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1. INTRODUCTION

digital program developed for the calculation of axisymmetric launch

vehicle steady-stage response to applied axisymmetric sinusoidal 1oads./
L venmcle. /

The detailed computer programming manual for the digital program is

contained in Volume II of this report.

In the evaluation of launch vehicle behavior, it is necessary to study
the response of the entire vehicle to a wide variety of dynamic loadings to
insure the structural integrity and stability of the system. Much effort
has already gone into the development of techniques to calculate the vehicle
response to lateral and longitudinal loadings using distributed and lumped
spring -mass models and techniques for theoretical and empirical modeling

H

of the vehicle behavior. However, experimental data indicate that
these procedures are unsatisfactory in several respects. For example,
accurate representation of important structural shell characteristics and
realistic coupling of the fluids with the detailed structural behavior of

tank walls and bulkheads are omitted.

The approach described herein overcomes the above noted defi-
ciencies. A finite element technique is utilized to construct the total
launch vehicle stiffness matrix [K] and mass matrix [M] by subdividing
the prototype structulie into a set of (1) axisymmetric shell components,
(2) fluid components, and (3) spring-mass components. In this way, it
is possible to represent as separate shell units the fairing, interstage
structure, bulkheads, tank walls and engine thrust structure, and to con-

veniently provide for the inertial and stiffness characteristics of equip-

ment, engines and vehicle supporting structure.

The stiffness and mass matricesz,:‘for the complete launch velicle
are obtained by superposition of the stiffness and mass matrices of the
individual shell, fluid and spring-mass components which are computed
using a Rayleigh-Ritz approach. Fluid motions are assumed to be con-~
sistent with the shell component distortions. The superposition technique
assures displacement compatibility and force equilibrium at the joints

between components. After the complete system stiffness and mass
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matrices have been formulated, displacement boundary conditions are
introduced by removing appropriate rows and columns corresponding to
points on the vehicle and its supports which are rigidly restrained from

motion.

The coupled system natural frequencies and mode shapes are

obtained from the eigenvalue equation constructed with the total stiff- -

ness and mass matrices

[x] (o) - p° [M] (o)} =0 (1.1)

in which p is the circular frequency of the system and {a} is the modal
vector whose components are the longitudinal, radial and rotational dis-
placements at discrete points on the vehicle. The steady-state response
due to simple harmonic loads is determined using a standard modal re-
sponse procedure which expresses the total displacement, velocity,
acceleration and force responses as the linear superposition of the in-

dividual modal responses based on an assumed modal damping.

The procedure will handle shell components with a wide range of
geometries. It includes shell effects in the tank and bulkhead structure,
but avoids the need for including detailed local deformation, such as at
shell discontinuities, which are unimportant in determining the total
dynamic behavior of the vehicle. The approach has the capability of rep-
resenting the tank or stage of most interest in great detail and those of
least interest ‘with minimum detail, as desired, thereby minimizing the
computation time required and remaining within the maximum limitations
of standard eigenvalue routines. The formulation of the problem is sub-
divided into well-defined portions, leading to efficient coding and easy
modification for later incorporation of asymmetric shell behavior and

even more detailed treatment of the fluid behavior.

The analytical procedure discussed herein is summarized in Figure 1.
The launch vehicle analytical model is discussed in Section 2. The equations
for the shell and fluid component stiffness and mass matrices are developed
in Sections 3 and 4, respectively. The coordinate representation which
forms the framework for the vehicle model, and the construction of stiff-

ness and mass matrices for the complete launch vehicle, are discussed

1.2




in Sections 5 and 6, respectively. The method for computing the dynamic
response is discussed in Section 7. The computer program arrangement
is described in Section 8 and detailed input data requirements for the com-
puter program are itemized in Section 9. A complete list of symbols is

provided in Section 10.
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START WITH GIVEN CONFIGURATION

1) GEOMETRIC AND ELASTIC CONSTANTS
2) FORCE AND DISPLACEMENT
BOUNDARY CONDITIONS

I. SUBDIVIDE VEHICLE INTO COMPONENTS

1) SHELL COMPONENTS
2) LIQUID COMPONENTS
SPRING~-MASS COMPONENTS

. COMPUTE SYSTEM COMPONENT PROPERTIES

(1) STIFFNESS
(2) MASS INERTIA

II. ASSEMBLE TOTAL VEHICLE MATRICES

(1) STIFFNESS
(2) MASS INERTIA

IV. SOLVE THE EIGENVALUE FORMULATION

(1) NATURAL FREQUENCIES
(2) MODE SHAPES

¥. COMPUTE THE STEADY-STATE HARMONIC RESPONSE

1) DISPLACEMENTS
2) VELOCITIES

3) ACCELERATIONS
(4) FORCES

Figure 1. Summary of Technical Approach
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2. ANALYTICAL MODEL

As illustrated in Figure 2, the vehicle structure is subdivided into
a consistent set of shell components, a, fluid components, b, and multi-
coordinate spring-mass components, c. The total vehicle which may be
represented is limited to one with not more than six (6) fluid components.
The total number of shell components which may be represented shall not
exceed forty (40). The characteristics of the spring-mass components
representing such equipment as engines and mass-elastic supports are
provided directly by low order (< 10) stiffness and mass matrices. The
total number of spring-mass components may not exceed thirty (30).
The vehicle behavior is described in terms of motions of discrete points
on the vehicle located at intersections of shell components, at lumped
masses, and at intermediate points on the shell elements. The number
of nonfixed degrees-of-freedom by which the behavior of the system is

described may not exceed eighty (80).

The specific shell components to be used are conical frustums
(which include cylindrical shells as a special case) and ellipsoidal bulk-
heads (which include hemispherical shells as a special case). Within
the domain of thin shell theory, the shell components may have ortho-
tropic properties and a linear thickness variation in the meridional
direction. Local thickening of a shell at a bulkhead or wall joint may be
handled by using an equivalent local hoop stiffener which is provided as
input in the form of an additional spring-mass component. Initial static
stresses based on membrane theory are accounted for in determining the

stiffness matrix for the shell components.

The most general fluid component may be in contact with an ellip-
soidal upper bulkhead, a conical tank wall, and a conical or ellipsoidal
lower bulkhead. The bulkhead shell elements may be convex down or up
with fluid at any desired depth on either side, both sides or neither side.

The tank configurations which are considered are illustrated in Figure 3.
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3. SHELL COMPONENT STIFFNESS AND MASS MATRICES

The displacements of an individual shell component (Figure 4) are
approximated in the Rayleigh-Ritz manner by a finite series of functions

having the form

(3.1)

in which ¢ is a dimensionless variable and 0 < ¢ <1. For conical frustums,
Figure 5, £ = s/{ sin $oe For convex upward ellipsoidal shells, Figure 6,

£ = ¢/¢>o, and for convex downward ellipsoidal shells, £ = (7w - ¢)/(m - ¢o).

The assumed mode shapes uk(g) and vk(g) consist of polynomial
terms sufficient to represent all modes of shell distortion, including
longitudinal stretching, radial dilatation and rigid body displacements.
The specific shape of the assumed modes is determined within the

limitations of a tenth order polynomial, as follows:

n

10
ulg) = Y a8
n=0

(3.2)

10 n
! Vll(g) = Z b!ng
n=0

’ in which [akn] = [A] (Tx11 20d b, = [B] (T 11) define the poly-
nomial functions gssociated with the local coordinates (Ek) and (]_3-1),
respectively. [A] and [B] are furnished as input to provide maximum
flexibility in the selection of the assumed coordinate functions. It should
be understood that the Ek and the EI are the unknown generalized coordi-
nates associated with the shell component, whereas the 21n and bﬁn are

definite arbitrarily specified coefficients which determine the functions

uk( §) and vz(g).



3.1 SHELL STIFFNESS MATRIX

The shell stiffness matrix is constructed from the potential energy
function V derived in Appendix A. For the generalized displacement

(Equation 3. 1), the stiffness matrix is defined by

r

]
8V .. 8V . 8%V 8%V
aalaal aalaaﬁ I aalaﬁl aalaﬁv
R 1
. 1
. |
!
25V ofv v 9%V g%y
]
Bﬂ.ﬁ-aa 1 8(1-—8(1-[—] : BCL.[—J-aﬁ 1 aa—aﬁv
I
K o 2 [ (3.3)
i 2] ((T+N)=(T+V)) ) , o ,
0 ... 90 '8V .. _8V
— — P —— ! — —
I 8F , dary : 88,98, 5B, 9B+
. . ' .
. l .
. l »
A R & 8%V
R = = = —
baﬁ—vaal 8[3v3a-ﬁ- | 35—*351 9 va v
which is consistent with the Rayleigh-Ritz procedure and in which, for
example
2 de de de de De de
_"‘f_:hjya c,, =2+c,—|—=L+c,—L+c,, 2|8
Bakaﬁl ] 8o.k aak opL 9 K 8o.k ap1
oK oK oK K 9K 9K
tlc,,—2+c, 8l 2 ,lc. —%:c 0l_©
33 53 34 57 | o8 3 53 44 53 | oB
k k £ k k £
+N©° op _9p ds (3.4)
? a3, oB
k Y]
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and

cl

k=1. ..

<l

£=1...

The strains (e o’ ee), curvatures (K

¢

, KG) and meridional rotation p are

defined in terms of the displacements in Appendix A by Equations (A. 13)

through (A.17). The quantities C C C

117 7127 “22°

C C and C44 are

33’ T34

the orthotropic stress-strain coefficients which are functions of the

dimensionless parameter £. For the present analytical model, these

coefficients are approximated by the following polynomial equations:

r D
C11(8)
{(Tie)y = Ccppe )=
| C22(8) ]
e ~N
C33(8)
(S} = (csqe)) =
\C44(€)J
+ 2 (e
Fee
+ 3¢ (¢ -

The quantities {T(0)}, {T(1)}, {T(0)), {'E(

are provided as input.

{(to) +¢ {Tw) - {To)}) .5

36 e -0 CEw)

-9 -0 {26)
) (Y {ﬁ(é)}
E - 3) {f“)}

;)}, {é(.g.)} and {al)}

N¢° is the initial meridional stress caused by tank pressures and

longitudinal vehicle accelerations (prestress and static longitudinal

acceleration stress). These initial stresses are derived in Appendix B

using membrane theory, which is a reasonable first order approximation,

except in very localized areas where the bending stresses predominate.



This simplifies the calculation of the initial stresses which are readily

obtained from the membrane equations of equilibrium. Expressions

for the initial stresses for conical shell components are given in

Equations ( B, 1) through (B. 6), for the upright ellipsoidal bulkheads in
Equations ( B. 7) through (B. 11), and for the inverted ellipsoidal bulkheads

in Equations (B. 12) through (B. 15).

is included as an integral part of the digital program.

The computation of these stresses

After substitution of the displacements (3. 1) into (3. 3), the shell

component stiffness matrix becomes

K] - 2n j (1 - () (83T + e {5} (&)F + ks [(u)- CafF + (&) ()7

s ka [{V}. (T + ) {V}T] + K5 (v} (v)F + K6 () - ()T
+ k7 (%) () +x8[(v)- (T + () (D7 ]
rx9[() (& + {8} (9] + x10[() - (T + (&) - ]
ey @F + @ @] 4 xaz[(d @F + (@ (57
e[ @7 ¢ @ 7] Jeree

in which

{u} =

.

- N
u, (€)

vV

3.

™

v, (£)

Al

-

(3.6)



S OROSIHIEINCY

23 (w) = 0 = [B]EIB]EN

£ 2 (v = () = [BBIEY

1

L& )= ) = BRI

1

(0 0 o . . . 0
1 0 0 . . . O
o 2 0 . . . 0

(5] -0 >

o 0 o . . 10 0
(11x11)

and

for convex upward ellipsoid,

r1¢o
r1(¢ol ) for convex downward ellipsoid, (3.7)
sin ¢o

= 7T for a cone.



The constants K1 - K13 are defined as follows:

. 2
.2 1 (. 1
[cll sin ¢+C33—-—2 sm¢+;—;cos¢>

1

2 r 4
-C E-—c—:—9§——-(asinz;>+—-ic:os¢ +C M+Nocosz¢
34 rry ry 44 rZ ]

2
= C33 cos ¢

r 3
...c 3 m sin¢ + ...._lcos ¢ +C .CO—S__.?_
ry Ty 34 r

3
=C12 co:
=szr_lz
= Cll cos2 ¢ + C33—1-2- cos ¢ - %sin ¢>2

2 2
2 sin ¢ cos ¢ 1 sin” ¢ cos” ¢ o . 2
+C34 rr) cos ¢ - —-rl 51-n ¢> +C44 rz +N¢ sin” ¢

= C33 sin2 o

r

. . 2
- sin ¢ _ -1 sin” ¢ cos ¢
C33 T cos ¢ T sin ¢ +C34 =

y

= -G M
12 r



r ' r
K10 = —C1l sin ¢ cos ¢ - C33—12 Gos ¢ - ;—lsinqé (sincp +;-lcos</>
r 1 \ 1
1
sin ¢ cos i.1 cos2 i'1
sin g cos ¢ (. — cos ¢ - — s
-C34 rr | sin ¢ + T cos ¢ +C34 rr cos ¢ N sin ¢

. 3
+ C w + N o sin cos
44 2 p SmPcOsP

r

. 2
1 . 1 . sin ¢ cos
K11=-C33 ?; s1n¢+r—-cosq> s1ngt>+C34 "

1
i‘1 cos sin cos2
- R ¢ singpcos ¢
K12 —C33 (cos¢ — sin ¢ N +C34 -
K 13 =C,; sin ¢ cos ¢ (3.8)

3.2 SHELL MASS MATRIX

The shell mass matrix associated with the generalized coordinates
Ek’ 31 is derived by operating on the expression for the kinetic energy T.

For each shell component, the mass matrix is defined by
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. -
[ o2 o’T
—_ — — — t
80.180.1 80.180.-U— .
[}
]
I (Zero)
¢ 1
2r ot |
Baﬁ—aal 3(1ﬁ8a=[—j' :
]
pz[—'] S
& (0 )x(T+)) :
8% o eiT
e — —
]
1
(Zero) '
1
o’ . T
I _—-—_ ——-— _——-—
i ' BB, oBoBy

(3.9)

After substitution of Equations (3. 1) into the kinetic energy expres-

sion in Equation (3.9), the mass matrix assumes the form

ﬁz%] - ZWYaj}r<{u}. (gjr-+{v} -(yjr> ds (3. 10)

where Ya is the shell mass density.

The detailed equations for the calculation of the stiffness and mass
matrices of the shell components are presented in Appendix D. The

equations are written in matrix notation to accommodate the Gaussian

weighted matrix5 integration scheme.
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Figure 4. Displacements of Shell of Revolution
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Figure 5. Conical Shell Component

3.9




LONGITUDINAL
VEHICLE AXIS

OUTER EDGE OF
SHELL COMPONENT

(TRANSVERSE CROSS-SECTION THROUGH LONGITUDINAL AXIS)

Figure 6. Ellipsoidal Bulkhead Component
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4. FLUID COMPONENT MASS MATRIX

In addition to the mass and stiffness matrices for the shell compo-
nents, the inertial effects due to the presence of liquid propellants in the
vehicle fuel tanks must be considered. The linear analytical model does
not include, however, the effective fluid stiffness caused by changes in
the fluid head during shell distortions as this is a higher order nonlinear

effect.

The general fluid component b is enclosed by three shell components,
consisting of conical and ellipsoidal shells of revolution. The specific tank
configurations which are included in the present model have been illustrated
in Figure 3. For a typical fluid component, as shown in Figure 7, the tank
is divided into three shells in which the upper bulkhead is referred to as

shell al, the tank wall as shell a2, and the lower bulkhead as shell a3.

The fluid motions are a function of the generalized displacements
for shell components, al, a2 and a3. For the uk(g) or vl(g) of each shell
element defined by Equation (3.2), there is an associated fluid motion
ﬁm(x) and Qrm(x, f'), where 1=m =W and W = (U + V)al + (U + \—/')aZ +
(T + \_/')a3. ﬁm(x) is the fluid displacement parallel to the x-axis (longitudi-
nal axis of the vehicle) associated with the tank shell generalized displace-
ment m. cm(x, 11\‘) is the fluid displacement parallel to the r-axis (radial
axis of the vehicle) associated with the tank shell generalized displace-

ment m.

The general form of the fluid mass matrix consistent with the fluid

displacement may be expressed as

T T
[Mb] __=2my [i{ jrﬁ' ({ﬁ(X)}{ﬁ(x)} +{¢(x, 9)}{$(x, 9)} )dlz\'dx
WxW) -H; 70

(

(4.1)
where
Gl(x) (‘rl(x, lz\')
(h) =¢ © Y, (e D) = : (4.2)
S gplx) Yo B

Yy is the fluid mass density and matrix [ﬁb]is of order W.
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. A . . . A .
The fluid motion um(x) is assumed independent of location r and is
obtained by treating the fluid as incompressible and inviscid. From these
assumptions, ﬁm(x) is equal to the change in volume below a given loca-

tion x divided by the corresponding tank cross sectional area. Thus (see

Figure 7),
A 2 X _
{u(x)} = - ? [ - r(cot ¢ {u(g)>b+ {v(g)}b)dx (4.3)
3
where
r 3 3
{;@}b = (w8 and {;‘(a}b - r°1
uﬁl(g) oﬁl
01 Vl(g)
OV.I VV;(ﬁ)
uﬂ.z(g) Otjz (4_ 4)
- < .-
01 Vl(é)
OVZ sz(ﬁ)
u(e) o,
u}33(§) 0ﬁ3
0) vy (6)
0% — v (§)
L Vs J (Wx1) L A ) (Wx1)




Fluid sloshing motions which disturb the planar character of the

assumed longitudinal motion are beyond the scope of this treatment, but
may be superimposed as generalized sloshing modes independent of the
shell distortions. Consistent with the assumed longitudinal fluid motion
k(x) an,t\i the ax1symmetr1c nature of the linear modelA the radial fluid
motion vk(x, r) varies linearly with space coordinate r. At a particular
longitudinal location x, the radial fluid motion is a function of the radial
motion of the adjacent tank shell boundary and of the longitudinal fluid

motion. Thus

A
{(dx 1)) = z (cot ¢ Lulely, + (vIED), - cot ¢{ﬁ(x)}) (4. 5)

Upon substituting Equations (4.3) and (4.5) into (4.1) and integrating

with respect to r, one obtains

2
[I\_/Ib]— Tl'Yb ( { (X)} {_r_z_ {\I(X)}T +% {r{\\f(x, r)}{rc/'(x, r)}T)dx

(4.6)

where

{__ u(x)} j x feor o (1), + (T, Jox

and
{rc(x, r)} = r cot ¢ {_ﬁ_(—éT}b + r{?@T}b - r cot ¢ {ﬁ(x)} (4.7)

The detailed expressions developed for evaluating Equation (4.6) for

various cases are summarized in Appendix C.
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Figure 7. Definition of Fluid Motions
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5. LAUNCH VEHICLE COORDINATE SYSTEMS

5.1 LOCAL COORDINATE DISTORTIONS

The matrices for the shell and fluid components are derived in Sec-
tions 3 and 4, respectively, using a system of generalized coordinate dis-
placements (local coordinates), as given by Equations (3.1) and (3.2) to
describe the shell distortion. These equations may be written in matrix

notation in the following form:

u(g) = [akJ [A]{g}:=[§J[A]?(Ek} (5.1)
e = [5,) [8]{e) = Lel [e)'(5)) (5.2)

and

where

Fszlal" .aﬁJ

5] = [F - - - By (5.3)
[Leer’. . . @)

¢]

U and V are constants provided as input which define the number of local

coordinates selected for representing shell distortions in the longitudinal

and radial directions, respectively, for a particular component.
5.2 SYSTEM COORDINATE POINT DISPLACEMENTS

In order to work with reference to a space frame, however, it is
necessary to transform the generalized coordinates to space coordinates

designated as system coordinates. The system coordinates represent dis-

placement and rotations at specific points on each shell component, con-
nections of spring-mass components, and applications of force inputs at

arbitrary stations along the vehicle.

For each shell component, system coordinates are provided to repre-
sent displacements in the longitudinal and radial directions at equally spaced
intervals along the shell meridian, and tangential rotations at the edges of

the shell (see Figures 8, 9 and 10). Longitudinal displacements {u(gi)}




at locations §i= (U-1)/(U-1), wherei=1, 2, ..., Uare expressed [using

Equation (5. l)] as

G, (9] () o

where
B 10 7]
I gy . ()

(5.5)

[v]

10
Iy Eye - - (Ey)

-l

Longitudinal displacements (v(gj)} at locations §J. =(V - j)/(V - 1),

where j=1, 2, ..., V, are similarly expressed (using Equation (5.2) as

{v(éj)}(vxl) - [V][B]T {5, (5.6)

where ~ 10,
L gy e (E)

(5.7)

i

[v]

|y gy )
The scalar quantities U and V are constants provided as input which
define the number of system coordinate point displacements to be provided
in the longitudinal and radial directions, respectively, for a given shell
component. These are related to U and V, as discussed in Section 5. 3.
The shell rotations, pl and pf, are evaluated at £ = 1 and 0, respectively,

and by Equation (A.17) can be shown to have the following form:

("} palT @+ BT @ -




where F 7]
0o 1 2 ... 9 10
[Dl] =D
0 1 0 ) 0 01y
and
P o—
0 1 2 9 10
[P2])= P2
0 1 0 0 0,1

cos ¢ sin ¢

= o .
D1 = T for conical frustums
cos ¢o
T o for convex upward ellipsoidal bulkheads, and
(1), %
cos ¢
3 0_ for convex downward ellipsoidal bulkheads
1 o ©
sin2 ol
D2 == for conical frustums,
sin o
(r 3 for convex upward elipsoidal bulkheads, and
1 o
o

sin ¢0

[, %

) for convex downward ellipsoidal bulkheads.

where (rl)o is r,evaluated at ¢ = ¢_

(5.9)

The total vector of system coordinates displacements for shell com-

ponent "a" is defined from Equations (5.4), 5.6) and 5. 8) as



v(£.)
YRR ") 10

N
—
©
[ui

As indicated in Figures 8, 9 and 10, each displacement and rotation
coordinate is identified by a number C where 1 X C = NC and NC is defined
as the total number of system coordinates used in the vehicle model. The
identification numbers C may be arbitrarily specified on the vehicle inde-~
pendent of location and, hence, must be identified with the vector {aa}
components in the input data. For this purpose, a vector {Ca} is provided
for each shell component a with the identification numbers illustrated in
Figures 8, 9 and 10 arranged consistent with Equations (5.4), (5.6) and
(5.10). Thus, in general,

U+l > (5.11)

) -

Q-Q -0

U+Vv

pl

Q QO

. P2 _J

For ellipsoidal bulkhead components, vector elements CU+V and

C are omitted.
p

5.3 LOCAL TO SYSTEM COORDINATE TRANSFORMATION
FOR SHELL COMPONENT

The local coordinate displacements for shell component "a" are re-
lated to the system coordinate displacements by the transformation [Ta]

as follows:

Consolidating the arrangement of local coordinate displacements, as

defined in Equations (5.1), (5.2) and (5.3), let

5.4




o
Gy __ = (5.12)
OV =1 (B,

Consistent with the system coordinate displacement vector {aa} given by
Equations (5.4), (5.6) and (5.8), the transformation matrix [Ta] which

relates local to system coordinates, is defined by the equation

(.= [r.) (3.) (5.13)

where, in general,

! -—
[Ta]—l RN IR AR7 1 I R A (5.14)

Thus

{aa} - [Ta]{aa> (5.15)

It is apparent that computation of the matrix [Ta] requires inversion
of the m;,trix [Ta _l, which must therefore be nonsingular, square, and
of order (U + V). This may require modification of the general Equation
(5.14), as discussed below. Special attention must be given the scalar
quantities U, V, U, V and the matrices [A], [B], [Dl]’ [Dz]to satisfy the

above conditions consistent with the shell component boundary conditions.

For ellipsoidal bulkheads, the [A] and[B] matrices are selected so
that the displacement v(0) and the rotation p2 are equal to zero to satisfy
the conditions imposed by axial symmetry. This implies that for ellip-
soidal bulkheads U= U, V = V, which requires that the last row of [V],
[Dl] and [DZ] in Equation (5.14) be removed. For a conical bulkhea_d, [B]
is selected so that v(0) is zero. This case requires that the last row of
[V] be removed, andU + 1 = U, V = V. For cylindrical shells, U= T,
V=V - 2. For other cases, U+V +2=U+Visa necessary condition.

The following example matrices fulfill the above requirements.

5.5



For nonbulkhead components:

-

1

0
[A](ﬁxll) = 0

0

1

0

0

0

1

0

0

0

0

1

0 0 0 0 0 0 O

(Illustrated for T = 4)

[B](Vxn)

0
0

w

0

0

0

0

0

0

(Illustrated for V = 6)

For ellipsoidal bulkhead components:

[A](ﬁxu) =

0

e

(Ilustrated for U = 4)

0

[B](\'fxll) = °
0

0

e

1

0

0

0

1

0

0

(Illustrated for V = 4)

5.6

(5.16)

(5.17)

(5.18)

(5.19)



For the simple unit diagonal [__A] and[B] matrices illustrated, the
matrix [Ta] -1 may be poorly conditioned and difficult to invert accurately
if U and/or V are equal to or greater than six (6). For these cases it is
recommended that Shifted Chebyshev Polynomial Coefficients10 (see
Table 1) be used for the [A:l and[BJ matrices to improve the accuracy of
the matrix Ta calculation. Using Table 1, Equations (5.16), (5.17),
(5.18) and (5.19) become, respectively,

For nonbulkhead components:

1 0 0 00 0000 0 0]
102 0 00 ... ...
[ﬁd(ﬁkll) i 1 -8 8 0 ... (5-29)
| -1 18-4832 . . . . . . ¢
(Illustrated for T = 4)
(1 o0 o : ) A
120 0
[x] 1 -8 8 0 0 R P
Bvan T 5 4 3 0 0 - . . .. (5.21)
1 -32 160 -256 128 O
-1 50 -400 1120 -1280 512 0

(Illustrated for V = 6)

For ellipsoidal bulkhead components:

— o—

1 0 0 . . . . . . .0
1 0 8 0 . . .« . . .0

[AJ(ﬁkll) = |1 o -48 32 o . . . . . . (5-22)
1 0 160 -256128. . . . . 0

(Illustrated for U = 4)

5.7




0 2 o o . . . . . . 0]
0 -8 8 0
[B]— = (5.23)
(Vxll1) 0O 18 -48 32 0
0 -32 160 -256 128 . . . . . 0
e -

(Illustrated for V = 4)

5.4 LOCAL TO SYSTEM COORDINATE TRANSFORMATION
FOR FLUID COMPONENT

As illustrated in Figure 7, and discussed in Section 4, the distor-
tion of each fluid component "b" is a function of the distortion of the three
enclosing shell components al, a2 and a3. The local to system coordinate
transformation matrix Tb for the fluid component is thus obtained as a
combination of the shell component transformations [T%] for a = al, a2 and

a3, as follows:

Consolidating the arrangement of local coordinate displacements,

as defined by Equations (4.4) and (5.12), let
r —-—
{aal}
{Eb} = ¢ {%2) ? (5.24)
L <Ea3>J

Consistent with Equation (5.10), let the consolidated vector of system

~

coordinate displacements be

-~

( <°al}
ORRECOY .29
L <°a3>J

5.8




Corresponding to Equations (5.15), (5.24) and (5.25), the transformation
matrix [I‘b] is defined by

{(3,)= Erb] {ap) (5. 26)

where
- I \ D
_[_Ta}].:_ o0
[TbJ = ¢ 0 E[Ta_z]s o ? (5.27)
' |
0 : 0 : (73] ) @)

From Equations (5.10) and (5.25), it is noted that the coordinate identifica-
tion vector for fluid component b is obtained as a combination of the shell
coordinate identification vectors {Ca}, defined in Equation (5.11), for

a =al, a2 and a3, as follows:

3\

({e.1)
{cp)-= ﬂ {c..) ? (5-28)
\<Ca3})

5.9
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6. LAUNCH VEHICLE STIFFNESS AND
MASS MATRIX SYNTHESIS

In order to construct the total vehicle stiffness and mass matrices
referenced to a common coordinate system, the individual component
stiffness and mass matrices are expressed in terms of the system coor-
dinates developed in Section 5.2. For each shell and fluid component e,

the matrices, ’cra.nsformed4 to system coordinates, become

RARSCARLATEN

] - [

where Te is the transformation matrix defined in Equation (5. 13) for

i

it

shell components and in Equation (5. 26) for fluid components. Ke] and
[‘Me] are the stiffness and mass matrices related to the local coordinate
system. The stifiness and mass matrices for the spring mass components
do not undergo the transformation Equation (6. 1), since they already

exist as input data in terms of the system coordinate displacements.

The total system stiffness and mass matrices are synthesized by
expanding each of the component matrices Equation (6. 1) into an enlarged
matrix which is of the same order as the total system matrix and which
is related to the set of system coordinates for the total vehicle, as shown
in Figure 11. This is accomplished by superimposing each of the com-

ponent matrices after an additional transformation, as described below.

As indicated in Figures 8, 9, 10 and 11 and discussed in Section 5. 2,
each system displacement and rotation coordinate is defined by an identi~
fication number C(C =1, 2, ... , NC) arbitrarily specified to suit the
convenience of the analyst. It is desirable, however, to reserve the
identification numbers (NC), (NC -1, ..., (NC - No + 1) for the No
system coordinates to be used for rigid supports to preserve a one-to-one
correspondence in the digital program output between the identification

numbers andthe coordinate row-columnlocation in the total system matrices.




The arrangement of the coordinates in the total system displacement
vector {o.} of order Nc is made to coincide with the coordinate identi-
fication numbers C Thus, the transformation matrix [Ae] relating

the total system displacements {c.} to the component e system displace-

ments {ae} is defined as

(s0) - [Ae] {a) - (6.2)

The elements 6rs of [Ae] are determined to be zero or unity from

the relations

=]
n

1 when s = C
rs r

(6.3)

0 when s #Cr

where Cr is the r-th element of the coordinate identification vector (Ce}

for component e [see Equations (5.11) and 5. 28)].

The total stiffness and mass matrices are obtained using transfor-

mation matrices [Ae] in the following summation equations

(K] g mg) - ai (2 " [x.][4] * Cif EARENIENECE

and
] s T NLF T
M R CARREN BN RS EN R LNIEN
(NCXNC) 21 a a a b1 b b b
T T
N TV ENIEN
= c c c (6.5)
in which NC’ NS’ NF and NM are the total number of system coordinates,

shell components, fluid components and spring-mass components, re-
spectively. The matrices [KaJ R [Ma] and [Mb] are, respectively, the
stiffness and mass matrices for the shell components and the mass matrix

for the fluid components, as defined by Equation (6. 1).

6.2




The superposition technique assures displacement compatibility

and force equilibrium at the joints between components. Displacement
boundary conditions are imposed on the total stiffness and mass matrix
by removing appropriate rows and columns of coefficients corresponding
to points on the vehicle and its support which are rigidly restrained from
motion. Due to storage limitations in the digital program, the order of

the resulting total stiffness and mass matrix must not exceed 80.

Additional limitations are placed on the size of the component
matrices utilized in Equations (6.4) and (6.5). The shell component
stiffness and mass matrices, [Ka] and ‘[Ma], must have an order no
larger than 22. For the fluid mass matrix, [Mb]’ the order must not
exceed 35, and for the spring-mass component stiffness and mass

matrices, [Kc] and [Mc] , the order must not exceed 10.




Figure 11.

Vehicle System Coordinates
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7. DYNAMIC RESPONSE EQUATIONS

7.1 NATURAL FREQUENCY EQUATIONS

The total stiffness and mass matrices which are derived in
Section 6 are used for computation of the natural frequencies and mode

shapes from the eigenvalue equation

[K)() - * ) ) =0 .
in which p is the circular frequency of the launch vehicle and {a} is the
modal vector whose elements are the longitudinal, radial and rotational
system coordinate displacements defined in Section 5 and illustration in
Figure 11. This equation is solved to obtain the natural frequencies P,
and the mode shapes for all modes, t, which are arranged in a square
modal matrix {a} of order NC - No' Each column, {at}, of [a], is the
mode t displacement vector with system coordinate elements, whereas
each row, LasJ, of [a], is the system coordinate s displacement vector

with natural mode elements.
7.2 STEADY-STATE RESPONSE EQUATIONS

The steady-state response due to simple harmonic loads of fre-
quency w is determined using a standard modal technique. The elements
of the load vector {P} of order (Nc - No) represent axisymmetric forces
(longitudinal and radial) or moments, depending on whether the associated
coordinate is a displacement or a rotation. The displacement response
(R} at coordinates s(s =1, 2, ..., (Nc - NO)) on the launch vehicle is
expressed as the linear superposition of the individual modal responses
based on an assumed modal damping factor e which is the ratio of the

actual damping to the critical damping for each mode and has the form4

{R) = {R sin {t - S‘}}

where
. 2 ‘ 2
(=2} < ([l ({2 @2
mt(pt zt) mt(pt zt)



l_ J Qt sin Gt
a
=\ -1 ° mt(Ptzzt)
(%) = (tan q, coss, ? (7.3)
a
oe){ =7
° mt(pt zt)
. J

O
"

t {“t)T {P}
o= (2 M {ey)

3

1/2
2, = [(ptz - wz) + 4pt211t2w2] (7.4)

K
o+
5
o
|

and

In these equations, 6 = 7 when P, = 0, and 6t = 0 when P, #0, w=0.

t
{I—{—} and {3} represent, respectively, the vectors of steady-state dis-
placement amplitude and the phase angle by which the forcing function
leads (+) or lags (-) the response. The velocity {R} and acceleration

{l"{} responses are obtained from the relations

® - {‘R’ sin (ot - (3 + g))}

(B) = -w® (R sin (ut - 5)

(7.5)

The internal forces (or moments) {Sa} acting at each point along
the vehicle on each shell component a are obtained from the equation

{8.) (

o = <§ sin (wt - 6)} (7.6)
(T+V) x 1) |




where

&Y 711) = (<] [2] @ in D2 + ([ [o] @ cor )
5 - [&,) [4,)(R sin 5} (7.7)
e o ()

(§> and (g} represent, respectively, the amphtude and phase angle of
the internal forces. LK J is row s (s =1, 2, ', (U+7V) ) of the shell
element stiffness matrix [K ] {R) and {6} are obtained from
Equation (7. 3).




8. DIGITAL PROGRAM ARRANGEMENT

The analytic model developed in the previous sections is used as
the basis for a digital computer program to determine the vibration
characteristics and steady-state response of a launch vehicle subjected
to axisymmetric sinusoidal loads. The program is written in Fortran IV
language for use on an IBM 7094 computer having 32K magnetic core
storage locations. The functional operations and the overall program
arrangement are illustrated in Figure 12. Each of the operations en-
closed by a block represents an independent link in the computer program.
This feature facilitates thetask of making future modifications or expan-

sions of the program.

The input data necessary to inititate the program sequence is dis-
cussed in detail in Section 9. After the data has been processed, the
program proceeds to develop the stiffness and mass matrices for each
of the shell components. The functional operations required to perform
these computations and the form of the equations used in the digital pro-
gram are provided in Appendix D. Consistent with the matrix formulation
of the basic equations, the numerical integration is performed using a

sixteen point Gaussian5 weighted matrix integration scheme.

In a similar fashion, the fluid mass matrix for each fluid compo-
nent is constructed. The functional flow diagram and the basic equations
required to describe the three fluid tank configurations considered in the
present analytical model are presented in detail in Appendix E. Unlike
the formulation for the shell stiffness and mass matrices, the equations
for the fluid mass matrix involve a double integration. For this compu-
tation, a double Lagrangian6 weighted matrix integration scheme was
found most suitable. This technique employs two ll-point Lagrangian

weighting matrices in sequence to provide a 22 point approximation.

The component matrix construction is concluded with the setting up
of the stiffness and mass matrices, provided as input data, of the spring-

mass components.



The shell, fluid and spring-mass component stiffness and mass
matrices are then synthesized into a total vehicle system stiffness and
mass matrix, according to the steps preseénted in Section 6. Utilizing
these matrices, the natural frequency equation, Equation (7.1), is for-
mulated and subsequently solved using a standard digital eigenvalue

routine which solves matrices up to order 80.

The program user now has the option of 1) continue the analysis
and move directly to the computation of the steady-state response, or
2) to temporarily stop the solution after the free vibrations stage for
the purpose of examining the output before proceeding with the compu-~
tation of the steady-state response. This option enables the user to
examine the results of the computation for the natural frequencies and
mode shapes before determining the input for the modal damping and

for the frequencies at which the launch vehicle is forced.

Checks on the accuracy and consistency of the various computations
are performed throughout the program. The shell component stiffness
matrices are subjected to longitudinal rigid body displacements to estab-
lish automatically that equilibrium is satisfied. For each shell compo-

nent, the "equilibrium check" appears as output in the following form

Equilibrium _ X Longitudinal Rigid Body Displacement Forces
Check - U

Y k..

i=1

(8.1)

where kii are the diagonal components of the shell component stiffness
matrix [Ka] associated with the system coordinates and U is defined
in Section 5.2 as the total number of longitudinal system coordinates
associated with component a. If equilibrium is satisfied, Equation (8. 1)
will be equal to zero.

In a similar manner, the mass matrices for the shell and fluid
components are subjected to unit accelerations to verify that the rigid
body mass characteristics have been accurately represented. The

"mass check" also appears as output and has the form

Min ut
Mass Check = ——2PUt (8.2)

computed
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where Min is the total mass of the element, provided as input, and

put
Mcomputed is the rigid body mass computed in the program. The ele-
ments of the mass matrix [Me] are corrected by the "mass check"
factor to provide the correct total mass representation for the structural

, in general, will not agree with M,

component e, since M
input

computed
due to the physical nature of the problem.

An additional check on the accuracy of the program is provided in
the form of a [Ta] "inverse check." In developing the [Ta] transforma-
tion, Equation (5.15), it is necessary to take the inverse of [Ta] -1. An

indication of the conditioning of this matrix is furnished by the product
-1
Inverse Check = [TaJ [Ta] (8.3)

which appears as output. The deviation of this product from a unit diago-
nal matrix provides an estimate of the accuracy of the computation for
[Ta:l . The incorporation of the three checks discussed above is a useful

aid in assuring the reliability of the digital solution.

An additional feature which is incorporated in the program is the
capability to stack cases, i.e., to solve numerous related problems in
sequence by simply stacking the data input for each of the cases. The
stacking capability can be utilized for

1) the solution of the complete problem, which may include
the steady-state response or

2) the solution of the steady-state response using natural
mode data previously stored on tape.

This feature provides for an efficient use of machine time by eliminating

the need for reloading the program deck for successive cases.
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9. DATA SETUP

9.1 VEHICLE SUBDIVISION

In order to prepare the input data, it is first necessary to subdivide
the launch vehicle into a consistent set of axisymmetric shell components
a, fluid components b, and spring-mass components c. Size limitations
of the program require that

1) The total number of shell components shall not exceed
forty (40),

2) The total number of fluid components shall not exceed
six (6),

3) The total number of spring-mass components shall not
exceed thirty (30), and

4) The order of the spring-mass stiffness and mass matrices
must not exceed ten (10).
Subsequent to the vehicle subdivision, the location of the system
coordinate displacements must be determined. The internal operations
of the digital program require that

1) Longitudinal, radial and rotational coordinate displacements
must be placed at each junction of two or more shell elements

2) Longitudinal and radial coordinate displacements are placed
at each point lying on the vehicle longitudinal axes.

These locations are defined as the terminal points of each shell
element. Additional longitudinal and radial coordinate displacements may
be placed, as desired, at intermediate points uniformly spaced between
the terminal points. Longitudinal, radial and rotational coordinates may

also be used to describe the motions of the spring-mass elements.

The coordinate displacements are then identified by a consecutively
numbered sequence. The arrangement of these numbers on the vehicle is
arbitrary and is left up to the discretion of the analyst. However, the
radial coordinate points lying on the vehicle axis are not to be identified
with a number. This is necessary because the program must assume these
displacements equal to zero, as is required by the axisymmetry of the ve-

hicle, and thus they do not contribute to the degrees-of-freedom of the



system. These are defined as "unnumbered" coordinates and are utilized
only in the preparation of the data input sheets for determining the value

of U and V (see Figure 11).

In general, for a supported structure, some of the "numbered" co-
ordinates may be assumed fixed or restrained from motion. The total
number of "numbered" coordinates which are not fixed must not exceed
eighty (80). In addition, the numbering sequence should be arranged so
that the fixed coordinates are numbered last to insure consistency in the

program output identification with the coordinate identification numbers.

The total number of coordinates for a shell component may not exceed 22,
of which in generalthe number of longitudinal displacement coordinates may
not exceed 11, and the number of lateral displacement coordinates maynot
exceed 10 (see Section 5.3). For the case of three shell components sur-
rounding a fluid component, the total number of coordinates for the com-

posite tank structure may not exceed 29.

9.2 INPUT DESCRIPTION

System Input Data

1) Heading
HHEAD is one line of BCD characters which will
be printed as the title of the printed out-~
put. The number of BCD words (6 char-

acters per word) must not exceed 11.

2) Input Parameters

NC is the total number of system coordinates
which include the fixed coordinates NO .

N_. - NO must not exceed 80.

C
NS is the total number of shell components.
NS cannot be zero and must not exceed 40.
NF is the total number of fluid components.
NF must not exceed 6.
NM is the total number of spring-mass com-

ponents. NM must not exceed 30.

9.2




3)

4)

5)

NO is the total number of fixed coordinates.

NC - NO must not exceed 80.

Applied Loads and Forcing Frequencies (Section 7.2)

NL is the total number of discrete applied

loads. NL must not exceed 80.

C, is the applied load coordinates Cl’ Cz,
i

Cy -t ONp-

Pi is the discrete applied loads Pl’ PZ’ P3,

-, PNL.

NW is the number of sets of forcing function
frequencies.

fi’ Afi’ m, f is the frequency of the forcing function

incycles per second(w = 27f). Thisprogram
will compute the steady-state response for the
frequencies fi’ fi + Afi’ fi + ZAfi, cer,

fi+(mi - 1) Afi’ i=1, 2, -, NW.

Modal Damping Factor

NET is the number of input n. Program will

generate a complete table of n by setting

M(NLp+1)’ MNgp+2) n(NC—NO) equal
toMNgT
M is the ratio of the assumed damping to the
critical damping in mode k
Tll: ﬂz’ "'13: T T]NET
Ratio of Acceleration
g is the ratio of the vehicle acceleration to

the acceleration of gravity.




6) Steady-State Response Option

S

S=<20

7) Print Options

opt1

opt

is a fixed point word which controls the

option of computing steady-state response.

indicates that the computation of the steady-
state response is not included. The nec-
essary data for the steady-state computa-

tion is saved on Tape 1 and 2.

indicates that the computation of the steady-

state response is included.

is the option to compute the steady-state
response only. The necessary data should
be available on Tape 1 and 2. In addition
the following System Input Data must be
provided:

S = 1, Heading [Item 1}], Input Param-
eters [Item 2)], and Modal Damping
Factors [Item 4)].

S = 2, Heading [Item 1)], Input Param-
eters [Item 2)], Applied Loads and
Forcing Frequencies [Item 3)],
Modal Damping Factors [Item 4)],
and the option word opty.

is an option word which controls the output
of stiffness matrix and mass matrix of the

shell and the fluid components.

opt1 = 1, print the component matrices

0, suppress the printing of com-
ponent matrices.

t
opt,
is an option word which controls the
printing of total stiffness matrix and total

mass matrix.

= 1, print the total stiffness and mass
matrices.

optZ
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opt

opt

EI

opt2 = 0, suppress the printing of total
stiffness and mass matrices.

is an option word which sets the rigid

body frequency to zero for computing the

response.
opt3 = 1, set the first frequency to zero.
opt, = 0, do not set the first frequency to

3

zZ€ro.

is an option word which controls the com-
putation and printing of forces for the

steady-state response.

opt 1, compute and print the forces.

4

0, do not compute and print the
forces.,

opt4
is the number of frequencies, mode shapes,
velocities and accelerations that will be

printed as the final output.

8) Polynomial Matrices (Section 5. 3)

Np
Yk

is the total number of polynomial matrices.

is the number of rows of polynomial matrix

[A] Tyxi1- (T, =11)

is the number of rows of polynomial matrix
2] Voare (T 210

is U, x 11 polynomial matrix.

k
is {’k x 11 polynomial matrix.
k=1, 2, 3, -, NP

The input sequence of the polynomial ma-
trices establishes the identification number

k which is referred by the shell components.




1)

2)

3)

4)

5)

The subscript k is used as the polynomial
matrix identification number by the shell

components.

Shell Component Input Data

I.D. Number

a is the identification number for shell com-

ponent a where 0 < a :NS

+.a indicates a conical shell component

- a indicates an ellispoidal shell component

Coordinates
U, Vv are the total number of system coordinates.
f], v are the total number of local coordinates

U, V must not exceed 11.

Coordinate I.D. Vector (Figures 8, 9, and 10)

(ID)i is the identification vector which is used
to position the elements for building total
stiffness and mass matrices. The length
of the vector must be equal to U + V and

the number must not be greater than NC'

Polynomial Matrix Identification Number

k is the polynomial matrix identification
number which refers to polynomial matri-

ces [A] K and [B] Kk in the system input data.

Shell Geometric Data (Figures 4 and 5)

¢o is the meridional angle for conical shell
and is the edge meridional angle for ellip-

soidal shell. cbo is input in degrees.

L is the height of conical shell
+ L indicates converging upward
- L indicates converging downward

L = 0 for ellipsoidal shell input
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6)

7)

o'l

wi

is the lower radius of conical shell

R, = 0 for ellipsoidal shell input

is the height of ellipsoidal shell
+ Db indicates convex upward
- b indicates convex downward

b = 0 for conical shell input

is the radius of the base of ellipsoidal

shell, @ = 0 for conical shell input

Orthotropic Shell Constants and Thickness (Equation 3.5)

(CZZ)p

(C,,)

33'p
(C3),

(t)p

are orthotropic shell constants at two
points £ = 0, 1 which are represented by
p=1, 2, respectively.

are orthotropic shell constants at four
points £ = 0, 1/3, 2/3, 1 which are
represented by p = 1, 2, 3, 4, respectively.

are shell thickness at two points £ = 0, 1
which are represented by p = 1, 2,

respectively.

Mass Density and Total Mass

Ya

M
a

is the mass density of the shell component.

is the total mass of the shell component.

M # 0, the ratio of the total mass M, to
the computed mass I_\-/Ia will be used as the
scaling factor for the mass matrix. When

opt, =1, the scaling factor will be printed

1
as the mass check of the mass matrix.

Ma = 0, no scaling factor will be used for

the mass matrix. When opt1 =1, the

computed mass will be printed.




8)

1)

2)

3)

Initial Stress Data (Figures (B.1), (B.2) and )B. 3))

is the depth of interior fluid.

is the weight density of interior fluid.
is the uniform interior pressure.
is the depth of exterior fluid.
is the weight density of exterior fluid.
is the uniform exterior pressure

is the reactive force at upper edge of

conical shell.

+ W produces tensile stresses.
- W produces compressive stresses.

W = 0 for ellipsoidal shells.

Fluid Component Input Data

I.D. Number

b

is the identification number for fluid

component b where 0 =b = NF.

Associated Shell Components (Figure 7)

al, aZ, and

a3

Fluid Data (Figure

H

Y

are the identification numbers of the

associated shell components
C.1)
is the depth of fluid component.

is the mass density of fluid component.

M # 0,

the ratio of the total mass M to the com-

is the mass of fluid component.

puted mass M will be used as the scaling
factor for the mass matrix. When opt, = 1,
the scaling factor will be printed as the

mass check of the mass matrix.

e



1)

2)

3)

I.D.

[}

M = 0, no scaling factor will be used for
the mass matrix. When opt; =1, the

computed mass will be printed.

Spring-Mass Component Input Data
Number

is the identification number of spring-

mass component ¢ where 0 <c = NM'

Stiffness and Mass Matrices

n

.

is the order of the spring-mass component

n must not exceed 10.

is n x n stiffness matrix of spring-mass

component,

[M] c is n x n mass matrix of spring-mass

component.

Coordinate I.D. Vector

IDC.
1

is the identification vector which is used
to position the elements for building the
total stiffness and mass matrices. The
length of the vector must be equal ton

and the number must not be greater than

NC'

9.3 SAMPLE INPUT DATA SHEETS

Sample input data sheets are included to illustrate the input format.

The data must be arranged in the order shown, that is,

1)
2)
3)
4)

System input data
Shell component input data
Fluid component input data

Spring-mass component input data
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THE SYSTEM INPUT DATA

OATE

NAME

SPACE TECHNOLOGY LABORATORIES, INC.

COMPUTATION AND DATA REDUCTION CENTER PAGE

PROBLEM NO.

NO, OF CARDS

PRIORITY

or

KEYPUNCHED BY

VERIFIED BY

[] 7 73
HHEAD
™
<
111 2 7 17
13738 ] 5
] 58]s6 81 71|73 |
SYMBOL PRE Loc, YALUE EXP,
NC ; I[NC
No R
_NF I| NF
My 1] NM J
NU T NG
I
N 1I{ NL X
°r 41| LDCRD 5“1
Cp I ¥
\ R ] F
TN, T ]
P? 2
. )
N
4 ,
) ]
I
" ]
‘wl PMEGA
7."0)1 k
m
1 I
3 : 1k
. I !
¥
CHy ] ;
Zioy, ’
T I ] ¥
I FICET:
M, SR Y '
><| M ‘
W . |
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SPACE TECHNOLOGY LABORATORIES, INC.

DATE COMPUTATION AND DATA REDUCTION CENTER PAGE or
NAME PRIORITY
PROBLEM NO, KEYPUNCHED BY
NO. OF CARDS VERIFIED BY
1 it 73
™
<
T 1] 2 7 17 3
gl ] 3
-] 85] 56 8t F AT RA -
i %
SYMBOL ‘ g"a Loc. VALUE EXP ¥
TN %
PED ¢
g |G
| 3
;& i«%
s f{1|INs 2
i
&
opt, 4 1| 1oPTL ;
opt, 1| I|IgPI2 :
oPt, J T |IgFT3 g
% FI[IPTh
Npr 11[NET &
§ %
g : ;
Fp 1ve 3
| ;
1 ;
S ESIR) )
¥t i
{ A
i i
U '} I JUBAR ¥
v, . 11 [VuAR %
i %
(n) T4 APELY | 11,11 3
" 0L,0J A
(8], Y04 BPALY 11,11
{{_p1,00
i
L.
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SPACE TECHNOLOGY LABORATORIES, INC,

DATK COMPUTATION AND DATA REDUCTION CENTER PAGE or.
NAME —_ PRIGRITY
PROBLEM NO. : - KEYPUNCHED BY
NO. OF CARDS VERIPIED BY
1 7 73

$2
11 2 7 17 F
E i 1] F
{ 58] 86 1 71 N ] F
symMBoL | Loc. VALUE EXP, j
B 4D !
;
i":
| 4
3
k=L,2,3 1
¢
ae !NP -:-“
J ?
?
! 3
| E
}
| a
1 P
5 gj
. |
4 d
.
] 3
" 1
. ¢
1 H
J $
]
i
|w l
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THE SHELL COMPONENT INPUT DATA

DATE

NAME

SPACE TECHNOLOGY LABORATORIES, INC.
COMPUTATION AND DATA REDUCTION CENTER

PROBLEM NO,

NO, OF CARDS

PAGE

PRIORITY

or

KEYPUNCHED BY

VERIFIED BY

1 7

73

X3

‘] 2 17 &
20 28 3 3
36 &t KD ] 1
SYMBOL Loc. VALVE EXP, ‘ K
o INA
U Iy !
v v "
) TUB ] {
7 IVB i
(Ip)y IDVT
(ID)Q §
. ] 1
. i ".
; $
UID)G.g
] _l ,';
X INK -
]
i — B
Yo [_| pIn i
L VXL |
R TS ¥
5 | | BBAR ]
a ABAR 1
E?
] b
(C11)y  |enx %
(C1y)n 11 ¥
(C12)1 " |ciet »i
Colo i |~ ] |
(Uoa)y ceel :
(C5) 8
(Ca3)1 331 1
(T3} 1 I
\033)3 é
(C33)k
{Ca)y C34I
(C3l)2 J
\C3u)3
(T )
><| 0y ghlx
leo] Tz l
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SPACE TECHNOLOGY LABORATORIES, INC.

DATE COMPUTATION AND DATA REDUCTION CENTER PAGE or
NAME — “ O PRIORITY
_ 'H:"‘
PROBLEM NO, KEYPUNCHED BY
—~ gLy
NO. OF CARDS VERIFIED BY
i E; 73
$2
THE
55| 56 61 71 {7 l
SYMBOL PRE Loc. VALUE ExP, 3
KCML)j
(Cl;.l;)h
(t) THI
{t)2 ]
Ya DESTA
by M
]
_H HI
v | prerr .
Py PRI :
“(* 012 I A
Vi 1__| DFSTE %
2, PRE
W WFYRC 1}
{ I‘wn \ .:
5 D -}
1 ]
\ ‘,f
’_ %
] |
1
nl
| |
;
" ]
= .
&%) L
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THE FLUID COMPONENT INPUT DATA

EX

_ o Iv-11
SIPACE TECHNOLOGY LABORATORIES, INC.
DATE COMPUTATION AND DATA REDUCTION CENTER PAGE or
N
NAME PRIORITY
PROBLEM NO, KEYPUNCHED BY
" NO. OF CARDS ' - VERIFIED BY
i 7 73
>
| 1 2 17
Eir: A : 4
155|356 61 7 {n E
sYMBOL re| Loc. VALUE EXP. ]
b I| INB 5
a
1 Ti. _IDAl
&, T| _TDA2
a_'zf I IDAS
H HE
Y [ DESTF
M E M
E! ND
{ ;
} 2
ﬁi
3
;
p‘
.
i
3
Y
b
X
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THE SPRING-MASS COMPONENT INPUT DATA

THE SPRING -MASS COMPONENT INPUT DATA Iv-12
SPACE TECHNOLOGY LABORATORIES, INC.
oATE. COMPUTATION AND DATA REDUCTION CENTER PaGE or
NAME - — . PRIORITY
PROBLEM NO, - - KEYPUNCHED BY
NO, OF CARDS VERIFIED BY
1 7 73
$2
11 2 7 - 17
g | H
1 53] 56 'l 71 |7
SYMBOL Y PRE LoC. VALUE EXP,
¥
¢ NI | INC
n 11 [ IN
1
(k). kM) ck 10, 10
M _Jo1, o
4
(M) iM | CM 10, 10
4 lor, oJ

D 41| IDVIC
{IDCL T

(I it
1_H ND
2
;
y
+
3
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L di1x)
7 lix1)
]

(ixj)

a, b, ¢

al, a2, a3

[Ajmxu) = |-_ak1;|
(B 711y l:bir;]

{Ce)

C
r
C,(6)s Cp,(E), C,y(E)

Cy5(E), Cyy(6), Cyy(8)

EDI] (2x11) [D"J (2x11)

10. NOTATION

Row matrix of order j
Column matrix of order i

Rectangular matrix with i rows and j
columns

Identification number for the shell, fluid and
spring-mass components respectively

Semimajor and semiminor axes, respectively,
of an ellipsoidal bulkhead

Edge radius and height, respectively, of an
ellipsoidal bulkhead

Identification numbers for the shell components
which enclose a fluid component

Polynomial matrix associated with uk(g)
Polynomial matrix associated with v, €)

Coordinate identification vector for
component e

rth component of {Ce}
Orthotropic stress-strain coefficients

Orthotropic moment-curvature coefficients

Differential meridional distance along shell

Derivative with respect to meridional
distance s

Constants used to determine the rotation
vector {p}

Matrices used in the definition of the
rotation vector {p}
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e
g

H

i, 8, f,
[K] (NCXNC)

[ ((0+ 71 (T+ )
(% ((T+¥1(T+ 7))
[
%)

K

[
[

General identification number for vehicle com-
ponents which may stand for a or b

Ratio of vehicle acceleration to acceleration
of gravity

Total fluid level measured positive upward
from the base of a2

Fluid levels associated with tank shell
sections al, a2, a3

Total launch vehicle stiffness matrix

Stiffness matrix for shell component a
associated with the system coordinates

Stiffness matrix for shell component a
associated with the local coordinates

Stiffness matrix of spring-mass component c
associated with the system coordinates

Row s (s= 1, 2,--- (U + v)a)Of[Ka;l

Shell meridional curvature

Shell hoop curvature

Length of conical shell

Generalized mass for mode t

Total mass matrix for the launch vehicle

Mass matrix for shell component a
associated with the system coordinates

Mass matrix for shell component a
associated with the local coordinates

Mass matrix for fluid component b
associated with the system coordinates
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Mass matrix for fluid component b
associated with the local coordinates

Mass matrix for spring-mass component c
associated with the system coordinates

Total number of system coordinates used in
the vehicle model

Total number of fluid components used in
the vehicle model

Total number of spring-mass components
used in the vehicle model

Total number of fixed coordinates-

Total number of shell components used in
the vehicle model

Initial meridional stress
Circular frequency of the vehicle

Circular frequency of the vehicle for mode t

Applied load vector
Generalized force acting on mode t

Radial distance from the vehicle longitudinal
axis to each point on the shell

Radial distance from the vehicle longitudinal
axis to each point in the fluid

Meridional radius of curvature of the shell
Hoop radius of curvature of the shell
Displacement response vector

Displacement response amplitude vector
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{5 ((T+¥)x 1)
(5

t

[Ta) (@ 7@+ 7)

[Tﬂ (WxW)
(v ((G+ 1) v} ((T+¥)x)

w (€), v{£)

{A(x)} (Wx1) = {{‘J‘m (x)}

and

(Ve 1) gy = (Frnte 1)
u,v

0,V

[U] (Ux11y’ [V] {Vx11)

i e

w., W
1 e
w

Vector of internal forces or moments acting
at each point of shell component a

Amplitude vector of internal forces {Sa}

Identification number for a particular mode
of vibration

Time

Transformation matrix which relates local
to system coordinates in shell component a

Transformation matrix which relates local
to system coordinates in fluid component b

Liongitudinal and radial displacement vectors,
respectively, for shell components

Generalized longitudinal and radial displace-
ments, respectively, for shell components

Longitudinal and radial fluid displacements,
respectively

Total number of longitudinal and radial
system coordinates, respectively, associated
with each shell component

Total number of longitudinal and radial local
coordinates, respectively, associated with
each shell component

Constant matrices used in the definition of
the system coordinates

Fluid weight densities interior and exterior,
respectively, to each shell component

Effective fluid weight densities equal to,
respectively, gw, and gw,

The sum of U + V for the three shells
surrounding a fluid component
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2y

aa}((ﬁ+ V)x 1)

-NO)X(NC- NO)

el (lx(NC-NO))

{*0 (N -Ng)xl

{g>((N ¢ Noix})
B ovvm)
[2e] ((ﬁ‘ﬂ‘f)ch) = [6r§-'

€¢, Ee
Ny

(&

Longitudinal axis of the launch vehicle
Structural impedance for mode t

Modal vector whose components are the
longitudinal, radial and rotational system
coordinate displacements for shell com-
ponent a

Consolidated vector of local coordinates

Generalized coordinates in the longitudinal
and radial directions, respectively

Modal matrix with each column representing
a vehicle mode shape

Each row of [a] which is a system coordinate
"s" displacement vector with natural mode
elements

Each column of [a] which is a mode "t"
displacement vector with system coordinate
elements

Mass densities for shell and fluid components
respectively

Vector of steady-state displacement phase
angles

Vector of phase angles for the internal
forces of each shell component

Transformation matrix relating total system
displacements to component 3 system
displacements

Meridional and hoop strains, respectively,
for the shell components

Ratio of actual damping to the critical damping
for each mode t

Nondimensional variable describing location
on each shell component
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Meridional rotation of the shell components
Meridional angle

Frequency of the forcing function in radians
per second
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APPENDIX A
SHELL GEOMETRY AND ENERGY EXPRESSIONS

The additional potential energy of a shell of revolution due to axisym-

metric deformations is given in the form

1 o 2
V—Zj;Zﬂr(N¢e¢+Neee+M¢K¢+M9Ke+N¢p)ds (A. 1)

in which the last term represents the work done by the initial meridional
stress, N °. 7 The initial hoop stress does not make a similar contribution
to the potential energy since there is zero rotation in the hoop direction.
In the notation of Flugge, 8 the strains (e¢, ee), curvatures (K¢, KG) and the
meridional rotation p are expressed in terms of the displacements vV andw

(see Figure A.1l) as follows:

Ef;%(%”’) (A.2)

¢ =r1—2 (¥ cot ¢ + ) (A.3)
K¢=ril%[%;(%%-v)] | (A.4)
K, =3%9 [—rl—l -(g% v)] (A. 5)
p=;1—1—(% -v) (A.6)

where Ty and r, are the radii of curvature of the shell in the meridional
and hoop directions, respectively. Hookes law for an orthotropic shell
with the principal directions in the hoop and meridional directions takes

the form:9




r N ~ - ( ~
N, C,; €, O 0 ¢
Ng c,, C,, O 0 ¢
? = < > (A.7)
M, 0 0 Cy3 Csy | | X,
Mo O 0 C34 Cy4q | (Fo J

The shell configurations to be considered for the bulkheads and the tank
walls are listed below with their corresponding geometric parameters

defined:
1. Conical Shell (Figure A.2)

a) General Case

¢ =9,
r = o (A.8)
1
r, = (RZ/sin ¢>O) - S cot ¢
b) Cylinder (radius = R)
‘IT
=3
r) = (A.9)
r, = R
2. Ellipsoid (Figure A. 3)
a) General Case (a = semimajor axis, b = semiminor axis)
r.o= azb2
17 3/2
(az sin2 o + b2 cos2 ¢)
(A.10)
2
a
r. =

2 1/2
(az sinZ ¢ + b2 cosz ¢)

A2



b)

Hemisphere (radius = R)

r1=R

r, = R

(A.11)

For the present analysis, the longitudinal displacement u and the radial

displacement v will be more convenient.

placements vV and W by the transformation

-u sin ¢ + v cos ¢

W = ucos ¢+ v sin ¢

They are related to the dis-

(A.12)

Substitution of this transformation into the strains, curvature and rotation

yields

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)




\>§< r=r251N¢

ds=r]d¢
u

A

¢ A

€1

Figure A.1l. Meridian of Shell of Revolution

Figure A.2. Conical Shell



4"

2

Figure A.3. Ellipsoidal Shell



APPENDIX B

INITIAL STRESSES IN SHELL ELEMENTS

In the formulation of the shell stiffness matrix, the effect of the initial
meridional stresses is included. Expressions for these stresses are
developed below for each of the shell elements to be considered. These
derivations are based on membrane theory which is a good first order

approximation except in verylocalized areas where bending predominates.

Conical Element

The derivation of the initial stresses in a conical element is divided

into three steps. The notation is listed below and shown in Figure B. 1.

R2 lower radius of the conic
?s meridional angle
L length of element
V_Vi effective density of interior fluid
hi location of interior fluid surface
"vs"/e effective density of exterior fluid
he location of exterior fluid surface
P, uniform internal pressure
Pe uniform external pressure
=W reactive force at top of conic {+ produces tensile stz_'ess\
- produces compressive !
stress /
1. Stress due to uniform pressures and reactive force
N SN S W+ (p. -p)m rZ-RZ' 0=x=L (B.1)
q>1 2mr sin ¢O i e 1 -0 ’




2.

3.

Stress due to interior fluid

Case 1: hi - L

1 (hi
N, =— pr dr
4)2 r sin ¢o Jx

h
-1 i
= T eind. W, (hi-x) (Rz—xcotq)o) (—dxcot¢o)
o ’x
w, cot ¢
i o 1 2 2

-+m§E‘i(hi‘x)Rz‘z(hi"X)(Rz+hi°°t¢o>

+ L b33 cot «h, <L
3 (R - x| coté, xuhy =

Case 2: hi - L

L

N -1 j pr dr

©-
[\
1

r sin ¢O x

W, cot ¢
i o) 1 2 2
??ﬁT;[:hi(L—x)RZ'T(L %) (Ry +hycot o)

]

+%(L3—x3) cot¢o] O=x=L

Stress due to exterior fluid

Case 1: hef L

él 2 xz)(R2 + he cot ¢0)

+-§-(h3-x3)cot¢J 0=x<h <L
O - e

(B. 2)

(B. 3)

(B.4)



Case 2: he>. L

-1 - L
N¢3 i ¢0 . pr dr
-w_cotd
e 0 1,.2 2
__..—--.-———I_sin<1>O [he(L—x)RZ-Z(L —x)(R2+hecot¢o)
+ -;— (L3 - x3) cot ci)oJ Oex<L (B.5)

The total meridional initial stress on the conic will then be the sum

of the above stresses

N, =N, +N, +N (B. 6)

Ellipsoidal Element

The expressions for the initial stress for an ellipsoidal element are
developed separately for the upright and inverted bulkheads. The notation

for both cases is listed below and shown in Figures B.2 and B. 3.

a radius of base

o't

height of element

¢o slope of meridian
(Note: The semimajor and semiminor axes, a and b,
can be computed from a, b, and ¢o.)

Wi effective density of interior fluid

hi location of surface of interior fluid
| We effective density of exterior fluid

he location of surface of exterior fluid

P; uniform internal pressure

P uniform external pressure




Upright Bulkhead (Figure B.2)

1. Stress for exterior fluid
Casel: h =b
e
p.r T
__-e2 1
Nq)l = >— t s———=m 3 f? 2rrp dr
where
- (h +b - To)z : H 2
T=a 1- L€ 5 =a 1- —g—
b b
p:-.\;;e (he_x) (B.7)
— - } rZ
x+(b-b)=D>b \ - =
a
This finally leads to
- 3/2
N Ptz Yo Mo 2 2 & 3 el
¢y 2 rsin¢ |2 '3b'—2 e 3 2z
forr<r=a
p.T (B. 8)
N =- eZZ for O=r=T
¢y

P T
_ __e2 1
N¢l - 2 2mr sin ¢ j; 2mrp dr
=z 2 3/2
Perz We Her 2%h rz azb _
-T2 r sin ¢ 2 + 3 1';7 -3 for0=<r<a (B.9)




2. Stress for interior fluid

1 r
N, = + 2 d
q;z 2 2mr sin ¢ ,/3? TP ar

where
_ . (h.+b-bf2 .2
SR S RO Y/ 1
b b

p:wi(hi—x)

or, after integration,

|

, 3/2

r W 2 2 / Z\ ,

g, - S e 2
¢, 2 rsind |2 3pe ! Coa%) ]

for r =r=3a

Nd) = 12 forOSrs;I:
2

Inverted Bulkhead (Figure B. 3)

1. Stress for interior fluid
p.r T
i2 1
= 2
Nq)1 > + s ] mrp dr
O .
for
=\ 2
_ (b, + b - B)
r<r=a 1 -2 5
b
Hi'2
_ _ >
= a —-—~b2 hl 20
or
=3 hi <0
where
p=w, (x-h) x Zh,

(B. 10)

(B.11)

(B. 12)




This leads to the following expressions for the stress:

r sin ¢

2. Stress for lower fluid

for

where

or, after integration

1

N =.--&2 e

¢, 2

~l_a.zb l_r2
3 =z
a
_\3/2
+.a;.2.]2 1_.-:.62
3 2
a

B.6

(B. 13)

(B. 14)
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Figure B.2. Upright Ellipsoidal Bulkhead
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APPENDIX C

FLUID MASS MATRIX EXPRESSIONS

Detailed expressions are given below for evaluating Equation (4. 4) to
obtain the fluid component mass matrix. Three cases are involved de-
pending upon whether the upper and lower tank bulkheads are convex up-
ward or convex downward (see Section 2.0). A general description of the
program operations utilized to construct the mass matrix for the fluid
tanks is described in Appendix E. A brief flow chart followed by the
relevant equations in a form suitable for a weighting matrix integration
scheme is included to provide the user with a more basic understanding
of the digital program.

C.1 CASE I. UPPER BULKHEAD CONVEX UPWARD,

LOWER BULKHEAD CONVEX DOWNWARD

Equation (4.6) for the general tank shell can be expressed as the sum
of contributions to Mb from fluid in three sections of the tank, as illus-
trated in Figure C.1 for Case I. One of these sections is that located above
the base of the upper bulkhead (shell 1). A second lies below the top of
lower bulkhead (shell 2). The third lies between the two bulkheads. In
general, the motion of the fluid in any section may be affected by the
generalized coordinate distortions associated with all three tank shell

components. Thus, Equation (4.6) is expressed as

1 [ ] m=3 ﬁ(m) 4 r(rn)2 'A r(rn)2 A AR
L[] - Y e E S
mUobd T & fo NANE Um) 2 Hm)™

o {(m)

T
1
+ > {'(m)o(m) (x, rﬁ {r(m)e(m)(x, r)} dx

(C.1)

where m = 1, 2 or 3, depending upon whether the fluid surface lies
within the range of tank section (1), (2) or (3), as illustrated in Figure C.1.

H is the depth of fluid within tank section (m), r is the radius of
(m) (m)

shell (m) and, similarly, {(x) and G(m)(x, r) represent the fluid motions




- 2
2)
{T a

b4
- (£) p dx
J; "(2)17(2)
2y = ¢

(= )
fo (1) ot ¢(1>{‘(1)‘5’ o

X
| v ) Y ax
fo <1>{(1>

[vam e a —— - — - — . — —— ——— — . — — o]

f (3)
- ] r(3) cot ¢(3) u(3)(§) dx
fﬁm (59 dx
T v
L, (3){(3) )
. 0 \

fﬁ(s) |
AR E R *”(3){1(3)“59 =

[ COL
- T v X
A 3173 )

C.2

within tank section m. The specific form of the column matrix d (x)
P (m)

in terms of the component shell generalized coordinates is

(C.2)

(C.3)

e ——————————————————



and r N

0
0
S
r(3) A = / x \
7 Y3ylx)) = \_f . &) ax ; (C.4)
, T(3) °°t 9(3) {438
X
- (§) ) dx
fo r(3){’(3)g )
where ~
o, (6)
{l(m)(g)}= _
url)
and
7€)
{’(m)(’;‘& - _
ver(£)

are the generalized coordinate displacement vectors for tank shell com -
ponent m, and ¢(m) is the meridional angle for tank shell component m,
and U and V are the number of longitudinal and radial generalized coordi-

nates, respectively, in shell component m.

The column matrix {r(m)c (x, r)} in terms of the component shell

(m)
generalized coordinates is

r “
T(1) cot ¢(1){‘(1)‘§§
r(l){j(l)‘g’}

2
—————————— 2 cot ¢ r
A _ \ - (1)) (1) A

loee — — e — e — — ]

(C.5)




- ) cot (£)
T(2) °© "5(2){(2) g} 2 cot o oo

€ F - > G(Z)(x) (C.6)
(2){"(2)

L J

e —

{’<z>°<z>‘x’ ’} -

] 2cot¢>
%(3&(3)("’ r’} i 4 " ( r(3)(3) {(23) A(s)(x}
T(3) <Ot $(3)(%(3){&)
U(a){v(z)‘g} ) (C.7)

C.2 CASE II. UPPER BULKHEAD CONVEX DOWNWARD,
LOWER BULKHEAD CONVEX DOWNWARD

The Case II configuration is illustrated in Figure C.2 which also
defines the tank sections m for this case. Equation (C. 1) for the fluid in
tank section (1) is modified as follows. The fluid motion {G(x)} in tank

section (1) is given by



{\1 ( )}: 2
{(l) ’ (r(z{2 i r<1)Z)<

r x
j; Y1) cot ¢(1){1(1)(§§ dx
j; ru){vu)‘g&d"

oo s ek e e em e e e e e s e e e e e — —

] ) °°t ¢<2){<2)‘5} B )°°t¢(2){*(z)‘§§ =

o — e e e e e e e e e e e e e e e

ﬁ3
f T(3) cot st(3){%3)“3’ dx

o

ﬁ3
r(3){’(3>‘§§ dx

(C.8)
The fluid motion {G(x, ?)} in tank section (1) is defined by
- 3
cot "’(1){1(1)‘%
A vi1y(€)
A Al (r -r(Z)) {(1) }
{Vu)‘x’ 9 "o @) T f - eot 8 i)
0
L o
~
G-ry) || ¢(2){(2)“3}
o —— (rl) { P - cot ¢(2)[{\1(2)(x§
o ") {(Z)(g)} L
0 J (C.9)




Upon substitution of Equationé (C.1) and (C. 2) into Equation (4. 1) and
integration with respect to £ between the limits of r(l) and r(z), one

obtains the following expression for the m = 1 portion of Equation (C. 1).

1 e
L Im
"Yb[ b](:l)

= 2 2 - '
fo (1)(r 24_r 2)@2)2 (1)) . )(}{r(z) (1)) B, )(x)} dx
(2) ~ ()

q 4 3 2. 2 4
(1){r,,y +8r T -6r T - 3r
+f ((z) (2)7(1) (22) (1) (1) ){/}(1’ 1)(x,r§§/(l’ 1)(x,r}T dx

o o) - T)
H 4 3
(1) r + 2r, T
+f (2 (2)((1) : (1)) @y (”)({(1 1)6e r}{}(l,z)(x’ r}T
o T(1) T T(2)

+ {ﬁ(l, 2)(x, rﬁ{Q(lv,-l)(x, rﬁ'I)dx

(1)(3r - 8r +6r - )

(2) (H* (2) (1) (2) (1)

+f ( ) {(1 2)(x r}{(l Z)(x r} dx
(1) T T(2)

o

(C.10)
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where

2 -
{( (2) > (1) ) (1)(x} <

r )
v,y (€)
{‘A’(l b @ J— '—&l)—g—}--'—
0
L 0 J

R et

)

I e e e

(o
*j; F(1) ot ¢(1){‘<1)‘§9 &

-l

[ﬁ(a)
s 1‘(3){%3)‘5’} .

<cot ¢(2){(2)(€}>

}(c.n)

2 cot ¢(1)

r(z)‘2 ) (l))
) o
(1)

(C.12)

("(2)2 i

2 2
2ot 95 [y - Ty) 8 1y(x)
(r 2 -y 2) 2 (1) ’
(2 "X
(C.13)
C.7




The expressions for the m = 2 and m = 3 portions of Equation (C. 1)
remain unchanged. In summary for evaluating the equivalent of Equation
(C.1) for Case II tank configuration, use Equations (C.10), (C.11), (C.12)
and (C.13) for m = 1, and Equations (C.1), (C.3), (C.4), (C 6) and (C.7)

form = 2 and m = 3.

C.3 CASE III. UPPER BULKHEAD CONVEX UPWARD, LOWER
BULKHEAD CONVEX UPWARD

The Case III configuration is illustrated in Figure C. 3 which also
defines the tank sections m for this case. Equation (C. 1) for the fluid

in tank section (3) is modified as follows. The fluid motion {G(x)} in tank

section (3) is given by

2 2
r - T X

@(3)("9 _ ((z)2 &) 4[0 r(z){v(z)(g)} y  (c.19)
fo T(3) oot ¢(3){‘(3)‘§)}
[ f

T v (g&

(3)) (3)
L7° J




The-fluid motion {(\r(x, ’f)} in tank section (3) is given by

) cot ¢(3>{3(3>‘X§

{(}(3)(}{, {5)} = _W___i(_@_)_
) ™ %)

i (§ - r(3))

(F(3) ~ *(2)

? - cot ¢<z>{ﬁ<3)‘x9

(C.15)

Upon substitution of Equations (C. 14) and (C. 15) into Equation (4.1) and
integration with respect to £ between the limits of T(3) and r(2) one

obtains the following expression for the m = 3 portion of Equation (C, 1).

C.9
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o 6fr(3) - 7(2))

3 2 2
(3) r(y)’ - BT ) * 6T )

33
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(C. 16)

(C.17)
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Equation (C. 1) remains valid for m = 1 and m = 2, however, Equations (C.2)

and (C. 3), respectively, become

- h
fo Ty °* ¢(1){1(1)(§§ &

X
- x () ox
fo (1){“(1) }
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« H
(3)
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\“ J
In summary for evaluating the equivalent of Equation (C.1) for Case III

tank configuration, use Equations (C.1), (C.20) and (C.5) for m = 1,

use Equations (C. 1) with limits of integration

j’ (2)
H

(3)

as]

Equations (C. 21) and (C.6) for m = 2, and use Equations (C. 16), (C. 14)
and (C. 15) for m = 3.
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TANK SECTION (1)
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|
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U

|
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LOWER BULKHEAD (SHELL 3)

. DEFINITION OF TANK SECTIONS

B. TANK SECTION FLUID LEVELS

Figure C.1l. Case I Tank Configuration

C.14



TANK SHELL 2 TANK SHELL 1

TANK SECTION (1) L
PSS S 4 1 (1)
AT A A
- H
TANK SECTION (2) | L.F Hez)
S CETET =TI TS -
ST
A -
TANK SECTION (3) ST Hes)
' Ol
TANK SHELL 3
Figure C.2. Case II Tank Configuration
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Figure C.3. Case III Tank Configuration
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APPENDIX D

CALCULATION OF THE SHELL STIFFNESS AND MASS MATRICES

In this section the equations for the shell stiffness and mass matrices
presented in Section 3.0 are rewritten in a form more suitable for digital
programming. As previously mentioned, integration of these equations is
accomplished using a sixteen (16) point Gaussian weighting matrix integra-

tion scheme.

These operations may be performed in a straightforward fashion using
matrix operations. The equations in this section are, therefore, written
in matrix notation and are identical to the equations which are coded into
the digital program. For a more complete understanding of the steps re-
quired in the construction of the shell stiffness and mass matrices, a
functional flow chart depicting the program operations is presented in
Section D.1. The weighting matrix coefficients are given in Section D.2
and other detailed expressions are provided in Sections D.3, D.4 and D.5

for elements KM, M and for the initial stresses N¢.




D.l FUNCTIONAL FLOW CHART FOR CALCULATION OF SHELL
STIFFNESS AND MASS MATRICES

RESET INDEX

ASSEMBLE SYSTEM

COORDINATE CALL
VECTOR AND STORE || Basic paTa FoR
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<C}a ={XI£T'PD(§T }
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1 ASSEMBLE
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D.1 FUNCTIONAL FLOW CHART FOR CALCULATION OF SHELL

STIFFNESS AND MASS MATRICES (Continued)

—
[ ' 2 ‘o ELLIPSOIDAL
1 (——rg_ Z) (———rg: ‘) e (g—r: Z) SHELL [ compuTE
U-3) (U-3 y - 3410 EST SIGN dy = cos e /ry(9) " 9,
[g"(ui)] = ! (‘u"'i) (ﬁ_n) (U -1 ) L= d, = sin g /r)(e) " 9,
uxtt . . : + CONICAL
. : SHELL COMPUTE
1 0 0 0 d) = cos ¢, sin ¢°/L
N 3 = gin® g/ L ‘
1 1 1 S o,
-2y vo2Y ... qv-ay®
[g v.] = i S 1
Do = L = )
1 0 0 o ASSEMBLE
. [D1]=Dl{o 1oz e 10]
ASSEMBLE r[g(u)] Yoo 012 e 0l
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D.2 GAUSSIAN WEIGHTING MATRIX TABLES

DATA FOR [52;16] DATA [WG;I
Gl 0.00529 95325 w1 0.01357 62297
G2 0.02771 24885 w2 0.03112 67620
G3 0.06718 43988 w3 0.04757 92558
G4 0.12229 77958 w4 0.06231 44857
G5 0.19106 18778 W5 0.07479 79944
Gb 0.27099 16112 Wwé 0.08457 82597
G7 0.35919 82246 W7 0.09130 17075
G8 0.45249 37451 w8 0.09472 53052
Gy | 0.54750 62549 W9 0.09472 53052
G10 0.64080 17754 I wio 0.09130 17075
Gl11 0.72900 83888 Wil 0.08457 82597
Gl2 0.80893 81222 Wiz 0.07479 79944
Gl3 0.87770 22042 W13 0.06231 44857
Gl4 0.93281 56012 wila | 0.04757 92558
G15 0.97228 75115 wls 0.03112 67620
Gl6 0.99470 04675 W16 0.01357 62297
D.3 ASSEMBLY OF [YRMF|FORM =1, 2, ---, 13:

The equations for KM and F are presented below and are evaluated

at the points £ = Gy, GZ’ SR Glé'



Kl = 3Kl =
ﬁ:%—KZ
K3 = K3 =
R = Ké =
K5 = 5 K5
KB:%Ké
K7 = 3 K7
B = K8
K9 = K9 =

1
Z

-C

e sinfotc. L loimeqs
1] siv ¢ 33 ;_T sin ¢ —r—l— cos ¢
1

2

2 cosZ

) 1 cos4¢ ° 2
_.C34~—;—.T1-—-(Sln¢+7cos¢)+C44—;T—+N¢cos ¢

(C33 cosz q))

33

c 2 . A 1o
llCOS ¢ 33:2- COS¢-r——Sln¢

r 3
cos ¢ . 1 cos” ¢
T (sm ¢ +——rl cos ¢) + C34 —

2

1 1

2 sin ¢ cos ¢ _rl .
+ C34 SN (cos o) }—l— sin ¢)

44 2

.2 2
+c, 2n 9cos ¢, N; sin2 ¢]
r

(C33 sin2 ¢)

: x . 2
sng (cos o - ?1— sin gb) + C34 Sn_¢cosg

1 T




KIO0 = K10 =
KIT = K11 =
KIZ = K12 =
KI3 = K13 =
M = ZwyartF
and

i

r r
[-C“ sin ¢ cos ¢ - C33-r17-(cos ] -;% sin ¢) (sin¢+?-i-cos ¢)
1

. r
- sin ¢ cos 9 . 1
C34 ror sm<p+——r cos ¢

1

2 r
cos_ ¢ ) S
+ C34 TT, (cos ¢ - -——-rl sin ¢)

sin¢cos3¢ °
+C44 vi +N¢sin¢cos¢

r

F_C _.]_'._ sin + f_l. cos si + C m
33 T ¢ T ¢ n ¢ 34 r

[ r . 2
1 . cos ¢ sin ¢ cos~ ¢
C33 (cos ¢ - — sin ¢) T + C34 - ]

~

C,, sin ¢ cos ¢

33

-3(kZ - 1) sin ¢ cos ¢
[® - 1) sin® ¢ + 1]

1
T

r1¢o for convex upward ellipsoidal bulkhead

rl(qbo - ) for convex downward ellipsoidal bulkhead
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D.4 INITIAL STRESS FOR CONIC

CONIC

INPUT
¢, Ry L, W

RFURCTIS JTI N

DEFINE

_ 1 2 2
N¢1 T 2wr sin¢o[gW *+(p; - pe)Tr(r - Ry )]

3 f, 2 3
gw;Locotg, IRy (hi ) 1(Rz by ) by 2) (B .3
N = " _._...g - —— + ——cot ¢ _gv + -§ cot¢
$, rsing L2 L Z\L L o L_z 3 ?‘ o

3
gwiLmcot ¢, [ Rphy (B2 B ) 2, 1 3
N¢3= rsin g 1.2 (1-8)-z\ tceote,/ U -E)+5(l-E7)cote,

where Rz
r=1L T - £ cot ¢o

I Z
—=1 N =N, +N O<g~ -
T I R Tt

=Ny Tt
hi
_—=1 N =N, +N O<f <1
L= o= N * N :




D.5 INITIAL STRESS FOR ELLIPSOIDAL BULKHEAD

ELLIPSOIDAL
BULKHEAD

INPUT
a, £b, IR

hi’ Wi he. Wor Pyr Py

1 - Ba cot ¢,
- a a -

1/2
- 1/2
a =.—a=[1 + (1 + 4bzg2) ]
He=he+(b-ﬁ). Hi=hi+(b-5)
- 2
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APPENDIX E

CALCULATION OF FLUID MASS MATRIX

The construction of the fluid mass matrix presented in Section 4.0
for three tank configurations differs from the construction of the shell
inertial and stiffness characteristics insofar as the fluid equations involve
double integrations. As mentioned in Section 4.0, these integrations are
performed using a Lagrangian integration scheme. Although this tech-
nique is similar to the Gaussian method of integration used in the compu-
tation of the shell matrices described in Appendix D, only the Lagrangian
technique is adaptable to double integration. The digital program utilizes
a 21-point Lagrangian weighting matrix which is constructed by combining
two ll-point matrices tabulated in the above reference. The increased
number of points provides additional numerical accuracy. In the following
pages, the fluid equations are rewritten to accommodate the integrations
using the weighting matrix technique.* A functional flow chart outlining

the complete mass matrix calculation is provided.

3¢
The notation of this appendix corresponds to the notation utilized in
the digital program.
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E.2 GENERAL MATRIX EQUATION FOR MASS MATRIX [H]
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3 _ IA: Convex Down Ellipsoid

E.3 CASE I [al - Convex Up Ellipsoid; a2 - Conic;
IB: Conic

E.3.1 Integral Equation Relationships
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E.3.2 Integration Limit Data

Fluid Surface in Section 1
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] E.4 CASE Il fal - Convex Down Ellipsoid; a2 - Conic
‘ 3. IIA: Convex Down Ellipsoid
IIB: Conic

E. 4.1 Integral Equation Relationships
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E. 4,2 Integration Limit Data

Fluid Surface in Section 1

£10= 62063070 5 6371
33

al !
£,,=1- (B, /aLh,,

<
—
I
)
)
<
<

Note:
-1 T

—[azk ST - 1)]1/2

Fluid Surface in Section 2

107 611705
£20=630° 0
€371

621 = F/1LD,,

Fluid Surface in Section 3

€106 =05 gzo=§21=§3o=°
ITA: {5‘31 ¢/¢
IB: (€34 = 3/'L')a3
E.22




E.4.3 Specific Matrix Data
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CASE 1II (a1 - Convex Up Ellipsoid; a2 - Conic;
a3 - Convex Up Ellipsoid)
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£31
+[g r{v(g)}az (r1¢o sin ¢)a3 d§_-
30

— v e e i hem o s e e e — e — s ——— e o —

€31
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+f (r cot ¢O{u(§)}) Z(rlqbo sin ¢)a3 dg 4
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£30
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(riz - ri3) A _{ +j': (r{v(g)})az (rlq)o sin ¢)a3 dg_, B

30
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_j (r r ¢, sin ¢{v(g)}) d €a3
L 730 J
{rv(x, r§ and {re(x, r& are same as Case L.
1 2
r 3
0
0
2 2
\ 2 -
{</(x,r)}3 - _— - — - __J% i ( (Zcot ¢)§3) (raz 2 ra’b’)G(X)
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E.5.2 Integration Limit Data

Fluid Surface in Section 1

{511 =(-$/¢o)

al

gzo = (lbl)a3/(| L )aZ

Fluid Surface in Section 2

€10=611=8630° !
€21 = (HIILI)aZ

gzo = (lb[)a3/(| Ll)az

£4,=0
¥, =0
Y, =Y¥3=Y

Fluid Surface in Section 3




E.5.3 Specific Matrix Data

r, sin ¢

— 1 %
(Kl)i = ‘4“Y1(¢0)a1{(_rz_) } ‘ ({511 - glo)a
al
al,i

(K2), =

I
+
N
3
~<|
W)
famd
L
mv
)
f
HNI""
W
N
M
[\
-
b
v
[—
1
un
N
=)
g
*

1t

r, sin ¢ l
(K3), -4ﬂ73(¢o) {(__12_11_233} (€31 - £30)
a3} r -
3,1

(Cl); = - v_zl‘(%)al{(rl sin ¢)a1}a1 i EITREITIA

(c2), = (c3), = 0
™, I %
(C4); = +“‘2“(|L“azll}az,i "€ - E50)
(C3), = '"73(¢o)a3{F1(ra3’ r.2) '(rl sin ¢)a3} - (E47 - £30)
a3, i
(Cé); = '“73(¢o)a3{Fz(ra3’ Ta2) (rl sin ¢)a3}a3,i (€3 - £30)

(C7); = +“73(¢o)a3{F1(ra2’ r23) '(rl sin ¢)a3} “E37 - £3p)
3 s

y

%k
Same as for Case I



(KUy), = +(¢o)a1{(r " Ty cos ¢)al} STREITIN
al,i

(KV)); = +(¢0)a1{(1‘ +r; sin ¢)a1} . &g - 510)*
al,i

3

(KU2); = -(|L]eot ¢o)a2{(r)a2} e - 60)"
az,i
(KV3); = '('L')az{(r)al} 81 - 5.20)>:<
az,i
(KT,), = (KV2) = 0*
(KU,), = +(coto) (¢ ) r(r) (r sin ¢) (&
271 oa2\’o a3l a2\"1 a3 a3, i 31

(I_{-——V—Z)i = +(¢o)a3{(r)az(r1 sin ¢)a3} . "3 - E3¢)
a3, i

r - - ( -£29)
a3{( r, cos <p)a3} ‘ §31 30
a3, i

(KU, = -(5,)
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a3, i
£
(KU4)i = 4+{(r cot gb)al i

*
Ueva); = +{(r)a1}a1 i

(KUs); = (KV5) = 0*

*Same as for Case I
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Same as for Case I




E.6 LAGRANGIAN WEIGHTING MATRIX TABLES

DATA™ FOR [@]lezl

DATA FOR [ W]
W, 0.01341 70742
W, 0.08876 79707
w, | -0.04052 17853
W, 0.22747 31442
W, 0.21757 15613
W, 0.35688 23152
W 0.21757 75613
W 0.22747 31442
W, -0.04052 17853
W, 0.08876 79707
W, 0.02683 41484
W, 0.08876 79707
Wy, | -0.04052 17853
W, 0.22747 31442
W5 | -0.21757 75613
Wi, 0.35688 23152
W, | -0.21757 75613
Wig 0.22747 31442
Wy | -0.04052 17853
W, 0.08876 79707
W, 0.01341 - 70742

W, 0.01341 70742
W, 0.08876 79707
W, -0.04052 17853
W, 0.22747 31442
W -0.21757 75613
W, 0.35688 23152
W, -0.21757 75613
W 0.22747 31442
W -0. 04052 17853
Wio 0.08876 79707
Wi, 0.02683 41484
W, 0.08876 79707
Wis ~0.04052 17853
Wi, 0.22747 31442
Wi -0.21757 75613
Wie 0.35688 23152
Woq -0.21757 75613
Wi 0.22747 31442
Wig -0.04052 17853
W0 0.08876 79707
W, 0.01341 70742

%
This column is identical for all 21 columns of the matrix.
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APPENDIX F

SAMPLE INPUT DATA

Sample input data for a typical one stage launch vehicle (Figure F. 1)
is presented to illustrate the basic data requirements. For simplicity
all structural components are constructed of aluminum. The vehicle
oxidizer and fuel tanks are both assumed to be simple tanks according
to the terminology used inSection2.0. To demonstrate the capability of
handling stringers and ribs, two shell sections are given orthotropic

properties as indicated in Figure F. 1.

The physical model is first subdivided into a consistent set of shell,
fluid and mass-spring components as shown in Figure F.2. In this example
the vehicle is represented by eleven (11) shell components, two (2) fluid
components and four (4) spring-mass components to account for the pay-
‘load, engine and equipment. The displacement coordinate locations are
then selected and numbered according to the requirements discussed in
Section 8.0. Forthis sample problem the vehicle is assumed to be unsup-

ported, i.e., no fixed coordinates are specified.

The input data load sheets have been prepared for the launch vehicle
illustrated in Figure F.l. and are included in this appendix to illustrate
the input format. The system data appears first followed in order by
the data specifications for each of the shell, fluid and spring-mass

components.

F.l
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Typical One-Stage Launch Vehicle
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