TECHNICAL RESEARCH REPORT

VLSI Design of High-Speed Time-Recursive

2-D DCT/IDCT Processor for
Video Applications

by V. Srinivasan and K.J.R. Liu

T.R. 94-60

INSTITUTE FOR SYSTEMS RESEARCH

Sponsored by

the National Science Foundation
Engineering Research Center Program,
the University of Maryland,

Harvard University,

and Industry

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1994 2. REPORT TYPE 00-00-1994 to 00-00-1994
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

VL S| Design of High-Speed Time-Recursive 2-D DCT/IDCT Processor
for Video Applications

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Department of Electrical Engineering,I nstitute for Systems REPORT NUMBER
Resear ch,University of Maryland,College Park,MD,20742

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 33
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

VLSI Design of High-Speed Time-Recursive 2-D DCT/IDCT Processor
for Video Applications

Vishnu Srinivasan and K. J. Ray Liu

Electrical Engineering Department and Institute for System Research
University of Maryland at College Park
College Park, Maryland 20742

ABSTRACT

In this paper we present a full-custom VLSI design of high-speed 2-D DCT/IDCT proces-
sor based on the new class of time-recursive algorithms and architectures which has never been
implemented to prove its performance. We show that the VLSI implementation of this class of
DCT/IDCT algorithms can easily meet the high-speed requirements of HDTV due to its modular-
ity, regularity, local connectivity, and scalability. Our design of the 8 x 8 DCT/IDCT can operate
at 50 MHz with a 400 Mbps throughput based on a very conservative estimate under 1.2y CMOS
technology. In comparison to the existing designs, our approach offers many advantages that can

be further explored for even higher performance.

' This work was supported in part by NSF grant MIP9309506, ONR grants N00014-93-1-0566 and N00014-93-
11028, and Maryland Industrial Partnership MIPS/Micro-Star grant.

1 Introduction

Recent advances in various aspects of digital technology have made possible many applications of
digital video such as HDTV, teleconferencing, and multimedia communications. These applications
require high-speed transmission of vast amounts of video data. Most video standards such as
HDTYV video coding, H.261, JPEG, and MPEG use discrete cosine transform (DCT) as a standard
transform coding scheme [1, 2, 3, 4]. The DCT is however very computationally intensive. To realize
high-speed and cost-effective DCT for video coding, one needs efficient VLSI implementations so
that the high throughput requirements can be matched. There has been considerable research
in efficient mapping of these algorithms to practical and feasable VLSI implementations in the
recent past [5, 6, 7, 8, 9]. These have however employed irregular butterfly structures with global
communications resulting in complex layout, timing, and reliability concerns which severely limit
the operating speed and expandability in VLSI implementations.

Recently a new class of transform coding architectures based on time-recursive approach has
been proposed [10, 11, 12]. The complexity of this class of parallel architectures is low, e.g. only
4N — 4 multipliers are needed for computing the 2-D DCT. To perform inverse DCT (IDCT), the
computational structure is the same with only an additional multiplier needed [12]. Thus, the
DCT and IDCT can be naturally combined and implemented together. This class of architectures
has excellent scalability, i.e. the transform size N can be made any integer by adding or deleting
computational modules [10, 11, 12]. In addition, these are highly parallel, modular, regular, fully-
pipelined, and locally-connected. Thus it is a very good candidate for high-speed video applications.
Also, the architecture is very suitable for real-time applications as the time-recursive concept has
been exploited to eliminate the waiting time for data to arrive. From the VLSI implementation
point of view, as the parallel computational IIR structures are decoupled into independent modules,
the need for global communication is eliminated.

In this paper we present a novel VLSI implementation for the time-recursive 2-D DCT/IDCT
processor. The class of time-recursive parallel architectures has never been designed and imple-
mented to prove its superior properties— our goal here, is to show its performance under full-custom
VLSI implementation and to make comparison with other existing VLSI designs based on different
algorithms. The chip design has been carefully optimized based on appropriate choice of wordlength
and device elements to meet the expected signal-to-noise ratio, the design of distributed arithmetic

ROM units, and transformation and re-distribution of clocking and pipelined stages to improve

the throughput. The simulation of our design of the 8 x 8 2-D DCT/IDCT shows that it can
easily operate at a system clock rate of 50 MHz with 400 Mbps throughput under 1.2 CMOS
technologyT, which implies that it can perform DCT/IDCT under the HDTV requirements.

The paper is organized in the following manner. We give a brief summary of the algorithm
and architecture in Section 2. The finite wordlength and architectural considerations are given in
Section 3. The VLSI design and implementation are detailed in Section 4. A comparison to existing

DCT/IDCT VLSI design is presented in Section 5, followed by the conclusion in Section 6.

2 Algorithm and Architecture

The time-recursive two-dimensional DCT for a N x N image block {z(m,n) :m=1¢tt+1,...,t+

N-1;n=0,1,...,N — 1} is defined as [11, 12]:

2 HNCINZ) m2(m—t)+ 1k 7(2n + 1)
X (k,1,t) = N Ck)c) mzz:t ngo z(m,n) cos 5N co8 —— (1)
where
L ifk=0,
cky={ V2 '

1 otherwise.

The time index ¢ in X.(k,t) denotes that the transform starts from z(¢). The 2-D IDCT is defined

in a similar manner:

[y

N—

—

9 V=
N

m[2k + 1lm (2l + 1)n
S PR @)

xc(ma n) =

X (k,)C(k)C(l)cos |

ax

DCT/IDCT is a very computationally intensive operation. To be able to use this technique for
high-throughput applications such as HDTV coding, an efficient VLSI implementation is essential.
In the past several fast algorithms have been mapped onto VLSI chips, but they are not particularly
well adapted for VLSI where regularity, modularity, timing, layout complexity, and area are of more
concern.

The IIR algorithm [12] for the computation of the DCT is a direct 2-D method and does not
require transposition, unlike more traditional row-column algorithms. The structure is derived by

considering the transform operation to be a filter which transforms the serial input data into their

JrThis result is a conservative estimate

transform coefficients.

The 1-D DCT and its inverse for a N block input data, starting from z(¢) and ending with
z(t + N — 1) are defined as:

t+N 1
X ,/ n) cos [(n —t+;)7;\l; k=0,1,...,N -1, (3)

t+N—1
c(n,t) \/7+Z Ck-t)X)cos[(n+%)(k.]—\7t)7r], n=0,1,...,N—1, (4)

where C(k) is as defined in (1).

The transfer function for the forward and inverse 1-D DCT can be shown to be:

Y (2) 2 k. (L= 2" ((=1)F —z7V)
H(z) = = C(k)y/=
(2) X(2) Ck) NCOS(2N) 1 — 2cos (Zk)z~1 4 22 ®)
@t)(N—L)mwy @ntl)my _—N —(N+1)
Hi(z) = zcos(SN) —cos ()T 42 N /z(i_l)z—(l\’—l) (©)
N 1—2cos(§2—"2+ﬁ1)1)z—1+z‘2 N2

If we are however interested in only the N-block transform, (5) and (6) can be simplified to:

T —z!
Hc(z) _ (_1)kC(k) 3 COSs ('2_]5‘ 1— 2C0(81(M)Z_)1 + 42’
N

(7)

 cos Gyt 7 1
!

Hi.(z) = +14/=(== —1)z~ V-1, 8
(%) 1 - 2cos (L—Lgn;l'\,l7r)z_1—l-z'2) ®)

V2

The signal flow graph (SFG) shown in Fig. 1 implements (7) or (8) i.e. the forward and the inverse
1-D DCT depending on the multiplier coefficients and the modifications to the SFG as indicated
by the dashed lines.

The kernel shown in Fig. 1 computes a single DCT channel coefficient based on the multiplier
coefficient encoded in that particular filter. N such parallel modules (each with the appropriate
multiplier coefficient corresponding to k) form a filter bank which computes the N coefficients of
the 1-D transform. Every N cycles, the 1-D transform coefficients for a new data set is computed
in parallel by the N filter bank modules. These 1-D transform coefficients are then fed into an
identical but slowed down (N times) filter bank, which computes the 2-D transform of the N? data
block. The block diagram for the 2-D DCT/IDCT architecture [11] is outlined in Fig. 2.

Figure 1: IIR Structure for DCT/IDCT computation

M(0)
M(2
c @ Shift
M(0) Second Register
S Dimension Array
M(1)
(even) (even)
M(2) A
M(N-2)
First
Dimension (D)
C M(3)
Shift
M(N-2) Second Register
1 S Dimension Array
M(N-1)
(odd) (0dd)
A
M(N-1)

T

Figure 2: Block 2-D DCT/IDCT Architecture

3 Finite Wordlength and Architectural Considerations

In the realization of the DCT algorithm there are tight tradeoffs between various criteria like
accuracy, speed, and area of the chip. The implementation of the 2-D DCT/IDCT algorithm with
finite precision arithmetic (due to fixed register length) introduces truncation errors. To minimize
the effect of truncation errors, one needs to increase the register length i.e. have a larger internal bus
precision. Doing so however results not only in larger area, but also affects the speed of submodules
such as adders and multipliers. So we need to choose the optimum register length, which while
ensuring the minimum accuracy criteria, would also lead to a high-speed implementation with small
chip area.

To make sure the accumulated errors do not exceed the video coding requirements we model
the 2-D IIR DCT/IDCT architecture in C, and perform simulations to verify that Peak and Av-
erage SNR requirements suitable for video coding applications are met [5]. These simulations in
conjunction with preliminary timing analysis of various submodules helped in deciding the final ar-
chitecture suitable for a high-performance high-speed 2-D DCT/IDCT chip. The truncation errors
which are introduced in the system are quantified by PSNR and Average SNR. The Average SNR

15 defined_as:
18- a-as:

_ I(z,y)
SN = 20 [) — 1w “

where O(z,y) and I(z,y) are the output and input image pixel intensity values for position (z,).
The Peak SNR is defined in a similar manner with the only difference being that it focuses on the

noise introduced due to truncation, and therefore assumes peak input intensity value.

3.1 ROM Lookup vs Parallel Multiplier

One of the critical submodules of this design was the multiplier implementation. There are pros
and cons of using distributed arithmetic techniques [13] and parallel multipliers [14, 15]. ROM
table lookups can be done very fast as compared to using a regular multiplier. Also its accuracy
is higher than regular multipliers as lookup-entries are precomputed (with 64-bit precision) and
stored in the table. The only drawback is that, as a table lookup, its size grows exponentially with
input bit precision. Table 1 compares some of the preliminary ROM designs with the best parallel
multiplier that was available to us.

We see that, barring a need for a 16-bit wide input for the ROM, its size is smaller than the

Precision Size Delay

ROM (one coeff.) || 12 x 12 | 1217X x 1532\ | 15 nS
ROM 12 x 12 | 1292X x 1646 | 15 nS
ROM 12 x 16 | 1292) x 1854\ | 15 nS
ROM 16 x 16 Not feasable | 15 nS
Multiplier 16 x 16 | 3513\ x 1568) | 80 nS

Table 1: ROM vs Multiplier Comparisons

parallel multiplier. Also, our unique design of the ROM allows us to have two sets of table entries
interdigitated with an area increase of only 12%. This is essential if we are to compute both the
forward and inverse transforms using the same structure. Thus we see, not only is the ROM smaller
than the multiplier, but it is over 4 times faster than the best parallel multiplier that was available

to us. The timing simulations are for the 2.0u technology parameters (A = 1u).

3.2 Finite Wordlength Simulations

For many video standards we need to ensure a minimum PSNR of 40 dB [16]. Fig. 3 illustrates the

architectural simulations which help in quantifying the truncation noise in the system by PSNR

computation. The blocks for forward and inverse DCT are C architectural models which model
the finite precision arithmetic of the IIR structure for the 2-D DCT/IDCT computation, and helps
in estimating the Peak and average SNR. Simulations are performed for a set of different system
parameters aimed at meeting minimum SNR criterion while at the same time, minimizing area and

maximizing speed.

Input image 3 12 8 Output image
block (8 x 8) // Forward // Inverse / block (8 x 8)
DCT DCT
I(x,y) O(x.y)

Figure 3: Accuracy simulation block-outline

Several input images—LENA, SAILBOAT, AIRPLANE, and random data—have been used in

these simulations. These images are 512 x 512 pixels, with each pixel being specified by 8-bit word

corresponding to 256 gray levels. As our image block size is 8 x 8 pixels, a single image yields
4096 blocks for which the 2-D DCT-IDCT is computed and the PSNR statistics collected. The
highlights of these simulations are presented in Table 2.

of ROM | Internal bus | Average | Peak
input bits precision SNR SNR

12 12 21.1dB | 27.3 dB
12 16 37.8 dB | 44.0 dB
16 16 38.0dB | 44.2 dB

Table 2: Finite precision arithmetic simulation of IIR structure.

As we can see, the minimum PSNR requirements are adequately satisfied if we use a system bus
precision of 16-bits with a 12-bit wide ROM input wordlength. The 16-bit input, however, increase
the ROM area by four times with almost the same PSNR.

4 VLSI Design and Implementation

efficient VLSI implementations. To achieve a high-speed design (with minimum area) we use the

full-custom approach. All submodules have been designed with careful regard to area and speed
issues. Particular design care is taken to ensure that the critical path modules such as ROM lookup
and adder are optimized. A highly hierarchical and modular strategy is employed in the chip design.
By employing such a design strategy, we not only reduce the design time and effort but also have

improved reliability.

4.1 Design and Simulation Tools/Methodology

The VLSI layout editor MAGIC is used to implement the full-custom 2-D DCT/IDCT chip. The
various submodules needed for the chip design—ROM lookup, adder, latch, delay, multiplexer, and
invertor—are laid out first. These submodules are characterized and their functionality verified
before they are used as macro-cells. These macro-cells are instantiated and used in the higher-level
hierarchies like ”1-D Channel” and ”2-D Channel” modules, which in turn are larger macro-cells in
the next higher level. This hierarchical approach minimizes the design effort considerably, as one

needs to only consider tiling, placement and routing of various modules at the current level.

Crystal, and primarily, Spice are used to perform the timing simulations. Crystal, a semi-
interactive program is used to estimate the critical path in a submodule between a specified set
of input and output vectors. For a given change in the input vector, worst case times/delays
are propagated to the output vectors. This gives us information about the critical paths. Using
this as a starting point, Spice is used to perform a detailed timing analysis of critical paths of
various macrocells. In our design, the slowest modules turned out to be the ROM lookup and carry
lookahead adder.

Functiohality verification is done using IRSIM which is an event-driven logic-level simulator.
The logic-level simulations are performed at a much higher level of circuit abstraction, treating the
transistors as switches which are either ON or OFF. IRSIM is used to test not only the functionality
of all macrocells, but is also used to perform logic-level simulations and verify the functionality at all
hierarchy levels—starting from the bottommost, like that of the macrocells, to intermediate levels
such as 1-D/2-D channel modules, then to the topmost level, namely the entire 2-D DCT/IDCT
chip.

4.2 Distributed Arithmetic

This is perhaps one of the most critical submodules designed in this project. The ROM is optimized
both for speed and area. The area optimization is especially critical, as the ROM is arrayed 34
times in the complete chip and occupies a significant percentage of the chip area. Even a small
reduction in ROM area would affect our chip area statistics considerably. While speedwise, ROMs
are superior to multipliers, their area increases exponentially with the input word size.

The optimal system design, satisfying accuracy requirements and minimizing area required a
16-bit internal bus with a 12-bit ROM input wordlength. A straightforward implementation of
this ROM lookup table would need 22 (or 4096) rows of 16-bit words, which is too large to be
implemented. However by using partial sums method, as illustrated in Fig. 4, we can reduce the
size of the lookup table to 28 (or 64) rows, but this requires two separate lookup tables along with
a fast adder to combine the high and low order sums. Also, our ROM structure should have the
capability of computing the 2 products, for both forward and inverse transforms. We will see in
the subsequent paragraphs how the high and low order tables and interdigitation is employed to
craft a compact and fast ROM lookup.

The 12-bit input is split into two 6-bit words, Inpy, and Inpg. The multiplication is effected in

Out16 = Cl XIIlpm

Inpy My = 25xC,
/] /
Inp o /6 | /
Out In}) 16 Out
; ROM | <+>—,L—>
12 . 16 12 6 11 16
. LN
7 /
Inp, = My =C;
(4096 rows x 16 bits) (64 rows x 27 bits)
(a) Naive implementation (b) Our ROM Implementation

Figure 4: ROM Design Strategy

the following manner. The output, Out = Cy X Inp, is computed as:

Out = 2° x Cy x Inpy + C; x Inpr,.

where the input

Inp =28 x Inpy + Inpr.

The two sub-products are precomputed with sufficient accuracy and storing in the ROM lookup
table. The output is formed by adding the sign-extended lower order product to the higher order
product. This is illustrated in Fig. 4 (b). We need two tables, each with 26 or 64 rows only. It
turns out that we need to store 16 bits for the upper precomputed product and 11 bits for the lower
product. The lower and higher order ROM entries are to be added with the proper shift, taking

into account the 2’s complement representation.

4.2.1 Design details

Most ROMs are based on the precharged scheme, where the bit lines are precharged high and
during the evaluate phase, according to the stored bit-sequence, selected lines are discharged. Our

ROM is based on a novel design, which reduces the access time. The main components of the ROM

are tree-based row decoder, memory cells, and sense-amp. The ROM schematic is shown in Fig. 5.

Outig = C1 X Inpro

16-bit Adder
Sense Amp (16 bits) Sense Amp (11 bits)
M = < L
Inpi2 6 6
4 . .
// // S . (64 rows x 16 x 2 bits) (64 rows x 11 x 2 bits) | g <7L
12
B [<— B
Sense Amp (16 bits) Sense Amp (11 bits)
16-bit Adder

J L

O’U,tls = Cg X I'np12

Figure 5: ROM Multiplier Schematic

6-64 Decoder: The 6-bit input lines are decoded and the appropriate ROM row select line is
selected. Instead of a straightforward 6-bit decoder implementation, we use two 3-bit decoders and
an array of 64 AND gates. This technique helps reduce the layout complexity and also results in
shorter access time. The VLSI layout of the 6-bit decoder is shown in Fig. 6.

Lookup Table: The ROM unit cells which encode a 1 or 0 are shown in Fig. 7. These cells are

identical and measure 13\ X 16\. Depending on whether a logic high or low is to be stored, we have

10

o
tooiy
eatAmizon)

ey
ot

O
333

Figure 6: Physical layout 6-bit decoder (377X x 1292)\).

a n-channel transistor connected between the output line and either Vdd or GND, respectively.
The transistor gate is connected to the row-select line of the decoder. In our ROM table there are
totally (16 + 11) x 2 x 64 or 3456 unit cells. Each cell corresponds to one bit of storage. The pitch
of these cells is designed to be half that of the sense-amp (SA) which lets up place two cells for a
single SA. So by placing one set of SAs at the top of the table and another below, we are able to
interdigitate two lookup tables with minimal increase (only 12%) in area requirement.
Sense-Amp: The function of this simple module is to speed up the word-lookup. It works
on the simple principle of precharging the bit-lines to an intermediate voltage between VDD and
GND. In this way, regardless of whether the bit-lines are turned on or off, the delay time is reduced.
The sense-amp schematic is shown in Fig 8 (b). In the precharge phase of the clock (¢ is low),
the p-MOS shorts the input and output of the invertor, which forces the bit-lines to the invertor
transition point at 2.5 volts (Simulations have however indicated that this voltage is closer to 3

volts). In the evaluate phase, the p-MOS transistor turns off and the bit-line signal is latched at

11

Figure 7: ROM unit-cells of size 13\ x 16A. Encode bits 1 and 0 .

the output through the simple butterfly-pass transistor. The SA measures 26\ x 94). The pitch of
the SA is twice that of the unit-cell, allowing two such cell for every SA. By placing one set of SA
at the bottom, and another at the top, the product for two coefficients is computed at the same

time.

4.2.2 ROM Implementation

The first ROM is designed in the regular manner—design the individual cells like sense-amp, 3-
bit decoders, 6-bit decoders, and 0/1 unit cells in their various orientation and at UP/DOWN
positions. Once a complete ROM is assembled (with dummy coefficients), it is broken up into
subunits/cells, and their locations and arraying information noted. Using a perl script, new ROMs
are assembled by stiching the various subunits/cells in the appropriate locations. The crucial part
is the encoding of the interdigitated coefficients. The sine or cosine coefficients are computed using
double-precision floating point arithmetic on the Sun workstation, and given as input to the perl
script. These numbers are converted to 2s complement binary, and routines called to place the
?1-unitcell” or ”0-unitcell” depending on the bit-value at that particular location.

The perl script writes the placement information of the ROM subunits in a temporary file. The
script then invokes MAGIC as a child process which does the actual job of putting together all the
modules to form the final ROM submodule. The automatically generated ROM is carefully tested

for functionality verification, design rule violations and timing analysis. To generate ROM lookup

12

ROM bit-line

Phi "‘l ’O— Phi_bar

Sense-Amp output
to Adder

al

Figure 8: Sense-Amp:—(a) Physical layout of SA (26X x 94}), (b) Corresponding circuit schematic.

tables with different multipliers, the process is repeated for all the channels. Multiplier coefficients
required for the various channels are computed and the ROM generator invoked for each of these.

The size of the basic ROM structure (with SA) which encodes two multiplier coefficients is
1292\ x 1854\, If we include the adders to combine the high and low order products, the ROM /adder
assembly measures 2226\ x 1854\. The combined ROM lookup-table and adder to effect multipli-

cation is shown in Fig. 9.

4.2.3 Timing

To compute the propagation delay in the ROM lookup table, Spice is used. Using extraction style
for 1.2u or 2.0u, the circuit parasitics are extracted. The timing analysis for ROM lookup-table

13

Figure 9: Physical layout of ROM lookup-table with associated adders. Dimension is 2226\ x 1854 A.

14

ROM Propagation Delay

6 T T T T T
Technology: 2.0 micron

. Row select
:

Bit line

Voltage (in volts)

- 1
0 0.5 1 15 2 25 3
Time (in seconds) x10°®

Figure 10: 2.0 ROM

extracted using the 2.0p technology scaling parameters (of Magic) is shown in Fig. 10. The ROM
input is pulsed to 5V at 3ns and the clock at 5ns. The ‘Row select’ line is the output of the 6-bit
decoder which selects one of the words in the ROM table. The propagation delay is defined to as
the time difference between the 50% points of the input and the ‘Row select’ lines. The bit line is

at 2.9 volts, and it discharges to 0.5 volts at 16.5 ns. The propagation delay for the ROM lookup

is 13.5ns.

4.3 Adder

There are several possible designs for adders. They could be based on the simple majority logic
function approach [17, 18] implemented using straightforward combinational gates. Implementation
can employ either the simple, but slow ripple carry adder or utilize the fast, but complex carry
lookahead (CLA) method. There are pros and cons to every choice, and depending upon the
application one should choose the appropriate design.

We need to choose the design which would yield the least propagation delay, and at the same

time would not require elaborate clocking precharge schemes or take up too much area. Carry

15

Figure 11: Physical layout of the 16-bit carry-lookahead-ripple Adder. Module dimension is 1348\ x
355\,

lookahead adders would give us the best performance in terms of delay, but it is not practical to
implement CLA with more than 4-bits as they become too large. Ripple carry adders on the other
hand, would yield compact layouts, but their speed would depend on the number of bits being
added.

In our case, accuracy simulations indicated the need for a 16-bit wide internal bus. Clearly, a
simple ripple carry adder would be too slow for our requirements. At the same time, building a
CLA scheme for 16 bits is impractical. A good compromise that we chose was to implement a 4-bit
CLA, and connect up four of these units in a ripple fashion to obtain a 16-bit carry lookahead-cum-
ripple adder. The basic 4-bit carry lookahead adder implementation is based on [17]. The adder

module is shown in Fig. 11. This module has 704 transistors and measures 1348\ x 355\ units.

4.3.1 Timing

We expect the longest delay in the adder to be the signal propagated from carry-in to the MSB.
Here, as carry-in is always preset to 0/1, the longest delay is from the LSB to the MSB. Simulations
performed using 1.2 y technology parameters indicate a maximum propagation delay of 9 ns. The
adder inputs are FFFFp,; and 00004.,. ‘InA1’ is pulsed from 0 to 5 volts at 2ns. ‘Outl6’ drops to
0V after the propagation delay as shown in Fig. 12.

4.4 Clocking

The propagation delays of ROM and adder helps us decide retiming and clocking issues. Fig. 13
illustrates the implementation of the 1-D kernel SFG using a single-phase clock (with static latches)
or a two-phase non-overlapping clock (with dynamic latches). From both speed and area viewpoint

the two-phase clocking scheme turns out to be a better choice.

16

Adder Propagation delay

6 T T T T T T T
Technology: 1.2 micron
e]
! \
I "
I 1]
/ !
41 ! f J
) 1
! |
! {
i / '
S of / I y
>
/ ;
(] /I :
g / .
£ 2r ; 1 N
> ! 1
! 1
/ |
n /I InA1 I Out16 .
/ \
1 '
I
) '
oF----—- ! [
_1 1 1 1 1 1 A 1
0 0.2 0.4 0.6 0.8 1 1.2 14
Time (in seconds) x10°

Figure 12: 1.2 Adder

A two-phase clock permits us to use dynamic latches which are simpler to design and are
more compact as compared to static latches. Two-phase clocks gives us the flexibility to retime
the SFG such that the delays in the various critical paths are equalized. This is illustrated in
Fig. 13 (a) and (b). In Fig. 13 (a), the propagation delay between any two subsequent latches is
(3A+R, 2A), where A and R are the propagation delays of adder and ROM. The maximum delay
between two subsequent latches is the critical path and will determine the fastest possible clock
rate. In Fig. 13 (a) it is (3A+R). Knowing that the adder and ROM delay are about the same, the
critical path is retimed as shown in Fig. 13 (b). The maximum delay now is either (A+R) or 2A;

which means that the critical path delay is halved, and thus the maximum clocking rate is doubled.

4.5 Other Submodules

Various other macrocells which are needed in our implementation are described here. Half-latch,

delay, multiplexer, and inverter are some of the modules which have been designed.

17

()
® @
e ? (1 3= ¢
b1
<t &
$1 ¢2 1
L b
L|LIL
(a) Single phase clock (b) Two-phase clocking scheme

Figure 13: Clock Speedup

4.5.1 Half-latch with Reset

The schematic for the half-latch is shown in Fig. 14, and the VLSI layout in Fig. 15. It is 16 bits
wide corresponding to the internal bus precision. Depending on its location in signal flow graph
(see Fig. 17), it latches on either ¢, or ¢o. A reset control is also provided. To design the latch,
a single bit is laid out, which is tested with Irsim and Spice for functionality and timing. The size
of the output invertor is made sufficiently large to allow adequate driving of expected output load
in the module where it will be used. Once the testing is completed, the final module is assembled
by arraying the one bit. Local distribution of all control signals are taken into account at the 1-bit
design stage itself. So after the arraying, the module is ready with all clock/control signals and
power rails already wired. Of course, the module is not fully ready until functional verification is

done again for the 16-bit wide latch.

18

Out

v

In ——
Reset —

Figure 14: Schematic of Half-latch with Reset Control Circuitry

Figure 15: Physical layout of Half-latch with Reset. Module dimension is 938\ x 127A.

4.5.2 Delay, Delay7 and Delay8

These are shift-registers which act as clock delays for 1, 7, and 8 cycles. As before they are
implemented by modifying the basic 1-bit unit to latch for an entire clock period. The 1-bit 1-clock
period delay unit is arrayed 16 times to obtain a 16-bit wide bus. And this is further arrayed 7 or 8
times to get the final delay modules. The control/clock signals required by this module are ‘Reset’,
¢1, and ¢5. The ‘delay’ module measures 938X x 217, the ‘delay?’ measures 1028A x 1549, and
the ‘delay8’, 1028 x 1771\.

4.5.3 Multiplexers

These are needed to choose between two sets of signals. It is used after the ROM (see Fig. 17) and
other locations in the SFG affected by a switch from computing the forward to the inverse transform.

The circuit schematic is illustrated in Fig. 16. The size of the multiplexer is 1271\ x 119A.

19

fwd

S S N Y
pud o 0w
B

fwd

Figure 16: Schematic of Multiplexer

4.6 1-D Channel Module

The macrocells which have been described so far are put together to form the 1-D channel module
at the next higher hierarchy. The channel module implements the SFG of the kernel as is shown
in Fig. 17. This module, depending on the value stored in the ROM, computes the appropriate
DCT/IDCT transform coefficient. Magic ‘instantiates’ [16] every occurrence of these modules,
resulting in much faster layout and extraction of the module.

The signal flow graph implemented by this module is shown in Fig. 17. All but multiplier
M3 (needed only for inverse transform as indicated in Fig. 1) and the associated multiplexers and
latches are included in this module. Since only one set of M3 and its associated circuitry is needed
for the entire 1-D module, it is designed separately.

The physical layout of the 1-D channel is shown in Fig. 18. All of the eight channel modules
are identical except that they instantiate different ROM tables. The circuit has been laid out in
such a manner that it facilitates easy modular development. Inter-module connections are brought
to the edges of the blocks where they get connected with the other modules wire-segments when
these modules are tiled. By adopting such a methodology, we save considerably in design time and
effort, and at the same time, if the modules are designed properly (matching pitch), we save in
interconnection area requirement also. The power rails, input/output, and other important control
signals are routed from top to bottom in each module. As they are tiled vertically the routing of
all signals is done automatically. We only have to concern ourselves with feeding these signals to

the entire 1-D module, either from the top or the bottom, as local distribution of these signals is

20

n + A v
=T

I NV ¢2 ¢ fwd
From
1D Inverse
M L L Q M I module
—|— U 4 A A U>N
X T T X A
fuwd $1 $1 | fwd ¢2
L|L
Ala
T|T
192

Figure 17: 1-D IIR SFG with clocks and latches

already taken care of in the design of the channel-module.

The eight 1-D channel modules are tiled one over the other to form the complete 1-D DCT. To
compute the IDCT, the additional M3 and its associated delay units is separately attached to the
1-D module, below Channel 7. The physical layout of this module is shown in Fig. 19.

4.7 2-D Channel Module

This module is designed along similar lines as the previous 1-D channel-module. The SFG is
in Fig. 20) is almost the same, except that 8-block delay units are present in both loops. This
facilitates computation of 8 blocks of data in a time-displaced parallel fashion. The same concept

can also viewed from systolic point of view. The VLSI layout of this module is shown in Fig. 21.

4.8 CSA and Control Signal Distribution

This was the last module designed. It takes the 8 parallel 16-bit words generated by the 1-D module
and feeds it serially to the 2-D module. The Circular Shift Array (CSA) module serves another

21

L[] [

-
-
-
-
|
a
=
&£
]
]
H
¥

1

Figure 18: VLSI layout of 1-D channel. The module measures 2742\ x 8029).

important function—of storing the 1-D IDCT coefficients of the first row required for computation
of the inverse at the second stage.

There are several control signals for this module—to read data from the 1-D module, to latch
it in, and shift it out serially to the 2-D module, to latch in data to help in computing of the
inverse, and to hold it until required. These control signals are Lat_shft_C and Lat_inv_C as given
in Table 3. It is during the time the 1-D module is being reset that the 1-D channel outputs are
latched into the CSA. At the same time the 2-D DCT is also being computed. In the clock period
when the 1-D channel modules are being reset, the 2-D channel modules are not clocked. This is
done to ensure synchronicity. For the same reason, the CSA’s second set of shift registers which
circulate the first row of 1-D DCT coefficients, is also not clocked in that period.

Routing of the control signals is a fairly important issue as there are quite a few control signals
that need to be distributed to various clocked modules like latches and delays, and multiplexers.

The basic idea is to distribute the master control signals to the high-level cells like 1-D/2-D channel

22

Figure 19: The layout of the additional M3 module for the inverse transform

modules and use a buffer to generate the local control signals, which are then distributed to all
modules within that particular submodule. This is essentially a multi-level tree distribution of the
control signals. By employing such a scheme, we are not only able to minimize skew, but also have
improved rise and fall times. This scheme is particularly relevant to the clock signal distribution.

The ‘rst’ control signal is to be distributed to all those modules that are clocked as they need
to be reset between blocks. The ‘fwd’ signal which determines whether the forward or inverse
DCT is computed is routed to all the multiplexers. Those modules require these control signals
also need the complement (which is generated at the local buffer). It is not necessary to route the
complement of the control signals on a global chip scale. Routing of these control signals to each

bit slice is built into the sub-module design.

4.9 2-D DCT/IDCT Chip

Using all the cells—1-D, 2-D, and CSA—already described, the final chip is assembled. The

23

+ + A v
S AL

1 p ;
L
INV ¢2 Z_7<_¢2 $1 fwd
From
1D Inverse
C—}— v 42 5 4 Mg b NN module
T|M T x| |v
fwd ¢1 P1 | fwd P2
Z—S
11
P12

Figure 20: 2-D IIR SFG with latches and clock details

floorplan of the chip is shown in Fig. 22. In the floorplan one can identify the various cells that
have been mentioned earlier in this description. The physical layout of the 2-D DCT/IDCT chip
is shown in Fig. 23. The chip description and statistics are tabulated in Table 3 and Table 4.

5 Comparisons

Some designs published in the literatures are compared to our design. As can be seen in Table
5, The designs in [5, 8] are for low-bit rate CODECs that operate at about 15 MHz. Both designs
used the butterfly architecture so that there is no flexibility in transform size N. The transposition
is required. Both employed distributed arithmetic implementation. The DCT/IDCT chip in [6]
used of silicon compiler to design the whole system under the 0.84 triple metal technology. The
booth multiplier is used instead of distributed arithmetic. The transposition is also employed. This
chip can operate at 50 MHz, but the bit throughput rate is unknown.

It seems that our design has many pins, this is due to ease of debugging. In fact, the active
pins are only 38. In particular, a FIFO buffer can be placed at output to reduce output pin count.

The chip is a regular, highly modular, and fully-pipelined structure - hence full-custom possible by

24

Function Compute 2-D DCT/IDCT

Mode Selection | Active High ‘Fwd’ for Forward

Clock Pins Phi 1: ¢; & Phi 2: ¢9

Reset Pin (1D) | Active high ‘Rst’ pin

Reset Pin (2D) | Active high ‘Rst_2d_C’ pin

CSA Control ‘Lat_shft_C’ and ‘Lat_inv_C’

2-D Inverse ‘Inv_load_C’ high for last block

Input Pins ChiplInl5, ..., ChipIn0 (16 pins)

Test Output CSA: 1DOUT1S5, ..., 1IDOUTO (16 pins)
2-D Output K0OUT16 — K0OUT1, ..., K7T0UT16 — K70UT1
Power Rails ‘Vdd!” & ‘GNDY

Table 3: 2D-DCT/IDCT Chip Description

Technology 1.2p CMOS N-well
Die Dimensions | 24550\ x 27094\
Chip Area 240 mm?

of Transistors | 320,000

Speed 50 MHz

Data rate 400 Mb/s

Table 4: 2D-DCT/IDCT Chip Statistics

0 | Sun-Chen [5] | Fujiwara et al [8] | Miyazaki et al [6] | Srinivasan-Liu |
Function 16 x 16 DCT 8 x 8 DCT/IDCT | 8 x 8 DCT/IDCT 8 x 8 DCT/IDCT
Technology 2.0u 1.0 0.8y triple metal 1.24 double-metal
Size 8.3 x 8.1 mm? | 10.7 x 10.2 mm? | 12.8 x 12.6 mm? 14.7 x 16.2 mm?
Transistors 73,000 156,000 180,000 320,000
Pads 25 active pads 68 PLCC pkg. 72 PGA 176 (Active pads ~38)
Max. Speed 15.1 MHz 15 MHz 50 MHz 50* MHz or 400* Mbps
Structure | Butterfly (irreg) Irregular Irregular Regular (modular)

Table 5: Comparisons (* The ROM simulation results were based on the 2 ym CMOS technology.
Therefore, the actual figures should be higher).

25

Figure 21: 2-D Module Layout (2784 x 10672))

using Magic. Based on a conservative estimation it can operate at 50 MHz under the 1.2y CMOS
technology. If 0.8y technology used, then it can be much faster.

A detailed comparison is given in Table 5.

6 Conclusion

In this paper, we have presented a VLSI implementation of a high-performance high-speed 2-D
DCT/IDCT chip. It is a full-custom implementation employing a highly modular and hierarchical
design strategy. Distributed arithmetic is used for fast and compact multipliers. Non-overlapping
two-phase clocking scheme leads to a faster and more compact layout of the kernel. Architectural
simulations are conducted for choosing system parameters that ensure adequate accuracy while
minimizing chip area. The 2-D DCT/IDCT chip dimensions are 24550 x 27094\ and its area is
240 mm? based on 1.2 u technology. The pin-count is 176, and the chip has over 320,000 transistors.

26

iir1di1do
1d0_0

iirtdi1d1
1d1_0

Wiirtdf1dz
1d2_0

fiirdi1d3
1d3_0

ir1di1da
1d4_0

firdnds
1d5_0

iirldi1de
1d6_0

irtdndz
1d7_0

. fmodules/csad

csag_0

Ao LDl Dy L)L E

.fiirzdf2do

2d0_o

fiirzd/2d1

2d1_0

.fiiredf2d2

2d2_0

.fiiredf2d3

2d3.0

iiredi2d4

2d4 0

.fiir2df2d5

2d5_0

Jiirzdizde

2d6_0

iir2di2d7

2d7_0

.diirzdfid
idct_Zé

t_2d
0

Figure 22: Floorplan of 2-D DCT/IDCT Chip.

27

Aw»n»-“n_nnwu.mn D ,:.ium‘n_nbn il

Figure 23: Two Dimensional DCT/IDCT Chip. Chip measures 24550\ x 27094\, Area is 240 mm?.

28

Timing simulations performed using Spice indicate a clock frequency of 50 MHz corresponding to a

data throughput of 400 Mb/s. We have shown that VLSI design based on the class of time-recursive

algorithms and architectures can easily meet with high-speed requirements. In comparison to the

existing designs, our approach offers many advantages that can be further explored for even higher

performance. This chip has been submitted for fabrication in 1.2z CMOS N-well double-metal

single-poly technology.

References

[1]

2]

3]

[4]

[5]

K. R. Rao and P. Yip, Discrete Cosine Transform : Algorithms, Advantages, and Applications.
Academic Press, Inc., 1990.

G. K. Wallace, “The JPEG still picture compression standard,” Communications of the ACM,
vol. 34, pp. 31-44, April 1991.

F. Kretz and D. Nasse, “Digital television: Transmission and coding,” Proceedings of the IEEE,
vol. 73, pp. 575-591, April 1985.

G. Tonge, “Image processing for higher definition television,” IEEFE Trans. Circuits and Sys-
tems, vol. CAS-34, pp. 1385-1398, November 1987.

M.-T. Sun, T.-C. Chen, and A. M. Gottlieb, “VLSI implementation of a 16x16 Discrete Cosine
Tranform,” IEEE Trans. Circuits Syst., vol. 36, pp. 610-617, April 1989.

T. Miyazaki, T. Nishitani, M. Edahiro, I. Ono, and K. Mitsuhashi, “DCT/IDCT Processor
for HDTV developed with DSP Silicon Compiler,” Journal of VLSI Signal Processing, no. 5,
pp- 151-158, 1993.

M. Vetterli and A. Ligtenberg, “A discrete fourier-cosine transform chip,” IEEE Selected Areas
in Communications, vol. SAC-4, pp. 49-61, January 1986.

H. Fujiwara, M. Liou, and M. Sun, “An all-ASIC implementation of a low bit-rate video codec,”

IEEE Trans. Circuits and Systems for Video Techn., vol. 2, pp. 123-134, June 1992.

D. Slawecki and W. Li, “DCT/IDCT processor design for high-data rate image coding,” IEEE
Trans. Circuits Syst. Video Technol., vol. 2, pp. 135-146, June 1992.

29

[10] K. J. R. Liu and C. T. Chiu, “Unified parallel lattice structures for time-recursive Discrete Co-

sine/Sine/Hartley transforms,” IEEE Trans. Signal Processing, vol. 41, pp. 1357-1377, March
1993.

(11} C. T. Chiu and K. J. R. Liu, “Real-time parallel and fully pipelined two-dimensional DCT
lattice structures with applications to HDTV systems,” IEEE Trans. Circuits Syst. Video
Technol., vol. 2, pp. 25-37, March 1992.

[12] K. J. R. Liu, C. T. Chiu, R. K. Kologotla, and J. F. JaJa, “Optimal Unified Architectures for
the Real-Time Computation of Time-Recursive Discrete Sinusoidal Transforms,” IEEE Trans.

on Circuits and Systems for Video Technology, vol. 4, pp. 168-180, April 1994.

[13] S. A. White, “Application of Distributed Arithmetic to Digital Signal Processing: A Tutorial
Review,” IEEE ASSSP Magazine, pp. 4-19, July 1989.

[14] G. Ma and F. J. Taylor, “Multiplier policies for digital signal proessing,” IEEE ASSP Maga-
zine, pp. 6—20, January 1990.

[15) C. Stearns and P. Ang, “Yet another mulitplier architecture,” IEEE Custom Integrated Circuits
Conference, no. 24, pp. 6.1-6.4, 1990.

[16] R. N. Mayo, M. H. Arnold, W. S. Scott, D. Stark, and G. T. Hamachi, DECWRL/Livermore
Magic Release. DEC and WRL, Research Report 90/7, 1990.

[17] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design, A Systems Perspective.
Addison-Wesley, 1988.

[18] L. A. Glasser and D. W. Dobberpuhl, The Design and Analysis of VLSI Circuits. Addison-
Wesley, 1985.

30

