
AIAA 2002–5402
Complete Configuration
Aero-Structural Optimization Using
a Coupled Sensitivity Analysis
Method
Joaquim R. R. A. Martins, Juan J. Alonso
Stanford University, Stanford, CA 94305

James J. Reuther
NASA Ames Research Center, Moffett Field, CA 94035

9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization

September 4–6, 2002/Atlanta, GA

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
1801 Alexander Bell Drive, Suite 500, Reston, VA 20191–4344



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2002 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2002 to 00-00-2002  

4. TITLE AND SUBTITLE 
Complete Configuration Aero-Structural Optimization Using a Coupled
Sensitivity Analysis Method 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
National Aeronautics and Space Administration,Ames Research
Center,Moffett Field,CA,94035 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
The original document contains color images. 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

15 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



AIAA 2002–5402

Complete Configuration Aero-Structural
Optimization Using a Coupled Sensitivity

Analysis Method

Joaquim R. R. A. Martins∗, Juan J. Alonso †

Stanford University, Stanford, CA 94305

James J. Reuther ‡

NASA Ames Research Center, Moffett Field, CA 94035

This paper focuses on the demonstration of a new integrated aero-structural design
method for aerospace vehicles. The approach combines an aero-structural analysis solver,
a coupled aero-structural adjoint solver, a geometry-based analysis and design integration
strategy, and an efficient gradient-based optimization algorithm. The aero-structural
solver ensures highly accurate solutions by using high-fidelity models for both disciplines
as well as a high-fidelity coupling procedure. The Euler equations are solved for the
aerodynamics and a detailed finite element model is used for the primary structure. The
coupled aero-structural adjoint solution is used to calculate the needed sensitivities of
aerodynamic and structural cost functions with respect to both aerodynamic shape and
structural variables. The geometric outer mold line (OML) serves not only as an interface
between the two disciplines for both the state and costate systems, but also as an interface
between the numerical optimization algorithm and the high-fidelity analyses. Another set
of design variables parameterizes a structure of fixed topology. Kreisselmeier–Steinhauser
functions are used to reduce the number of structural constraints in the problem. Sample
results comparing a fully coupled aero-structural design with a more traditional sequential
optimization are presented.

Introduction
During the past decade the advancement of numer-

ical methods for the analysis of complex engineer-
ing problems such as those found in fluid dynamics
and structural mechanics has reached a mature stage:
many difficult numerically intensive problems are now
readily solved with modern computer facilities. In fact,
the aircraft design community is increasingly using
computational fluid dynamics (CFD) and computa-
tional structural mechanics (CSM) tools to replace
traditional approaches based on simplified theories and
wind tunnel testing. With the advancement of these
numerical analysis methods well underway, the focus
for engineers is shifting toward integrating these anal-
ysis tools into numerical design procedures.

Despite revolutionary accomplishments in single-
discipline applications [23, 24], progress towards the
development of high-fidelity, multidisciplinary design
optimization (MDO) methods has been slow. The
level of coupling between disciplines is highly problem
dependent and significantly affects the choice of algo-
rithm. Multiple difficulties also arise from the wide
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variety of design problems: an approach that is ap-
plicable to one problem may not be compatible with
another.

An important feature that characterizes the various
solution strategies for MDO problems is the allowable
level of disciplinary autonomy in the analysis and op-
timization components. Excellent discussions of these
issues are presented by Sobieski and Haftka [28], and
Alexandrov and Lewis [4]. The allowable level of disci-
plinary autonomy is usually inversely proportional to
the bandwidth of the interdisciplinary coupling. Thus,
for highly coupled problems it may be necessary to re-
sort to fully integrated MDO, while for more weakly
coupled problems, modular strategies may hold an ad-
vantage in terms of ease of implementation. With
these constraints in mind, a number of ideas for solving
complex MDO problems have been developed. These
ideas include multilevel optimization strategies [3, 15],
collaborative optimization [6, 17, 9], individual disci-
pline feasible methods [8], as well as tightly coupled
optimization procedures. The main difference between
the different MDO strategies is the degree of coupling
that is required between the disciplines in both the
analysis and the optimization procedures.

In the particular case of high-fidelity aero-structural
optimization, the coupling between disciplines has a
very high bandwidth. Furthermore, the values of the
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objective functions and constraints depend on highly
coupled multidisciplinary analyses (MDA). As a result,
we believe that a tightly coupled MDO environment is
more appropriate for aero-structural optimization.

Another important consideration when selecting
a numerical design strategy is to choose between
gradient- and non-gradient-based approaches. Some
combination of these two approaches is likely to emerge
as the leading alternative in which discontinuities in
the design space, such as changes in the structural
topology, are treated with a non-gradient-based proce-
dure, while efficient convergence to a local minimum is
achieved with a gradient approach. The present paper
employs a gradient-based strategy that enables the use
of hundreds or even thousands of design parameters
to achieve near optimal shape-structure combinations.
This level of design detail — which is arguably nec-
essary at the end of the preliminary design stage —
cannot be treated by non-gradient methods when the
analyses involve the solution of a high-fidelity aero-
structural system.

In contrast with emerging single-discipline design
methodologies such as aerodynamic shape optimiza-
tion or structural optimization, aero-structural design
has traditionally been carried out in a cut-and-try ba-
sis. Aircraft designers have a pre-conceived idea of
the shape of an “optimal” load distribution and then
tailor the jig shape of the structure so that the de-
flected wing shape under a 1-g load gives the desired
load distribution. While this approach may suffice for
conventional transport aircraft, where there is consid-
erable accumulated experience, in the case of either
new planform concepts or new flight regimes, the lack
of experience combined with the complexities of aero-
structural interactions can lead to designs that are far
from optimal.

This is certainly the case in the design of both small
and large supersonic transports, where simple beam
theory models of the wing cannot be used to accu-
rately describe the behavior of the wing structure. In
some cases, these aircraft must even cruise for signifi-
cant portions of their flight at different Mach numbers.
In addition, a variety of studies show that supersonic
transports exhibit a range of undesirable aeroelastic
phenomena due to the low bending and torsional stiff-
ness that result from wings with low thickness to chord
ratio. These phenomena can only be suppressed when
aero-structural interactions are taken into account at
the preliminary design stage [5].

Unfortunately, the modeling of the participating dis-
ciplines in most of the work that has appeared so far
has remained at a relatively low level. While use-
ful at the conceptual design stage, lower-order mod-
els cannot accurately represent a variety of nonlin-
ear phenomena such as wave drag, which can play
an important role in the search for the optimum de-
sign. An exception to low-fidelity modeling is the

recent work by Giunta [11] and by Maute et al. [22]
where aero-structural sensitivities are calculated using
higher-fidelity models.

The ultimate objective of our work is to develop
an MDO framework for high-fidelity analysis and op-
timization of aircraft configurations. The framework
is built upon prior work by the authors on aero-
structural high-fidelity sensitivity analysis [25, 18, 19].
The objective of this paper is to present the current
capability of this framework and to demonstrate it by
performing a simplified aero-structural design of a su-
personic business jet configuration.

This paper presents a tightly coupled approach to
high-fidelity aero-structural MDO that uses CFD and
CSM. The following sections begin with the descrip-
tion of the aircraft optimization problem we propose
to solve. We then introduce the general formulation of
the sensitivity equations followed by the specific case
of the adjoint equations for the aero-structural sys-
tem. A detailed study of the accuracy and efficiency
of the aeroelastic sensitivity information is also pre-
sented for validation purposes. Finally, we present
results of the application of our sensitivity analysis
method to the full aero-structural optimization of a
supersonic business jet and compare the results with
the more traditional approach of sequential discipline
optimizations where we highlight the fact that only
closely coupled optimization frameworks can arrive at
the true optimum of the system.

Aircraft Optimization Problem
For maximum lift-to-drag ratio, it is a well-known

result from classical aerodynamics that a wing must
exhibit an elliptic lift distribution. For aircraft design,
however, it is usually not the lift-to-drag ratio we want
to maximize but an objective function that reflects the
overall mission of the particular aircraft. Consider, for
example, the Breguet range formula for jet-powered
aircraft

Range =
V

c

CL
CD

ln
Wi

Wf
, (1)

where V is the cruise velocity and c is the thrust spe-
cific fuel consumption of the powerplant. CL/CD is
the ratio of lift to drag, and Wi/Wf is the ratio of
initial and final cruise weights of the aircraft.

The Breguet range equation expresses a trade-off be-
tween the drag and the empty weight of the aircraft
and constitutes a reasonable objective function to use
in aircraft design. If we were to parameterize a de-
sign with both aerodynamic and structural variables
and then maximize the range for a fixed initial cruise
weight, subject to stress constraints, we would obtain
a lift distribution similar to the one shown in Figure 1.

This optimum lift distribution trades off the drag
penalty associated with unloading the tip of the wing,
where the loading contributes most to the maximum
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Fig. 1: Elliptic vs. aero-structural optimum lift distribu-
tion.

Fig. 2: Natural laminar flow supersonic business jet con-
figuration.

stress at the root of the wing structure, in order to
reduce the weight. The end result is an increase in
range when compared to the elliptically loaded wing
that results from an increased weight fraction Wi/Wf .
The result shown in Figure 1 illustrates the need for
taking into account the coupling of aerodynamics and
structures when performing aircraft design.

The aircraft configuration used in this work is the
supersonic business jet shown in Figure 2. This con-
figuration is being developed by the ASSET Research
Corporation and is designed to achieve a large percent-
age of laminar flow on the low-sweep wing, resulting
in decreased friction drag [16]. The aircraft is to fly at
Mach 1.5 and have a range of 5,300 nautical miles.

Detailed mission analysis for this aircraft has deter-
mined that one count of drag (∆CD = 0.0001) is worth
310 pounds of empty weight. This means that to op-
timize the range of the configuration we can minimize
the objective function

I = αCD + βW, (2)

where CD is the drag coefficient, W is the structural
weight in pounds and α/β = 3.1× 106.

The aircraft design is parameterized using two types
of design variables. The first type of variable modifies
the OML of the configuration while the second type of
variable controls the sizing of underlying structure.

To perform gradient-based optimization, we need
the sensitivities of the objective function (2) with re-
spect to all the design variables. Since this objective
function is a linear combination of the drag coefficient
and the structural weight, its sensitivity can be written
as

dI
dxn

= α
dCD
dxn

+ β
dW
dxn

. (3)

The sensitivity of the structural weight, dW/ dxn, is
trivial, since the weight calculation is independent of
the aero-structural solution. This gradient is calcu-
lated analytically for the structural thickness variables
and by finite differences for the OML variables. The
drag coefficient sensitivity, dCD/dxn, is not trivial
since it does depend on the aero-structural solution.
Details of the methodology used to compute coupled
sensitivities are presented in the next section.

The OML design variables can be applied to any
of the components used to define the aircraft geome-
try. For each wing-like component (main wing, canard,
horizontal tail, etc.), the shape is modified at a number
of pre-specified airfoil sections. Each of these sections
may be independently modified while the spanwise
resolution can be controlled by the number and po-
sition of the sections. The shape modifications to
the airfoils are linearly lofted between stations. Var-
ious types of design variables may be applied to the
airfoils: twist, leading and trailing edge droop, and
Hicks–Henne bump functions, among others. The
Hicks–Henne functions are of the form

b(ζ) = xn

[

sin
(

πζ
log 1

2
log t1

)]t2

, (4)

where t1 is the location of the maximum of the bump in
the range 0 ≤ ζ ≤ 1 at ζ = t1, since the maximum oc-
curs when ζα = 1/2, where α = log(1/2)/ log t1. The
parameter t2 controls the width of the bump. The
advantage of these functions is that when they are ap-
plied to a smooth airfoil, that airfoil remains smooth.

The structural design variables are the thicknesses
of the structural finite elements. The topology of the
structure remains unchanged, i.e., the number of spars
and ribs and their position are fixed throughout the
optimization. However, because the OML determines
the location of the nodes of the structural model, vari-
ations of the OML have an effect on the depth of the
spars and ribs of the wing box.

Among the constraints to be imposed, the most ob-
vious one is that during cruise the lift must always
equal the weight of the aircraft. In our optimization
problem we constrain the CL by periodically adjusting
the angle-of-attack of the aircraft within the aero-
structural solution until the desired lift is obtained
within a pre-specified tolerance. Otherwise, OML de-
sign changes would quickly result in lower drag coef-
ficients simply because of reduced lift. Some design
problems may require that the objective function be
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minimized over a range of operating conditions (mul-
tipoint design). In these situations, the appropriate
lift constraint would be imposed at each design point
using the same procedure.

In addition to maintaining the CL, the stresses are
also constrained so that the yield stress of the mate-
rial is not exceeded at a number of load conditions.
There are typically thousands of finite elements de-
scribing the structure of the aircraft, and it can become
computationally very costly to treat these constraints
separately. The difficulty of the problem is that even
though there are efficient ways of computing sensitiv-
ities of a few functions with respect to many design
variables, and of computing sensitivities of many func-
tions with respect to a few design variables, there is
no known efficient method for computing sensitivities
of many functions with respect to many design vari-
ables. Thus, we are left to choose between treating
a large number of design variables or being able to
handle multiple cost functions and constraints.

In the case of most structural design problems, the
preferred approach is the direct method, where one cal-
culates the sensitivities of the stress in each element
independently, while limiting the number of design
parameters to lower the total cost of computing sen-
sitivities. The number of sensitivity analyses needed
to compute the complete sensitivity matrix scales in-
dependently of the number of stress constraints but
linearly with respect to the number of design param-
eters. Unfortunately, the most efficient approach for
aerodynamics problems is quite different: the number
of aerodynamic cost/constraint functions is relatively
small, while the number of necessary shape design
parameters is very large. It is then more efficient
to compute gradients via the adjoint method, whose
cost scales linearly with the number of cost/constraint
functions but is independent of the number of design
parameters. The coupled aero-structural problem re-
quires a compromise between these two approaches.
However, without a viable strategy to reduce the need
for a large number of aerodynamic design variables we
are left with the option of trying to reduce the number
of independent structural constraints.

For this reason, we lump the individual element
stresses using Kreisselmeier–Steinhauser (KS) func-
tions. In the limit, all element stress constraints can
be lumped into a single KS function, thus minimizing
the cost of a large-scale aero-structural design cycle.
Suppose that we have the following constraint for each
structural finite element,

gm = 1− σm
σy
≥ 0, (5)

where σm is the element von Mises stress and σy is
the yield stress of the material. The corresponding KS

function is defined as

KS (gm) = −1
ρ

ln

(

∑

m

e−ρgm
)

. (6)

This function represents a lower bound envelope of all
the constraint inequalities and ρ is a positive parame-
ter that expresses how close this bound is to the actual
minimum of the constraints. This constraint lumping
method is conservative and may not achieve the same
optimum that a problem treating the constraints sep-
arately would. However, the use of KS functions has
been demonstrated and it constitutes a viable alter-
native, being effective in optimization problems with
thousands of constraints [2].

Having defined our objective function, design vari-
ables and constraints, we can now summarize the air-
craft design optimization problem as follows:

minimize I = αCD + βW

xn ∈ Rn

subject to CL = CLT

KS ≥ 0
xn ≥ xnmin .

The stress constraints in the form of KS functions must
be enforced by the optimizer for aerodynamic loads
corresponding to a number of flight and dynamic load
conditions. Finally, a minimum gage is specified for
each structural element thickness.

Analytic Sensitivity Analysis
Our main objective is to calculate the sensitivity of

a multidisciplinary function of interest with respect to
a number of design variables. The function of inter-
est can be either the objective function or any of the
constraints specified in the optimization problem. In
general, such functions depend not only on the design
variables, but also on the physical state of the multi-
disciplinary problem. Thus we can write the function
as

I = I(xn, yi), (7)

where xn represents the vector of design variables and
yi is the state variable vector.

For a given vector xn, the solution of the governing
equations of the multidisciplinary system yields a vec-
tor yi, thus establishing the dependence of the state of
the system on the design variables. We denote these
governing equations by

Rk (xn, yi (xn)) = 0. (8)

The first instance of xn in the above equation indicates
the fact that the residual of the governing equations
may depend explicitly on xn. In the case of a CFD
solver, for example, changing the surface shape results
in different values of the residual for at least the mesh
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points closest to the surface, even if the solution is not
recomputed. By solving the governing equations we
determine the state, yi, which depends implicitly on
the design variables through the solution of the system.
These equations may be nonlinear, in which case the
usual procedure is to drive residuals, Rk, to zero using
an iterative method.

Since the number of equations must equal the num-
ber of state variables, the ranges of the indices i and
k are the same, i.e., i, k = 1, . . . , NR. In the case
of a structural solver, for example, NR is the num-
ber of unconstrained degrees of freedom, while for a
CFD solver, NR is the number of mesh points multi-
plied by the number of state variables stored at each
point. In the more general case of a multidisciplinary
system, Rk represents all the governing equations of
the different disciplines, including their coupling.

xn

Rk = 0

yi
I

Fig. 3: Schematic representation of the governing equa-
tions (Rk = 0), design variables (xn), state variables (yi),
and objective function (I), for an arbitrary system.

A graphical representation of the system of govern-
ing equations is shown in Figure 3, with the design
variables xn as the inputs and I as the output. The
two arrows leading to I illustrate the fact that the
objective function typically depends on the state vari-
ables and may also be an explicit function of the design
variables.

As a first step toward obtaining the derivatives that
we ultimately want to compute, we use the chain rule
to write the total sensitivity of I as

dI
dxn

=
∂I

∂xn
+
∂I

∂yi

dyi
dxn

, (9)

for i = 1, . . . , NR, n = 1, . . . , Nx. Index notation is
used to denote the vector dot products. It is impor-
tant to distinguish the total and partial derivatives in
this equation. The partial derivatives can be directly
evaluated by simply varying the denominator and re-
evaluating the function in the numerator while keep-
ing everything else constant. The total derivatives,
however, require the solution of the multidisciplinary
problem. Thus, all the terms in the total sensitiv-
ity equation (9) are inexpensively computed except for
dyi/dxn.

Since the governing equations must always be sat-
isfied, the total derivative of the residuals (8) with
respect to any design variable must also be zero. Ex-
panding the total derivative of the governing equations
with respect to the design variables we can write,

dRk
dxn

=
∂Rk
∂xn

+
∂Rk
∂yi

dyi
dxn

= 0, (10)

for all i, k = 1, . . . , NR and n = 1, . . . , Nx. This ex-
pression provides us with the means to compute the
total sensitivity of the state variables with respect to
the design variables. By rewriting equation (10) as

∂Rk
∂yi

dyi
dxn

= −∂Rk
∂xn

, (11)

we can solve for dyi/dxn and substitute this result
into the total derivative equation (9), to obtain

dI
dxn

=
∂I

∂xn
− ∂I

∂yi

− dyi/ dxn
︷ ︸︸ ︷

[

∂Rk
∂yi

]−1
∂Rk
∂xn

.

︸ ︷︷ ︸

−Ψk

(12)

The inversion of the Jacobian ∂Rk/∂yi is not necessar-
ily calculated explicitly. In the case of large iterative
problems neither this matrix nor its factorization are
usually stored due to their prohibitive size.

The approach where we first calculate dyi/dxn us-
ing equation (11) and then use the result in the expres-
sion for the total sensitivity (12) is called the direct
method. Note that solving for dyi/dxn requires the
solution of the matrix equation (11) for each design
variable xn. A change in the design variable affects
only the right-hand side of the equation, so for prob-
lems where the matrix ∂Rk/∂yi can be explicitly fac-
torized and stored, solving for multiple right-hand-side
vectors by back substitution would be relatively inex-
pensive. However, for very large systems — such as
the ones encountered in CFD — the matrix ∂Rk/∂yi
is never factorized explicitly and the system of equa-
tions requires an iterative solution which is usually as
costly as solving the governing equations. When we
multiply this cost by the number of design variables,
the total cost for calculating the sensitivity vector may
become unacceptable.

Returning to the total sensitivity equation (12), we
observe that there is an alternative option when com-
puting the total sensitivity dI/dxn. The auxiliary
vector Ψk can be obtained by solving the adjoint equa-
tions

∂Rk
∂yi

Ψk = − ∂I
∂yi

. (13)

The vector Ψk is usually called the adjoint vector and
is substituted into equation (12) to find the total sensi-
tivity. In contrast with the direct method, the adjoint
vector does not depend on the design variables, xn,
but instead depends on the function of interest, I.

We can now see that the choice of solution procedure
(direct vs. adjoint) to obtain the total sensitivity (12)
has a substantial impact on the cost of sensitivity anal-
ysis. Although all the partial derivative terms are the
same for both the direct and adjoint methods, the
order of the operations is not. Notice that for any num-
ber of functions, I, we can compute dyi/dxn once for
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each design variable (direct method). Alternatively,
for an arbitrary number of design variables, we can
compute Ψk once for each function (adjoint method).

The cost involved in calculating sensitivities using
the adjoint method is therefore practically indepen-
dent of the number of design variables. After having
solved the governing equations, the adjoint equations
are solved only once for each I. Moreover, the cost of
solution of the adjoint equations is similar to that of
the solution of the governing equations since they are
of similar complexity and the partial derivative terms
are easily computed.

Therefore, if the number of design variables is
greater than the number of functions for which we seek
sensitivity information, the adjoint method is compu-
tationally more efficient. Otherwise, if the number of
functions to be differentiated is greater than the num-
ber of design variables, the direct method would be a
better choice.

The adjoint method has been widely used for both
structural sensitivity analysis [1] and aerodynamic
shape optimization [13, 14].

Aero-Structural Adjoint Equations
Although the theory we have just presented is appli-

cable to multidisciplinary systems, provided that the
governing equations for all disciplines are included in
Rk, we now explicitly discuss the sensitivity analy-
sis of multidisciplinary systems, using aero-structural
optimization as an example. This example illustrates
the fundamental computational cost issues that mo-
tivate our choice of strategy for sensitivity analysis.
The following equations and discussion can easily be
generalized for cases with additional disciplines.

In the aero-structural case we have coupled aerody-
namic (Ak) and structural (Sl) governing equations,
and two sets of state variables: the flow state vec-
tor, wi, and the vector of structural displacements,
uj . In the following expressions, we split the vectors
of residuals, states and adjoints into two smaller vec-
tors corresponding to the aerodynamic and structural
systems

Rk′ =
[

Ak
Sl

]

, yi′ =
[

wi
uj

]

, Ψk′ =
[

ψk
φl

]

. (14)

Figure 4 shows a diagram representing the coupling in
this system.

xn

Ak = 0 Sl = 0

wi

uj

I

Fig. 4: Schematic representation of the aero-structural
system.

Using this new notation, the adjoint equations (13)
for the case of the aero-structural system can be writ-
ten as





∂Ak
∂wi

∂Ak
∂uj

∂Sl
∂wi

∂Sl
∂uj





T
[

ψk
φl

]

= −





∂I
∂wi
∂I
∂uj



 . (15)

Note that the residual sensitivity matrix in this equa-
tion is identical to that of the Global Sensitivity Equa-
tions (GSE) first presented by Sobieski [27]. This
matrix, in addition to containing the diagonal terms
that appear when we solve the single discipline ad-
joint equations, also has off-diagonal terms expressing
the sensitivity of one discipline to the state variables of
the other. The details of the partial derivative terms
in this matrix and the right-hand side (for cases when
I = CD and I = KS) of this equation (15) have
been previously published and will not be repeated
here [18, 19].

Since the factorization of the full matrix in the
coupled-adjoint equations (15) would be extremely
costly, our approach uses an iterative solver, much like
the one used for the aero-structural solution, where the
adjoint vectors are lagged and the two different sets of
equations are solved separately. For the calculation
of the adjoint vector of one discipline, we use the ad-
joint vector of the other discipline from the previous
iteration, i.e., we solve

∂Ak
∂wi

ψk = − ∂I

∂wi
︸ ︷︷ ︸

Aerodynamic adjoint

− ∂Sl
∂wi

φ̃l, (16)

∂Sl
∂uj

φl = − ∂I

∂uj
︸ ︷︷ ︸

Structural adjoint

−∂Ak
∂uj

ψ̃k, (17)

where ψ̃k and φ̃l are the lagged aerodynamic and struc-
tural adjoint vectors respectively. Upon convergence,
the final result given by this system is the same as
that of the original coupled-adjoint equations (15).
We call this the lagged-coupled adjoint (LCA) method
for computing sensitivities of multidisciplinary sys-
tems. Note that these equations look like the single
discipline adjoint equations for the aerodynamic and
structural solvers, with the addition of forcing terms
on the right-hand side that contain the off-diagonal
terms of the residual sensitivity matrix. This allows
us to use existing single-discipline adjoint sensitivity
analysis methods with only small modifications. Note
also that, even for more than two disciplines, this it-
erative solution procedure is nothing more than the
well-known block-Jacobi method.

Once both adjoint vectors have converged, we can
compute the final sensitivities of the objective function
by using the following expression

dI
dxn

=
∂I

∂xn
+ ψk

∂Ak
∂xn

+ φl
∂Sl
∂xn

, (18)
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which is the coupled version of the total sensitivity
equation (12).

Note again, that the details of the partial derivative
terms in the LCA equations (16) and (17) and the
total sensitivity equation (18) can be found in previous
publications [18, 19].

For the aero-structural optimization problem at
hand the aerodynamic portion is usually character-
ized by a single objective function and at most a few
aerodynamic constraints, but a large number of design
variables. On the other hand, the structural portion
of the optimization problem is characterized by a large
number of constraints: the stress in each element of the
finite-element model cannot exceed the material yield
stress for a number of load conditions. Constrained
gradient optimization methods generally require that
the user provide the gradient of both the cost function
and each nonlinear constraint with respect to all of
the design variables in the problem. Using the adjoint
approach, the evaluation of the gradient of each con-
straint would require an independent coupled solution
of a large adjoint system. Since the number of struc-
tural constraints is similar to the number of design
variables in the problem (O(103) or larger), the useful-
ness of the adjoint approach could be put in question.

Both of the remaining alternatives, the direct and
finite-difference methods, prove overly costly since
they both require a number of solutions that is compa-
rable to the number of design variables. In the absence
of other choices that can efficiently evaluate the gra-
dient of a large number of constraints with respect to
a large number of design variables, it is necessary to
reduce the size of the problem either through a reduc-
tion in the number of design variables or through a
reduction in the number of nonlinear constraints.

The reason for the choice of the KS functions to
lump the structural constraints now becomes clear.
By employing KS functions, the number of struc-
tural constraints for the problem can be reduced from
O(103) to just a few. Since the KS function is a lower
bound envelope of all the constraint inequalities, this
dramatic reduction in the number of structural con-
straints can in theory lead to conservative designs. In
our experience and that of other researchers [2], the
degree of conservativeness added by the KS functions
is small.

Results

In this section we present the results of the ap-
plication of our sensitivity calculation method to the
problem of aero-structural design of a supersonic, nat-
ural laminar flow, business jet. Before describing the
results of our design experience, we present the aero-
structural analysis framework and the results of a sen-
sitivity validation study.

Fig. 5: Aero-structural model and solution of the su-
personic business jet configuration, showing a slice of
the grid and the internal structure of the wing.

Aero-Structural Analysis

The coupled-adjoint procedure was implemented
as a module that was added to the aero-structural
design framework previously developed by the au-
thors [25, 18]. The framework consists of an aero-
dynamic analysis and design module (which includes
a geometry engine and a mesh perturbation algo-
rithm), a linear finite-element structural solver, an
aero-structural coupling procedure, and various pre-
processing tools that are used to setup aero-structural
design problems. The multi-disciplinary nature of this
solver is illustrated in Figure 5 where we can see the
aircraft geometry, the flow mesh and solution, and the
primary structure inside the wing.

The aerodynamic analysis and design module,
SYN107-MB [23], is a multiblock parallel flow solver
for both the Euler and the Reynolds Averaged Navier-
Stokes equations that has been shown to be accurate
and efficient for the computation of the flow around
full aircraft configurations [26]. An aerodynamic ad-
joint solver is also included in this package in order
to perform aerodynamic shape optimization in the ab-
sence of aero-structural interaction.

The structural analysis package is FESMEH, a finite
element solver developed by Holden [12]. The package
is a linear finite-element solver that incorporates two
element types and computes the structural displace-
ments and stresses of wing structures. Although this
solver is not as general as some commercially-available
packages, it is still representative of the challenges in-
volved in using large models with tens of thousands of
degrees of freedom. High-fidelity coupling between the
aerodynamic and the structural analysis programs is
achieved using a linearly consistent and conservative
scheme [25, 7].

The structural model of the wing can be seen in
Figure 5 and is constructed using a wing box with six
spars evenly distributed from 15% to 80% of the chord.
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Ribs are distributed along the span at every tenth of
the semispan. A total of 640 finite elements were used
in the construction of this model. Appropriate thick-
nesses of the spar caps, shear webs, and skins were
chosen according to the expected loads for this design.

Aero-Structural Sensitivity Validation

1 2 3 4 5 6 7 8 9 10
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D
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n
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Coupled adjoint, fixed displacements

Complex step
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Fig. 6: Sensitivities of the drag coefficient with respect
to shape perturbations.

To gain confidence in the effectiveness of the aero-
structural coupled-adjoint sensitivities for use in de-
sign optimization, we must ensure that the values of
the gradients are accurate. For validation purposes,
we use four sets of sensitivities. Results from the ad-
joint method are compared to the exact discrete value
of these sensitivities using the complex-step derivative
approximation [20, 21].

In this sensitivity study two different functions are
considered: the aircraft drag coefficient, CD, and the
KS function (6). The sensitivities of these two quanti-
ties with respect to both OML shape design variables
and structural design variables are computed and dis-
cussed.

CD with Respect to OML Variables
The values of the aero-structural sensitivities of the

drag coefficient with respect to shape perturbations
are shown in Figure 6. The ten shape perturbations
were chosen to be Hicks–Henne bumps distributed
chordwise on the upper surface of two adjacent air-
foils around the quarter span. The plot shows very
good agreement between the coupled-adjoint and the
complex-step results, with an average relative error
between the two of only 3.5%. Note that all these sen-
sitivities are total sensitivities in the sense that they
account for the coupling between aerodynamics and
structures.

To verify the need for taking the coupling into ac-
count, the same set of sensitivities was calculated for
fixed structural displacements, where the displacement

field is frozen after the aero-structural solution. This
is similar to assuming that the wing, after the ini-
tial aeroelastic deformation, is held rigid as far as the
computation of sensitivities is concerned. The cal-
culation of the sensitivities only takes into account
variations related to the aerodynamics. Figure 6 shows
that the single-system sensitivities exhibit significantly
lower magnitudes and even opposite signs for many of
the design variables, when compared with the coupled
sensitivities. The use of single-discipline sensitivities
would clearly lead to erroneous design decisions.
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Fig. 7: Sensitivities of the drag coefficient with respect
to structural thicknesses.

CD with Respect to Thickness Variables
Figure 7 also shows the sensitivity of the drag co-

efficient, this time with respect to the thicknesses of
five skin groups and five spar groups distributed along
the span. The agreement in this case is even better;
the average relative error is only 1.6%. Even though
these are sensitivities with respect to internal struc-
tural variables that do not modify the jig OML, the
non-zero values in Figure 7 demonstrate that coupled
sensitivity analysis is needed.

KS with Respect to OML and Thickness Variables
The sensitivities of the KS function with respect to

the two sets of design variables described above are
shown in Figures 8 and 9. The results show that
the coupled-adjoint sensitivities are extremely accu-
rate, with average relative errors of 2.9% and 1.6%.
In Figure 9 we observe that the sensitivity of the KS
function with respect to the first structural thickness
is much higher than the remaining sensitivities. This
markedly different magnitude is due to the fact that
this particular structural design variable corresponds
to the thickness of the top and bottom skins of the
wing bay closest to the root, where the stress is the
highest.

The sensitivities of the KS function for fixed loads
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Fig. 8: Sensitivities of the KS function with respect to
shape perturbations.
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Fig. 9: Sensitivities of the KS function with respect to
structural thicknesses.

are also shown in Figures 8 and 9. Using the complex-
step method, these sensitivities were calculated by
calling only the structural solver after the initial aero-
structural solution. The approach is equivalent to us-
ing just equations (17, 18) without the partial deriva-
tives of Ak. The difference in these sensitivities when
compared to the coupled ones is not as dramatic as in
the fixed displacements case shown in Figure 6, but it
is still significant.

Computational Efficiency

The cost of calculating a gradient vector using ei-
ther the finite-difference or the complex-step methods
is expected to be linearly dependent on the number of
design variables. This expectation is confirmed in Fig-
ure 10 where the gradient calculation times are shown
for an increasing number of design variables. The time

axis is normalized with respect to the time required
for a single aero-structural solution (98 seconds on 9
processors of an SGI Origin 2000). The symbols indi-
cate timings measured from actual calculations: 2, 000
design variables were tested for the coupled-adjoint
method.
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Fig. 10: Computational time vs. number of design vari-
ables for finite differencing, complex step and coupled
adjoint. The time is normalized with respect to the
time required for one aero-structural solution.

The cost of a finite-difference gradient evaluation
can be linearly approximated by the equation 1.0 +
0.38×Nx, where Nx is the number of design variables.
Notice that one might expect this method to incur a
computational cost equivalent to one aero-structural
solution per additional design variable. The cost per
additional design variable is lower than unity because
each additional aero-structural calculation does not
start from a uniform flow-field initial condition, but
from the previously converged solution.

The same applies to the cost of the complex-step
method. Because the function evaluations require
complex arithmetic, the cost of the complex step
method is, on average, 2.4 times higher than that of
finite differencing. However, this cost penalty is worth-
while since there is no need to find an acceptable step
size a priori, as is the case for finite-difference approx-
imations [20, 21].

The cost of computing sensitivities using the
coupled-adjoint procedure is in theory independent of
the number of variables. Using our implementation,
however, some of the partial derivatives in the total
sensitivity equation (18) are calculated using finite dif-
ferences involving mesh perturbations and therefore,
there is a small dependence on the number of vari-
ables. The line representing the cost of the coupled
adjoint in Figure 10 has a slope of 0.01 which is be-
tween one and two orders of magnitude less than the
slope for the other two lines.

The constant terms for the straight lines in Figure 10
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represent the upfront cost of each procedure when no
sensitivities are required. For the finite-difference case,
this is equivalent to one aero-structural solution, and
hence the constant is 1.0. When performing the aero-
structural solution using complex arithmetic, the cost
rises to 2.1 times the real arithmetic solution. The
cost of computing the coupled-adjoint vectors (with-
out computing the gradients) is 3.4. This cost includes
the aero-structural solution, which is necessary before
solving the adjoint equations, and hence the aero-
structural adjoint computation alone incurs a cost of
2.4. Since the solution of the aero-structural adjoint
equation incurs a computational cost similar to that of
the aero-structural analysis, the equivalent of 1.4 aero-
structural analyses is spent in the computation of the
forcing terms introduced in equations (16) and (17).
In particular, the last term in equation (17) requires
that the full CFD mesh be perturbed for each of the
degrees of freedom on the surface of the CSM mesh.
The calculation of this term can increase the compu-
tational cost for very large structural models.

The main conclusion still remains that the cost of
computing sensitivities with respect to hundreds or
even thousands of variables is acceptable when using
the coupled-adjoint approach, while it is impractical
to use finite-differences, the complex-step method, or
the direct method for such a large number of design
variables.

Aero-Structural Design

The objective in this optimization is to solve the op-
timization problem that we previously described, i.e.,

minimize I = αCD + βW

xn ∈ Rn

subject to CL = CLT

KS ≥ 0
xn ≥ xnmin .

In our example the value of CD corresponds to that of
the cruise condition, which has a target lift coefficient
of 0.1. The structural stresses, in the form of the KS
function, correspond to a single maneuver condition,
for which CLT = 0.2.

All optimization work is carried out using the non-
linear constrained optimizer NPSOL [10]. Euler calcu-
lations are performed on a wing-body 36-block mesh
that is constructed from the decomposition of a 193×
33×49 C-H mesh. During the process of the optimiza-
tion, all flow evaluations are converged to 5.3 orders of
magnitude of the average density residual and the CL
constraint is achieved to within 10−6.

In order to parameterize the shape of the aircraft, we
have chosen sets of design variables that apply to both
the wing and the fuselage. The wing shape is modified
by the design optimization procedure at six defining
stations uniformly distributed from the side-of-body

to the tip of the wing. The shape modifications of
these defining stations are linearly lofted to a zero
value at the previous and next defining stations. On
each defining station, the twist, the leading and trail-
ing edge camber distributions, and five Hicks–Henne
bump functions on both the upper and lower surfaces
are allowed to vary. The leading and trailing edge cam-
ber modifications are not applied at the first defining
station. This yields a total of 76 OML design variables
on the wing. Planform modifications, which are per-
mitted by our software, were not used in the present
calculations. Planform optimization is only meaning-
ful if additional disciplines and constraints are taken
into account.

The shape of the fuselage is parameterized in such a
way that its camber is allowed to vary while the total
volume remains constant. This is accomplished with
9 bump functions evenly distributed in the streamwise
direction starting at the 10% fuselage station. Fuselage
nose and trailing edge camber functions are added to
the fuselage camber distribution in a similar way to
what was done with the wing sections.

The structural sizing is accomplished with 10 design
variables, which correspond to the skin thicknesses of
the top and bottom surfaces of the wing. Each group
is formed by the plate elements located between two
adjacent ribs. All structural design variables are con-
strained to exceed a pre-specified minimum gage value.

The complete configuration is therefore parameter-
ized with a total of 97 design variables. As mentioned
in an earlier section, the cost of aero-structural gra-
dient information using our coupled-adjoint method is
effectively independent of the number of design vari-
ables: in more realistic full configuration test cases
that we are about to tackle, 500 or more design vari-
ables will be necessary to describe the shape variations
of the configuration (including nacelles, diverters, and
tail surfaces) and the sizing of the structure.

The initial application of our design methodology to
the aero-structural design of a supersonic business jet
is simply a proof-of-concept problem meant to validate
the sensitivities obtained with our method. Current
work is addressing the use of multiple realistic load
conditions, dynamic loads, aeroelastic constraints, and
the addition of diverters, nacelles, and empennage.

In the present design case, we use α = 104, β =
3.226× 10−3. Note that the scalars that multiply the
structural weight, W , and the coefficient of drag, CD,
reflect the correct trade-off between drag and weight
that was previously mentioned, i.e. that one count of
drag is worth 310 pounds of weight.

Figure 11 shows the evolution of this aero-structural
design case for successive major design iterations. The
figure shows the values of the coefficient of drag (in
counts), the wing structural weight (in lbs), and the
value of the KS function. Note that the structural con-
straints are satisfied when the KS function is positive.
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Fig. 11: Convergence history of the aero-structural optimization.

Because of the approximate nature of the KS function,
all structural constraints may actually be satisfied for
small but negative values of the KS function.

The baseline design is feasible, with a cruise drag
coefficient of 74.04 counts and a structural weight of
9, 285 lbs. The KS function is slightly positive indi-
cating that all stress constraints are satisfied at the
maneuver condition. In the first two design iterations,
the optimizer takes large steps in the design space,
resulting in a drastic reduction in both CD and W .
However, this also results in a highly infeasible de-
sign that exhibits maximum stresses 2.1 times the yield
stress of the material. After these initial large steps,
the optimizer manages to decrease the norm of the
constraint violation. This seems to have been accom-
plished by increasing the structural skin thicknesses,
since the weight increases while the drag is further re-
duced. Towards major iteration 10, there is no visible
progress for several iterations while the design remains
infeasible. A large step is taken in iteration 13 that
results in a sudden increase in feasibility accompanied
by an equally sudden increase in CD. The optimizer
has established that the only way to obtain a feasible
design is by increasing the wing thickness (with the
consequent increases in CD and weight) and the struc-
tural thicknesses. From that point on, the optimizer
rapidly converges to the optimum. After 43 major iter-
ations, the KS constraint is reduced to O(10−4) and all
stress constraints are satisfied. The aero-structurally
optimized result has CD = 0.006922 and a total wing
structure weight of 5, 546 lbs.

Visualizations of the baseline and optimized config-
urations are shown in Figures 12 and 13. Measures
of performance and feasibility are written in the first
section of Table 1. The left halves of Figures 12 and 13

show the surface flow density distribution with the
corresponding structural deflections at the cruise con-
dition for both the initial and optimized designs. The
right halves show an exploded view of the stress dis-
tribution on the structure (spar caps, spar shear webs,
and skins, from top to bottom) at the CL = 0.2 maneu-
ver condition. From these Figures one can appreciate
that not only have the surface density distributions
changed substantially at the cruise point, but so have
the element stresses at the maneuver condition. In
fact, as expected from a design case with a single
load condition, the optimized structure is nearly fully-
stressed, except in the outboard sections of the wing,
where the minimum gage constraints are active. It is
also worth noting that about half of the improvement
in the CD of the optimized configuration results from
drastic changes in the fuselage shape: both front and
aft camber have been added to distribute the lift more
evenly in the streamwise direction in order to reduce
the total lift-dependent wave drag.

A total of 50 major design iterations including aero-
structural analyses, coupled adjoint solutions, gradient
computations, and line searches were performed in
approximately 20 hours of wall clock time using 18
processors of an SGI Origin 3000 system (R12000,
400 Mhz processors). Since these are not the fastest
processors currently available we feel confident that
much larger models can be optimized with overnight
turnaround in the near future.

Comparison With Sequential Optimization

The usefulness of a coupled aero-structural opti-
mization method can only be measured in compari-
son with the results that can be obtained using cur-
rent state-of-the-art practices. In the case of aero-
structural design, the typical approach is to carry out
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aerodynamic shape optimization with artificial thick-
ness constraints meant to represent the effect of the
structure, followed by structural optimization with a
fixed OML. It is well known that sequential optimiza-
tion cannot be guaranteed to convergence to the true
optimum of a coupled system. In order to determine
the difference between the optima achieved by fully-
coupled and sequential optimizations, we have also
carried out one cycle of sequential optimization within
our analysis and design framework.

To prevent the optimizer from thinning the wing to
an unreasonable degree during the aerodynamic shape
optimization, 5 thickness constraints are added to each
of the 6 defining stations for a total of 30 linear con-
straints. These constraints are such that, at the points
where they are applied, the wing box is not allowed to
get any thinner than the original design.

After the process of aerodynamic shape optimiza-
tion is completed, the initial CD has decreased to
CD = 0.006992 as can be seen in the second half of Ta-
ble 1. After fixing the OML, structural optimization
is performed using the maneuver loads for the baseline
configuration at CL = 0.2. The optimized structural
design reduces the empty weight of the structure to
6, 567 lbs.

We can now compare the results of the fully cou-
pled optimization in the previous section and the out-
come of the process of sequential optimization. The
differences are clear: the coupled aero-structural opti-
mization was able to achieve an optimized design with
a weight of only 5, 546 lbs when compared with the
6, 567 lbs of the sequential optimization. This repre-
sents a relative difference of nearly 16%. Although it
is barely distinguishable, the coefficient of drag for the
coupled optimization approach is slightly lower than
for sequential optimization.

Finally, notice that since sequential optimization ne-
glects the aero-structural coupling in the computation
of maneuver loads, there is no guarantee that the
resulting design will be feasible. In fact, the aero-
structural analysis shows that the value of the KS
function is slightly negative.

Conclusions
A methodology for coupled sensitivity analysis of

high-fidelity aero-structural systems was presented.
The sensitivities computed by the lagged-coupled-
adjoint method were compared to sensitivities given by
the complex-step derivative approximation and shown
to be extremely accurate, having an average relative
error of 2%. Moreover, significant differences in the
values and signs of the sensitivities were found when
aero-structural values were compared to rigid ones.

In realistic aero-structural design problems with
hundreds of design variables, there is a considerable re-
duction in computational cost when using the coupled-
adjoint method as opposed to either finite-differences

or the complex-step approaches. This improvement is
due to the fact that the cost associated with the ad-
joint method is practically independent of the number
of design variables.

Sensitivities computed using the presented method-
ology were successfully used to optimize the design of a
supersonic business jet that was parameterized with a
large number of aerodynamic and structural variables.
The outcome of this optimization was compared with
the traditional method of sequential optimization and
it was found to improve the structural weight by an
additional 16%.
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CD (counts) KS σmax/σyield Weight (lbs) Objective
Integrated approach
Baseline 73.95 1.15× 10−1 0.87 9, 285
Optimized 69.22 −2.68× 10−4 0.98 5, 546 87.12
Sequential approach
Aerodynamic optimization

Baseline 74.04
Optimized 69.92

Structural optimization
Baseline 1.02× 10−1 0.89 9, 285
Optimized 1.45× 10−8 0.98 6, 567

Aero-structural analysis 69.95 −9.01× 10−3 0.99 6, 567 91.14

Table 1: Comparison between the integrated and sequential approaches to aero-structural optimization.
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Fig. 12: Baseline configuration for the supersonic business jet showing surface densities at the cruise condition
and structural stresses at the maneuver condition. The density is normalized by the freestream value and the
von Mises stresses are normalized by the material yield stress.

Fig. 13: Optimized configuration for the supersonic business jet.
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