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Abstract

In this study, we explored the possibility of enhanced spontaneous emission of radiation beyond

the free space value by analyzing a semiconductor superlattice structure placed in a microcavity

whose resonant modes were tuned to the Bloch frequency. In particular, we considered the spon-

taneous emission of Bloch radiation into the dominant mode of a rectangular waveguide. In the

analysis, the quantum radiation field was described by the waveguide quantized electromagnetic

field in the Coulomb gauge, and the instantaneous eigenstates of the Bloch Hamiltonian were used

as basis states to analyze the Bloch dynamics to all orders in the constant external electric field.

The results predict that the spontaneous emission occurs with frequencies equal to integral mul-

tiples of the Bloch frequency without any ad hoc assumptions made concerning the existence of

Wannier-Stark ladder levels; such quantization effects arise from a natural consequence of the im-

plicit quantum selection rules. It was shown that the power radiated into the dominant mode of a

rectangular waveguide can be enhanced by an order of magnitude in comparison with that for the

free space spontaneous emission by tuning the Bloch frequency to align with the spectral region

of the waveguide spectral density peak. For GaAs-based superlattices, the power radiated from

spontaneous emission due to Bloch oscillations in the terahertz frequency range was estimated to

be about several microwatts.
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In this study, we explored the possibility of enhanced spontaneous emission of radiation beyond the free space value by analyzing
a superlattice structure placed in a microcavity whose resonant modes were tuned to the Bloch frequency. In particular, we
considered the spontaneous emission of Bloch radiation into the rectangular waveguide dominant mode.

In the analysis, the quantum radiation field was described by the waveguide quantized electromagnetic field in the Coulomb
gauge, and the instantaneous eigenstates of the Bloch Hamiltonian were used as basis states to analyze the Bloch dynamics to all
orders in the constant external electric field. The results predict that the spontaneous emission occurs with frequencies equal to
integral multiples of the Bloch frequency without any ad hoc assumptions made concerning the existence of Wannier-Stark ladder
levels; such quantization effects arise from a natural consequence of the implicit quantum selection rules.

It was shown that the power radiated into the dominant mode of a rectangular waveguide can be enhanced by an order of
magnitude in comparison with that for the free space spontaneous emission by tuning the Bloch frequency to align with the spectral
region of the waveguide spectral density peak. For GaAs-based superlattices, the power radiated from spontaneous emission due to
Bloch oscillations in the terahertz frequency range was estimated to be about several microwatts.
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I. Introduction

Electrons in a miniband of a semiconductor superlattice (SL), accelerated by an electric

field E applied in the transverse direction to the SL layers without scattering, can undergo

Bloch oscillations1–3 with frequency ωB = eEa/h̄, where a is the SL period. The Bloch

frequency ωB can be tuned with external field E so as to vary from the high gigahertz

to the terahertz (THz) frequency range, thus suggesting the applicability of such internal

oscillations as a tunable solid-state source for submillimeter wave radiation.2 Most recently,

Bloch oscillations have been confirmed by using time-domain terahertz emission spectroscopy

in GaAs-based SL structures.4,5 There have been also a lot of discussions relating the coupling

of coherent Bloch oscillations to other fundamental solid-state excitations such as photons,6,7

optical phonons,8 and plasmons.9 In this study, we analyze the spontaneous emission (SE)

of radiation resulting from a Bloch electron accelerated by a constant electric field through

a miniband of a SL structure placed in a resonance microcavity.

The use of an electromagnetic cavity is well known to maintain resonant conditions at

a given frequency to provide a positive suitable feedback in various microwave oscillator

schemes10 as well as in optical11 and terahertz12 laser systems. An increase of the overall

emitted THz power of more than one order of magnitude has been reported by placing a

surface-field emitter inside a THz cavity.13 As axamples relevant to this work, many efforts

have been focused on increasing of the SE rate in optical microcavities.14 The effect of

electromagnetic wave confinement (i.e., when at least one dimension of the cavity is of the

order of the radiative wavelength) is to redistribute the free-space mode spectral density so

as to increase it at some frequencies and to decrease it at others. Therefore, for an active

medium in a cavity structure, the SE rate can be enhanced or diminished depending on the

position of the emission frequency relative to the cavity-mode spectral density.14,15

II. Bloch oscillator model configuration

We assume that the SL structure is placed into a waveguide with rectangular cross section

Lx×Ly and length Lz, where the coordinate axes are chosen to be along the waveguide edges.

The dc electric field E is applied along the y axis, which is also the SL growth direction.

The electromagnetic field inside the waveguide with assumed perfectly conducting walls is

determined by the guided modes corresponding to standing waves with respect to the X
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and Y axes [designated by an integer pair (m,n)] and propagating waves along the Z axis

characterized by propropagation constant qz. Such modes form a complete and orthogonal

basis set for describing the electromagnetic fields within the waveguide. In the following, we

will consider only transverse electric (TE) modes, where the electric field is perpendicular

to the direction of propagation. For practical cases,16 the most important of all confined

modes is the TE10 mode (m = 1, n = 0), which is the dominant mode of a waveguide

with Lx > Ly. This mode has the lowest attenuation and its electric field, Er, for the

chosen system geometry, is polarized in the direction of the dc field E. We consider only

one excited, TE10, mode while all the other less effective TE and TM modes are ignored.

For this mode, we have the following zero electric field Er,x = Er,z = 0 and magnetic field

Hr,y = 0 components. Thus, the vector potential Ar of the field has only one nonzero (y)

component, so that

Ar,y =
∑
qz

√
4πh̄c2

ωqεV
sin(qxx)

(
aqe

iqzz + a†qe
−iqzz

)
, (1)

where qz = 2πl/Lz (l is an integer), qx = π/Lx, c is the velocity of light in vacuum, V =

LxLyLz is the waveguide volume, a†q and aq are the creation and annihilation boson operators,

and ε is the dielectric constant of the medium filling the waveguide. The normalization

constant in Eq. (1) is chosen in such a way that the Hamiltonian for the quantized radiation

field has the usual form Hr =
∑

q h̄ωqa
†
qaq, where ωq = ωc[1 + (qz/qx)

2]1/2 is the mode

dispersion relation, and ωc = qxc/
√

ε is the angular cutoff frequency. The guided mode

wavelength is written as λ = λc/[(ωq/ωc)
2−1]1/2, where λc = 2Lx is the cutoff wavelength.10

III. Bloch Hamiltonian and quantum dynamics based on instantaneous eigen-

states

In this analysis, the dynamical properties are considered for the situation in which the

electron is confined to a single miniband ‘n0” of a SL while the effects of interband coupling17

and electron intraband scattering are ignored. Therefore, the quantum dynamics is described

by the time-dependent Schrödinger equation

ih̄
∂

∂t
|Ψn0(t)〉 = H|Ψn0(t)〉 , (2)

where the exact Hamiltoian H can be reduced to a sum of the following Hamiltonians

H = H0 + Hr + HI .
18 Here the first two terms represent the Hamiltonian, H0(t) =
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[p + pc(t)]
2/2m0 + Vc(r), for a single electron in a periodic crystal potential Vc(r) inter-

acting with a homogeneous electric field, and the Hamiltonian, Hr, for the cavity mode

electromagnetic field. The Hamiltonian HI(t) = −(e/m0c)Ar · [p+pc(t)], for the first-order

interaction between the quantum field and the Bloch electron, couples both subsystems H0

and Hr, and causes transitions between the accelerated Bloch electron states through photon

absorption and emission; pc(t) = e
∫ t

t0
E(t′)dt′, m0 is the free electron mass. The total vec-

tor potential consists of A = Ac + Ar, where Ac and Ar describe the external electric field

and the cavity mode quantized radiation field, respectively. Below, starting with the total

Hamiltonian H, use is made of first-order time-dependent perturbation theory to calculate

SE transitions probabilities between states of H0+Hr while regarding HI(t) ∼ Ar ·[p+pc(t)]

as a perturbation.19 The solution to |Ψn0(t)〉 of Eq. (2) can be represented in terms of eigen-

states of basis states |ψn0k(t), {nq,s}〉 = |ψn0k(t)〉 |{nq,s}〉 of the unperturbed Hamiltonian

H0 + Hr as

|Ψn0(t)〉 =
∑

k

∑

{nq,s}
A{nq,s}(k, t)|ψn0k(t), {nq,s}〉

×exp

{
− i

h̄

∫ t

t0

[εn0(k(t′)) +
∑
q,s

h̄ωqnq,s]dt′
}

, (3)

where the summation over k is carried out over the entire Brillouin zone, and {nq,s} is

specified over all possible combinations of photon occupation number nq,s with photon

wave vectors q and polarization ε̂q,s. The instantaneous eigenstates of H0 are given by17

ψn0k(t)(r, t) = Ω−1/2eiK·run0k(t)(r, t) , where un0k(t)(r, t) is the periodic part of the Bloch func-

tion, k(t) = K + pc(t)/h̄, and the values of the electron wave vector K are determined by

the periodic boundary conditions of the periodic crystal of volume Ω.

For the one-photon SE, which assumes that initially no photons are present, the proba-

bility amplitude in the wave function of Eq. (3) satisfies the initial condition A{nq,s}(k, t0) =

{δnq,s,0} δK,K0 at time t = t0 when the electric field is turned on. Here, K0 and n0
q,s = 0

are the initial values of K and nq,s. The probability amplitude for SE, Aq(k0, t), is now

evaluated in first-order perturbation theory as

Aq(k0, t) = D(qx/q)
1/2

∫ t

t0

dt′ vy(k0 − qj)

×exp

{
− i

h̄

∫ t′

t0

[εn0(k0)− εn0(k0 − qj)− h̄ωq]dt1

}
, (4)
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where D = −i
√

πcα/ωcεV , α = e2/h̄c is the fine structure constant, k0(t) = K0 + pc(t)/h̄,

qj = {±qx, 0, qz} with ” + ” for j = 1 and ” − ” for j = 2, and q = (q2
x + q2

z)
1/2. Then the

emission process results in the well-known SE probability

P s
e (t) =

∑
q

∑
j=1,2

|Aq(k0, t)|2 . (5)

IV. Quantum selection rule

In evaluating Aq(k0, t), we take into account that the external dc field, E, is along the Y

axis; then, it follows that k0y(t) = K0y + eE(t− t0)/h̄. In taking advantage of the periodic

properties of the terms in Eq. (4), Aq(k0, t) is evaluated in clocked integral multiples of the

Bloch period, so that t = NτB, where τB = 2π/ωB, the time to traverse one period of

the Brillouin zone. The integral in Eq. (4) over time can be replaced by an integral over

k0y through the substitution dt = (h̄/eE)dk0y. Then the probability amplitude, at integral

multiples of the Bloch period, can be expressed through that over the single Bloch period,

τB.17,18 Thus we obtain

|Aq(k0, NτB)|2 =
sin2(Nβq/2)

sin2(βq/2)
|Aq(k0, τB)|2 , (6)

where the parameter βq is given by

βq = 2π
ωq

ωB

+
1

eE

∫ K0y+Gy

K0y

dk0y [εn0(k0)− εn0(k0 − qj)] , (7)

and Gy = 2π/a, the y component of the SL reciprocal-lattice vector.

From Eq. (6), it is seen that the quantity |Aq(k0, NτB)|2 will reach its maximum growth

value when βq = 2π(m + δ), where m is an integer and δ → 0; for this limit, the function

sin2(Nβq/2)/ sin2(βq/2) → N2, i. e., it becomes sharply peaked at the resonances with

increasing N . It is clear that this condition for maximum growth establishes the selection

rule17,18 for the photon emission frequency ωq. Indeed, from the condition βq = 2πm, it

follows from Eq. (7) in the radiative long-wavelength limit (qa ¿ 1) that one generally has

ωq = mωB, qz = qzm ≡ qx

[(
m

ωB

ωc

)2

− 1

]1/2

, (8)

the “Stark ladder” resonance condition. Note that q is not collinear with the direction of

the applied field E, then the integral in Eq. (7) does not vanish because of the periodicity of
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εn0(k0), and contributes to the selection rule. For ωq = ωc[1 + (qz/qx)
2]1/2, this corresponds

to neglecting a small term ∼ v⊥/c as compared to unity, where v⊥ is the electron velocity

perpendicular to the y axis. Thus, the modes that radiate with the highest probability cor-

respond to the fundamental Bloch frequency and its harmonics. This quantization condition

is obtained without requiring any assumptions concerning the existence of Wannier-Stark

energy states.

V. Spontaneous emission probability and the enhancement factor

The spontaneous emission probability is evaluated at time t = NτB, P s
e = P s

e (NτB), by

substituting |Aq(k0, NτB)|2 from Eq. (6) into Eq. (5). The sum over q in Eq. (5) has been

replaced by an integral over q, taking into account the TE10 mode density of states and

polarization such that
∑

q(· · ·) → (Lz/π)
∫

dq(· · ·)/[1 − (qx/q)
2]1/2. The integral can be

evaluated by using the property of the integrand which contains a sharply peaked, symmetric

function of q at q = qm = (q2
x + q2

zm)1/2 [see Eq. (8)]. Thus, at every node defined by the

resonance conditions, the slowly varying function of q in the integrand can be replaced by

its value evaluated at q = qm, and then removed from the integral over q; after that, the

remaining integral can be evaluated to obtain

P s
e = N

Lz

Lx

ωB

ωc

lmax∑

l=1

2∑
j=1

|Aql
(k0, τB)|2

[1− (qx/ql)2]1/2
. (9)

Here lmax follows from qmax = lmax(ωB/ωc)qx, and determines the upper limit in the sum

over higher Bloch oscillation harmonics.

The analysis for spontaneous emission and radiation characteristics is now developed by

considering a SL miniband in the nearest-neighbor tight-binding approximation. The elec-

tron miniband energy dispersion is expressed as εn0(K) = εn0(0)+∆ sin2(Kya/2)+ ε⊥(K⊥),

where εn0(0) is the band edge, ∆ is the miniband width, and ε⊥(K⊥) is the contribution

from the perpendicular components of the miniband. The electron velocity, for the given

Ky in the y direction, is then given by vy(Ky) = vmax sin(Kya), where vmax = a∆/2h̄ is the

maximum velocity in the miniband.

The calculation of P s
e in Eq. (9) requires the use of Aq(k0, τB) in Eq. (4), evaluated

at the maximum growth conditions of Eq. (8), that is when h̄ωq = mh̄ωB. In addition,

the dependence upon q in Eq. (4) is made explicit by invoking the assumption of photon
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long-wavelength limit, which is valid for all periodic potentials of interest, even SLs, where

q ¿ π/a. Thus, we find that

|Aql
(k0, τB)|2 =

qx|DIl|2
qlω2

B

, (10)

where Il =
∫ π

−π
dϑkvy(ϑk) exp(−ilϑk), and ϑk = k0ya. For the nearest-neighbor tight-binding

approximation, one can find that Il = −iπvmaxδ1l. The occurrence of the Kronecker symbol,

δ1l, allows the contribution of l = 1 term only, thereby limiting, within the nearest-neighbor

tight-binding approximation, the generation to the fundamental Bloch harmonic. Then it

follows from Eq. (9) that

P s
e = 2αN

Lx

Ly

v2
m

c2

ε1/2ω2
c

ω2
B(1− ω2

c/ω
2
B)1/2

. (11)

In noting that the SE probability of Bloch radiation into free space with fundamental

Bloch frequency is given by the expression18 P s
fs = (2π/3)αN (vm/c)2, we can compare both

the probabilities analyzing the ratio

η ≡ P s
e

P s
fs

=
3Lxω

2
cε

1/2

πLyω2
B[1− (ω2

c/ω
2
B)]1/2

. (12)

In Fig 1, we show the enhancement factor η as a function of the frequency ratio ωB/ωc,

which determines detuning of the Bloch frequency with respect to the TE10 mode cutoff

frequency. The calculations have been carried out for a GaAs-based SL (ε = 12.2) imbedded

into a rectangular waveguide with horizontal and vertical dimensions Lx/Ly = 2. It is seen

from the figure that the enhancement factor η increases with decreasing detuning parameter

ωB/ωc reaching values over one order of magnitude for the detuning close to 1.

VI. Numerical estimations and discussion

For numerical estimations, we assume a GaAs-based SL structure with the SL lattice

parameter a = 100 Å, vertical dimension 9 µm, and lateral cross section 18 × 1000 µm2.

Also we assume that waveguide is fully filled with the semiconductor material. The electron

density in the active region is taken to be 5×1016 cm−3. Taking for the SL lowest miniband

energy width ∆ = 20 meV, the maximum group velocity in the miniband is estimated as

vmax = 1.6 × 107cm/s. These parameter magnitudes are close to those of GaAs-based SL

structures used to study high-frequency microwave generation.2,20,21 Spontaneous emission
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Fig. 1. Enhancement factor η of the spontaneous emission probability

as a function of frequency ratio ωB/ωc for a GaAs-based

SL structure imbedded into a rectangular waveguide.

of a photon with the energy 10 meV corresponds to the Bloch frequency νB = ωB/2π = 2.5

THz. The electric field required to achieve such Bloch frequency is E = h̄ωB/ea =10 kV/cm,

and results in the application of nine volts across vertical dimension of the SL structure.23

The spontaneous emission probability of radiation into free space can be estimated taking,

for example, N = 100 as P s
fs = 4.3×10−7; and the generation energy per electron h̄ωBP s

fs =

4.3 × 10−6 meV. Since there is a total of n = 8 × 109 electrons in the active region of the

SL, the generated energy achievable is estimated to be Pfs = nh̄ωBP s
fs = 34.4 eV, which

corresponds to a power output generated into free space Wfs = (νB/N)Pfs ' 0.14 µW.

Although the power generated into free space is discernibly low for the SE of Bloch oscillation

radiation, it follows from Eq. (12) that SE probabilities and rates are substantially modified

for the case of radiation into the waveguide mode. We find from Fig. 1 that η = 20, if

we take for the detuning parameter ωB/ωc = 1.05. Then, using the obtained value for the

enhancement factor, we estimate the power output generated into the TE10 waveguide mode

as Wwg ' 3 µW.

It is noted that a Bloch oscillation SL does not require controlled inversion population

between Wannier-Stark ladder levels to get the desired SE photon frequency; the desired

frequency is controlled by the applied field. Whereas in other SL light generating devices,
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such as quantum cascade lasers, a large inversion population is required to provide stimulated

emission with resulting high threshold current densities and high heat dissipation. In this

regard, the Bloch oscillator in SE offers a novel option for operating at THz frequencies,

provided the power output can be enhanced in the coherent Bloch regime. Future directions

of this work include the study of limiting factors of electron dephasing due to scattering

inhomogeneities in the SL to determine an optimum power enhancement and the efficiency

of power extraction from the cavity.

VII. Summary of the most important results

• The quantum electron dynamics and spontaneous emission of radiation for a Bloch

electron traversing a single energy miniband of a SL structure in a constant electric

field and in the presence of a resonant cavity have been analyzed. The analysis is

based on the use of instantaneous eigenstates of the Bloch Hamiltonian good to all

orders of the dc field, and to first-order perturbation theory in the quantized radiation

field.

• The analysis results in the quantum selection rule which shows that the spontaneous

emission into the waveguide dominant mode is sharply peaked at frequencies equal

to integral multiples of the Bloch frequency. This result has made use of no ad hoc

assumptions about the existence of Wannier-Stark quantized energy levels within the

band.

• The spontaneous emission probabilities are substantially enhanced in comparison with

spontaneous emission into free space when the Bloch frequency is tuned by the field

into the spectral peak of the waveguide mode density of states.

• The set of controlling parameters has been specified and their magnituds have been

estimated for the enhanced spontaneous emission due to Bloch oscillations in the

terahertz frequency range.

• The enhancement factor has been analyzed as a function of the Bloch frequency and

the external electric field. A theoretical estimate of the enhancement factor provides

an order of magnitude enhancement for GaAs-based superlattices, and resulted in a

power output of ' 3 µW.
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Spontaneous emission of Bloch oscillation radiation from a single energy band
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A theory for the spontaneous emission of radiation for a Bloch electron traversing a single energy band
under the influence of a constant external electric field is presented. The constant external electric field is
described in the vector potential gauge. The quantum radiation field is described by the free space quantized
electromagnetic field in the Coulomb gauge. The instantaneous eigenstates of the Bloch Hamiltonian are
introduced as basis states to analyze the Bloch dynamics to all orders in the constant external electric field. The
radiation field described by the quantized electromagnetic field provides the vacuum fluctuations that are
responsible for the spontaneous emission of radiation of the single electron from the upper regions of the
energy band. It is shown that the spontaneous emission occurs with frequencies equal to integral multiples of
the Bloch frequency without any ad hoc assumptions made concerning the existence of Wannier-Stark ladder
levels. An explicit expression for the spontaneous emission transition probability is derived to first order in the
quantized radiation field; results show the explicit dependence upon the electron energy band structure, photon
polarization, and the directionality of the radiation output. As an illustration, spontaneous emission probabili-
ties are developed and illustrated for nearest-neighbor tight-binding and more realistic superlattice band struc-
ture models. For the GaAs-based superlattices, the power radiated into free space from spontaneous emission
due to Bloch oscillations in the terahertz frequency range is estimated to be about one-tenth of a microwatt.

DOI: 10.1103/PhysRevB.73.205304 PACS number�s�: 73.63.Hs, 72.10.Bg, 73.21.Cd, 73.50.Mx

I. INTRODUCTION

Bloch electron dynamics in electric fields has been a sub-
ject of great interest dating back to the early development of
solid-state physics.1–3 More recently, the availability of band-
engineered superlattices �SLs� and tailored periodic struc-
tures has stimulated further activities4–15 in electric field-
mediated transport and optical absorption in low-dimen-
sional SLs and quantum-well �QW� structures, where band-
gaps and bandwidths are typically several orders of magni-
tude smaller than those of bulk solids. In particular, recent
attention has been focused on Bloch oscillations, the k-space
oscillatory behavior afforded to Bloch electrons when mov-
ing in a periodic energy band under the influence of a con-
stant electric field in the absence of scattering. For a biased
semiconductor SL, the Bloch frequency1–4 for such an oscil-
lation is given by �B=eEa /�, where E is the applied con-
stant field and a is the SL period; it is evident that the Bloch
frequency can be tuned with changing the external electric
field so as to vary from the high gigahertz to the terahertz
frequency range, thus suggesting the applicability of such
internal oscillations as a tunable source for submillimeter
wave radiation.4

It is interesting to note that transport experiments suggest
only indirect5 evidence for the manifestation of Bloch oscil-
lations, whereas optical experiments using semiconductor
SLs have allowed direct observations.6,7 There have been
also numerous discussions relating the coupling of coherent
Bloch oscillations to other fundamental solid-state excita-
tions such as photons,8,9 optical phonons,10 and plasmons.11

In this paper, in noting that Bloch oscillations might provide
a noteworthy alternative for exploring tunable radiation

sources in the gigahertz to terahertz frequency range, a study
is undertaken to analyze the spontaneous emission �SE� of
radiation resulting from a Bloch electron accelerating
through a single band under the influence of a constant ex-
ternal electric field while subject to vacuum field fluctua-
tions.

In the general framework of this work, attention is fo-
cused on the theory for the SE of radiation for a Bloch elec-
tron traversing a single energy band in a constant external
electric field. It is shown that in a scattering free environment
and in fields low enough to ignore interband tunneling, spon-
taneous photon emission occurs as the Bloch electron inter-
acts with the quantum radiation field; the emission occurs
only with frequencies equal to integral multiples of the Bloch
frequency, even though no ad hoc assumptions are made
concerning the existence of Wannier-Stark levels. The tran-
sition probability is found as an explicit function of the elec-
tron energy band structure, photon polarization, and direc-
tionality of the radiation output.

In Sec. II, the Hamiltonian for a Bloch electron in the
quantum electrodynamic field of interest is developed. The
classical external electric field is described in the vector po-
tential gauge, and the free space quantized electromagnetic
radiation field is treated using the Coulomb gauge. In ne-
glecting the higher-order quantum field-field interaction
term, it is shown that the total Hamiltonian reduces to the
sum of three contributions, the Hamiltonian for the Bloch
electron in the classical external electric field, the Hamil-
tonian for the free space quantized radiation field, and the
Hamiltonian for the first-order interaction between the quan-
tum field and the Bloch electron. In Sec. III, the instanta-
neous eigenstates of the Bloch Hamiltonian, known as accel-
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erated, field-dependent crystal momentum states, are devel-
oped.15 These instantaneous eigenstates are utilized as basis
states in describing the time development, and in calculating
the SE transition rates of the accelerated Bloch electrons un-
der the action of the perturbing quantum radiation field. In
Sec. IV, the polarization properties of the SE resulting from
Sec. III are analyzed. Numerical estimates for power gener-
ated using a realistic band structure are given. In Sec. V, a
summary of overall results is given; also a discussion of key
physical issues relevant to Bloch oscillation dephasing is put
forth, issues that were set aside in the analysis of this paper,
but that need to be considered in future work on this subject.
Also, in Appendix A we provide details of the time-depen-
dent perturbation analysis used to calculate transition rates;
in Appendix B we provide the calculation of matrix elements
utilized in the perturbation calculations of Appendix A.

II. BLOCH HAMILTONIAN IN AN ELECTROMAGNETIC
FIELD

The Hamiltonian for a single electron in a periodic crystal
potential subject to an external homogeneous electric field of
arbitrary strength in a time-varying electromagnetic field is

H =
1

2m0
�p −

e

c
A�2

+ Vc�r� + Hr. �1�

Here, Vc�r� is the periodic crystal potential, A is the total
vector potential consisting of A=Ac+Ar, and Hr is the
Hamiltonian for the free electromagnetic field; p is the mo-
mentum operator, r is the spatial coordinate, m0 is the free
electron mass, and c is the velocity of light in vacuum. For
the vector potential terms, Ac�t� is the vector potential de-
scribing the external electric field. For a homogeneous elec-
tric field E�t�, turned on at initial time t= t0, the vector po-
tential is Ac�t�=−c�t0

t E�t��dt�; in addition, letting F�t�
=eE�t� and pc�t�=�t0

t F�t��dt�, it then follows that pc�t�
=−�e /c�Ac�t�. The vector potential term, Ar, corresponding
to the free quantized radiation field, is given as

Ar =�2��c

V
�
q,j

�̂q,j

�q
�aq,je

iq·r + aq,j
† e−iq·r� , �2�

where �̂q,j is a unit polarization vector for the radiation mode
with wave vector q and polarization j, and �̂q,j · �̂q,j�=� j j�
with j , j�=1,2. aq,j

† and aq,j are the creation and annihilation
boson operators of the quantum radiation field, V is the vol-
ume of the system, and q= �q�, the magnitude of wave vector
q. Ar satisfies the Coulomb gauge, that is, � ·Ar=0, which
means, from Eq. �2�, that

�̂q,j · q = 0, �3�

for each polarization direction. It also follows from the Cou-
lomb gauge that 	p ,Ar
=0. The Hamiltonian for the free
quantized radiation field is

Hr = �
q,j

��qaq,j
† aq,j , �4�

where �q=cq, the free space photon dispersion.

In substituting the vector potential A=Ac+Ar into Eq.
�1�, and regarding the term containing Ar as a perturbation,16

we can reduce the total Hamiltonian of Eq. �1� to

H = H0 + Hr + HI, �5�

where

H0�t� =
1

2m0
	p + pc�t�
2 + Vc�r� , �6�

and

HI�t� = −
e

m0c
Ar · 	p + pc�t�
 , �7�

where Hr is given by Eq. �4�. Equation �5� follows from Eq.
�1� in the limit of a low intensity radiation field, where we
have dropped the term of order Ar

2.17 In Eq. �5�, the first two
terms represent the Hamiltonian, H0�t�, for a single electron
in a periodic crystal potential interacting with a homoge-
neous electric field, and the Hamiltonian, Hr, for the free
electromagnetic field; the term HI�t� in Eq. �5�, and specified
in Eq. �7�, couples both subsystems H0 and Hr, and causes
transitions between the accelerated Bloch electron states
through photon absorption and emission. In the next section,
starting with the total Hamiltonian of Eq. �5�, use is made of
first-order time-dependent perturbation theory to calculate
SE transition probabilities between states of H0+Hr while
regarding HI�t� as a perturbation.

III. QUANTUM DYNAMICS BASED ON
INSTANTANEOUS EIGENSTATES

A. Crystal Hamiltonian and instantaneous eigenstates

In this analysis, the dynamical properties are considered
for the situation in which the electron is confined to a single
band “n0” of a periodic crystal with energy �n0

�K�; the ef-
fects of interband coupling15 and electron intraband scatter-
ing are ignored. Therefore, the quantum dynamics is de-
scribed by the time-dependent Schrödinger equation,

i�
�

�t
��n0

�t�� = H��n0
�t��; �8�

here, H is given by Eq. �5�, and ��n0
�t�� is sought in terms of

the complete set of eigenstates based on the instantaneous
eigenstates of H0 and the eigenstates of Hr, subject to an
initial Bloch momentum state and initial photon field occu-
pancy. The instantaneous eigenstates of H0 satisfy the
equation15

� 1

2m0
	p + pc�t�
2 + Vc�r���n0k�t� = �n0

	k�t�
�n0k�t�, �9�

where

�n0k�t��r,t� =
eiK·r

�1/2 un0k�t��r,t�; �10�

here, un0k�t��r , t� is the periodic part of the Bloch function,
k�t�=K+ �1/���t0

t F�t��dt�=K+pc�t� /�, where the values of
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K are determined by the periodic boundary conditions of the
periodic crystal of volume �. The basis states for Hr are
given by the well-known free photon field equation,

Hr��nq,j
� = �
q,j

��qnq,j��nq,j
� , �11�

where ��nq,j
� is a simple product of all possible combina-
tions of photon number states, nq,j, with a given wave vector
q and polarization �̂q,j.

Thus, the solution to ��n0
�t�� of Eq. �8� can be represented

in terms of eigenstates of basis states ��n0k�t� , �nq,j
�
= ��n0k�t����nq,j
� of the unperturbed Hamiltonian H0+Hr as

��n0
�t�� = �

k
�

�nq,j

A�nq,j


�k,t���n0k�t�,�nq,j
�

	exp�−
i

�
�

t0

t

	�n0
	k�t��
 + �

q,j
��qnq,j
dt�� ,

�12�

where the summation over k is carried out over the entire
Brillouin zone �BZ�, and �nq,j
 is specified over all possible
combinations of photon occupation number with correspond-
ing photon wave vectors q and polarization �̂q,j.

The appropriate time-dependent equations of motion for
the A�nq,j


�k , t� coefficients expressed in Eq. �12� are given in
Appendix A; these equations relate the time dependence of
A�nq,j


�k , t� to the basis-dependent matrix elements of HI

through a self-consistent set of equations. In applying the
usual first-order time-dependent perturbation theory method-
ology to this set of equations, consistent with the initial con-
ditions for the k state of the Bloch electron in the energy
band “n0” and the initial state of radiation field, a first-order
perturbation theory result, namely, A�nq,j


�1� �k , t�=A�nq,j

�a� �k , t�

+A�nq,j

�e� �k , t�, is obtained, where the superscripts “a” and “e”

stand for photon absorption and emission, respectively. The
explicit expressions for both A�nq,j


�a� �k , t� and A�nq,j

�e� �k , t� are

given in Appendix A, in Eqs. �A6� and �A7�.
In the case of photon emission, the total emission prob-

ability can be written as

Pe�t� = �
q,j

�nq,j
0 + 1��Aq,j

�e��k0,t��2, �13�

where

Aq,j
�e��k0,t� =

D
�q
�

t0

t

dt� v	k0�t�� − q
 · �̂q,j

	exp�−
i

�
�

t0

t�
	�n0

	k0�t1�


− �n0
	k0�t1� − q
 − ��q
dt1� , �14�

with k0�t�=K0+pc�t� /�. Here, K0 and nq,j
0 are the initial val-

ues of the wave vector K and photon number nq,j, and D
=−i�2�
 /V, where 
=e2 / ��c� is the fine structure constant.

It is clear from above that �Aq,j
�e�	k0�t� , t
�2 is the probability

for the emission of a photon with wave vector q and polar-
ization �̂q,j at time t. Yet, the total emission probability as
calculated in first-order perturbation theory results in a
weighted sum with respect to �nq,j

0 +1� when summed over
all photon wave number q and polarization, as noted in Eq.
�13�. Therefore, it follows that if no photons are initially
present in the quantum radiation field, that is nq,j

0 =0 for all
modes, then the emission process results in the well-known
SE probability,

Pe
s�t� = �

q,j
�Aq,j

�e��k0,t��2. �15�

The additional term, proportional to nq,j
0 , in Eq. �13� is also

well known to correspond to induced emission probability.
The terms associated with photon absorption in Eq. �A6�

can be considered in a similar way; here we find, for the
absorption probability, that

Pa�t� = �
q,j

nq,j
0 �Aq,j

�a��k0,t��2, �16�

where

Aq,j
�a��k0,t�

=
D
�q
�

t0

t

dt� v	k0�t�� + q
 · �̂q,j

	exp�− i

�
�

t0

t�
	�n0

	k0�t1�
 − �n0
	k0�t1� + q
 + ��q
dt1� .

�17�

The quantity Pa�t� in Eq. �16� is proportional to nq,j
0 , and

therefore vanishes if the radiation field is initially in the
vacuum state.

B. Properties of transition probabilities and selection rules for
spontaneous emission of a single photon

The specific analysis now focuses on one-photon sponta-
neous emission from a Bloch band “n0” coupled to a radia-
tion field that initially has no photons present. This means
that the probability amplitude in the wave function of Eq.
�12� satisfies the initial condition A�nq,j


�k , t0�= ��nq,j,0

�K,K0

at time t= t0 when the electric field is turned on. With this
assumed initial condition, the probability amplitude for emis-
sion, Aq,j

�e��k0 , t�, is now evaluated from Eq. �14�.
In evaluating Aq,j

�e��k0 , t�, it is assumed that the external dc
field, E, is along the z axis �also the growth direction of a
SL�; then, it follows that k0z�t�=K0z+F�t− t0� /�, and k0��t�
=K0�=const, where k0��t� is the component of wave vector
k0�t� perpendicular to the z axis. In taking advantage of the
periodic properties of the terms in Eq. �14�, Aq,j

�e��k0 , t� is
evaluated in clocked integral multiples of the Bloch period,
so that t=N�B, where �B=2� /�B, the time to traverse one
period of the BZ. Then, the integral in Eq. �14� over time can
be replaced by an integral over k0z through the substitution
dt= �� /F�dk0z. It then follows from the periodic property of
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the energy band in the BZ, and therefore the electron veloc-
ity as well, that the probability amplitude, at integral mul-
tiples of the Bloch period, can be expressed as15

Aq,j
�e��k0,N�B� = �1 − exp�− iN�q�

1 − exp�− i�q� �Aq,j
�e��k0,�B� . �18�

Here, the parameter �q is given by

�q =
1

F
�

K0z

K0z+Gz

	�n0
�k0� − �n0

�k0 − q� − ��q
dk0z, �19�

and Aq,j
�e��k0 ,�B�, the probability amplitude over a single

Bloch period, is

Aq,j
�e��k0,�B�

=
�D

F�q
�

K0z

K0z+Gz

dk0z v�k0 − q� · �̂q,j

	exp�−
i

F
�

K0z

k0z

	�n0
�k0�� − �n0

�k0� − q� − ��q
dk0z� � ,

�20�

where Gz=2� /a, the z component of the SL reciprocal-
lattice vector. It then follows from Eq. �18� that

�Aq,j
�e��k0,N�B��2 =

sin2�N�q/2�
sin2��q/2�

�Aq,j
�e��k0,�B��2. �21�

From Eq. �21�, it is seen that �Aq,j
�e��k0 ,N�B��2 will reach its

maximum growth value when �q=2��m+��, where m is
an integer and �→0; for this limit, the function
sin2�N�q /2� / sin2��q /2�→N2. It is clear that this condition
for maximum growth establishes the selection rule15 for the
photon emission frequency. Indeed, from the condition �q
=2�m, it follows from Eq. �19� that

�q = m�B +
1

�Gz
�

K0z

K0z+Gz

	�n0
�k0� − �n0

�k0 − q�
dk0z.

�22�

In noting the contribution from the integral in Eq. �22�, note
that if q is collinear with the direction of the applied field,
i.e., in the z direction, then the integral in Eq. �22� vanishes
because of the periodicity of �n0

�k0�. If, however, q is not
collinear with the direction of the applied field, then the in-
tegral in Eq. �22� does not vanish, and contributes to the
selection rule. In particular, in considering the radiative long-
wavelength limit, where �n0

�k0−q� can be expanded in a
Taylor series about small q, the expression for �q in Eq. �22�
results in

�q = m�B + q� · v̄��K�� . �23�

Here, q� is the perpendicular component of q relative to the
applied electric field direction and the average transverse ve-
locity, v̄�, is given by

v̄��K�� = �1/Gz��
K0z

K0z+Gz

v��k0�dk0z, �24�

with v��k0�= ��1/���K�
�n0

�K��k0
. Specifically for the tight-

binding energy band approximation,18 one finds that
v̄��K��=v��K��. However, the second term on the right-
hand side of Eq. �23� is negligibly small for nonrelativistic
Bloch electron velocities;19 thus one generally has

�q � m�B, q � qm = m
�B

c
, �25�

the “Stark ladder” resonance condition.15

Figure 1 illustrates the resonance frequency behavior of
the relative probability spectral density 
��q�= �Aq,j

�e��k0 ,
N�B��2 / �Aq,j

�e��k0 ,�B��2 for N=4. With increasing N, the 
��q�
becomes sharply peaked at the resonances because the func-
tion y�x�=sin2�N�x� / 	N sin2��x�
 behaves like a delta func-
tion at each N as x→0. Thus, the modes that radiate with the
highest probability correspond to the fundamental Bloch fre-
quency and its harmonics; this quantization condition is ob-
tained without requiring any assumptions concerning the ex-
istence of Wannier-Stark energy states.

C. Total spontaneous emission probability

The total SE probability is evaluated from Eq. �15�. The
SE probability is evaluated at time t=N�B by substituting
�Aq,j

�e��k0 ,N�B��2, already obtained in Eq. �21�, into Eq. �15� to
obtain

Pe
s � Pe

s�N�B�

=
V

�2��3�
0

qmax

dq q2sin2�N�q/2�
sin2��q/2� �0

4�

d��
j

�Aq,j
�e��k0,�B��2.

�26�

Here, the sum over q in Eq. �15� has been replaced by an
integral over q for a single polarization, such that �q�¯�
→ 	V / �2��3
� dq q2� d��¯�, where d�=sin � d� d� is the

FIG. 1. Dependence of the relative probability spectral density

��q� of SE on the normalized photon frequency �q /�B.
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element of a solid angle subtended by q, and � ,� are the
polar angles. In treating the integral of Eq. �26�, it is ob-
served in the integral that q2� j�Aq,j

�e��k0 ,�B��2 is a slowly vary-
ing function of q; whereas, it is noted from Fig. 1, and pre-
vious discussions therein, that the term sin2�N�q /2� /
sin2��q /2� is a sharply peaked, symmetric function of q at q
values of qm=m�B /c, where m is an integer, as noted in Eq.
�25�. Thus, at every node defined by the resonance condi-
tions �q=2�m, with �q /�B=m and qm=m�B /c, the slowly
varying function of q in the integrand can be replaced by its
value evaluated at q=qm, and then removed from the integral
over q; the remaining term in the integrand can be evaluated
by letting q= ��B /2�c��q at each node so that

� dq
sin2�N�q/2�
sin2��q/2�

=
�B

�c
�

−�

� d�q

2

sin2�N�q/2�
sin2��q/2�

= N
�B

c
.

Thus, Eq. �26� becomes

Pe
s = N

�B

c

V

�2��3 �
l=1

lmax

ql
2�

0

4�

d��
j

�Aql,j
�e� �k0,�B��2, �27�

where lmax follows from qmax= lmax�B /c, and determines the
upper limit in the sum over higher Bloch oscillation harmon-
ics.

The calculation of Pe
s in Eq. �27� now requires the use of

Aq,j
�e��k0 ,�B� in Eq. �20�, evaluated at the maximum growth

conditions of Eq. �23�, that is when ��q=m��B
+�q� · v̄��K��. In addition, the dependence upon q in Eq.
�20� is made explicit by invoking the assumption of a photon
long-wavelength limit; this assumption is valid for all peri-
odic potentials of interest, even SLs, where q�� /a. Thus, in
letting �n0

�k0−q���n0
�k0�−q·�k0

�n0
�k0� and v�k0−q�

�v�k0�−q·�k0
v�k0�, Aq,j

�e��k0 ,�B� in Eq. �20� becomes, in the
long-wavelength limit,

Aq,j
�e��k0,�B�

=
�D

F�q
ei��K0z��

K0z

K0z+Gz

dk0z v�k0� · �̂q,je
−i	��k0z�+��k0z,K0z�
,

�28�

with the phase factors in the exponent defined by

��x� = a�mx − qz

�n0
�x�

��B
� , �29a�

��k0z,K0z� =
a

�B
��k0z − K0z�q� · v̄� − �

K0z

k0z

dk0z� q� · v�� .

�29b�

The results of Eqs. �28� and �29� are valid for an arbitrary
band structure. But for the tight-binding band structure
model cases now considered, especially since they are appro-
priate for SLs, it is noted that18 v̄�=v� in Eqs. �29b�, in
which case ��k0z ,K0z��0. Therefore, for the tight-binding
model, Eq. �28� can be simplified by introducing dimension-
less variables and parameters,

�k = k0za, �q = qza, �B��k� =
�n0

�k0z�

��B
. �30�

Then the integral in Eq. �28� becomes

Aq,j
�e��k0,�B� = −

2�D

�B
�q

ei��K0z��mj��q� , �31�

where

�mj��q� =
1

2�
�

−�

�

d�k �q,j��k�e−im�k, �32�

the mth Fourier component of the integrand �q,j��k�
=v· �̂q,je

i�q�B��k�. Thus, it follows from Eq. �31� that

�Aq,j
�e��k0,�B��2 =

4�2�D�2

�B
2q

��mj��q��2, �33�

where D is defined after Eq. �14�. Substituting Eq. �33� into
Eq. �27�, one obtains

Pe
s =


N

�Bc
�
l=1

lmax

ql�
0

4�

d��
j

��lj��ql
��2. �34�

In analyzing the polarization properties of the SE, it is
convenient to separate the contribution to �mj��q� with po-
larization parallel and perpendicular to the applied electric
field, i.e., relative to the z axis, so that �mj��q�=�mj,z��q�
+�mj,���q�, where

�mj,z��q� = ��̂q,j�z
1

2�
�

−�

�

d�k vz��k�ei	�q�B��k�−m�k


�35�

and

�mj,���q� = ��̂q,j�� ·
1

2�
�

−�

�

d�k v���k�ei	�q�B��k�−m�k
.

�36�

Here the symbol � stands for the vector component perpen-
dicular to the applied electric field. These terms determine
angular dependences of the intensity of SE. The next step is
to evaluate the integrals in Eqs. �35� and �36�, which requires
a specific model for the energy band structure. This will be
addressed in the next section.

IV. ANALYSIS OF SPONTANEOUS EMISSION FOR
SUPERLATTICE AND TIGHT-BINDING MODELS

The analysis for spontaneous emission and radiation char-
acteristics is now developed by utilizing the special case of a
SL miniband with a growth direction defined along the z
axis. The electron energy band dispersion relation is ex-
pressed as

�n0
�K� = �n0

�0� + �
l=1

�

�l sin2 Kzla

2
+ ���K�� , �37�

where �n0
�0� is the band edge, �l is the width of the lth

miniband harmonic of the SL, and ���K�� is the contribu-
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tion from the perpendicular components of the band. The
corresponding velocity, for the given Kz in the z direction, is
then given by vz�Kz�= �1/��	��n0

�Kz� /�Kz
=�l=1
� vl sin�Kzla�,

where vl=�lla /2�, the maximum velocity associated with
the lth miniband of bandwidth, �l. The energy band disper-
sion of Eq. �37� in the SL direction generally includes long
range coupling over the neighboring QWs with a relative
strength measured by the specific value of the ratio �l+1 /�l
�1, which is dependent upon the extent of wave function
overlap. For the well-known case of nearest-neighbor tight-
binding �NNTB� energy dispersion, only �1 is considered
significant, so that next nearest neighbor and longer range
QW wave function overlaps are assumed to be negligibly
small. Also for the energy band model under consideration in
Eq. �37�, it is noted that v��k0� is independent of k0z, so that
v̄�=v� �Ref. 18� from Eq. �24�, and for subsequent use in
Eq. �36�.

A. Direction of spontaneous emission radiation output
relative to the electric field

First, it is useful to analyze the particular cases of SE
probability for the q direction of propagation, where q is
perpendicular to E, the transverse radiation direction, and
then where q is parallel to E, the longitudinal radiation di-
rection. Finally, this will be followed by the case where q is
at an arbitrary direction with respect to the electric field.

1. Radiation in transverse direction

For the case of the photon wave vector, q, perpendicular
to the applied field, E, then as noted from Fig. 2, qz=0 and
q= �q��; also, the two independent polarization directions,
�̂q,j, can be chosen parallel to the field direction, with longi-
tudinal polarization 	referred to as L polarization, with j=1
and ��̂q,1�z=1, ��̂q,1��=0
, and perpendicular to the field di-
rection, with transverse polarization 	referred to as T polar-
ization, with j=2 and ��̂q,2�z=0, ���̂q,2���=1
. Since qz=0, it
follows from Eq. �30� that �q=0 so that Eqs. �35� and �36�
become analytically manageable for evaluation, and one ob-
tains

�mj,z�0� = −
i

2
��̂q,j�z�

l=1

�

vl�l,m = −
i

2
��̂q,j�zvm,

�mj,��0� = �v · �̂q,j���m,0. �38�

Thus, for L polarization, only the l=m term survives, which
is in resonance with the mth Bloch harmonic oscillation. In
contrast, the model with NNTB, which is frequently used to
approximate electron transport in narrow energy bands,
would allow the generation of l=1 only, thereby limiting the
propagation to the fundamental Bloch harmonic.

Substituting �mj,z�0� from Eq. �38� into Eq. �33�, the L
polarization probability amplitude becomes

�Aq,1
�e� �k0,�B��2 = 


2�3

V

1

q

vm
2

�B
2 RT��� , �39�

where RT��� is introduced as an angular form factor. The
emission probability density is independent of the angle �,
the angle the q makes with the x axis in the xy plane �see
Fig. 2�. Thus, the form factor RT���, denoted by RT��
=� /2 ,�� is unity on the right-hand side of Eq. �39�. Thus,
the SE probability is

Pe
s =


N

4�Bc
�
l=1

lmax

qlvl
2 �� =




4
N�

l=1

lmax

l
vl

2

c2 �� , �40�

where account has been taken for photon wave vector ql
= l�B /c and the small solid angle ��=2� �� for �� 	��
−��� /2 , ��+��� /2
, ���1.

The emission of photons with T polarization gives a zero
contribution into Pe

s, since the condition �m= l=0, j=2� in
Eq. �38� results in zero wave vector ql=0=0.

2. Radiation in longitudinal direction

For the case of the photon wave vector, q, parallel to the
applied field, E, while the polarization �̂q,j is perpendicular
to the direction of the field, then consider q= �qz�, q�=0 with
��̂q,j�z=0 and ���̂q,j���=1. The two independent polariza-
tions, �̂q,j, are chosen, as noted in Fig. 3. In this case, since
�q�0, the term �mj,���q� in Eq. �36� can be calculated
analytically if we omit the higher harmonic contribution �l
�1� in the energy band dispersion of Eq. �37�. Then Eq. �36�
becomes

�mj,���q� = �v · �̂q,j��Jm��q�1

2��B
�exp�− i�m/2� , �41�

where Jm�x� is the Bessel function of the first kind.

FIG. 2. Geometry of radiation for transverse SE ��=� /2�.

FIG. 3. Geometry of radiation for longitudinal SE ��=0�.
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Thus, from Eq. �41� the longitudinal component of SE
will be nonvanishing for finite values of v�; the electron just
moves along the in-plane direction at a constant v�, which is
fixed by the initial quasimomentum. Substituting Eq. �41�
into Eq. �33�, the probability amplitude becomes

�Aq,j
�e��k0,�B��2 = 


�2��3

V

1

q

�v · �̂q,j��
2

�B
2 Jm

2 ��q�1

2��B
�RL��� .

�42�

Then, from Eq. �34�, the SE probability becomes

Pe
s =


N

�Bc
v�

2 �
l=1

lmax

qlJl
2��ql

�1

2��B
��� , �43�

where ��=2�	1−cos����
������2, the small solid angle
about the z axis, where ���1. The photon polarization per-
pendicular to the velocity v� does not contribute to the SE.
RL���, the emission form factor in Eq. �42�, is isotropic in
the xy plane of Fig. 3; therefore RL���=RL��=0,��=1. By
utilizing the fact that ql= l�B /c in the argument of the Bessel
function in Eq. �43�, it follows that �ql

�1 / �2��B�= lv1 /c
�1. Thus, the asymptotic form for Jl�x���x /2�l /��l+1�, for
x�1 is assumed, where ��x� is the gamma function, and
v1=�1a /2�; therefore, Pe

s in Eq. �43� reduces to

Pe
s = 
N�v�/c�2�

l=1

lmax l2l+1

4l�l!�2�v1

c
�2l

�� . �44�

In particular, for the fundamental Bloch harmonic �l=1�, Eq.
�44� becomes

Pe
s =




4
N�v1

c
�2

�v�/c�2 �� . �45�

3. Radiation in arbitrary direction

For the case of photon wave vector, q, at an arbitrary
angle with respect to the electric field, as noted in Fig. 4�a�,
the angular dependence of the SE probability can be eluci-
dated from Eqs. �35� and �36�. Since the integrals of Eqs.
�35� and �36� can only be evaluated numerically when the
full energy dispersion of Eq. �37� is used, use is made of the
NNTB approximation in Eq. �37� by keeping the term with
l=1 only in the dispersion relation. In this case, the longitu-
dinal component, �mj,z��q�, in Eq. �35�, is found to be, after
integration

�mj,z��q� = ��̂q,j�z
m�B

qz
Jm�v1qz/�B�exp�− i�m/2� . �46�

In noting again, as in subsection IV A 2, that the argument of
the Bessel function is small so that an asymptotic limit may
be imposed, it follows that Eq. �46� reduces to �mj,z��q�
= ��̂q,j�zv1m�v1qz /�B�m−1 exp�−i�m /2� / �2mm!�.

The transverse component, �mj,���q�, in Eq. �36� can be
calculated in a similar fashion. It is found that

��mj��q��2 = ���̂q,j�zm
�B

qz
+ �v · �̂q,j���2

Jm
2 �v1qz/�B� .

�47�

For wave vectors q with a z component projected over qz
=qzm��m�B cos �� /c, the second term in the square bracket
is small compared to the first term with respect to the param-
eter �= �v�� /c, except in a narrow angular range defined by
����. This correction can be taken into account through the

FIG. 4. �a� Geometry of radiation for an arbitrary wave vector q.
�b�–�c� Form factor Rl�� ,�� of the SE probability; �b� fundamental
Bloch frequency �l=1�; �c� second Bloch harmonic �l=2�.
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function gm,j�� ,��=1+qz�v· �̂q,j�� / 	m�B��̂q,j�z
, which is
equal to 1 if the latter term is ignored. Then we obtain from
Eqs. �34� and �47�,

Pe
s = 
N�

l=1

lmax

l�
0

4� d�

cos2 �
Jl

2�l
v1

c
cos ���

j=1

2

��̂q,j�z
2gl,j

2 ��,�� .

�48�

For v1l sin � /c�1, this equation takes the form

Pe
s = 
N�

l=1

lmax l2l+1

4l�l!�2�v1

c
�2l�

0

4�

d� Rl��,�� , �49�

where the form factor

Rl��,�� = cos2�l−1�����
j=1

2

��̂q,j�z
2gl,j

2 ��,�� �50�

determines the angular dependence of the SE probability for
the lth Bloch harmonic. In particular, at zero transverse
velocity 	gl,j�� ,��=1
, we obtain the form factor, taking
into account the fundamental �l=1� and the second �l=2�
Bloch frequency harmonics R1���=sin2��� and R2���
= �1/4�sin2�2��, respectively. For nonzero transverse veloc-
ity, the form factor depends on both polar angles �� ,��, with
the dependence on � being weak according to the function
gl,j�� ,��. Figures 4�b� and 4�c� illustrate the anisotropy of
the form factor corresponding to the fundamental �l=1� and
the second �l=2� Bloch harmonic. Finally, integrating over
all polar angles, we find

Pe
s =

2�

3

N�v1

c
�2�1 +

2

5
�v1

c
�2� . �51�

B. Spontaneous emission discussion; Power estimate

The spontaneous emission probability has been obtained
and analyzed for a variety of directional outputs. In general,
it is clear from Eq. �34� and �47� that the average probability
per unit time, resulting from first-order time-dependent per-
turbation theory, is Pe

s�t=N�B� / �N�B���B; in contrast, in a
one-electron atom, with a two-level model, the resulting fre-
quency dependence12 for the rate of SE ��eg

3 , where �eg is
the characteristic frequency corresponding to the electron
transition between the excited state and the ground state.
Thus, the SE probability of Bloch radiation has a compara-
tively weaker frequency dependence than the corresponding
two-level atomic SE probability.

Finally, a numerical estimate is performed for purposes of
evaluating the power generated during the spontaneous emis-
sion process. In this regard, a semiconductor SL of one mi-
cron length is considered, consisting of 100 periods with SL
lattice parameter a=100 Å, and with lateral cross section S
=100	100 �m2. The SL is assumed to have an electron
density of 5	1017 cm−3, which corresponds to a total num-
ber of electrons in the SL active region of n=5	109. For the
SL miniband structure, in the NNTB approximation, it is
assumed that the lowest miniband energy width, �1, is

20 meV, so that the maximum group velocity in the mini-
band 	l=1; Eq. �37�
 is v1=a�1 / �2��=1.6	107 cm/s; these
parameter magnitudes resemble those of GaAs-based SLs
used to study high-frequency microwave generation.4,20,21

Spontaneous emission is considered for a photon energy
given by ��q=��B=10 meV, which corresponds to the fun-
damental Bloch frequency �B=�B / �2��=2.5 THz. The cor-
responding electric field required to achieve this Bloch fre-
quency is E=��B / �ea�=10 kV/cm, and results in the
application of one volt across the SL. It then follows from
Eq. �51� that the SE probability for N=100 is estimated22 to
be Pe

s�N=100�=4.3	10−7. From this SE probability, an es-
timate of the generation energy per electron becomes
��BPe

s =4.3	10−6 meV, and since there are a total of n=5
	109 electrons in the active region of the SL, the generated
energy achievable is estimated to be P=n��BPe

s =21.7 eV,
which corresponds to an approximate power generation of
W= ��B /N�P�0.1 �W. In this power estimate, it is noted
that the power generated in W is proportional to �B

2 , and thus
E2, as expected from power considerations. Although the
power generated is discernibly low for SE of Bloch oscilla-
tion radiation into free space, it is noted that SE probabilities
and rates can be modified by tailoring the surrounding reso-
nant electromagnetic environment.12–14 It would therefore be
interesting to consider the prospect of enhancing superlattice
spontaneous emission of Bloch oscillation radiation through
superlattice-resonant cavity interaction with the cavity tuned
to the Bloch frequency, while, at the same time, admitting
scattering processes as an offsetting suppressant; this is the
subject of a future investigation.

V. SUMMARY AND DISCUSSION

A theory for the spontaneous emission of radiation for a
Bloch electron traversing a single band in a uniform electric
field and in a scattering-free environment has been devel-
oped. The analysis results in a selection rule that shows that
spontaneous emission is sharply peaked at frequencies equal
to integral multiples of the Bloch frequency, a result that
made no ad hoc assumptions concerning the existence of
Wannier-Stark quantized energy levels within the band, but
that comes directly from the use of electric field-dependent
instantaneous eigenstates of the Bloch Hamiltonian. Sponta-
neous emission probabilities were derived and analyzed in
terms of band structure and polarization radiation properties.
A theoretical estimate for the intensity of the spontaneous
emission for GaAs-based superlattices resulted in a power
output into free space of one-tenth of a microwatt.

The theoretical analysis has implicitly assumed a single
electron model for a Bloch electron in a uniform electric
field of a perfect superlattice crystal ignoring scattering ef-
fects. Such assumptions provide the optimal conditions for
coherent Bloch oscillations and, therefore, reflect the condi-
tions for the maximum achievable power output, albeit, one-
tenth of a microwatt into free space, as calculated in Sec. IV.
But in recent years, many studies on coherent Bloch oscilla-
tions have pointed to the importance of additional scattering
effects such as carrier-carrier scattering,25 LO-phonon scat-
tering,26 and alloy disorder �interface roughness� scattering27
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due to superlattice compositional doping, all effects that
strongly influence the dephasing of coherent Bloch oscilla-
tions, and therefore have a significant influence on the mag-
nitude of the spontaneous emission output. The dephasing
effects result in a broadening of the peaks of the spontaneous
emission probability function that determines the selection
rule for transitions, in our case �q=m�B, and also dampen
the output THz radiation amplitude. Specifically, interface
roughness scattering27 has been identified as a dominant
mechanism for dephasing in GaAs/AlGaAs superlattices
over a wide temperature range; competitive dephasing mech-
anisms have been reported due to LO-phonon emission in a
miniband wider than the LO-phonon energy �36 meV for
GaAs-based superlattices�, and also from carrier-carrier scat-
tering effects.25,26 In all cases, the estimated linewidth for
broadening from such effects ranges as ��1.25–2.5� meV,
which corresponds to dephasing times in a range of
��1.0–0.5� ps;25–27 this broadening in energy is nontrivial as
it corresponds to about 20% of the Bloch frequency.

It is also noted that the external electric field in our analy-
sis is assumed to be homogeneous across the active region of
the superlattice. However, in a realistic device analysis, as
the electron density is increased to achieve maximum effi-
ciency for spontaneous emission, the Bloch oscillating super-
lattice can develop inhomogeneous fields. In this case, the
developed theory can be extended by treating the Bloch elec-
tron dynamics in inhomogeneous electric fields of arbitrary
strength and time dependence.15,28 In other situations, do-
main formation may be possible through negative differential
conductance. In this case, by superlattice design, a super-
structure can be tailored as a stack of superlattices of appro-
priate lengths to prevent domain formation.14

Last, it is noted that a Bloch oscillation superlattice does
not require controlled inversion population between Wan-
nier-Stark ladder levels to get the desired spontaneous emis-
sion photon frequency; the desired frequency is controlled by
the applied field. Whereas in other superlattice light generat-
ing devices, such as quantum cascade lasers, a large inver-
sion population is required to provide stimulated emission
with resulting high threshold current densities and high heat
dissipation. In this regard, the Bloch oscillator in spontane-
ous emission offers a novel option for operating at THz fre-
quencies, provided the power output can be enhanced in the
coherent Bloch regime.

In closing, the power emitted into free space from the
spontaneous emission of Bloch oscillation radiation is dis-
cernibly small. It is our intention in a future effort to consider
enhancing superlattice spontaneous emission of Bloch oscil-
lation radiation through superlattice-cavity inetaraction with
the cavity tuned to the Bloch frequency, while, at the same
time, including the offsetting effects of dephasing inhomoge-
neities mentioned earlier, so as to more realistically evaluate
the optimal magnitudes of power output from the spontane-
ous emission of Bloch oscillation radiation.
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APPENDIX A: RESULTS OF PERTURBATION THEORY
APPROACH

The equation for the probability amplitudes A�nq,j

�k , t� in

Eq. �12� is given by

dA�nq,j

�k,t�

dt
=

1

i�
�
k�

�
�nq,j� 


A�nq,j� 
�k�,t�

	��nq,j
,�n0k�t��HI��n0k��t�,�nq,j� 
�

	 exp�−
i

�
�

t0

t ��n0
	k��t��
 − �n0

	k�t��


+ �
q,j

�nq,j� − nq,j���q�dt�� . �A1�

We assume that at initial time, t0, the system is in one of the
eigenstates of Hamiltonian H0+Hr with wave function
��n0K0

, �nq,j
0 
�, corresponding to the Bloch electron in a single

band “n0” with the wave vector K0, i.e., �n0K0
= �1/�1/2�eiK0·run0K0

, and with the initial distribution of pho-
ton numbers in the radiation field ��nq,j

0 
�. Substituting
A�nq,j


�k , t�=A�nq,j

�0� �k , t�+A�nq,j


�1� �k , t�+. . . into Eq. �A1�, and

taking into account the initial condition A�nq,j

�k , t0�

= ��nq,j,nq,j
0 
�k�t�,k0�t�, one obtains to the zeroth and first order

in HI, defined in Eq. �7�, for A�nq,j

�0� �k , t� and A�nq,j


�1� �k , t�, re-

spectively,

A�nq,j

�0� �k,t� = ��nq,j,nq,j

0 
�k�t�,k0�t�, �A2�

A�nq,j

�1� �k,t� =

1

i�
�

t0

t

dt���nq,j
,�n0k�t���HI��n0k0�t��,�nq,j
0 
�

	 exp�−
i

�
�

t0

t� ��n0
	k0�t��
 − �n0

	k�t��


+ �
q,j

�nq,j
0 − nq,j���q�dt�� , �A3�

where k0�t�=K0+pc�t� /� and ��nq,j,nq,j
0 
��q,j�nq,j,nq,j

0 . Matrix
elements for perturbation operator HI �Appendix B� are
given by

��nq,j
,�n0k�t��HI��n0k0�t�,�nq,j
0 
�

=�2�


V
�

q�,j�

�̂q�,j�
�q�

�k�n0
	k�t�


	 ��nq�,j�
0 ��nq�,j�,nq�,j�

0 −1;��nq,j,nq,j
0 
��k0,k−q�

+ �nq�,j�
0 + 1��nq�,j�,nq�,j�

0 +1;��nq,j,nq,j
0 
��k0,k+q�� ,

�A4�

where 
=e2 / ��c� is the fine structure constant. Thus, we
obtain
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A�nq,j

�1� �k,t� = A�nq,j


�a� �k,t� + A�nq,j

�e� �k,t� , �A5�

where the first term on the right-hand side of Eq. �A5� is due
to absorption of a photon from the radiation field by the
Bloch electron

A�nq,j

�a� �k,t� = D �

q�,j�

�nq�,j�
0 ��nq�,j�,nq�,j�

0 −1;��nq,j,nq,j
0 
�

	�k0,k−q�

�̂q�,j�
�q�

�
t0

t

dt� v	k�t��


	exp�−
i

�
�

t0

t�
	�n0

	k0�t��


− �n0
	k�t��
 + ��q�
dt�� , �A6�

and the second term represents emission of a photon by the
Bloch electron to the radiation field

A�nq,j

�e� �k,t� = D �

q�,j�

�nq�,j�
0 + 1��nq�,j�,nq�,j�

0 +1;��nq,j,nq,j
0 
�

	�k0,k+q�

�̂q�,j�
�q�

�
t0

t

dt� v	k�t��


	exp�−
i

�
�

t0

t�
��n0

	k0�t��


− �n0
	k�t��
 − ��q�
dt�� . �A7�

Here v	k�t�
= ��1/���K�n0
�K��k�t� is the instantaneous

velocity of the Bloch electron confined to the band
“n0,” D=−i�2�
 /V, and ��nq�,j�,nq�,j�

0 ±1 ; ��nq,j,nq,j
0 
�

��nq�,j�,nq�,j�
0 ±1�q,j�q�,j��nq,j,nq,j

0 .

Using these results and Eq. �A5�, we can easily calcu-
late �A�nq,j


�1� �k , t��2. When calculating the double sum

�q1,j1
�q2,j2

�. . .�, we make use of the relationships resulting
from properties of the Kronecker delta symbol. Then
the crossing terms vanish A�nq,j


�a�� �k , t�A�nq,j

�e� �k , t�

=A�nq,j

�a� �k , t�A�nq,j


�e�� �k , t�=0. Thus, we obtain

�A�nq,j

�1� �k,t��2 = �A�nq,j


�a� �k,t��2 + �A�nq,j

�e� �k,t��2, �A8�

where

�A�nq,j

�a� �k,t��2 = 


2�

V �
q�,j�

nq�,j�
0 ��nq�,j�,nq�,j�

0 −1;��nq,j,nq,j
0 
��k0,k−q�

	 � �̂q�,j�
�q�

· �
t0

t

dt� v	k�t��


	exp�−
i

�
�

t0

t�
��n0

	k0�t��
 − �n0
	k�t��


+ ��q�
dt���2

�A9�

and

�A�nq,j

�e� �k,t��2 = 


2�

V �
q�,j�

�nq�,j�
0 + 1���nq�,j�,nq�,j�

0 +1;��nq,j,nq,j
0 
�

	�k0,k+q�� �̂q�,j�
�q�

· �
t0

t

dt� v	k�t��


	exp�−
i

�
�

t0

t�
	�n0

	k0�t��


− �n0
	k�t��
 − ��q�
dt���2

. �A10�

APPENDIX B: MATRIX ELEMENTS OF PERTURBATION
HAMILTONIAN

Matrix elements of the perturbation Hamiltonian are cal-
culated by substituting HI from Eq. �7� and �n0k�t� of Eq.
�10�, while using the properties of the photon annihilation
and creation operators, �nq,j −1�aq,j�nq,j�= �nq,j�1/2 and �nq,j

+1�aq,j
† �nq,j�= �nq,j +1�1/2. The result is

��nq,j
,�n0k�t��HI��n0k��t�,�nq,j� 
�

= −
e

m0c
�2��c

V �
q�,j�

�̂q�,j�
�q�

	 ��nq�,j�
� ��nq�,j�,nq�,j�

� −1;��nq,j,nq,j� 
�

	� �n0k
* �p + pc�eiq�r�n0k� dr

+ �nq�,j�
� + 1��nq�,j�,nq�,j�

� +1;��nq,j,nq,j� 
�

	� �n0k
* �p + pc�e−iq�r�n0k� dr� . �B1�

In using �n0k�t� of Eq. �10�, the first integral is equal to zero,
except when K�−K+q=G, where G is the vector of the
reciprocal lattice �Here we omit, for brevity, the prime on the
q vector�. For values of K and q in the first BZ, we can take
G=0. Then, it follows that K�=K−q, and since k�t�=K
+pc�t� /�, then we get k�=k−q. In this case, we have, for the
first integral in �B1�,

Ik,k�
�+� � � �n0k

* �p + pc�eiqr�n0k� dr

= �k�,k−q� �eiKr0un0k�*�p + pc�eiKr0un0k−q dr0,

�B2�

where the integration over dr0 is carried out over the primi-
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tive cell volume. In the long-wavelength limit �qa�1�, Ik,k�
�+�

can be approximated as

Ik,k�
�+� = �k�,k−q� �eiKr0un0k�*�p + pc�eiKr0un0k dr0

= �k�,k−q� �n0k
* �p + pc��n0k dr . �B3�

In noting that the well-known momentum24 expectation
value for Bloch states is

� �eik�t�run0k�*p�eik�t�run0k�dr = m0v	k�t�
 , �B4�

where v�k�= �1/���k�n0
�k�, it then follows, for k�t�=K

+pc�t� /� in Eq. �B4�, that

� �n0k
* �p + pc��n0k dr = m0v�k� , �B5�

where �n0k are the instantaneous eigenstates of Eq. �10�.
Thus, Eqs. �B3�–�B5� become

Ik,k�
�+� = �k�,k−qm0v�k� . �B6�

Similarly, for the second integral in Eq. �B1�, one finds that

Ik,k�
�−� � � �n0k

* �p + pc�e−iqr�n0k� dr = �k�,k+qm0v�k� .

�B7�

Then, using �B1�, �B6�, and �B7�, the matrix elements for the
perturbing Hamiltonian, HI, are established for use in Eq.
�A4�.
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