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Stochastic inversion is a well known technique for the solution of inverse problems in tomography.
It employs the idea that the propagation medium may be represented as random with a known
spatial covariance function. In this paper, a generalization of the stochastic inverse for acoustic
travel-time tomography of the atmosphere is developed. The atmospheric inhomogeneities are
considered to be random, not only in space but also in time. This allows one to incorporate
tomographic data �travel times� obtained at different times to estimate the state of the propagation
medium at any given time, by using spatial-temporal covariance functions of atmospheric
turbulence. This increases the amount of data without increasing the number of sources and/or
receivers. A numerical simulation for two-dimensional travel-time acoustic tomography of the
atmosphere is performed in which travel times between sources to receivers are calculated, given the
temperature and wind velocity fields. These travel times are used as data for reconstructing the
original fields using both the ordinary stochastic inversion and the proposed time-dependent
stochastic inversion algorithms. The time-dependent stochastic inversion produces a good match to
the specified temperature and wind velocity fields, with average errors about half those of the
ordinary stochastic inverse. © 2006 Acoustical Society of America. �DOI: 10.1121/1.2180535�
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I. INTRODUCTION

Acoustic tomography is widely used in physics, technol-
ogy, and medicine for the remote sensing of inhomogeneous
media. When applied to the atmosphere, acoustic tomogra-
phy allows one to estimate �reconstruct� temperature and
wind velocity within a tomographic volume or area.1–4 The
practical realization of acoustic tomography in an atmo-
spheric boundary layer was reported in Refs. 5–10. In these
tomography experiments, the sources and receivers of sound
were located on masts several meters above the ground along
the perimeter of a tomographic area that was a square or
rectangular with side lengths of several hundred meters. The
sound travel times between all pairs of sources and receivers
were measured and used as input data for inverse algorithms
to estimate temperature and wind velocity fields within a
horizontal slice. This kind of tomography is called travel-
time tomography. The inverse algorithms used were the sto-
chastic inversion �SI� approach5 and the simultaneous itera-
tive reconstruction technique.6–10 In the present paper, a

generalization of the SI approach in travel-time acoustic to-
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mography of the atmosphere is developed that allows one to
effectively increase the number of data without increasing
the number of sources and receivers.

The idea of travel-time acoustic tomography of the at-
mosphere is based on the fact that the time required for
sound to propagate through a certain volume depends on the
adiabatic sound speed �and hence on temperature� and wind
velocity within that volume. More specifically, the travel
time ti

tr of the sound impulse propagation along the ith ray
can be expressed as the following integral along the path Li

of this ray �e.g., Ref. 11�:

ti
tr = �

Li

dl

ug�R�
. �1�

Here, ug�R� is the group velocity of a sound impulse, R is
the position vector in three dimensions, and i=1,2 , . . . , I,
where I is the number of ray paths of sound impulses simul-
taneously propagating through this volume from sources to
receivers. It can be shown11 that, in the presence of wind, the
ug can be expressed as ug= �cL

2�R�+V2�R�
1/2
+2cL�R�ni�R� ·V�R�� . Here ni is the unit vector normal to
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the wave front of a sound wave, V is the vector of wind
velocity, and cL is the Laplace adiabatic sound speed that
relates to the acoustic virtual temperature Tav by

cL
2 = �RaTav, �2�

where ��1.41 is the ratio of the specific heats and Ra is
the universal gas constant for dry air. It is necessary to
take into account the specific humidity of the air q to
obtain the values of the actual thermodynamic temperature
Tth from the acoustic virtual temperature by using the fol-
lowing relationship:11 Tav�Tth�1+0.511q�. Note that the
acoustic virtual temperature differs from the virtual tem-
perature used by atmospheric scientists. When deriving
Eq. �1�, it is assumed that ug does not depend on time
during the propagation of sound impulses. Since in the
atmosphere cL� �V�, this assumption is valid for tomogra-
phic arrays of order of several hundred meters considered
in Refs. 5–10 and in Sec. IV. The goal of acoustic travel-
time tomography is to estimate the fields Tav�R� and V�R�
within a tomographic volume, given the travel times ti

tr

and the locations of sources and receivers.
There are different techniques available to solve this

problem. Many of them pursue the goal of finding a solution
that, after substitution back into Eq. �1�, yields travel times
as close to the measured ones as possible. These methods are
quite reliable and accurate if there are more data points �e.g.,
travel times� than unknown model values �e.g., total number
of points at which the fields are to be reconstructed�. How-
ever, this condition does not hold for atmospheric tomogra-
phy unless the reconstruction is performed with low
resolution.2,6–10,12,13 In the opposite case, when the number
of unknowns is greater than the number of available data
points, such techniques cannot provide a unique solution,
and some additional restrictions must be imposed on the
sought fields. Since it is unknown in advance whether the
actual fields being estimated obey such restrictions, these
techniques may yield a spurious solution that perfectly
matches the data but has little to do with the real fields.

In contrast, the SI approach is based on the idea that,
using the available data, one seeks fields that have the mini-
mum average deviation from the real ones. This approach
also requires additional information about the sought fields,
namely, the sought fields are treated as random ones with
known spatial covariance functions.1,3,5,14 Although the ac-
tual covariance functions in the turbulent atmosphere are not
exactly known, they can be approximated by those corre-
sponding to the von Kármán or Gaussian spectra of
turbulence.11,15,16 Note that other techniques that partition the
fields into constant-valued grid cells implicitly assume step-
like covariance functions, such that the field values are per-
fectly correlated within a grid cell and completely uncorre-
lated outside. Such functions are much less plausible than
those used in the SI approach. The applicability and advan-
tages of the SI approach in travel-time tomography of the
atmosphere with high resolution are demonstrated in Refs. 3
and 5. A disadvantage of SI is that it does not use the fact
that the sought fields are correlated not only in space but also

in time.
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In this paper, a generalization of the SI approach for
acoustic travel-time tomography of the atmosphere is devel-
oped that allows one to use the data obtained at different
times to reconstruct the temperature and wind velocity fields
within a tomographic volume at any particular time, by using
spatial-temporal covariance functions of these fields. This
generalization is called time-dependent stochastic inversion
�TDSI�.

The general idea of using spatial-temporal covariance
functions in SI is known in the literature. For example, it has
been successfully used in satellite altimetry of the ocean sur-
face, e.g., Refs. 17 and 18. In altimetry, the deviations of the
ocean surface height from its average level are known at
certain times and spatial points �along the satellite tracks�.
The problem is to estimate these deviations at other points
�in space and time�. Thus, this problem can be formulated as
the space-time interpolation problem. There are many differ-
ent techniques to interpolate the data. However, SI interpo-
lates them in such a way that the covariance of the resulting
fields holds true. The application of SI for these purposes
was proposed in Ref. 19.

In contrast to satellite altimetry, travel-time tomography
cannot be formulated as an interpolation problem, since the
fields that are subject to estimation are unknown everywhere.
Therefore, the mathematical formalism of TDSI in acoustic
travel-time tomography of the atmosphere differs from that
in altimetry. In the present paper, this mathematical formal-
ism is developed. To verify that the TDSI approach improves
the quality of the reconstruction, a numerical experiment was
carried out for two-dimensional �2-D� travel-time acoustic
tomography of a horizontal atmospheric layer.

The paper is organized as follows. In Sec. II, a general
theory of 2-D TDSI is developed and a formula for the op-
timal stochastic inversion matrix is derived. Calculations of
the covariance matrices that appear in the inversion matrix
are presented in Sec. III. In Sec. IV, the numerical experi-
ment of 2-D travel-time acoustic tomography of the atmo-
sphere is described. Some aspects of the SI and TDSI algo-
rithms are discussed in Sec. V. The conclusions are presented
in Sec. VI.

II. THEORY

In this section, the theory of 2-D TDSI is developed.
There are three steps that precede this development. First, it
is taken into account that Tav and V depend not only on the
spatial coordinates but also on time t. Therefore, ti

tr depends
on time t as well. Second, Eq. �1� is linearized due to specific
conditions in the atmosphere, and, with the same degree of
accuracy, the travel paths Li are approximated by straight
lines. Third, it is shown how to reconstruct the spatial mean
values of the temperature and wind velocity fields within a
tomographic area with the help of the conventional least
square estimation. Finally, the problem for the TDSI ap-
proach in the reconstruction of temperature and wind veloc-
ity fluctuations is stated and a general solution of this prob-

lem is obtained.
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A. Linearization

Let ũ�r , t� and ṽ�r , t� be x and y components of the
two-dimensional vector of wind velocity V:

V�r,t� = ũ�r,t�ex + ṽ�r,t�ey . �3�

Here t is time, a 2-D vector r specifies a spatial point within
a tomographic area with the Cartesian coordinates �x ,y�, and
ex and ey are the unit vectors along the x and y axes, respec-
tively. The adiabatic sound speed cL, temperature Tav, and
wind velocity fields within a tomographic area at time t
can be represented as sums of their spatial average values
c0�t�, T0�t�, u0�t�, and v0�t� and their fluctuations c�r , t�,
T�r , t�, u�r , t�, and v�r , t�:

cL�r,t� = c0�t� + c�r,t�, Tav�r,t� = T0�t� + T�r,t� ,

�4�
ũ�r,t� = u0�t� + u�r,t�, ṽ�r,t� = v0�t� + v�r,t� .

Since in the atmosphere the absolute values of the adiabatic
sound speed fluctuations and the wind components are much
smaller than the spatial average value of c0, Eq. �1� can be
linearized to the first order of these fluctuations2 and the
travel paths of sound can be approximated by straight
lines:5,11

ti
tr�t� = �i�t� +

Li

c0�t�
	1 −

u0�t�cos �i + v0�t�sin �i

c0�t�



−
1

c0
2�t��Li

dl	 c0�t�
2T0�t�

T�r,t� + u�r,t�cos �i

+ v�r,t�sin �i
 , �5�

where i=1,2 , . . . , I denotes the ray’s path number, I is the
total number of travel paths, Li is the length of the ith ray
path, r�Li, and �i is the angle of the ith ray relative to the
positive direction of the x axis. Note that the noise �i in
the ith measured travel time was added to the right-hand
side of Eq. �5�. Furthermore, when deriving this equation
the following relationship between the fluctuations of
temperature and adiabatic sound speed was used: c�r , t�
= �c0�t� /2T0�t��T�r , t�. This relationship follows from Eqs.
�4� and �2�, with accuracy up to the first order of these
fluctuations. The inverse problem, which is studied in this
paper, is to reconstruct c0, T0, T, u, and v, given ti

tr, Li, and
�i.

B. Reconstruction of mean fields

The mean values T0, u0, and v0 within a tomographic
area at any time can be reconstructed with the help of the
least square estimation by using the travel times obtained at
the same moment of time. For this purpose one should set
the fluctuating parts of these fields to zero, so that the inte-
gral in Eq. �5� vanishes. Then Eq. �5� can be rewritten in
matrix notation:

Gf = b , �6�

where the elements of the column vector b are known and
tr
given by bi= ti �t� /Li, the unknown column vector f has
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three elements, f1=1/c0�t�, f2=u0�t� /c0
2�t�, f3=v0�t� /c0

2�t�,
and the matrix G is given by

G = �1 − cos �1 − sin �1

] � ]

1 − cos �I − sin �I
� . �7�

Then, using the I elements of the vector b �I is assumed
to be greater than 3�, one should solve the overdetermined
problem for the three unknowns �the elements of the vector
f� using the least square estimation:

f = �GTG�−1GTb , �8�

extract from them the values of c0, u0, and v0, and calculate
T0 using Eq. �2�.

C. Time-dependent stochastic inversion

Once the spatial mean values of temperature, adiabatic
sound speed, and wind velocity fields within a tomographic
area are known, it is worthwhile to introduce the column
vector of data d�t� obtained at time t with elements

di�t� = Li�c0�t� − u0�t�cos �i − v0�t�sin �i� − c0
2�t�ti

tr�t� + �i�t� ,

�9�

where noise �i�t� includes the errors of travel time measure-
ments �i�t� and errors in the estimation of T0, c0, u0, and v0.
Using Eq. �5�, this data vector can be expressed as d�t�
=d0�t�+��t�, where the elements of the noise-free data col-
umn vector d0�t� are given by

d0i�t� = �
Li

dl	 c0�t�
2T0�t�

T�r,t� + u�r,t�cos �i + v�r,t�sin �i
 .

�10�

The problem now is to reconstruct the fields of fluctua-
tions T�r , t0�, u�r , t0�, and v�r , t0� at any chosen time t0.
Thus, the column vector of models at this time moment t0 is
given by

m�t0� = �T�r1,t0�; . . . ;T�rJ,t0�;

�u�r1,t0�; . . . ;u�rJ,t0�;v�r1,t0�; . . . ;v�rJ,t0�� , �11�

where J is the number of spatial points within the tomogra-
phic area at which the fields are being reconstructed; here
and in what follows, the semicolon between elements de-
notes that these elements are arranged in a column.

Let us assume that one can collect data �N+1� times
during the time N� by performing sound scans of the tomog-
raphic area and forming the vector d at each scan. Suppose
that the last scan was performed at the time t, which can be
earlier, equal to, or later than the time t0 at which one tries to
reconstruct the models. In this paper it is assumed that these
scans are performed at equal time intervals �, although such
an assumption is not necessary. The temperature and wind
velocity fields in this tomographic area are changing with
time, which yields different data vectors at each scan. In this
case, at the time t there will be data available from �N+1�
scans. That is, at the moment t one can form the vector d of

all available data:
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d = �d�t − N��;d�t − N� + ��; . . . ;d�t�� . �12�

Here d is a column vector containing the �N+1� column-
vectors d�t−n��, each of length I, where n=0,1 , . . . ,N.
Therefore, the total length of the data vector d is �N+1�I.

1. Problem statement

Using the data vector d given by Eq. �12�, it is necessary
to find a linear estimation m̂�t0� of unknown models m�t0� at
time t0. The case t0� t corresponds to advanced estimation;
the case t0� t corresponds to posterior estimation; and t0= t
corresponds to a real time reconstruction. In all these cases,
one can use available data obtained from all scans to estimate
the unknown fields. If one uses only the data obtained at
moment t0 to estimate the models m�t0� at the same moment,
that would correspond to standard SI in atmospheric travel-
time tomography.5

In TDSI, the estimation of the unknown fields is sought
in the same form as in standard SI:

m̂�t0� = Ad , �13�

where unknown elements ajk of matrix A must be deter-
mined. Here j=1,2 , . . . ,3J, where 3J is the length of mod-
els, and k=1,2 , . . . , �N+1�I. We now introduce the column
vector of discrepancy 	 between the true and reconstructed
fields at time t :
0

0
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	 j = m̂j�t0� − mj�t0� . �14�

To find the elements ajk, let us require that they give the
minimum of the elements of the mean square errors vector
�2�:

	 j
2� � min

�ajk�
	 j

2� , �15�

where parentheses ·� denote the mathematical expectation.
These mean square errors are the diagonal elements of the
error covariance matrix R��:

R�� � ��T� , �16�

where � is the column vector of discrepancy given by �14�.

2. Solution

The matrix A that solves the problem stated above is
given by the same formula as for ordinary SI, since the deri-
vation of this formula does not depend on a particular struc-
ture of the models m and data d �see Appendix A�:

A = RmdRdd
−1 , �17�

where Rmd�mdT� and Rdd�ddT� are model-data and
data covariance matrices.

Since the data and models have been chosen, as shown
in Eqs. �12� and �11�, these matrices have the following

block structure:
Rmd = �Bmd�t0,t − N��,Bmd�t0,t − N� + ��, . . . ,Bmd�t0,t�� , �18�

Rdd = �
Bdd�t − N�,t − N�� Bdd�t − N�,t − N� + �� ¯ Bdd�t − N�,t�

Bdd�t − N� + �,t − N�� Bdd�t − N� + �,t − N� + �� ¯ Bdd�t − N� + �,t�
] ] � ]

Bdd�t,t − N�� Bdd�t,t − N� + �� ¯ Bdd�t,t�
� . �19�
Here Bmd�t1 , t2��m�t1�dT�t2�� is the covariance matrix
of size �3J , I� between the models at time moment t1 and
data at moment t2, Bdd�t1 , t2��d�t1�dT�t2�� is the covariance
matrix of size �I , I� between data at moment t1 and data at
moment t2, and the comma between the elements of the Rmd

matrix denotes that the Bmd matrices are arranged in a row.
Thus, the dimensions of the Rmd and Rdd matrices are
�3J , �N+1�I� and ��N+1�I , �N+1�I�, correspondingly. Note
that the Rdd matrix is symmetric.

It is assumed that noise in the data ��t� is independent of
the sought fields and the noise-free data vectors, is not cor-
related with itself for different time moments and for differ-
ent paths, and can be described by the normal distribution
N�0,
��. Therefore, in the presence of noise,

Rmd = Rmd , �20�
Rdd = Rd0d0
+ 
�

2I , �21�

where I is the identity matrix. Since noise in the data can
easily be taken into account by these formulas, further con-
siderations will be focused on the noise-free data d0.

It can be shown �see Appendix B� that the error covari-
ance matrix R�� that corresponds to such an estimation of
models �see Eq. �13�� with the optimal matrix A given by Eq.
�17� is

R�� = Rmm − RmdRdd
−1Rmd

T , �22�

where Rmm�m�t0�mT�t0�� is the models covariance matrix
at time t0. The elements of the main diagonal of the R��

matrix are equal to expected mean square errors of the re-
construction at each point. They can be calculated without
knowledge of the original fields. These averaged errors can
differ from the errors of the reconstruction of a particular

realization of the original fields.
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Note that the developed mathematical formalism of
TDSI is valid for statistically nonstationary and inhomoge-
neous random fields.

III. COVARIANCE MATRICES

Since the optimal stochastic inverse operator A given by
Eq. �17� is determined in terms of the Rmd and Rdd matrices,

it is worthwhile to consider some important particular cases

Eqs. �18� and �19� are modified as follows:
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when these matrices can be calculated explicitly. These con-
siderations will be carried out taking 2-D travel-time tomog-
raphy of the atmosphere as an example.

A. 2-D travel-time tomography

In the case of travel-time tomography, one can use the
linear relationship between d0 and the sought fields given by
Eq. �10� to obtain an expression for the covariance matrix
Bmd0

�t1 , t2� between the models at time t1 and the noise-free

data at time t2:
�Bmd0
�t1,t2�� ji = mj�t1�d0i�t2��

= �
Li

dl	 c0�t2�
2T0�t2�

mj�t1�T�r,t2�� + mj�t1�u�r,t2��cos �i + mj�t1�v�r,t2��sin �i


=�
�

Li

dl	 c0�t2�
2T0�t2�

BTT�r j,t1;r,t2�
 , if 1 � j � J ,

�
Li

dl�Buu�r j,t1;r,t2�cos �i + Buv�r j,t1;r,t2�sin �i� , if J + 1 � j � 2J ,

�
Li

dl�Bvu�r j,t1;r,t2�cos �i + Bvv�r j,t1;r,t2�sin �i� , if 2J + 1 � j � 3J ,
� �23�

where i=1,2 , . . . , I, j=1,2 , . . . ,3J, r�Li, BTT, Buu, Bvv, Buv, and Bvu are the spatial-temporal covariance functions of the
corresponding fields marked as the subscripts, and the r j are the chosen spatial points within the tomographic area at which the
sought fields are reconstructed; these points stay fixed during the integration.

Similarly, an expression for the covariance matrix Bd0d0
�t1 , t2� between the noise-free data at time t1 and time t2 is given

by

�Bd0d0
�t1,t2��ip = d0i�t1�d0p�t2�� = �

Li

dl�
Lp

dl�� c0�t1�c0�t2�
4T0�t1�T0�t2�

BTT�r,t1;r�,t2� + Buu�r,t1;r�,t2�cos �i cos �p

+ Bvv�r,t1;r�,t2�sin �i sin �p + Buv�r,t1;r�,t2�cos �i sin �p + Bvu�r,t1;r�,t2�cos �p sin �i� , �24�
where i , p=1,2 , . . . , I, r�Li, r��Lp. Note that
Bvu�r , t1 ;r� , t2�=Buv�r� , t2 ;r , t1�. When deriving Eqs. �23�
and �24�, it is assumed that BTu=BTv�0.

Once the matrices Bmd0
�t1 , t2� and Bd0d0

�t1 , t2� are calcu-
lated, one should use Eqs. �18� and �19� to form the Rmd0

and
Rd0d0

matrices and, then, Eq. �21� to take noise into account.

B. Stationary fields

If the temperature and wind velocity fields are statisti-
cally stationary, their covariance functions depend only on
the difference of their temporal arguments:

B�r,t1;r�,t2� = B�r,r�,�t�, �t � t2 − t1. �25�

The notation B without subscripts stands for the covariance
function of any two fields considered above. In this case,
Rmd = �Bmd�t − N� − t0� ,Bmd�t − N� + � − t0�, . . . ,

�Bmd�t − t0�� , �26�

Rdd = �
Bdd�0� Bdd��� ¯ Bdd�N��

Bdd�− �� Bdd�0� ¯ Bdd�N� − ��
] ] � ]

Bdd�− N�� Bdd�− N� + �� ¯ Bdd�0�
� .

�27�

Note that, for any �t,

Bdd��t� = Bdd
T �− �t� . �28�

It is sufficient to know only the first cell row of the matrix
Rdd since it has the same matrices along each diagonal �a
block Toeplitz-like structure�. Also note that the Rdd matrix

is independent of time t0, i.e., for the given set of data it is
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necessary to calculate this matrix only once to reconstruct
fields at any time. Another interesting fact is that the matri-
ces Bdd�0� on its main diagonal are equal to the covariance
matrix Rdd of ordinary SI.

C. Frozen turbulence

If turbulence may be considered frozen, each spatial
point of the temperature and wind velocity fields is moving
with a constant speed U. In this case, the temperature field at
time t2 can be expressed in terms of the field at time t1 by the
following relationship:20

T�r,t2� = T�r − U �t,t1� . �29�

The same relationship is valid for the turbulent wind velocity
fields. This allows one to obtain the spatial-temporal covari-
ance matrices, which are unknown in general, in terms of the
spatial covariance matrices. The latter can be modeled by the
covariance functions corresponding, for example, to the von
Kármán or Gaussian spatial spectra of turbulence. For ex-
ample, for the temperature field, we have

BTT�r,t1;r�,t2� � T�r,t1�T�r�,t2��

= T�r,t1�T�r� − U �t,t1�� = BTT
s �r,r� − U �t� ,

�30�

where BTT
s is the spatial covariance matrix of the temperature

field. The last equality is true for statistically stationary
fields. Similar equations can be derived for the spatial-
temporal covariance functions of the other fields. Since fro-
zen turbulence is a particular case of stationary fields, Eqs.
�26�–�28�, stay valid for this case as well. Thus, for frozen
turbulence the spatial-temporal covariance matrices Rmd and
Rdd can be expressed in terms of known or inferred spatial
covariance matrices.

The frozen turbulence hypothesis is widely used in me-
teorology and the study of wave propagation in random me-
dia, e.g., Refs. 20 and 21. This hypothesis is valid with a
good accuracy for eddies in the inertial range of turbulence.
However, the applicability of this hypothesis to eddies in the
energy range is questionable.22 Note that in the present pa-
per, the frozen turbulence hypothesis is used to concretize
the spatial-temporal covariance functions. TDSI can still be
used if this hypothesis is invalid.

IV. NUMERICAL EXPERIMENT

In this section, a numerical experiment that demon-
strates the significant improvement in the quality of tempera-
ture and wind velocity field reconstructions possible with
TDSI is described. A snapshot of the temperature and wind
velocity fields was created by large eddy simulation �LES�,23

which is widely used in meteorology �e.g., Refs. 24 and 25�.
LES numerically solves the Navier-Stokes equations for ed-
dies large enough to be resolved by the spatial grid. The
effect of smaller eddies on the resolved flow is parametrized.
LES produces realistic wind velocity and temperature fields
for flow processes that are well resolved by the grid.

Using the single snapshot of the LES temperature and

wind velocity fields, the perfectly frozen turbulent fields with
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the velocity components Ux=4 m/s and Uy =0 m/s were
created. The travel times were calculated each second ��
=1 s� using Eq. �5�. Two-dimensional linear interpolation
was employed to obtain the value of the integrand in Eq. �5�
along the travel paths; then the integral was calculated nu-
merically. These travel times were disturbed by white noise
with standard deviation 
�=5 s, which corresponds to rela-
tive errors of order 1% to 42% in the data d0�t�. The total
number of such numerical scans was 18, and the problem
was to estimate the temperature and wind velocity fields
Tav�r , t0�, ũ�r , t0�, and ṽ�r , t0� at time t0=9 s. The time origin
coincided with the first scan. The number of sources as well
as receivers was 5, so that the number of rays I at each scan
was 25. The tomographic area was a square of 80 by
80 meters. The layout of acoustic sources and receivers and
the corresponding ray paths are shown in Fig. 1.

The reconstruction consisted of two stages. In the first
stage the spatial mean values of the temperature and wind
velocity fields T0�t0�, u0�t0�, and v0�t0� within the tomogra-
phic area were reconstructed using the approach described in
Sec. II B. The true and estimated spatial mean values of tem-
perature and wind fields are presented in Table I.

One can see from Table I that the reconstruction of spa-
tial mean fields was very accurate, the differences between
true and estimated mean values was 0.14 K for the tempera-
ture field, 0.03 m/s for the x component of the wind velocity
vector, and 0.01 m/s for its y component.

In the second stage, the fluctuations of the temperature
and wind fields T�r , t0�, u�r , t0�, and v�r , t0� from their spa-
tial mean values were reconstructed using either standard SI
�only data at time t0 were used, the total number of data

FIG. 1. �Color online� The layout of sources and receivers in the numerical
experiment.

TABLE I. Actual and estimated spatial mean values of temperature and
wind velocity fields.

Mean fields T0 �K� u0 �m/s� v0 �m/s�

True 301.73 3.09 1.73
Estimated 301.87 3.06 1.71
Vecherin et al.: Time-dependent stochastic inversion



points was equal to the number of rays I=25� or TDSI �data
obtained at 18 different times were used, which resulted in
450 data points�. To describe the spatial covariance of the
temperature and wind velocity fields within the tomographic
area, the following Gaussian covariance functions were
used:11

BTT
s �r,r�� = 
T

2 exp	−
�r − r��2

lT
2 
 , �31�

Buu
s �r,r�� = 
u

2 exp	−
�r − r��2

l2 
	1 −
�y − y��2

l2 
 , �32�

Bvv
s �r,r�� = 
v

2 exp	−
�r − r��2

l2 
	1 −
�x − x��2

l2 
 , �33�

Buv
s �r,r�� = 
u
v exp	−

�r − r��2

l2 
 �x − x���y − y��
l2 , �34�

where 
T ,
u ,
v are the standard deviations of the corre-
sponding fields, lT and l are their correlation lengths, r
= �x ,y�, and r�= �x� ,y��. Then, the relations similar to that
given by Eq. �30� were used to obtain the spatial-temporal
covariance functions of the sought fields. The noise-free ma-
trices Rmd0

and Rd0d0
were formed with the help of Eqs. �26�

and �27�, where the Bmd0
and Bd0d0

matrices were calculated
using Eqs. �23� and �24�; noise was taken into account by Eq.
�21�.

In the described numerical experiment, there were five

parameters in the SI and TDSI algorithms that must be cho-
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sen: 
T, 
u, 
v, lT, and l. These parameters were estimated
from the original LES fields: 
T=0.14 K, 
u=0.72 m/s, 
v
=0.42 m/s, and lT= l=15 m.

The original and reconstructed fields were described by
matrices of size 21 by 21. After all calculations were done,
the fields were interpolated �2-D linear interpolation� for il-
lustrative purposes. The fluctuating parts of the original
fields are presented in Figs. 2�a�–2�c�. Figures 2�d�–2�f�
show the reconstructed fields using the SI approach. The
reconstruction results of TDSI are given in Figs. 2�g�–2�i�.
As one can see, standard SI matched the contours of the
sought u field fairly well, but the v and T fields were recon-
structed poorly. In contrast, the time-dependent stochastic
approach allowed the much more detailed and accurate re-
construction of all fields. To characterize the expected im-
provement of the reconstruction it is worthwhile to consider
the expected errors of the reconstruction given by Eq. �22�. It
is convenient to normalize these mean square errors by the
corresponding field variances so that their values lie in �0, 1�.
If these normalized mean-squared errors �NMSE� are of or-
der unity, the errors of reconstruction are of the order of
variance of the original field, i.e., one has a poor reconstruc-
tion. Conversely, if NMSE are zeros, it is expected that the
reconstructed and actual fields are identical. NMSE can be
recalculated into root mean-square errors �RMSE�. NMSE
for SI are presented in Figs. 3�a�–3�c� while Figs. 3�d�–3�f�
show NMSE for TDSI. To characterize the overall quality of
the reconstruction, NMSE at each spatial point and corre-
sponding RMSE were averaged over the tomographic area.
These averaged values of NMSE and RMSE are presented in

FIG. 2. The original and reconstructed
temperature �K� and wind velocity
�m/s� fields of fluctuations at time mo-
ment t0=9 s. �a� Original u field. �b�
Original v field. �c� Original T field.
�d� The u field reconstructed by SI. �e�
The v field reconstructed by SI. �f�
The T field reconstructed by SI. �g�
The u field reconstructed by TDSI. �h�
The v field reconstructed by TDSI. �i�
The T field reconstructed by TDSI.
Table II.
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It follows from Fig. 3 and Table II that, for TDSI, the
average NMSE is about four times less for the T and v fields
and seven times less for the u field than the corresponding
NMSE for ordinary SI. This corresponds to a 46% reduction
of the RMSE for the T field, a 52% reduction for the v fields,
and a 62% reduction for the u field.

V. DISCUSSION

The idea of the stochastic approach is based on the as-
sumption that covariance matrices of the sought fields are
known. That means that in the case of the Gaussian covari-
ance functions all five parameters �variances and correlation
lengths of the sought fields� should be known in advance. In
the practical implementation of travel-time tomography,
however, these parameters are unknown. One can estimate
these parameters by measuring the temperature and wind ve-
locity fluctuations with the use of conventional meteorologi-
cal sensors or using a turbulence similarity theory.

Furthermore, the covariance of the isotropic turbulence
in the atmosphere is better described by the von Kármán
spectrum rather than by the Gaussian spectrum. The latter
was used in the numerical experiment because it was then
possible to calculate the Rmd matrix analytically and use
only a single numeric integration to get the Rdd matrix. This

TABLE II. Average expected errors of the reconstruction of temperature and
wind velocity fields by SI and TDSI.

Fields T u v

Errors NMSE RMSE �K� NMSE RMSE �m/s� NMSE RMSE �m/s�

SI 0.96 0.13 0.56 0.53 0.63 0.33
TDSI 0.24 0.07 0.08 0.20 0.15 0.16
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significantly improved the accuracy and speed of the calcu-
lations. Since the actual fields were not described by the
Gaussian covariance functions, the reconstruction quality im-
provement seems rather unexpected. However, there is a
relatively simple explanation of this fact. In a certain spatial
scale range, the covariance functions of atmospheric turbu-
lence can be approximated by the Gaussian covariance func-
tions with appropriate variances and correlation lengths.27

Therefore, the Gaussian covariance functions can be used for
SI and TDSI as approximations of the actual ones. It is ex-
pected that the use of the covariance function corresponding
to the von Kármán spectrum of turbulence will improve the
reconstruction.

One of the advantages of the stochastic approach is that
noise in the data plays, in a certain sense, a positive role by
regularizing the Rdd matrix �see Eq. �21��. Indeed, the pres-
ence of noise just adds an additional term to the main diag-
onal of the Rdd matrix, which improves its condition �keeps
it invertible�, although it does smooth the solution somewhat.
This regularization is especially important for TDSI, where
the condition of the matrix Rdd may be very poor and may
lead to spurious solutions.

Figures 2�a�–2�i� show that the reconstruction of the
temperature fluctuation field was not as good as that for the
velocity fluctuations. The probable reason for this is a small
effect of the temperature fluctuations on the travel times in
comparison to the wind-velocity fluctuations. Indeed, the
LES temperature fluctuations were in the range
�−0.15,0.35� K while, for many meteorological problems,
the acceptable error of temperature measurements is
±0.3 K.7,8 Note that to improve the reconstruction of tem-
perature fluctuations in acoustic tomography, one can use

8,26

FIG. 3. �Color online� The expected
normalized mean square errors. �a�
The u field reconstructed by SI. �b�
The v field reconstructed by SI. �c�
The T field reconstructed by SI. �d�
The u field reconstructed by TDSI. �e�
The v field reconstructed by TDSI. �f�
The T field reconstructed by TDSI.
reciprocal transmission of sound waves.
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The proposed TDSI algorithm also allows one to esti-
mate the temporal mean values of the temperature and wind
velocity fluctuations at any given spatial point. This might be
important when the temporal changes of these fluctuations
are negligible during the time interval N�. For this purpose, it
is necessary to set all temporal arguments in the matrices
Rmd and Rdd equal to zero. Note that in this case the noise
variance 
�

2 should be enlarged, because the noise includes
not only the measurement uncertainty but also the neglected
variation of the original fields during the observed time in-
terval.

VI. CONCLUSION

In this paper, a generalization of the stochastic inversion
approach for tomographic problems in the atmosphere was
developed. The key idea of this generalization is that, by
using spatial-temporal covariance functions of temperature
and wind velocity fields, one can use data obtained at differ-
ent times to reconstruct these fields at any particular time.
This allows one to significantly enlarge the effective amount
of tomographic data, while keeping the total number of
sources and/or receivers fixed. The efficiency of the devel-
oped method was demonstrated in a numerical experiment
that simulated the acoustic 2-D travel-time tomography prob-
lem of the atmosphere. This numerical experiment showed a
remarkable improvement of the reconstruction when one
used TDSI instead of standard SI.
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APPENDIX A: OPTIMAL STOCHASTIC OPERATOR
DERIVATION

Let m and d be two arbitrary random column-vectors of
lengths M and D, correspondingly, with a known matrix of
the second statistical moment Rmd�mdT�. Furthermore, let
the matrix Rdd�ddT� also be known. Note that, in the case
when m�=0, d�=0, the Rmd and Rdd are the covariance
matrices. The problem is to estimate the unknown vector m
if a particular realization of the random vector d is given. To
do this, one can seek for the estimation m̂ of the unknown
vector m in the form

m̂ = Ad . �A1�

Introduce the column vector of discrepancy � between
the true and reconstructed vectors:

	 j = m̂j − mj , �A2�
where j=1,2 , . . . ,M.
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To find the elements ajk of matrix A, let us require that
they give the minimum of each element of the mean square
errors vector �2�:

	 j
2� � min

�ajk�
	 j

2� , �A3�

where k=1,2 , . . . ,D.
To satisfy the requirement �A3�, one should take the

partial derivative along the current element aip of the matrix
A and make it equal to 0:

�

�aip
�ajkdk − mj�2� = 2�aikdk − mi�dp�

= 2�aikdkdp� − midp��

= 2�aik�Rdd�kp − �Rmd�ip� = 0, �A4�

where the equality �ajk /�aip��ij�pk was taken into account,
and the �’s are Kronecker’s delta symbols. The last equation,
after canceling the factor 2, can be written in matrix notation:

ARdd − Rmd = 0 . �A5�

Therefore, under assumption that the inverse matrix Rdd
−1 ex-

ists, the optimal matrix A is given by

A = RmdRdd
−1 . �A6�

APPENDIX B: ERROR COVARIANCE MATRIX
DERIVATION

If a random column vector � relates to another random
column vector � by a known nonrandom matrix C as �
=C�, then its covariance matrix R�����T� is expressed in
terms of the covariance matrix R�����T� as

R�� = CR��CT. �B1�

In the case of travel-time tomography, the column vector of
discrepancy is given by ��m̂−m, where m̂=Ad. Therefore,
the discrepancy can be expressed in terms of the matrix mul-
tiplication using block matrix notation:

� = �A − I�� d

m
� , �B2�

where I is the identical matrix. Using the formula �B1�, one
can get the expression for covariance matrix R��:

R�� = �A − I��� d

m
��dTmT���AT

− I
�

= �A − I�� ddT� dmT�
mdT� mmT� ��AT

− I
�

= ARddAT − ARmd
T − RmdAT + Rmm. �B3�

Note that this formula for the covariance matrix of the dis-
crepancy vector is valid for any matrix A. Since the optimal
matrix A of the stochastic inversion and time-dependent sto-
chastic inversion is given by A=RmdRdd

−1, the R�� matrix

takes the form
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R�� = Rmm − RmdRdd
−1Rmd

T . �B4�

Note that the diagonal elements of the error covariance ma-
trix R�� represent the mean square errors of the estimation
m̂.
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