)

r 2 = (R 2 /sin o) - S cot 0o

b) Cylinder (radius = R)

1T

r 1 = oo (A. 9)

r 2 = R

2. Ellipsoid (Figure A. 3)

a) General Case (a = semimajor axis, b = semiminor axis)

a2b2

r= (a2 sin 2  + b 2 cos 2 0)3/2 (A.10)

2
a

r 2  (a2 sin 2 9 + b2 cos 2 0)1/2

A. 2



b) Hemisphere (radius = R)

r= R

(A. 11)

r 2 =R

For the present analysis, the longitudinal displacement u and the radial

displacement v will be more convenient. They are related to the dis-

placements v and 7 by the transformation

v = -u sin 0 + v cos

(A. 12)
w= u cos 0 + v sin 0

Substitution of this transformation into the strains, curvature and rotation

yields

C = I dsin +- cos (A. 13)

E v (A. 14)

K r1 d [ (du -dvsi) (A.15)
K0 -- IJ-cos 0 + sa.1

K r Cos o 11 u - sin (A. 16)

1 (du dv
p = 2 o-• cos 0 + 4 sin 0) (A. 17)

rA
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X

r =r2 SIN

ds =r d 4\

VV

zr

Figure A. 1. Meridian of Shell of Revolution

Figure A. 2. Conical Shell
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ab

Figure A. 3. Ellipsoidal Shell
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APPENDIX B

INITIAL STRESSES IN SHELL ELEMENTS

In the formulation of the shell stiffness matrix, the effect of the initial

meridional stresses is included. Expressions for these stresses are

developed below for each of the shell elements to be considered. These

derivations are based on membrane theory which is a good first order

approximation except in very localized areas where bending predominates.

Conical Element

The derivation of the initial stresses in a conical element is divided

into three steps. The notation is listed below and shown in Figure B. 1.

R2 lower radius of the conic

00 meridional angle

L length of element

w. effective density of interior fluid

h. location of interior fluid surface

we effective density of exterior fluid

h location of exterior fluid surface
e

Pi uniform internal pressure

Pe uniform external pressure

+ produces tensile stress\
reactive force at opof conic tp- produces compressive

stress

1. Stress due to uniform pressures and reactive force

N 1 RW+2p)] 0 ýr-Ix O -xL (B.l1)•Irr sin lo ekj+ (Pi - Pe) w -R
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2. Stress due to interior fluid

Case 1: h. - L

N hi pr dro 1N~=r sin ýo

h.
- 1r s fn j i (h. -x) (R2 - x cot (-dx cot o)

+r sin @o i (ixR2 0 -02

W. cot- -
+. 0 [h.(h. -x) R - 1(2-X- R2+h o 0

r sin4 ~i 22

+ - x3 cotj x-h. - L (B. 2)

Case 2: h.- L
1

L
N -1 I pr dr

'2 r sinc J 1
0 x

wicot 1 2 2
h+ r'sin°Li(L - x) R. - - x (R2 +h, cot4')

1 (L3 _ x 3 cot Ox-L (B. 3)

3. Stress due to exterior fluid

Case 1: h - L
e

N - rhe
N'3 osx prdr

cot21 (ht2 2
4' h h x) R 2  -xJ(R 2 + h cot o

r sin eo e 2(he2 eco o

+ .1 (h3i -3 cot Ox'-h -- L (B.4)

3e ]e
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Case 2: h > Le

N3 -pr dr=3 rsin~o jx

-w cot4
Srino he (L - x) R, _(L2 _ x?) (R2 + he cot o)

+ 1 3 ) cot 0 xx-cL (B. 5)
1 (L xct

0j

The total meridional initial stress on the conic will then be the sum

of the above stresses

N NI N Z +N (B. 6)

Ellipsoidal Element

The expressions for the initial stress for an ellipsoidal element are

developed separately for the upright and inverted bulkheads. The notation

for both cases is listed below and shown in Figures B. 2 and B. 3.

a radius of base

b height of element

00 slope of meridian
(Note: The semimajor and semiminor axes, a and b,
can be computed from ', b, and o"')

w. effective density of interior fluid1

h. location of surface of interior fluid
1

we effective density of exterior fluid

h location of surface of exterior fluid
e

Pe uniform internal pressure

Pe uniform external pressure
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Upright Bulkhead (Figure B. 2)

1. Stress for exterior fluid

Case 1: h 5b
e

p e re2 r r
N 2 + _Wr sin 2rrp dr

whe re

(h + b-
2  V H 2

-- e- e e

ra _\e E:=a2r ab2 a b2

P e (he -x) (B. 7)

2
x.+ (b-b) b r2

V,-a

This finally leads to

N e2 e [H e (r 2  2 a2_ H + a

N 2 r sin 2 3b2 e 3

for _ r a

N e2 for 0 r r'.- B

Case 2: h -b
e

Pr2 1 rrd
NI = - e2+2rsi 2rpd

2 27rrrsin'pJ rro

2e +e ab a)/
2 re s e2 (2) 2 b] for Of r_•a (B.9)
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2. Stress for interior fluid

p. r2lr

N -Ts 2Trrp dr (B. 10)
2 +2wrr sinc r� d-

whe re

-V (ha+b-b) - 5-

b~ br

p = w. (h. - x)

or, after integration,

pir 2  2 2 _ 2 3 +aZb ri-
N =- + i '-(r _ r)-a +H2 2 3b 3 a

for =r ra-

pir 2  (B. 11)
2 for 0_ r r

Inverted Bulkhead (Figure B. 3)

1. Stress for interior fluid

p.r2 r1 _r

N -- + i• rrp dr (B. 12)2 Zirr snf

for

(h- + b 2
b

H2

- b

or

h. 0
where

p = wi (x - hi) x_-h.
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This leads to the following expressions for the stress:

_a2b r 3/2 w2 b
N 2 r sin_ 2 r + 3

(B. 13)

3/2
2 r2~ 2 

3
PrZ i7. aLba

N P 2 7jz + _-- 3 rT a
2 r sin 3

2. Stress for lower fluid

Per2 + I irrp dr
N~2  2 2Tr sin 20

for

Sh+ bb 2  H 2  (B. 14)
r-r= a - be J -7 -

whe re

P -Te (x - he) x-- he

or, after integration

p ~ r 7;7 [H e 2b3/2 22i %

PeN e [ + a+b ( er ablfor 0 r- r
2 r s 3 - -3

(B. 15)

-p7'6 2 e [j =2 a b = r -
2 + rsin + _- -- rlr

B.6



x

RI Pe

Figure B.I1. Conic

x

Pe

\wi1e
#00

Sr

Figure B. 2. Upright Ellipsoidal Bulkhead
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a

#0 P w- r
S~he

e,1

xI

Figure B. 3. Inverted Ellipsoidal Bulkhead
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APPENDIX C

FLUID MASS MATRIX EXPRESSIONS

Detailed expressions are given below for evaluating Equation (4. 4) to

obtain the fluid component mass matrix. Three cases are involved de-

pending upon whether the upper and lower tank bulkheads are convex up-

ward or convex downward (see Section 2.0). A general description of the

program operations utilized to construct the mass matrix for the fluid

tanks is described in Appendix E. A brief flow chart followed by the

relevant equations in a form suitable for a weighting matrix integration

scheme is included to provide the user with a more basic understanding

of the digital program.

C. 1 CASE I. UPPER BULKHEAD CONVEX UPWARD,
LOWER BULKHEAD CONVEX DOWNWARD

Equation (4. 6) for the general tank shell can be expressed as the sum

of contributions to Mb from fluid in three sections of the tank, as illus-

trated in Figure C. 1 for Case I. One of these sections is that located above

the base of the upper bulkhead (shell 1). A second lies below the top of

lower bulkhead (shell 2). The third lies between the two bulkheads. In

general, the motion of the fluid in any section may be affected by the

generalized coordinate distortions associated with all three tank shell

components. Thus, Equation (4.6) is expressed as

M=3 mmm) 4) 21 [fb I - ( _2 (m)( 2 U(m)(X

TYbm =mO (m)

+ T(m)V(m) (x, r (r(M)v(M)(x, r)j) dx

(C. 1)

where m 0 1, 2 or 3, depending upon whether the fluid surface lies

within the range of tank section (1), (2) or (3), as illustrated in Figure C.l.

H(m) is the depth of fluid within tank section (m), r(m) is the radius of

shell (m) and, similarly, U(x) and V (m)(x, r) represent the fluid motions

C. 1



within tank section m. The specific form of the column matrix UC(m)(X))
in terms of the component shell generalized coordinates is

f r(l) cot S(I) (U(1)( dx

-fx r(1)(v(1)(K))dx

2 Hc. (2) cd
rr((,) c 4

fo( 3) r (3) cot U(3) (3)() dx

0

Ax

r ( 2) X = r z ( (Z ( ) (C .32)

f r(2) cot 9(2) dx

0 (V
•C2)H 3)c.3

f r(3)((3) dx

C. 2

•~ ~~~~~ ~ ~~~ (3) i iII III I



and
0

0

-f r(3) cot 0(3) (u(3)() dxj

where 

fo r( 3 )(v( 3 )( •) ) dx

ulf

and

(m)(m)

are the generalized coordinate displacement vectors for tank shell com-
ponent m, and O(m) is the meridional angle for tank shell component m,
and U and V are the number of longitudinal and radial generalized coordi-

nates, respectively, in shell component m.

AThe column matrix {r(M)V(m)(x, r)} in terms of the component shell

generalized coordinates is

r (1) cot 0(1) ( 1

~(1)v(1)(xy r r 2 cot 0(l)

(C. 5)

0
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0

rJ

(x, raseI ( 2) cot 0(2)a s (2) lscotd 0n i re,.2 (C. 6)
n ( ) (2 ) rs (m i (ie r (2) 2 a(2)(x))

0

0

0t 2 cot (3fr
(r (3)V(3) X rr r(3) cot 0( 3 )§(1( 3 )( 3 - (3) 2 (3)(Xj

4(C. 7)

C. 2 CASE II. UPPER BULKHEAD CONVEX DOWNWARD,
LOWER BULKHEAD CONVEX DOWNWARD

The Case II configuration is illustrated in Figure C. 2 which also

defines the tank sections m for this case. Equation (C. 1) for the fluid in

tank section (1) is modified as follows. The fluid motion (Ow(x) in tank

section (1) is given by

C. 4



f xr(1) cot S(l) (U)(1) dx

fo r (1)((1)(V ) dx

r (XZ) cot 0 (2)(2)(2) dx -fj r(2) cot 2(2)(2) dx

Sr r(2) cftxr()v( 2) dx f r V(z2)(2)) dd

H 32

-f r(3) cot 95(3)(u(3)(ý) dx

0

-f r(3 )v(3 )(•)J dx

(C.8)

The fluid motion (V(x, r)} in tank section (1) is defined by

cot O l

A v
V

v(A)( A? (r- r(2)) - cot

(2)) 0

0

(A cot 0 (2)(u(2)(U cot
Ir1 - co-

0 o (C.)

C. 5



Upon substitution of Equations (C. 1) and (C. 2) into Equation (4. 1) and

integration with respect to r between the limits of r(l) and r( 2 ), one

obtains the following expression for the rn = 1 portion of Equation (C. 1).

Yb f ( 1 )

T

"fH()(•) +8r (2)rl) -6r(,)2) x) Ax

0 - r (2) - 6(r(l) -I

H 4+ 3 -Zr 
4)

-,(1) r 8 r, ) r>, l, 6 r , , < . - 3<,¢ )

6 ( r ( l ) r ( 2 ) ) 2 (( VI () (x , r ý (1 , 1)(x, r ) c x

3 V
H 1 3()4- 8r(1)r(,) 3+ 6r(l) 2r (,) - r(l))4 (A~ z (~ 3 v l ) x r i

6(r(l) - r(2))?X

(C. 10)
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where

+f r(1) cot (){()( dx

+fxr(j)(v(1)(ý dx

xH(2)

2 2) r~~(2) ct() d

{~ 2 u (1)) r ct ( ) ( ) (C. 11)

fI jx+H( 2)r 2 ((2) (2) dx

~fH(r (3) cot 0~(3) ((3 )*) dx

rH( r(3 )(v( 3 )(j dx

(A ~2 cot 0(1) rA,2 rr,) A~

(I --jT 2 r(l) )))
0

- (C. 12)

0

(A( 2 ( r cot 0b(2)(U (2)+ 2 cot 0(2)Z 2) 2 r(,)(1 2 X r- -r,2)2u (1)(x~

0 (C. 13)
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The expressions for the m = 2 and m = 3 portions of Equation (C. 1)

remain unchanged. In summary for evaluating the equivalent of Equation

(C. 1) for Case II tank configuration, use Equations (C. 10), (C. 11), (C. 12)

and (C. 13) for m 1, and Equations (C. 1), (C. 3), (C. 4), (C 6) and (C. 7)

for m = 2 and r = 3.

C. 3 CASE III. UPPER BULKHEAD CONVEX UPWARD, LOWER
BULKHEAD CONVEX UPWARD

The Case III configuration is illustrated in Figure C. 3 which also

defines the tank sections m for this case. Equation (C. 1) for the fluid

in tank section (3) is modified as follows. The fluid motion (U(x)) in tank

section 
(3) is given by

U

-fToXr(2) cot 0(,)(u(2)(ý

•~(3) (X = r()2 _(3)2 - O r ()v(2() (C. 14)
2 x

ro r(3 ) cot (3 ),(u (3)C

C. 8



The-fluid motion V (x, r)} in tank section (3) is given by

0

(r(3) - r(c)) v(3) (3)• cot 0(3)( (3)

0

c t 0 (C. 15)

Upon substitution of Equations (C. 14) and (C. 15) into Equation (4. 1) and

integration with respect to P between the limits of r(3) and r(,), one

obtains the following expression for the m = 3 portion of Equation (C. 1).

C. 9



=y b (3)

H (3() 4r() 2 - r(()3))(2 r u(3 ) 2)Ax

o(x d(x3

+ r2)r() 2 2r2(3) - r() (3(~)((32)(x

0o 6(r(3) - (2)))

+ ((3 2 2 (

+f (3) (r(2) + 8r (2)r r(3 +6r(2) r (3)2 3r (3)) ( (3A(~r3\(32(I Td6 r(1 r2))2 ( 3,23)( x, r V 13,23) 1x, rT dx

0 (r (3)-r()

where 
(C. 16)

0

X(2) 3(2)u(2)( x)3 r dx

{ 2 2' joX dx
0 ( 2 u(3 ) lx 

(c . 17 )

+f2 r(3) cot ((3) ((3x 
) x

C. 10



0

cot 2c(3)t (3 )(3 2 _ r(3 ) -2 (3))4

(IV,(3,3)( r3 co 0r k r( 3 2(3

(C. 18)

0

o(3 2)x (2) (2) 2 cot 0(2) 2 - r 2 )
(x, •r(2) - r(3)

(V 32 v2 r 2 2(3

0 (C. 19)

C. 11



Equation (C. 1) remains valid for m = 1 and m = 2, however, Equations (C.2)

and (C. 3), respectively, become

jSoXr(1) cv(1)( ( dx

o
f (2) cot ((2 )

L r (,) cot 0(2) (3)(() dx

+rr(3)

S() C 
( C . 2 0 )

J R 3 r 
i(2 

) ( v ( 2 ) 7 
I

H(3

H(3)

+ fH r (3)(v(3)~3 dix

C. 12



0

r(,) cot ()(2) dx

(3)0(-

S(2)(x - r() (2)(3 dx (C. 21)

(3)

+J0 r (3) cot 0b(3 ) (U (3 )(g dx

H(

+ f r (3)v(3)(~ dx

In summary for evaluating the equivalent of Equation (C. 1) for Case III
tank configuration, use Equations (C. 1), (C. 20) and (C. 5) for m = 1,

use Equations (C. 1) with limits of integration

H Hc2)

fH( 3 )

Equations (C. 21) and (C. 6) for m = 2, and use Equations (C. 16), (C. 14)

and (C. 15) for m = 3.
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UPPER BULKHEAD (SHELL 1)
TANK SECTION (1)

"__________TANK WALL (SHELL 2)

TANK SECTION (2)

TANK SECTION (3)

LOWER BULKHEAD (SHELL 3)

A. DEFINITION OF TANK SECTIONS

M =
0 M =2

0 M =3

- 1 ) -

, _- Ht

H_ ((2) H(2(2,

H(3 ) (3 ) H(3

B. TANK SECTION FLUID LEVELS

Figure C. 1. Case I Tank Configuration
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TANK SHELL 2 TANK SHELL 1

TANK SECTION (1) _(I)

H

TANK SECTION (2) H(2)

TANK SECTION( H(3)

TANK SHELL 3

Figure C. 2. Case II Tank Configuration

TANK SHELL 2 TANK SHELL 1

TANK SECTION (1) .. .____.,_'_1)[H

S~H

TANK SECTION (2) H(2)

TANK SECTION (3))

TANK SHELL 3

Figure C. 3. Case III Tank Configuration
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APPENDIX D

CALCULATION OF THE SHELL STIFFNESS AND MASS MATRICES

In this section the equations for the shell stiffness and mass matrices

presented in Section 3. 0 are rewritten in a form more suitable for digital

programming. As previously mentioned, integration of these equations is

accomplished using a sixteen (16) point Gaussian weighting matrix integra-

tion scheme.
5

These operations may be performed in a straightforward fashion using

matrix operations. The equations in this section are, therefore, written

in matrix notation and are identical to the equations which are coded into

the digital program. For a more complete understanding of the steps re-

quired in the construction of the shell stiffness and mass matrices, a

functional flow chart depicting the program operations is presented in

Section D. 1. The weighting matrix coefficients are given in Section D. 2

and other detailed expressions are provided in Sections D. 3, D. 4 and D. 5

for elements KM, M and for the initial stresses N .
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D. 1 FUNCTIONAL FLOW CHART FOR CALCULATION OF SHELL

STIFFNESS AND MASS MATRICES

RESET INDEX

N
IN OUT

INDEX

ASSEMBLE SYSTEM
COORDINATE CALL

VECTOR AND STORE BASIC DATA FOR
SHELL COMPONENT

(C ORD' a
r I. D.

(C). =I U
%VECTOR) (O+V)xl

ASSEMBLE

ASSEMBLE [ Uk (go16 Vx16 [dx ] [to.6]

l l j(u *vw lý k v C TB(r + ,V)X lI4 1 D 2B]1~ U V ) l A] [ 6 n161

NmU+~ll [' [fwk (gGA(U+V).16 rI 01

1 1 ... 1 NOTE: [Vk(,O,(- •+V)x16 = [ G6]

0 SEE
G1G 6Section F-(ld [G'

G, G 2... G6 SioD.Z FOR k(GI](U+ V)x16 [ n 16]
n n AND

1 
6]11x16 1 1 = [ TEST SIGN

* PkOý163-(U+ V).16 I' n1]a

1 0 ... G16 I +

ASSEMBLE CONICAL
S• I SHELL

Zn ýr(R)FJ 1 6 x 1 6

ASSEMBLE [•] - M = 1, 2, " ", 13 ELLIPSOIDAL SHELL

NOTE: SEE SECTION D. 3

+ + ['rfM][ .JT) + [k61 ,([•1 ',]T
ASSEMBLE

+ ~ 4T + [RrJI¾) + vk WG2([y~j [,,]T + ~xk , [ri, [~T

+ [R" [PAT'+ [výk] rWoJtG IE

+ [0=1 [V•T) + [vk] [wJ I[V"T) 
GO TO NEXT PAGE
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D. 1 FUNCTIONAL FLOW CHART FOR CALCULATION OF SHELL
STIFFNESS AND MASS MATRICES (Continued)

(U-2 z (J2 (1)10 ELLIPSOIDAL

[~~) -+)(--)10 EST SIGN d,= cos 0/,0)-0

[,n Ij I. d = $in 00/rL(.)

1~ 0C0N0CASSMLE

ASEML 0 1 00 1 d, = : co in0/

[uv I o [V )[D D r 2 101

FBI 2 2  (t)V (V -2) ( _ 1

( vi)] jV cjJ 1 1 I[V -3 ( ... (V 31

0l EE INDEMBL

[D 3 ... 1



D. 2 GAUSSIAN WEIGHTING MATRIX TABLES

DATA FOR [n6 DATA [W G

GI 0.00529 95325 Wi 0.01357 62297

G2 0.02771 24885 W2 0.03112 67620

G3 0.06718 43988 W3 0.04757 92558

G4 0.12229 77958 W4 0.06231 44857

G5 0.19106 18778 W5 0.07479 79944

G6 0.27099 16112 W6 0.08457 82597

G7 0.35919 82246 W7 0.09130 17075

G8 0.45249 37451 W8 0.09472 53052

G9 0.54750 62549 W9 0.09472 53052

G10 0.64080 17754 W10 0.09130 17075

GIl 0.72900 83888 Wil 0.08457 82597

G12 0.80893 81222 W12 0.07479 79944

G13 0.87770 22042 W13 0.06231 44857

G14 0.93281 56012 W14 0.04757 92558

G15 0.97228 75115 W15 0.03112 67620

G16 0.99470 04675 w16 0.01357 62297

D. 3 ASSEMBLYOF KM•F] FOR M 1, 2, 13:

The equations for KM and F are presented below and are evaluated

at the points ý = Gi, G 2 , '.', GI 6 .
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-1 1F 1 1I sinz 0 + -c sin + -Cos
Ki =fK 33 I

-C 2 cos € in + 1- Cos + c Cos + N Cos2
-C 3 4 r. r r 44 -T---

f =2 K2 =1 K33 cos 2  0)

3 = K3=sin + ci+Cos + c os
33 rl I r34 r

K4 = K4 = C; os
12 r

-5 =1 K5 = 1 C-

1 =-K6 = Cos 2 + 3 1 in

2 sin 0 cos 0 o
+ 34 r • r I r 1

2 2

sin @Cos 0 +N sin 2+ 44 z N

K=1 K 1 ( snZ@
K--7 =TK7 2 C33

sinK8=C sini r I sin 2 cos 0M = K8 = G3 l Cos 0 - sin +3 r
33 r 1  rCS 0)if~ 34 r

M =K9 = -C 2  sin r
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M--- = KI0 =-1 sin 0cos -- os 1- r- sin in 0+r- COS1 C r1

sin 0 cos +
- C34 r r. rI rCo

•"S flrr0S )

+ C Cos i- -- sinC34 r'. r1I r 1

rsin cos3 k + sin 0 cos+ 44 r z 0N0

Rn = Nil = -C33 sin 0 + Cos sin 0 + C3 si r o

12 = C33 os c - -o n ic r 34 r

O= Kl3 = C 33 sin 0 cos 0

Il -3(k 2 - I) sin 0 Cos 0

r con v ) sin eid+ b e

M = 2iyaDrtF

and

F = I for conic

= r 100 for convex upward ellipsoidal bulkhead

= rl(Oo - Tr) for convex downward ellipsoidal bulkhead

D. 6



D. 4 INITIAL STRESS FOR CONIC

INPUT

0o' R 2 # L, W

wiV hi' Pi' Pe

DEFINE

N#I Z1rlsinT[gw + - pe)T(rz -RI

3l 0
gwiL cot@° R3hC (1 - - (R +h cot 00). +)1 -3)

02 r sin o LL-

N = wL 3 Cot 0o [R 2h1  - R h. 21
rNil ~ ( - Ar-+ 'LCoto. (1- )+ (I - 3 )CotoJ

where r L R - cot )

r= L -L--)ct

h. h.
-- N No, h+ N 0N +N h.1L

N -L-_ ý-=

h.
IN =N,+N

L ¶ 0~3
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D. 5 INITIAL STRESS FOR ELLIPSOIDAL BULKHEAD

ELLIPSOIDAL

BULKHEAD

INPUT
i, ±%'

hi' wil he, We' Pi' Pe
12 1

• a cot %

He =h e +(b-6), Hi =hi + (b-)

No,l = (Pi - Pe) -TZr

gw(H - b)-r- r 0

N 0(u, v, r,H) = r 2( 312 3/21

H(rZ+~~ 2  - __

TEST
SIGN b

hF.' N = N +N 0 ( wr, 0)0, -we, He) , wr-

N.i + Nj2(r. 0r,. , H - , -

No *N 010r - r

he- hi = No, + N 9 (r, , -w, H )arZ

.N,+ N12(r. Hi) + C 0 r. ~.-w H F~:

N 0 N *I~

ho 1 '12 NO r. -o H0r

N 0 + N02 (r, F, -we, i a + N (r, IF wil H,) r'.r-

GO TO NEXT PAGE
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No = No, + N 0?(r, 0, -wi, Hi) + N 02(r, 0, W e, H e) 0= •r_

-= No, + N02(, 0, - wi, Hi) + N02N(r, 0, w , He) T .r`4r

= No, + N02 (F, 0, -wi, H i + N 02(F, 0, w e, He) -r.= r-a

No=N +N (r, 0, -wi, + (r, 0, We, 0 r. Tr

h i=he.= = No, + N (r. 0, -wi, Hi) + N02(r, 0, we' He) r- r= r

= No, + N02(7, 0, -wi, H.) + N02(r, 0, we, H) r --r a

Note: when

1 (h e e

b w- H, r(=,r brN(h 1 -I- 1 @

b'-0, r=a I b2
b2

(he +b - I9I)?
r a 1- b

D. 9



�1



APPENDIX E

CALCULATION OF FLUID MASS MATRIX

The construction of the fluid mass matrix presented in Section 4. 0

for three tank configurations differs from the construction of the shell

inertial and stiffness characteristics insofar as the fluid equations involve

double integrations. As mentioned in Section 4. 0, these integrations are

performed using a Lagrangian integration scheme. Although this tech-

nique is similar to the Gaussian method of integration used in the compu-

tation of the shell matrices described in Appendix D, only the Lagrangian

technique is adaptable to double integration. The digital program utilizes

a 2 1-point Lagrangian weighting matrix which is constructed by combining

two 11-point matrices tabulated in the above reference. The increased

number of points provides additional numerical accuracy. In the following

pages, the fluid equations are rewritten to accommodate the integrations

using the weighting matrix technique. A functional flow chart outlining

the complete mass matrix calculation is provided.

The notation of this appendix corresponds to the notation utilized in
the digital program.
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E. 2 GENERAL MATRIX EQUATION FOR MASS MATRIX[]

[M-]m=3 I- [1i + [M-21
E (U+Tha~n

m=l am

LýUk'J [KI] [wJ Kk'] T

[ni]m= + +[Uk2] [K2 J [W j [jk2] T

m=1 J[IM 3]tK3J Wj~w LŽj T

[Vk'] [C I [W T v ' cz w l k

T
[MZ]- [v 2 J [G4J [W j 2vk

T (-+VamT
m=1 v 3 [5 W [Vk3] T +[Vk3 J [ F6i~ rwJ[

3]k [C6] [W J [Vk3i T +[rjJ [C] rw VkJ T

E. 3



[Uk 1] [KUD1]CW]

Vkl1] rKVlj [W]

LU k] [UkZ- K2] +rk2] Ký[]+ýk g2 [=j

T (U +V ) xzl [vk [i zv fl W + k Jf " W + wz ~ Z

[uk3] [KU3J[W]

LVk3] [KV3] [WJ

[Uký] [KU21 [WJ + EUk2] [RU2J EW.]
Egk] [Vk2] [KVZJ [WJ + [LVkZjLV [W4 [w

[uk3l [KU3] [M

[vk3l [KV3J[=W]

0

[ ~ ~ [Vk 2]L rKWZ[W

ZU+7V-)x21 [U k3] [KU3 J[W]

[Vk3] [KV 3J[-W]

EA4



[Ukl] [KU4J

['J- [VklJ [KV4J + ['Uk'] K4]'
E(fU+v)xzl ------

0

0

0

r~kl (.+Vx = rUkz] [KU5] + [Uk'] [5J
rVk 2] 7KV 5]

0

0

[Vk2]Z(U+V)x~l [ukz] [Ku 5] g

0
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0

0

[Vk (-U+7V) X I [u k3] IKU 6]+ kjlK6

LVk3] LKV6'I]

0

[=Vk2] [L" 51

0

[U k1] -1 lx~l = [A 1 ] [az
k1 Val x~ = lFB[nl

[k2I-U a2x2l = ~ L ~AZ] 2] [Uk2] U 2x2l = [Aa] []a2

L~k2]V~xn = B][C] rVk2] V 2  = [B] [Tn~

[ Uk3] U a3 x~l = [A 3] KC 3]

L k3]Va.3 x2l Ba 3 ] aC3]

LUkZ] =[ n]L]

a2 X21 [al ~ 2

[ k 2] Va~x~l =[Ba 2jL-Lfz]

Note: L]a and [B a] are provided as initial input

[E.6



tmO (0.95 m0 + 0.05 ml (0. 90 omo + 0. 10 gi " " "ml
n 22 

2 211x21 20 (0.95m0 +0.05 tm1)2 (0. 9 0 gm + 0."10 raml) .

for
mn= 1,2,3

Im010" 10

10 (0.95 i0 + 0.05 10 (0. 9 0 gmo + 0. 10 tml) " t 10

1 1 1 1

tZ, 1(g10) Z,Z(0.95 ý10 + 0.05 t1l) T2,3(0. 90 10 + 0.10tl) ... 2,21(t11)

-- 2 -2 -2 -2
2,1 g2,2 z2,3 • 2,21

-10 -10 -10 -10T2,1 I g2,2 T2, 3 .. " z " • ,

Note:
See Functional Relationship a2 1l defined below.

Z2, 1(930) 2, 2(0.95 930 + 0.05 931) 9z, 3(0'90 930 + 0. 1O t31) ... 92, 21(t31)
an21llx21

=2 -=2 -2ý2,1 ý2,z 2ý , 3 .. " 2, 21

=10 =10 =10 =10
g2,1 2,2 Z,3 " 2,21

Note:
See functional relationship a2 (ýa3 defined below.
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4 +8rar3 6r22 4- 3r4
S a2al a2 al al

Fl(rlra 2) r +8rarI-6r r -2r
6(ra 1-2)

4 + 2r r3 3 4+a2 r -Zralra2 -ral
F 2 (ralra 2 - 6(raI_ ra 2 )

Functional Relationship Ta2( al)

x b
ýa2 Ll -- L!-

where

2
r = a

4.2
a sin 0

(a sinz 0 + bz cos z)

and

ýal Tr - o

Functional Relationship a2 (ýa3)

ba 2[1I 
rb [

where

2
r =f(a3)

4.2
a sin 0b

(2 .2 b2 2
(a sin 2 + cos z)

and

ýa 3  "0

E.8



E. 3CSI(aI- Convex Up Ellipsoid; a2 -Coi

a3 A:Convex Down Elpod

3 CAS (4: Conic Elpo~

E. 3. 1 Integral Equation Relationships

'a 11 r s~in A 21 T

IA: 47-y ('Ua3 f 1 r ~x )a t u((x)?}I d~al

130 r a3 1)~ 9
¶r~;o~a f I (r sin), (~( j 1 ((xr~T d 1

+ y ~(ILI) a 2  rvxr}(uPx 2) dg a

IA: -4rr'y 3 ( - - J~3 1 4(r0 sn )a3(~X r)2 } ((xi3 2 r)} dý 3

IB: {+ ry3 (I LI) a2 U(3 rv2r (r( r d~ a3

+ a3 ý 3 0x)E.9



wh er e

ý1o

+ fý1 (r. r 10 sin 0 vo)ldtal

-~~~ L1( LCto(U(v)})a 2  a

f .J21 (r Il (v(g))) )a2 dt az

f t3l (r r 1 (00 - 1T) CSOUt)) ta
ý3o

IA:

4t3l (r r1 (00 - Tr) sin 0 (V(0)})a3 dta3

IB:

E.10



0

-f (rILIo {( )})a2 ýa

fg31(r r• (•o- it) 'os dg•) 3230

1A

J•30 a

IB:

- f~3 (rtLI ((v()))2 dý a

"ý30

E.11



0

0

= J (r r~ (0 - 7r) Cos 0 Uýdýa

•3o

IA:

30 ( rl (0 - iT) sin 0 v())) a3 d a3

S(r I LIc ot 0 (U(ý)}) a3 a•30 •a

IB:

(r~x ~ ~ f (r {v(I))) ~(2Crýt)a3 d~
30

I 0 r 2 a

0

E.12



0

2  - cota2

(r . (O a )~

0

0

0rr
(r(x )~=----------------------------------(~ a % (~a

(lx, r (- co A

(r ,cot (Uý))a(r . . . . . . . . . . . . ra 3

E. 3. 2 Integration Limit Data

Fluid Surface in Section 1

ýII = (/O)aI

ý20 = ý30 = o

ý10 = ý21 = ý31 =

YI = '2 = Y3 = N

E.13



Note:

-k --2 (k 2 
- )]

s-n- 1

k= a/b

r=a- 1b

if(H 1 +b - 00 , 0 go 90°, if' -0, 90°0 180'

Fluid Surface in Section 2

ý10 = 11 = ý31 - 1

o20 = ý30 = 0

=0

Fluid Surface in Section 3

IA: ( ý31 =) a3

ý10 = ý11 = I

20O = g 2 1 = g 3 0 = 0

Y1 = . z= 0

N3 = '

E. 14



Note:

0 = sin- Fr

s [a2k2 = 2 (k 2 
-

k = a/b

(b -/H=r=a b2

E. 3. 3 Specific Matrix Data

Note: Quantities[( )a are evaluated at

points gam, i (i = 1,2,3 ... 21) where

cam, 1 = 4 m0; cam, 2 = (0.95 m0 + 0.05

tam, 3 = (0.90 g m0 + 0. 10 m1); am, 4 = (0. 85 m0 + 0. 15 mi)

a.... am, 20 = (0.05 m0 + 0. 95 ml); tam, 21 = ýml

Ki= >aI~ (r I'r sin a)
Kli( -41A 1 r al li)1 •0

al, i

K2i = +4 7iiy 2 (I Lj)a2  1?a(g 2 1 -20

a2 2, i

IA: K3i = -43 ( o - )a 3 { 2 a3) (ý31 i30)

a3, i

IB: ~K3. = +4i (ILI) 3  (31 t~30.

Tr a3,a3

E. 15



K4 a 1) 1ot ~ ai

K5 -Z(ot~o )a2{(+a 2 } 2, -1 i

IA: KK6 2 cot O)3ý

r =a a3
IB: \K6. -2(cot CL3 pra3

c 1. = ()(r 1 sin (ýa1 aii

C2. = C3. =0

1 1

14 +-2~ (Ia 2 ('}a2, i (ý1- 2

IA: 4 C5 = - -ry 3~ a {rsin~~ 3 3 -~0

IB: {G i 2 a-- ( ) 3 (la 3 , i ' (31 - 30~

c6. = C7. = 0
1 1

(KU1) = + (~O)a 1(r -r Io CO )a 'a 1, -(ýll o10

(K'.( 
r1 sin )a)a1 l 10

E. 16



(Ku2 )i = (Lcot 00 ) r 2 ), (?l-ý

KU2 =Y-2 =Y 2 RV20

(Ky2  = IIa2((TaZ}2 i (t2l - tZO)

(KU 3)i = + (Oo - 1T)a 3ýr -r 1 Cos 0) a3ý 3, ( - t30)

: (Kv 3), = + (O - 1T)a 3{ý(r -r, sin O~a3a 3 , i (t31 - ý30)

(K K 3) = -(IL Icotoo) a3( r3 *} , (t31l t3

IB:

(Ky 3) =(ILI) a 3 ( r) a3ý 3, -(tl 30)

(KU4 -) + (r cot O)a '}a1,ii

(Ky4)i = + r)a1 I i

(KU5) = +(Cot 0) a ( r)i}2a

(Ky5 ) = + ((r).,aZ,}2  ; _KU_5 = KU 5,= KV-_ =KRV5 = 0

E. 17



(KU 6), = + ((r cot a3ai

IA:

(Ky 6), = + r)aa3i

(KU 6)i = +(Cot~o0)a 3 (r )}a3, i

IB:

I(Ky 6) i= +( aý3

E. 18



E. 4 CASE II(al - Convex Down Ellipsoid; a2 - Conic;\
IIA: Convex Down Ellipsoidc )a3 - IIIB: Conic )

E. 4. 1 Integral Equation Relationships

(rsin l 2) )T

(10 a(ra 22 . ( - r/Z rr

+412 IL~a f l( )aj;~( {1 x) d' 1

a a

tI 1( 31 A( 2 ''r 
2  r) T

lIB: +4•3 (ILl) a 3 3 •31'( da{
4 u(x u(x d a3 *a33 (X 33 3

-IB ý+4r (ILI F 2 (r u )ý u . dA)ý ~ r
7

- ,)a3 f l , 630 (r ar2)a ý, vv ,

611v A ^ T T1

-7 o- Y )a] 10 F .(xr al , r s)in {(v•(x, r} + v(x, "• v(x, r2 ]dd.

(I l) (r CA si AAý

+ 2ý %- , 2•1 r , 1r0)].I ,,. (,r ,(vx.). v(, r,1 x. ,

1202

-- - 1  v ix, r v(x,r ) r))

'T ~ a3 3) (rA

1TY3(ILI)a 3 a1 r ~ C~

IIA: f3 sin 0) a3 (--- r (3 r~( r ()3 dgr

B aT3 0

f, 30 
ý(,r) 

r

Identical with Case I.

E. 19



where e

-1 (r *r 0-Tr) cos 0 (U(<),) dýa

0 
al

-4 I -1 (r ILI ct 0(v(o))2 dta2

2 0

1 tý (r cto~(vý))). Z * Q- Tr) s in Oa1dg1 a

10

ra2 
fral) u(xi 

( r - it) 
s } d=0

a3 0

IIA:

f a3 1 (r r (o0-Tr) sin 0(v(g>))a3 dý.a3

a3 0

faý3 1 (r IL cot 00{u(a)))a da a3
a30

IIB:

- 3 ~3(r ILI(v(a))) a3dg 3
ft30

Note: ( u U(x and ( A u(x) are the same as for Case I.

L )2 3

E.20



(cot ( )

(x'r II r2r 2 2(V0a12(cot 0) ir 2- r2
a2 a2 al A

-- - ----------- - - -- - - -- - -

0

0

(cot (u(v))) 2  2(coto) u
-r)a2 a2 al A j

0

Note: 4(x, rý2 and (V(x, r)) 3 same as for Case I.

E.21



E. 4. 2 Integration Limit Data

Fluid Surface in Section I

ý 1 0 = 2 0 = g3 0 = 0 ; 31

11al

ý21 = I - (WE )al/(ILI)a2

y= 1 '2 = 3 = 'Y

Note:

-1 r
Ssin-i = )2I2

[a2k2 -(k

k a/b

-_b -=H
r=a - b2

Fluid Surface in Section 2

ý1o = ý11 = 0. 5

ý20 = ý30 = 0

31= 1

21 = (H2/ILI)a

"-Y 0 'Y"2 = -Y3 = Y

Fluid Surface in Section 3

tI0 = ýII = 0.5 , 20 = 21 = 30 0

11B: (~31 = (f 3/1EI).

E. 22



E. 4. 3 Specific Matrix Data

(K ) =-TrV r1sin ~a (aJ a1)
Ki) -4 001 ~ - iT)ai 2 2 /1 - 1

(tra2 - r a) )l

(KZ). = +4Tr7, (ILI
1(LIa2 (ý 2)a 2}1ý2)

IIA: {(K3)i = -41T 3 ~ 7- r 13{ sin (3
TrV3 ( 0 a3 r 2 a3J)a 3 i 31-3

IB K3 =+47T :i3 (I LI 0~ )a 3  aý31 - 30*

((~~~~l 
ir 

)a3

(c2) . 7Tr-ý ( - iT) (F ,(r al r a?) (r, s~)in~ i -a 10)

(C3)i = +T-i (0 n)aIQ1(r a 2' rad) (r1 sin 0) a 1) (ýll - tO

(4 +-i-~ Il 2 (13 (a2 1 -t~ 20*

IIA: (C5). T:7 3 - iT)a 3 ( inl' t i t30*

IIB: (C5)~ = + (- Ia(1a, (a3 L

(CO . = (C 7). 0'

Same as for Case I

E. 23



(Ku) - (00 - iT) a [(r -r~ Cos Oa1 l ýlý

(KVl) - (0o - .Tr)i1((r -r 1 sin O~ -) glo)

(Ku) = (ILl coto ?a ((rz3 1- *

(K V2)i = L )a? r) a23a,( 2 1 ý20-

(Kul). O - 1T)a3 ((r I Cos 0) a 33 3 (ý31 -3 )

IIA:

(Ky 3 ) =(Oo - Tra3 (r -r I sinf 0) a 3)a 3 , j 31 - 30)*

(Ku 3 )i = -(ILlcoto o)a3 (r ) a33)a 3 ~(t3l - ý30)'

IIB:

(Kv 3) i = J.IL a31r)a 3)a 3 ,(l - t30)

rKU 2) = (00 - iTr) 1 (cot 0) a2((r~ I" si)al (r) a 23> 1 jan. -~o

(KV 2 ) = (0 1 - Tr) a1((r in 0)a1(r) ali a11 - ý0

rK2i= 0 *

KV 2) = 0

(KU4)i = ( cot ¶b)ala,' i

(Kv4). = (1)

Same as for Case I

E. 24



(KU5 ) = (cot 0 )
1 a2

(k5) (1

(Ku 5 ) = +(Coto )a()-
1 i a2, i

(Ky 5) = ara

a63, i
(K )i= + (rcot 0) a

IIA: 

3:,

(K =+(cot o) (r)a•

U6Bi a3 a3, i

(KV6) + +•r)a3)*

a i3, i

7K 0*

U5).:0

-r)a (rj'

(K4)i =-2 (r2)a2 -(r2)al ,i

= -2 ~f(cot S )2 al, i

Same as for Case I
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(K5)i = -2 (CotoY aZ()a23 a2, i

(K5). = 0*

IIA: ((K)j = - r~ ý )a3j~ 3

IIB : ((K 6). -z (Cot o 0) a3 :' a3 a ,i

*Same as for Case I

E. 26



E. 5 CASE III (al - Convex Up Ellipsoid; a2 - Conic;
a3 - Convex Up Ellipsoid)

E. 5. 1 Integral Equation Relationships

llrsin 2 A(x) A)T
[i -4TrrV'(Oo)af (( r ~ a

ý•10 1 • r^•(2 1

(a2 -1 ra3) 2( ~ 2j_ uAx,2x
+ r--y 2x r~f 2 2xr d ýal+ 41T 2(iIaJ (r)+{j( (x)12d

l (rh sin r)al 21 r (r2__2)_

2 2 -a

;T-- 3( o ~ (x , 2 -(x, d a 3

2 f3o)a33 F1(r1 sin a1)"(rI sx r1r(x, r B3x d ral
ý10

+ TrY2~j 2a2zf AZ r(x, rý,(r~(x, r d ýa

Fa(raa33 • (r sin (x,r A r d •a3

-T Y3(00) fadFr r)( 1 i A J

a3 30 a3 L )3, 3 33, 2

+ (.X r r T d 2a3
3 )a3 v [(x, 3]

E. 27



where

+j~ (r r 10 sin Oý )aIdg 1a

f 1~ILI o dg

20O r~ c os(9 a d a 3

t2(r (r1 sin Oou()a3 - ro i 0 3da

A2E.28



0

20~ (r IL Icot 0{ )}))az d2 a

+fý1 ('r cot~ O(u(O)})2 (r,0 in O~3dýa

ý31

(- f(' 2r 20 o t{U~} ~

ý30

a31

-f 31('r rlo in {v (0) a3a3a 30

E. 29



0

+ f (rcot s (u(ý))L (r1 0 si .3 d • a3

30a r 2 - ra3) Al + rvý)a r0 sin Oa3 a d

-f3 ( r1 da3

f r r 1o sin O(V(o)) da3

(r (X r ý and (rQx, rý2 are same 
as Case I.

0

0

Z(cot 0)a3 rZ -2 ar2
'(x, r --, 3 F z N - (x

((~x )3 3 (cot 0{U(o)})3 a2 a3) ,

a3 r

E. 30



0

3 , 2c t o u ) a 2 ( o ) r 2 2
(r,2 - J3

0

E. 31



E. 5. 2 Integration Limit Data

Fluid Surface in Section 1

ýII = ý- /0 O)a 1

ý20 = (IbI)a 3 /(I LI)a 2

ý31 = 0

ýI0 = 21 = ý30 - 1

yI = '2 3 = y

Fluid Surface in Section 2

ýI0 = ýii = ý30 =

=21 =((H/I L1)a 2

t20 = (Ibi)a 3 /(I LI)a 2

ý31 = 0

"Y2 = 0y

Fluid Surface in Section 3

ý10 = ý11 = 1

20= ý2 3L)a

t30 = 1

=31 = o)a3

E.32



Y3 y

E. 5. 3 Specific Matrix Data

(K)=- r1sin O*a

ir 2al 1al, i

(KZ)i = (C3zi = 0*)

(C4)~aZ aZ+TC (LI

(K3). y 3 (0'a3 F(r a d r sin O)a a3) a3,i0 3 -ý0

(C6). = Tr 3Ko (0)a F2(ri sin r-d ( i )a3 3 ý1-ý

(C7) i = -Ir73(0o)a3(ýF(r a2 r a3) (r I~f si )a3ja3, i (31 - ý30)

Same as for Case I
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(KUd1 =+). )aý r r 1 Cos) Ka i3? 1, i ýl- to*

(KV di = +OOa1ýrr1s in 0) ai31 ) l ýl- 1

(KUZ) i = i(ILlcot9o )aZ ((r) a 2a 2,i (ý21 - 2*

(KVZ)i -(ILI )a2 ar)aJ i *(gzl -2)

(KEJ 2 ). = (KVZ) =0

(KTJ2 )i = +(cot 9 2 ( 2 [3r) a2(r1sin O~ ý3, t30

(KV 2 )i = +(O')a3 ý((r).2(r1sin O~ (g31 - ý30)
a 3, i

(KU 3 ) '= (0o013(( r r T1 CO S K~a3l3)a 3, i 31 - 30)

(Ky 3 ) ' = -Ooa r r, sin O~3) (31 - 30)
3a a3, i

(KtJ4)i = + (rcot 0 l)l

(KV4 ). = +ýr) *

(KU5) = (KV5) = 0*

Same as for Case I
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(KU5) =+(cOt00)aa2 
)aZ2,i

(KV 5 )i = + r) a2,)a

(KU 6 )i = +(cot a)a33,i

(KV 6 )i = +1

(KU 5 )i = + cot 0oa33 a3,i

(KV 5 ). = +1

(K4 i = - cot )

(K 5 )i = 0*

(K5)i = -2(cot O)a aa 2

a 2T a, i

(K 6 )i = -Z cot 95)a3• (ra 2 )
7(r2a3) a3, i

Same as for Case I
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E. 6 LAGRANGIAN WEIGHTING MATRIX TABLES

DATA FOR [<% DATA *FO ý]ll

W 0.01341 70742 W 1  0.01341 70742

W 2  0. 08876 79707 W 2  0.08876 79707

W -0.04052 17853 W, -0.04052 17853
3J

W04 0.22747 3144Z W4  0,22747 31442

W5 -0. 21757 75613 W 5  -0. 21757 75613

W06 0.35688 23152 W 6  0.35688 2315Z

W7 -0. 21757 75613 W 7  -0. 21757 75613

W8 0. 22747 31442 W8 0. 22747 31442

W9 -0. 04052 17853 W9 -0. 04052 17853

WI 0  0. 08876 79707 Wi 0  0. 08876 79707

Wi11  0.02683 41484 W1 1  0.02683 41484

WI2 0. 08876 79707 W 1 2  0. 08876 79707

W13 -0. 04052 17853 W 1 3  -0. 04052 17853

W. 22747 31442 W 0. 22747 31442

W -0. 21757 75613 W -0. 21757 7561315 15

W06 0. 35688 23152 W 1 6  0.35688 23152

W17 -0. 21757 75613 W17 -0. 21757 75613

W1 8  0.22747 31442 Wi 8  0.22747 31442
W i -0. 04052 17853 wig -0. 04052 17853

W20 0.08876 79707 W 2 0  0.08876 79707

W21 0..01341 70742 W21 0.01341 70742

This column is identical for all 21 columns of the matrix.
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APPENDIX F

SAMPLE INPUT DATA

Sample input data for a typical one stage launch vehicle (Figure F. 1)

is presented to illustrate the basic data requirements. For simplicity

all structural components are constructed of aluminum. The vehicle

oxidizer and fuel tanks are both assumed to be simple tanks according

to the terminology used inSection2.0. To demonstrate the capability of

handling stringers and ribs, two shell sections are given orthotropic

properties as indicated in Figure F. 1.

The physical model is first subdivided into a consistent set of shell,

fluid and mass-spring components as shown in Figure F. 2. In this example

the vehicle is represented by eleven (11) shell components, two (2) fluid

components and four (4) spring-mass components to account for the pay-

load, engine and equipment. The displacement coordinate locations are

then selected and numbered according to the requirements discussed in

Section 8.0. For this sample problem the vehicle is assumed to be unsup-

ported, i. e., no fixed coordinates are specified.

The input data load sheets have been prepared for the launch vehicle

illustrated in Figure F. 1 and are included in this appendix to illustrate

the input format. The system data appears first followed in order by

the data specifications for each of the shell, fluid and spring-mass

components.
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24 ALL STRUCTURAL
COMPONENTS
CONSTRUCTED 7 LB

, OF ALUMINUM (E 10 - )
IN2

0.07 PAYLOAD
1 o5000 POUNDS

cý P=20PS
",t69.4442 I

-do 60, t =0. 10

W 89.34. FT 1
FTOXIDIZER

(N20 4 AT 77-F)

•- . •t = 0. 080

VEHICLE LONGITUDINAL -- EQUIPMENT 500 POUNDS
AXIS OF SYMMETRY

o ORTHOTROPIC-BENDING
t =0.15 STIFFNESS = 2.0 OF

C 'ISOTROPIC SHELL
P =20 PSI

W =56.1 LB t = 0.12
FT3  EQUIPMENT 500 POUNDS

(N 2 H4 UDMH
AT 77°F) •.

100t = 0.15 ORTHOTROPIC-BENDING

STIFFNESS = 2.0 OF

0. 15 ISTROPIC SHELL

t= 0.080

ENGINE
1400 POUNDS

Figure F. 1. Typical One-Stage Launch Vehicle
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2 LEGEND

L= 04 SHELL COMPONENTS

3, / FLUID COMPONENTS

10 Lr2'IsPRING-MASS COMPONENTS

L3 
7 2

16

3.



SPACE TECHNOLOGY LABORATORIES
DATE COMPUTATION AND DATA REDUCTION CENTER PAoLoE ./ O

NAME PRIORITY

PRO6II9m NOQ, KEYPUNCHEO MY

NO. OF cAnn$ v.-IIFI.- my

.,~a 37 1"~

1. 20 26 36 120 32
7 351 43 II 311 - 4s 73

SYMIOL A LOC. VALUE KXP SYMBOL j LOCi VALUE ExP

rJ ....r E __i _ __,___,___,

..- • ' _,. _ _--I.....

Z R_.1__! • •_ l- /, _ _ .....
,, , _.... - , - A6 / ,

__- 4QLg / r, a _

... ,•4, • ~' .',•...

___ .m_ H - ..s -._.,-, -.-, :

o i _. , . ..

____ ~ 242?~L 4 ..-... .

___ __ L _O_ _ ,_

__ "- m/+/ -, " -
_ _ _ _ _ _ .A.........i

____,. I-2- 1,• ,_ __ _ __ _ __

-~ _ _ _ _ _ _ _ _ _. --



SPACE 1ECIINOLOGY LABJORATORIES
DAT'E COMPUTATION AND DATA REDUCTION CENTER PACE -2-•--1_or_ 4. -

NAME PRIORITY • • -. .

POLMNO. ___ __ ___ __ C pHR2OML

NO. O, C RDIIVERIFIEDO by

7_

12 7 17 1 2
I 2. 28 31 20 28
37 38 43 83 37 3i 8
8 so 81 71 88 s 7

SYMBOL r LOC. VALUE EXP. SYMBOL P LOC. VALUE EXP

"XZ I

J.07
7. /7__

4 .. 0 7 --- (a 3____ I6

!~ ~ 1 ;,7A•- o- !/,,

_ _ _ i• .zv __ .z.:... d.I

I,2

JF 5 _

!__- ,K ._ -, ___/_,____

__ __ 6 ., __________<•_!

_____- I 1- f .92_ _______- _______...

_ _ _ __ ., _ _9 •__ _ •3 . . . ...... __

., _ _ __ _. ._ -I ...._

-___ •_ ._m__ - •_At •_ <" _, _._....

_ _,_ __L__•• I,- -, ,__3_

,,__ _ __.314 /o2._- J, o2
.__ _ _i ,AZ __,___ . • o 7 4- _______ ___, --

_.. . . . _,_ ___• _3 z_•_____________ ____ ,- .._______________

_ __L• .• '___ ___ ________

_ _ i, 4 L , _ ___ _______-- __s
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DATE COMPUTATION AND DATA REDUCTION CENTER PAQE 0- _oF

NAmE. PRIORITY

PROILIM NO. KEYPUNCHEmo 8

NO. OF CAROB VERIFIED BY

27 7 i 2 7 I?
19S 2 2 8I 20 2: .

[,7 37 43 83 37 31 4 83

SI. ,L L C. VALUE EP. sYM.oL R c LOC .L, VAL' U ...

_. I_ _ ,_ _____,,17_ ,•,, ....

K7 ell __ __"7" 9__ -;--1-7

_________�_ . _i-•I-,• .
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SPACE TECHNOLOGY LABORATORIES
DATE COMPUTATION AND DATA REDUCTION CENTER PAGAE--.OF .

NAME PRIORITY 1~7 L4Z>
PROOLEM NO. KEYPUNCHEO M

NO. OF CAROIS VERIFIED •y

....... ... ! E IF MO

I ;1 7 17 I1 27 17,o ,4: ,.5
37 Se 21 53 37 I 18

50~ I0 --- 71- 5 71
eYMSOL LOC. VALUE EXP. SRL LOC. VALUE EXP

•, T/vC/ 2-. _ _ ET ,' _

__ __ _ _ ____ __ IL - _ _ _ __ _ _

___ U ss_ ________

_ _- ,- -7-- - -

_....j.. •I,._-_ ___ _Z' .. __ _ _ _ _ _ _ _ _ _

37-7-. ,2•D - _-_/ _3

t t - -___,A • ZL/21 .Z•I_____

-___ __----22 : j--------• ___,,_-__ -

4-11

- '-F Z- _ _ _ _ _-_, 1 1_"

_____~~~L~~C~T Zi' __ ___

-4 4 1_ __ _ __ _ __ ____

__ ~3 E~,/&/77
______ ____ 5ý,f2 ~ _ _ •3

___ iiuL,//.J~>??7Z_ 6~3F __7
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PMO.,Sm .0 .~. .. 0IVPUMCtI90OBy. *-~

Hn. OP C APIP 77. - .77.- VC113WiI! By

e-%

1 2 7 17 1 27I
19 20 29a 39 I52 29 A3
11 46 43 93 37 38 43

IY-L LOC. VALUE E09'. SYBO f LOC. VALUE CAP'

_75 Z-I/- -_ _ 6~Z Zz~6 -

2 7 f ~ 7,7 o-3~e5

- ~ ~ ~ ~ ~ ~~, -InI• ~ _ -_ i w
_ _ _ _ Z _ _ _ _ _ _ _ _ _ _ _

___K~~•z.____ __0_

_____ _ _ / - __7_ _3

L i :fdf a _ _ _ _

-____~~F 8 _ _ Ii_



SPACE TECHNOLOGY LABORATORIES
DATE . _COMPUTATION AND DATA REDUCTION CENTER PAGE 

4) orL.-
NAME Pnionory

PROBLEM NO. KEYPUNCHEO By

Nio. or! CARDS ViIRIFJED -Y

717 217
3: 4 a

is 35 1 20 a 3a" 71

AYMSOL %l LOC. VALUE EXP. YMBDL EI LOC. VALUE KXP

S..1"/ . __ _,,_,___

_ _ _ : ~/;3 _ __.

* - /,y € --, _

_L0,

_ •'_Ae_7 -,Plz, ,

_____ ZA ~ 1 V2, -_ __ _ _ _ _ __Zl 7-;, 4,_,- ce,
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DATE COMPUTATION AND DATA REDUCTION CENTER PAO-GE O- - -1-T

NAMR - - PRIORITY ,

PF408LOEM NO. KEYFUH CHKDj my ~ j~

NO. OF CAROD VER 8 Y

i 17 I " I 2 7 1,
1. .0 I5 5 IS 20 25 32
Il 3e 4 l 27 S: 45 613
aS a 6 a6 71 55 65 . 71

-- Y---OL t LOC. VALUE Exp. SYMBOOL PA. LOC. VALUE X
__ __ __ E .... _ __ __ __ __

__ _m_ r ___ ___, ,,,. 6'. o
____ .Zt, _ _.= __ /1E* .• .

_____ V z- l // • .. '_f o1!- _,z• __ ___, o
_ _ 2/7 .5 7ZIL

-7,~~ /.J • 11

_____/3
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DATE COMPUTATION AND DATA REDUCTION CENTER PAE 0,1.-2-

N AME PRIORtITY

PROBLEM NO. KEYPUNCHED by

NO. OP CARO& VERIFIED by

7-

II 1 2 1 1 2 7 1719 20 2 3 1. A 2 3937 35 4s 37 4 9153$9 70 51 ?1 99 91 51

SYMBOL r LOC. VALUE EXP. SYMBOL f. LOC. VALUE EXP

____ _ZX - 7 ,9 A'- 7,

Z rI' 2. _____ " ____,__

'2 _ Z6 4/ J-• Z 0,

_-__L.rr 4A •-/ _,. __' _ ,__ _
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PROBLEM NO. KMYFUNCHKO SY

NO. OF CARDS VERIPIKO SY

3 ?3

,1 17 1 2 7 ,,
IS 20 2S 35I1. 5037 1: 48 53 $' 35 5 5350 St II 71 55 ,5 :i 71

SYMOOL tB r LOC. VALUE EXP. iYNRO LOC. VALUE EAp
_V. .- s,, 5 , __.Z-Z77 -_

.r -2 - _1_ 2_ _e-o,
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Z 3 q_ _S-6

_ _ Z__ 2_A _ __

__ _ __ ,_iA___ 22

-- j- --- ".-_4__ _ _____ _ __ _ I _ _ _ _
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NAME ---- -- ~-~ -- -PRIORITY -~ ___

PROBLEM NO. K9YPUNCHEO my

NO, OF CARDS Yg~~-~ ----- VRIPIED0 By

I1-B 20 25 so '.lB1 20 2 3

3s 7 J 43 .3 313 38 1:5~B S I71 56 of

SYSLLOC. VALUE ESP. SYMBOL R LOC. VALUE ESP

.i ~ l 2-7A //gJI _ _ _ _ _

___ _ 7 ~ 2 12-
_____2I~YZL ~___ ____

_____ ~ ?, ___ L2Z4__-_ _ _ _ _

_____ ~~Z A72/- 2~
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HAM9 PRIORITY

PROBLEM NO. KUYPUNCHKO 0Y
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. ao 2S 19 20 2 17

a, oit 411 59S at sa
4P P

SYMBOL Ri LOC. VALUE EXP. SYMBOL E LOC. vALu EX

_ _ Z -/4"/,' /,3 -• , ." • . .. .....

.__ _ X. b" z. -.. _ _ _ , .

6 _ ,/ - •0.-- .- -
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.._ _ :. I :__ _ ._ J . i 4 - _ _ _ _ _-_ _ _ _ _ __..

,_ _ _ ___¢t• _- - I _ _ _ _ __... -

.,___ ___ _ _ __1

-1i•li L z ,I' _ _- _ ___ __

_.. , Z_ .s-- .F._ _



SPACE IECIINOLOGY LABORATORIES
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NAME _ _ PRIORITY

PROBLEM NO . KEYPUNCHED II _.

NO. O CARDS ... VE.,IFED - ---

r77 17 1 2 7 17

tO 0 2 3619 20263

.I-IO N L-OC. VALUE EXP. SYMBOL B LOC. VALUK EXP

Sr i > . .. ____ _ _ z_ _ _ _ ,•

""__ _ r i "' f 2 .. _ _ _ _ ./ )F " 7 6 . .
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__ 3 Z_
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A .2 f-3- - ?___ _____

S... ,36 . , <96/-,3 . _ _ _ _ _ _

____ :.<?_.- 7/77( ___ __ _ _ _ __ _ , -
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NAMS PRIORITVY

PRO4LKM NO. KEYPUNCHED MY

NO. OP CARDS VERIFIED by

II: 12 a 61 aII}

l is

37 17 48II8 3 U

,. 5- of 7"-" "....1

SYMBOL pfý LOC. V~ALUE EXP.SMOL ~ O. VALUE eMp,

7:27)4 -s __._'__,7 "''

'~ ~ ~ ~ F 16//' ..
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NAME PiOR|TY _

PROBLEM NO. 
(K lYPUNCHEr Iy

NO. OF CARDSVRFIDm

1 2717 
17 IIt 20 2 3 20 2 3 8

53 3 31: 4 1S
1. e 71 61 . 71

VALUE EXP. SYMBOL R. LOC. VALUE Lxp

- c L¢// ..... 2- ,

_ _ _ _ -- 22 A Z / -/,- -I _ _

9 ZYI _ __ _ __

L ,-17

_____ __a-C L

12 _ z- A _________
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