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Abstract: Laboratory experiments were performed to study and improve 
longshore sediment transport rate predictions. Measured total longshore 
transport in the laboratory was approximately three times greater for 
plunging breakers than spilling breakers. Three distinct zones of longshore 
transport were observed across the surf zone: incipient breaker zone, inner 
surf zone, and swash zone. Transport at incipient breaking was influenced 
by breaker type; inner surf zone transport was dominated by wave height, 
independent of wave period; and swash zone transport was dependent on 
wave period.  

Selected predictive formulas to compute total load and distributed load 
transport were compared to laboratory and field data. Equations by 
Kamphuis (1991) and Madsen et al. (2003) gave consistent total sediment 
transport estimates for both laboratory and field data. Additionally, the 
CERC formula predicted measurements well if calibrated and applied to 
similar breaker types. Each of the distributed load models had shortcom-
ings. The energetics model of Bodge and Dean (1987) was sensitive to fluc-
tuations in energy dissipation and often predicted transport peaks that 
were not present in the data. The Watanabe (1992) equation, based on 
time-averaged bottom stress, predicted no transport at most laboratory 
locations. The Van Rijn (1993) model was comprehensive and required 
hydrodynamic, bedform, and sediment data. The model estimated the 
laboratory cross-shore distribution well, but greatly overestimated field 
transport.  

Seven models were developed in this study based on the principle that 
transported sediment is mobilized by the total shear stress acting on the 
bottom and transported by the current at that location. Shear stress, 
including the turbulent component, was calculated from the wave orbital 
velocity. Models 1 through 3 gave good estimates of the transport distri-
bution, but underpredicted the transport peak near the plunging wave 
breakpoint. A suspension term was included in Models 4 through 7, which 
improved estimates near breaking for plunging breakers. Models 4, 5, and 
7 also compared well to the field measurements.  

It was concluded that breaker type is an important variable in deter-
mining the amount of transport that occurs at a location. Lastly, inclusion 
of the turbulent component of the orbital velocity is vital in predictive 
sediment transport equations. 
 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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CHAPTER I 

INTRODUCTION 
 

Background 

 

Longshore sediment transport is defined as the movement of sediment, which can be 

sand or other beach material such as gravel and shell, along the shore.  Waves breaking 

at an oblique angle to the coast generate a current in the surf zone that flows parallel to 

the shore.  Breaking waves and the longshore current they generate are capable of 

transporting hundreds of thousands of cubic meters of sand along the coast during a 

typical year.  Gradients in longshore sediment transport play a dominant role in the long-

term response of a shoreline to waves and currents, particularly at engineering structures. 

Significant erosion or accretion can be caused by disruption of longshore sediment 

transport, producing gradients in the transport rate.  A portion of the sediment 

transported by the longshore current also is deposited in navigation channels issuing 

from coastal inlets and harbor entrances.   

Accurate prediction of the total longshore sediment transport rate is central to many 

coastal engineering studies.  Examples of practical engineering applications include 

beach response in the vicinity of coastal structures, beach fill evolution and 

renourishment requirements, and sedimentation rates in navigation channels.  

_________________  

This dissertation follows the style and format of Coastal Engineering 
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Additionally, knowledge of the cross-shore distribution of longshore sediment transport 

in the surf zone is necessary in the design and planning of groins, jetties, weirs and 

pipeline landfalls.  Accurate estimates of the longshore sediment transport distribution 

aids in understanding spit development, migration of sediments, natural or artificial, and 

the development of other coastal morphologic features.  

To maintain navigable waterways along the coasts of the United States, engineers 

and scientists routinely apply analytical and numerical models to estimate the total 

longshore sediment transport rate.  Engineers require both the total longshore transport 

rate and the cross-shore distribution of the longshore transport rate for project planning 

and the development of predictive numerical simulation models.  Despite many studies 

that have been performed worldwide to develop accurate estimates for the longshore 

sediment transport rate, this field is still deficient in adequate quantitative predictive 

capabilities.  

 

Description of Processes 

 

It has been generally accepted that, in the surf zone, waves are the primary 

mechanism for mobilizing sediment, and the wave-induced quasi-steady longshore 

current is the primary mechanism for transport of this sediment.  For this research, 

longshore sediment transport generated by wave-driven currents is considered, although 

wind, tide, and other forcing mechanisms also may drive currents that will move 

sediment alongshore.  Almost all longshore sediment transport occurs in the surf zone 
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because of the great intensity of turbulence generated by breaking and broken waves.  

The surf zone can be divided into three zones: the breaker zone, inner surf zone, and 

swash zone.  

The breaker zone is characterized by waves, which have shoaled from offshore, 

becoming unstable, and dissipating their energy through breaking.  Turbulence from 

breaking waves contributes greatly to mobilizing sand, which can be transported by any 

current.  Breaker height is defined as the vertical distance between the wave crest and 

the preceding wave trough at incipient breaking, and it is controlled by wave period, 

water depth, and local bottom slope (Weggel 1972; Smith and Kraus 1991).  In addition, 

the manner in which waves break, i.e., the breaker type, has been found to be controlled 

by wave height, period, water depth, and local beach slope (Galvin 1968; Battjes 1974).  

Numerous laboratory and field studies have found that suspended sediment 

concentration at the breaker line is strongly influenced by breaker type (e.g., Kana 1977; 

Van Rijn 1993).  Four types of breakers have been distinguished largely based on visual 

observations (Patrick and Wiegel 1957; Galvin 1968; Dean and Dalrymple 1991; Komar 

1998); spilling, plunging, surging, and collapsing.  Galvin (1968) defined the following 

terminology; spilling breakers occur if the wave crest becomes unstable and flows down 

the front face of the wave producing a foamy water surface; plunging breakers occur if 

the crest curls over the front face and falls into the base of the wave, resulting in a high 

splash; collapsing breakers occur if the crest remains unbroken while the lower part of 

the front face steepens and then falls, producing an irregular turbulent water surface; 

surging breakers occur if the crest remains unbroken and the front face of the wave 
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advances up the beach with minor breaking.  Spilling and plunging breakers are more 

common at incipient breaking.  Sediment concentrations measured under plunging 

breakers are significantly greater than concentrations measured under spilling breakers 

of similar wave height (Kana 1977; Wang et al. 2002).  Because longshore sediment flux 

is the product of sediment concentration and longshore current velocity, greater 

concentration would result in greater sediment transport given similar longshore current 

velocities. 

Broken waves continue to decay in height through the inner surf zone, and 

turbulence is primarily contained in a surface roller.  Research has shown that wave 

height through the surf zone decays linearly with water depth (Battjes and Janssen 1978; 

Dally et al. 1984).  In the swash zone, waves run up and down the foreshore slope in a 

thin turbulent water layer.  In most predictive models of longshore sediment transport, 

the swash transport contribution is either ignored or merely accounted for as part of the 

total sediment transport budget (Van Wellen et al. 2000).  However, significant swash 

zone transport rates have been observed in the field (Sawaragi and Deguchi 1978; Kraus 

et al. 1982; Bodge and Dean 1987), and swash zone transport can account for up to 50 

percent of the total longshore transport (Elfrink and Baldock 2002).  Little research has 

been conducted on longshore currents in the swash zone because of the difficulty of 

obtaining reliable measurements.  Recent methods have allowed accurate swash zone 

velocity measurements (Puleo et al. 2000), but data are limited.  Swash zone velocity is 

influenced by wave runup, which has been studied historically and is better understood 
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(Ahrens and Titus 1985; Hughes 2004).  Runup is successfully parameterized in terms of 

wave height, period, and foreshore slope.  

Nearshore hydrodynamics of wave breaking, decay through the surf zone, and runup 

are understood and can be modeled reasonably well.  Additionally, models have been 

developed that estimate longshore currents sufficiently (e.g., Kraus and Larson 1991; 

Putrevu and Svendsen 1999; Johnson 2003) for engineering applications.  However, 

methods to predict the longshore sediment transport rate have not been as successful. 

Although breaking waves are responsible both for driving currents and mobilizing sand, 

their effect on hydrodynamics and sediment transport are not the same.  Improved 

understanding of how waves mobilize sand is necessary in the development of predictive 

equations for the cross-shore distribution of the longshore sediment transport rate.  

 

Longshore Transport Data Collection Methods 

 

One of the challenges in predicting the longshore sediment transport rate is the 

difficulty in obtaining accurate data.  Present predictive tools have largely been 

developed based on field studies (e.g. Watts 1953; Komar and Inman 1970; Inman et al. 

1980; Kraus et al. 1982; Bodge and Dean 1987; Dean 1989; Schoonees and Theron 

1993; Wang et al. 1998; Wang 1998).  Fluorescent-dyed sand distributed across the surf 

zone can measure the short-term (order of hours) longshore sand transport rate (Komar 

and Inman 1970), and deployment of as many as four sand tracer colors in distinct 
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regions of the surf zone can reveal information on the cross-shore distribution of the 

longshore sand transport rate (Kraus et al. 1982).   

Total longshore transport in the field often is estimated indirectly by impoundment 

of sand at a jetty, breakwater or groin, or by deposition of sand in an inlet or harbor.  

Measurement accuracy is a function of the coastal structure’s efficiency at trapping the 

sediment, and this method sometimes produces a long-term average by integrating over 

many wave and water level conditions that occur over weeks, months, and years, 

depending on the surveys made (Johnson 1952; Bruno and Gable 1976; Bruno et al. 

1980; Dean et al. 1982).  More recent experiments have focused on short-term 

impoundment methods (Bodge and Dean 1987; Wang and Kraus 1999).  Sand bypassing 

is not accounted for in surveys and dredging records, which may lead to an under 

estimate of longshore transport.  Conversely, deposition may occur from other sources, 

i.e., bi-directional transport, resulting in an overestimate of transport.  

Another method to estimate a local longshore sediment transport in the field is the 

use of Optical Backscatter Sensors (OBS) in conjunction with a current meter 

(Downing et al. 1981).  The instrument records backscattered light, and requires 

calibration to the native sediment to estimate sediment concentration.  The product of the 

concentration and longshore current gives an estimate of longshore sediment transport 

rate.  Concentration estimates from an OBS are made at a point; therefore, several 

OBS’s placed vertically would be required to obtain accurate estimates of transport over 

the entire water column.  Additionally, an OBS measures only suspended sediment 

concentration, i.e., bedload transport is omitted.  Operational concerns with OBS are 
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adequate calibration with the in-situ sediment and changing light conditions between 

direct sunshine and passage of clouds.  

Sand traps of various types have also been deployed across the surf zone to obtain 

instantaneous measurements of the sediment flux in the water column (Kana 1976) or 

integrated flux over several minutes (Kraus 1987; Kraus and Dean 1987; Wang et al. 

1998; Wang 1998).  Manual deployment of traps limits operational wave height to less 

than about 1 m.   

Wave data necessary to correlate with measured impoundments are usually lacking 

or limited in field data collection, and the extremely dynamic and non-repeatable nature 

of the surf zone can introduce considerable uncertainties in field measurements (Wang 

and Kraus 1999).  The non-controllable nature of field conditions increases the 

difficulties of isolating and examining the contributions of, and interactions among, 

individual parameters. 

In contrast to field measurements, laboratory studies are controllable and repeatable, 

allowing contributions of individual parameters to be isolated.  The convenience of 

laboratory instrumentation enables precise measurement of many parameters such as 

wave height, current velocity, sediment concentration, and their spatial and temporal 

distribution patterns.  The main difficulties of laboratory studies have historically been 

their substantially reduced temporal and spatial scales and their unproven capability for 

replicating field conditions.   

Laboratory data have not been broadly incorporated in the calibration of longshore 

sediment transport formulas because typically small scales are involved.  Scaling 
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distortion enters in at least three ways for small scale and even mid-scale lab 

experiments: (1) the flows may only seldom exceed the critical threshold for sediment 

motion, (2) the suspended sediment concentration may not approach that generated 

under large waves and turbulence in the field, including possible saturation of maximum 

possible concentration, and (3) bed load transport may occur more as saltation, rather 

than sheet flow, and form ripples, which rarely appear in the surf zone in the field. 

Despite the shortcomings associated with both field and laboratory data collection, 

each provides value to the understanding of longshore sediment processes.  

Improvements to sediment transport relationships should result from the complimentary 

aspects of both field and laboratory data with an understanding of the limitations of each. 

 

Purpose of Study and Approach 

 

The objective of this research is to develop and verify an improved method to 

determine the cross-shore distribution of the longshore sediment (sand) transport rate 

and its integral quantity – the total longshore sediment transport rate.  It is anticipated 

that if the cross-shore distribution of longshore sediment transport can be reliably 

predicted, the total transport rate can be obtained by integrating the transport rate 

through the cross-shore.  

Based on the findings of Kamphuis (2002), mid-scale laboratory experiments were 

performed to measure the longshore sediment transport and nearshore hydrodynamics in 

a controlled environment.  Mid-scale denotes wave and current conditions that can be 
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found commonly on some coasts in the field, such as the Gulf of Mexico (for example, 

west coast of Florida) and in the Great Lakes.  “Mid-scale” contrasts with much smaller 

wave heights and shorter wave periods normally available in three-dimensional 

laboratory basin facilities.  For example, mid-scale wave height and period might be on 

order of 0.25 m and 3-sec, respectively, as opposed to small-scale laboratory conditions 

on the order of 0.1-m wave height and 1-sec wave period.  Because wave energy is 

proportional to the square of wave height and energy flux to the 5/2 power of wave 

height, more than doubling the wave height capable in mid-scale experiments as 

compared to traditional small-scale laboratory experiments greatly increases mean 

energy and associated turbulence in the surf zone.  

The magnitude of longshore sediment transport can vary significantly by breaker 

type.  Therefore, experiments performed in the present study were designed to include 

spilling and plunging breaker types of similar incident wave energy.  Results of the 

experiments are compared to commonly applied prediction methods, and a new 

approach is developed for calculating the local longshore sand transport rate.  In addition 

to laboratory data, field measurements are incorporated in testing of selected existing 

longshore transport predictors and in development of new transport rate relationships.   
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CHAPTER II 

PRESENT ENGINEERING PREDICTION METHODS 

 

Introduction 

 

Many studies have been conducted to relate the total longshore sediment transport 

rate to wave and current processes for the purpose of developing predictive capability in 

terms of variables that are relatively easy to measure or hindcast.  This chapter reviews 

selected predictive equations for the total load longshore transport rate and cross-shore 

distribution of longshore transport.  Total, or bulk, load transport refers to the total 

amount of sediment transported along the coast in the surf zone.  Distributed transport 

refers to the cross-shore distribution of longshore transport with a varying local rate at 

different locations across the surf zone.   

 

Total Transport Equations 

 

The most widely used model for estimating total longshore sediment transport rate is 

the “CERC” formula (Shore Protection Manual (SPM), 1984).  The original form of the 

equation was derived from laboratory data of Krumbein (1944) and field data of Watts 

(1953) and Caldwell (1956): 

 y yI KP=  (2-1) 
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where Iy is the immersed weight transport rate (force/time), K is a dimensional 

coefficient, and 

 sin cosy gP EC θ θ=  (2-2) 

in which θ is the angle between the wave crest and shoreline, E is the average wave 

energy per unit surface area and Cg is the wave group celerity.  Average wave energy per 

unit surface area is defined as 

 
8

2gHE ρ
=  (2-3) 

where ρ is fluid density, g is acceleration due to gravity, and H is a statistical wave 

height.  Wave group celerity is the velocity at which waves carry energy, which is 

related to the wave celerity, the velocity of an individual wave, by 

 nCCg =  (2-4) 

in which C is the wave celerity, defined as the ratio of wavelength, L, to wave period, T, 

and n is given as  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

)2sinh(
21

2
1

kh
khn  (2-5) 

where h is water depth and k is the wave number defined as 

 
L

k π2
=  (2-6) 

In linear wave theory, wavelength is given by  

 
L

hgTL π
π

2tanh
2

2

=  (2-7) 
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In shallow water, such as in the surf zone, n =1; therefore, Equations 2-4 and 2-7 result 

in 

 ghCCg ==  (2-8) 

Longshore sediment transport is normally calculated using the wave height at the 

wave breakpoint, and Equation 2-1 can be re-written in the form 

 
3 5
2 2 sin(2 )

16
= by b

b

KI g Hρ θ
γ

 (2-9) 

in which the subscript b indicates quantities evaluated at breaking, γb is the breaker index 

(the ratio of breaking wave height, Hb to water depth at breaking, hb, typically taken to 

have the value γb = 0.78), and K is a dimensionless coefficient.  Equation 2-9 is known 

as the CERC formula in engineering applications.  The CERC formula can be expressed 

as a volumetric rate: 

 
( ) '

y
y

s

I
Q

gaρ ρ
=

−
 (2-10) 

where ρs is the density of sediment, and a’ is the ratio of volume of solids to total 

volume.  

The coefficient K was originally determined to be 0.42 using the root-mean-square 

wave height, Hrms, in Equation 2-9 (USACE 1966).  Data analyzed for the calibration 

included the aforementioned data of Krumbein (1944), Watts (1953) and Caldwell 

(1956), and additional laboratory data of Saville (1950), Shay and Johnson (1951), 

Sauvage de Saint Marc and Vincent (1954), and Savage (1962).  A subsequent 

calibration excluded all laboratory data and was performed with the field data of Watts 
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(1953) and Caldwell (1956) and additional field data of Komar and Inman (1970).  The 

re-calibration gave K = 0.77, also based on Hrmsb, and is presently the recommended 

value of the Shore Protection Manual (SPM) (1984) and Coastal Engineering Manual 

(CEM) (2002).  The SPM recommends a K-value of 0.39 if significant breaker height, 

Hsb, is used in Equation 2-9.  

Although recommended K-values are provided in the SPM and CEM, Equation 2-9 

is best applied if the coefficient is calibrated using historical data for a particular site.  

For design applications with adequate field measurements, the CERC formula can be 

applied to estimate total longshore sediment transport rates with reasonable confidence 

(±50 percent).  However, many sites do not have historical data available to calibrate K, 

and the CERC formula provides only order-of-magnitude accuracy. 

One shortcoming of the CERC formula is that it has no dependence on wave period. 

Miller (1999) measured longshore transport rates during storms, and compared the 

measured rates to CERC formula predictions.  Miller found the CERC formula 

sometimes over and sometimes under predicted longshore transport rate.  Miller suggests 

that additional terms are required for an accurate prediction of longshore sediment 

transport rates for storm conditions.  As part of the present study, Wang et al. (2002) 

examined laboratory transport rates of waves having similar wave heights, but differing 

breaker types.  The difference in transport rate between spilling and plunging waves was 

nearly a factor of three.  The CERC formula over-predicted both cases – by 700 percent 

for spilling waves, and by 250 percent for plunging waves.  They also stated that the 

total rate of longshore sediment transport based solely on longshore wave-energy flux 
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might not be complete.  Other shortcomings of the CERC formula are that it has no 

grain-size dependence and gives only the bulk transport rate.  It should be thought of as 

pertaining to typical sand grain sizes in the approximate range of 0.2 to 0.4 mm.  On the 

other hand, the CERC formula requires a minimum amount of data – namely wave 

height and wave direction, and so it is convenient for engineering studies. 

Inman and Bagnold (1963) gave an alternative to the CERC formula based on the 

energetics approach presented by Bagnold (1963), which is discussed in the Distributed 

Transport Equations section.  Inman and Bagnold related the longshore sediment 

transport rate to the longshore current: 

 cos'( )y g b l
mb

I K EC V
u
θ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (2-11) 

where K’ is a dimensionless coefficient, Vl is the mean longshore current velocity near 

the mid-surf position, and umb is the maximum horizontal orbital velocity of the waves 

evaluated at the breaker zone.  Komar and Inman (1970) determined K’ = 0.28 from sand 

tracer experiments.  Later, Kraus et al. (1982) performed sand tracer experiments and 

determined a value K’ = 0.21. 

Equation 2-11 can be simplified by assuming shallow-water conditions.  The root-

mean-square horizontal wave orbital velocity from linear theory is 

 ( ) ( )cosh
cos

2 sinh
rms

rms

k h zHu kx t
kh

σ σ
+

= −  (2-12) 

where z is elevation from the free water surface (positive upward), x is cross-shore 

position, and σ is the angular frequency: 
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T
πσ 2

=  (2-13) 

The maximum values of urms occur under the crest and trough at phase positions 

(kx-σt) = 0, π, etc.  At breaking, and using the shallow water assumption, maximum 

horizontal orbital velocity becomes 

 1 1
2 2

b
mb b b gb

b

Hu gh C
h

γ= =  (2-14) 

Breaker index is a function of incident wave height, wave period, and beach slope 

(Weggel 1972, Smith and Kraus 1991, Rattanapitikon and Shibayama 2000); however it 

often is assumed as either unity or the theoretical value of a solitary wave on a horizontal 

bottom, γb = 0.78 (McCowan 1891).  Assuming the waves are Rayleigh-distributed, 

significant wave height, Hs is related to Hrms by 

 rmss HH 2=  (2-15) 

Therefore, substituting Equations 2-14 and 2-15 into Equation 11 results in  

 20.026y sb lI gH Vρ=  (2-16) 

if K’ = 0.21  

Based on their laboratory study, Kamphuis and Readshaw (1978) found that the 

accuracy of the recommended CERC formula K-value depended on breaker type.  

Kamphuis and Readshaw used the Iribarren number (commonly known as the surf 

similarity parameter) to determine breaker type.  The Iribarren number is given as: 

 

o

sb
b

L
H
m

=ξ  (2-17) 
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where ξb is the Iribarren number at wave breaking, m is beach slope, and Lo is deepwater 

wavelength.  Kamphuis and Readshaw found that: 

 0.7 bK ξ=  (2-18) 

Battjes (1974) reanalyzed the work of Galvin (1968) and determined that spilling 

breakers occurred for ξb < 0.4 and plunging breakers occurred for 0.4 < ξb < 2.0.  

According to Equation 2-18, K = 0.39 would only be valid for Iribarren numbers 

associated with plunging breakers, and K-values for spilling breakers would be less.  

Bailard and Inman (1981) and Bailard (1984) developed an energy-based model that 

determines the CERC K as a function of breaker angle and the ratio of wave orbital 

velocity magnitude to sediment fall speed, and based on Hrmsb.  The model of Bailard 

(1984) was calibrated using field and laboratory data and is similar to a relationship 

developed based on limited laboratory data by Walton (1979) and Walton and Chiu 

(1979).  The Bailard equation is given as: 

 ( )
f

mb
b w

u
K 007.02sin6.205.0 2 ++= θ  (2-19) 

where wf is the fall speed of the sediment.  The relationship was developed based on 

sand fall speeds ranging between 0.025 and 0.205 m/s, breaker angles ranging between 

0.2 and 15 deg, and umb ranging between 0.33 and 2.83 m/s.  

Ozhan (1982) performed a laboratory study and found that the CERC formula K was 

a function of wave steepness (ratio of wave height and wavelength) in deep water: 

 
'
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o
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≅
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (2-20) 
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where '
oH  is the unrefracted deepwater wave height.  Ozhan’s findings support the 

observations of Saville (1950).  Saville found that for waves of identical energy levels, 

greater longshore transport rates occurred in his laboratory experiments for lower 

steepness waves (longer periods).   

Kamphuis et al. (1986) developed an empirical formula from field data similar to 

that used to develop the CERC formula.  In addition to breaker height and angle, the 

Kamphuis et al. equation included beach slope and sediment grain size.  The equation 

for SI units and saltwater yields longshore transport in kg/s and is given as: 

 
3.5

50

1.28 sin(2 )b
sb

y
H mQ

d
θ=  (2-21) 

where d50 is median sediment grain size expressed in meters.  

After reanalysis of existing field data and collection of data from a comprehensive 

series of small-scale laboratory experiments, Kamphuis (1991) modified the 1986 

equation by including wave period.  The modified equation for SI units and saltwater 

becomes: 

 2 1.5 0.75 0.25 0.6
502.27 sin (2 )y sb p bQ H T m d θ−=   (2-22) 

where Tp is wave period and d50 is again expressed in meters and Qy in kg/s.  Wave 

height in the Kamphuis (1991) laboratory tests ranged from Hs = 0.05 to 0.14 m.  The 

smallest waves encountered in field measurements are much higher than the highest 

waves in the laboratory measurements, and the applicability of the predictive relations to 

field conditions has been questioned.  Wang et al. (1998) found that the Kamphuis 

(1991) formula predicted consistently lower total longshore transport rates than those 
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predicted by the CERC formula.  Also, Miller (1998) found that the Kamphuis model 

gave predictions an order of magnitude lower than the CERC formula for storm 

conditions with breaker height of nearly 4 m. 

However, Schoones and Theron (1996) ranked 52 longshore transport equations 

according to predictive performance against a large data assemblage and found the most 

accurate to be the Kamphuis (1991) formula.  Schoones and Theron also recalibrated the 

equation with the following guidance for its use: 

 2 1.5 0.75 0.25 0.6
503.51 sin (2 )y sb p bQ H T m d θ−=   (2-23) 

if Hsb normally exceeds 0.3 m and d50 < 1 mm.  If a site has calm wave conditions or has 

coarse sediment, the following equation was recommended: 

 2 1.5 0.75 0.25 0.6
502.77 sin (2 )y sb p bQ H T m d θ−=   (2-24) 

Kraus et al. (1988) assumed that the total rate of longshore sediment transport in the 

surf zone is proportional to the longshore discharge of water: 

 )( cd RRKQ −∝  (2-25) 

where Kd is an empirical coefficient that may relate to sediment suspension, Rc a 

threshold value for significant longshore sand transport, and R a discharge parameter is 

proportional to the average discharge of water moving alongshore: 

 l b sbR V X H=  (2-26) 

in which Xb is surf zone width and Vl is the mean longshore current velocity in the surf 

zone.  Based on their field data collected using streamer sediment traps at Duck, North 

Carolina, Kraus et al. (1988) suggested Kd = 2.7 and Rc = 3.9 m3/s. 
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del Valle et al. (1993) developed an empirically based relationship for K, which also 

shows decreasing values of K with larger grain sizes.  The equation was based on data 

presented by Komar (1988) and data obtained from the Adra River Delta, Spain.  The 

equation, applied with Hrmsb is given as: 

 ( )505.24.1 deK −=  (2-27) 

in which d50 is expressed in mm.  The relationship is based on limited data and is 

strongly dependent on the relatively larger median sand grain sizes from the Adra River 

Delta, (d50 = 0.44 to 1.5 mm). 

Madsen et al. (2003) presented an order of magnitude equation to compute total load 

longshore sediment transport.  The equation was based on physically realistic, but 

simple, numerical models of surf zone hydrodynamic and sediment transport processes.  

Madsen et al. derived expressions for these processes, which resulted in the equation: 
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 (2-28) 

where KB and KS are constants of proportionality for bed load and suspended load 

transport, respectively.  Using representative values for various coefficients, Madsen et 

al. found KB = 0.16 and KS = 0.08 (N/s)-1/2 for a quartz sand of d50 = 0.18 mm.  The 

equation agreed well to laboratory and field data.  Madsen et al. stated that it appears 

justified to accept with confidence the qualitative features of the formula, but it is 

premature to accept the quantitative validity of the equation based on comparison to the 

single sediment grain size.  It is interesting to note that the suspended transport term is 
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raised to the 3/2-power, which indicates that suspended load transport becomes 

increasingly important during storm conditions. 

 

Distributed Transport Equations 

 

Several models, with varying degrees of complexity, have been developed to predict 

the cross-shore distribution of longshore transport.  Bodge (1989) noted that the majority 

of existing models shared a central concept of a mechanism that mobilizes sediment and 

a longshore current that transports the sediment. The models generally fall into one of 

two categories; “energetics” models, which assume the mobilizing mechanism is a 

function of wave energy dissipation, and “stress” models, in which shear stress exerted 

on the bottom by waves and currents mobilize sediment.  This section provides a 

summary of pertinent cross-shore distribution of longshore transport studies. 

Bagnold (1963) proposed that wave orbital motion mobilizes beach sand and 

expended wave power maintains sand in motion, while a mean longshore current 

transports the sand. Bagnold suggested a suspended and bedload model written as: 

 ( )y B g
o

d Vi k EC
dx u

=  (2-29) 

where iy is the local immersed weight sediment transport rate per unit offshore length, kB 

is a dimensionless constant, uo is the near-bottom wave orbital velocity, V is the mean 

local longshore current, and the x-axis is directed offshore. 

Bijker (1967) was among the first investigators to develop a longshore transport 

model based upon river-borne sediment transport studies.  This formula is significant in 
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the literature because it is the first to consider micro-scale processes, such as the shear 

stress exerted by waves, and the combined wave and current shear stress, in a practical 

coastal engineering formula.  Bijker modified the Kalinske-Frijlink formula (Frijlink 

1952) to compute a bedload component, which was combined with a suspended load 

component calculated using the method of Einstein (1950).  Volumetric bed load 

transport, qyb in units of m3/s/m, is calculated from: 
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where A is an empirical coefficient (1.0 for non-breaking waves, and 5.0 for breaking 

waves), C the Chezy coefficient based on d50, μ a ripple factor, and τb,wc the bottom 

shear stress due to waves and currents.  The first part of the expression represents a 

transport parameter, and the exponent is a stirring parameter.  The influence of the form 

of the bottom roughness on bed load transport is indicated in the ripple factor defined as: 
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 (2-31) 

where C90 is the Chezy coefficient based on d90, which is the sediment particle diameter 

exceeded by 10 percent of the distribution by weight.  The combined shear stress at the 

bed induced by waves and currents is: 
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in which τb,c is the bed shear stress de to current only, and the coefficient ξ is defined as: 
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wfC
g

ξ =  (2-33) 

where fw is the wave friction factor (Jonsson 1966). 

Bijker (1967) assumed that the bedload transport occurred in a bottom layer having a 

thickness equal to the bottom roughness, r.  The concentration of material in the bed load 

layer, cb was assumed to be constant over the thickness and was defined as: 
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The concentration distribution for the suspended load is obtained by: 
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where z is elevation, wf the sediment fall speed, and κ the von Karman constant.  The 

total volumetric suspended sediment load, qys, is determined by integrating vertically 

from the reference height to the water surface: 

 1 2
331.83 lnys yb

hq q I I
r

⎡ ⎤⎛ ⎞= +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (2-36) 

where I1 and I2 are Einstein integrals.  The total local volumetric sediment transport rate, 

qy, is computed by: 

 y yb ysq q q= +  (2-37) 

Komar (1971, 1975, 1977) determined that local longshore transport is related to the 

product of breaking wave related stress and longshore current.  The model, often called a 

stress model, is given is: 
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k fi g hVπ ρ κ=  (2-38) 

where k1 is a proportionality constant, and fb is a bed drag coefficient for wave motions. 

For the case where the stress exerted on the bed by the longshore current also contributes 

as a sediment mobilizing factor, Komar gave: 

 2 2
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b
y f

gfi k V C V hρρ κ⎛ ⎞= +⎜ ⎟
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 (2-39) 

in which k2 is a proportionality constant, and Cf is a frictional drag coefficient for 

longshore current. 

Madsen (1978) developed a distributed longshore transport model based on an 

experimentally verified expression for sediment transport under oscillatory flow after 

Brown (1950), Einstein (1972), and Madsen and Grant (1976): 

 3( ) 40 ( )t tφ ψ=
r r  (2-40) 

where ( )tφ
r

is the non-dimensional transport function and ( )tψr is the Shields parameter 

and the over arrow denotes a vector quality. The terms are defined as: 
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where ( )q tr is the instantaneous volumetric sediment transport rate per unit width, d is the 

grain size, and ( )b tτr is the instantaneous bottom shear stress given by: 
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r rr r r  (2-43) 

where wur is the unsteady velocity associated with waves, and V
r

is the steady velocity 

associated with longshore current, Cf,wc is a bed friction factor due to combined waves 

and currents.  Using linear shallow water wave theory and time averaging in the 

longshore direction, Madsen found the local volumetric longshore transport rates as: 
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 (2-44) 

Walton and Chiu (1979) gave the following expression for calculated distributed 

longshore sediment transport: 

 ( )y w lq K P X x=  (2-45) 

where Kw is a dimensionless constant, and Pl is calculated from Equation 2-2.  The 

variable X(x) is a local modifying function specifying the bedload and suspended load 

components of transport independently as functions of the longshore current and water 

depth; however, selection of the separate bedload and suspended load components is not 

straightforward.  

Bailard and Inman (1981) extended the Bagnold (1963) equation to oscillatory flow 

combined with a steady current over a plane-sloping bottom.  The instantaneous bed 

load transport rate vector, ( )bq tr , is expressed as: 
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and the instantaneous suspended load transport rate vector, ( )sq tr , is given as: 
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in which tanβ is the local bottom slope, tanγ is a dynamic friction factor, '
tU is the 

instantaneous velocity vector near the bed for combined waves and currents, iβ is a unit 

vector in the direction of the bed slope, and eb and es are efficiency factors.  The total 

transport rate and direction containing the contributions of both the wave and current 

related contributions can be obtained by averaging Equations 2-46 and 2-47 over a wave 

period. 

Assuming that a weak longshore current prevails and neglecting effects of the slope 

term on the total transport rate for near-normal incident waves, Bailard (1984) found that 

the local time-averaged longshore transport rate of Bailard and Inman (1981) can be 

written as: 
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where: 
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Bailard (1984) calibrated the efficiency factors eb and es with laboratory and field data 

and found that eb = 0.13 and es = 0.032.  However, values of eb = 0.1 and es = 0.02 are 

typically used, but other work has suggested that the efficiency factors are related to bed 

shear stress and grain size diameter.  The typical value used for tanγ is 0.63. 

Bodge and Dean (1987) examined forms of energetics and stress models and 

developed several alternative models based on laboratory experiments and short-term 

impoundment of sand under moderate wave conditions in the field.  The recommended 

equation from their study, which predicts longshore transport based on wave energy 

dissipation and is valid only inside the surf zone where wave energy is expected to 

dissipate, is given as: 
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 (2-51) 

kq is a dimensional constant equal to 0.057 for laboratory data and 0.48 s for field data, 

and r is a dimensionless constant  between 0 and 0.5.  An r-value of 0.5 gave the best 

agreement with their data; however, Bodge (1989) stated that scaling effects in the 

Bodge and Dean movable-bed laboratory experiments may have exaggerated the 

apparent relationship between local transport and bottom slope, and that r probably 

should equal 0.  For r = 0, Equation 2-51 becomes:  
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Miller (1998) used this form of the equation in a comparison of predictive models to 

field data.  Miller found that the equation modeled the cross-shore sediment flux 

distribution reasonably well; however, the model overpredicted the magnitude.  

Reducing kq by a factor of four improved the agreement with sediment transport 

measurements in storms.  As part of the present research, Smith and Wang (2001) found 

that cross-shore locations having high wave energy dissipation did not necessarily 

produce increased transport rates with spilling breakers.  They suggested that the 

influence of breaker type should be included in predictions of cross-shore distribution of 

longshore sediment transport.  

Bodge (1989) reviewed several distribution models of longshore transport including 

the above-cited models.  He found that models that do not include bottom stress due to 

the longshore current or non-breaking wave orbital motion exhibit discontinuities in 

transport at the breaker line, with no transport seaward of breaking.  Most of the models 

did not predict transport landward of the shoreline where considerable transport has been 

observed, for example, by Saville (1950), Sawaragi and Deguchi (1978), Kraus et al. 

(1982), and Bodge and Dean (1987).  Bodge (1989) stated that the Madsen (1976) and 

Komar (1971, 1975, 1977) models could predict longshore transport landward of the 

shoreline, but the method was not straightforward.  With inclusion of wave-induced set-

up, the Bodge and Dean (1987) model predicted transport landward of the shoreline. 

Watanabe (1992) proposed an equation to calculate longshore sediment transport as 

combined bed and suspended load of the form: 
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where τcr is the critical shear stress for inception of sediment motion and A is an 

empirical coefficient, which is approximately 0.5 for monochromatic waves and 2.0 for 

irregular waves.  The difference in shear stresses represents a stirring function, and the 

velocity term represents a transport function.  This formula has received wide-spread 

application for its simplicity, while incorporating several physical factors.  However, 

breaker type is not represented, nor is turbulence in the surf zone. 

Van Rijn (1993) presented comprehensive formulas for calculating bed load and 

suspended load.  A synopsis of his work is presented here.  Van Rijn used the approach 

of Bagnold (1963) and assumed that sediment particles saltating under the influence of 

hydrodynamic fluid forces and gravity forces dominate motion of bed load particles.  

Saltation characteristics were determined by solving the equation of motion for an 

individual sediment particle.  Bed load was defined as the product of particle 

concentration in the bed, cb, the particle velocity, ub, and layer thickness, δb: 

 b b b bq c u δ=  (2-54) 

where cb is defined as: 
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in which T is the excess bed shear stress parameter: 
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where *D  is the dimensionless grain diameter defined as: 
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where ν is the kinematic viscosity of the fluid.  Combining these relationships into 

Equation 2-54 along with other relationships defined by Van Rijn (1993) results in: 
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where 

 1 sH
h

γ = −  (2-59) 

Van Rijn (1993) defined the depth-integrated suspended load transport in the 

presence of current and waves as the integration of the product of velocity, v, and 

concentration, c, from the edge of the bed-load layer, a, to the water surface: 
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Substituting the longshore current into the equation and integrating gives: 
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where V is the mean longshore current, and: 

 
1.5

50
0.3
*

0.015a
d Tc
a D

=  (2-62) 

 



 30

 ( )
'

'0.5 1
4 0.5*

0.5

ln ln
Z Z

zZ h

a o o
h

V a h z z z z zF d e d
V h a z z h z hκ

− −
⎛ ⎞⎛ ⎞ ⎛ ⎞−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
∫ ∫  (2-63) 

where 
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in which Z is a suspension parameter reflecting the ratio of downward gravity forces and 

upward fluid forces acting on a suspended sediment particle in a current, ψ is a 

correction factor representing damping and reduction in particle fall speed due to 

turbulence, and β is a coefficient quantifying the influence of the centrifugal forces on 

suspended particles. 

Van Rijn (1993) calculated the concentration distribution in three separate layers; 

from the reference level, a, to the end of a near bed mixing layer of thickness, δs, from 

the top of the δs-layer to the lower half of the water depth, h/2, and from h/2 to h.  

Different exponential or power functions are employed in these regions with empirical 

expressions depending on mixing characteristics in each layer. 
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Although the model is complex, Van Rijn (1993) incorporated the equations into a 

computer program.  The program is simple to use, but requires hydrodynamic, bedform, 

and grain size information at each cross-shore location. 

Although not expressed as a simple formula or group of formulas as in the preceding, 

a recent calculation procedure is that of Tajima and Madsen (2005), who developed a 

process-based theoretical model to predict nearshore hydrodynamics and local sediment 

transport rates applicable for long, straight beaches.  The model consists of two 

computer programs that run sequentially; a hydrodynamic model and a sediment 

transport model.  The hydrodynamic model calculates forcing functions required to drive 

the longshore sediment transport model at each specified cross-shore location.  In 

addition to calculating transport rates in the cross shore, the sediment transport model 

includes bedload and suspended load modules, and it can predict the vertical sediment 

concentration.  The model does not include adjustable calibration coefficients.  

 

Summary 

 

Total Load Models 

Several approaches have been attempted to estimate the total load of longshore 

sediment transport, but most of the methods are a form of the CERC formula, which is 

based on energy flux at wave breaking.  A reason for the widespread use of the CERC 

formula is that it is simple to apply, as the equation requires only two quantities typically 

available to engineering studies, Hb, and θb.  If the CERC coefficient K is calibrated to 
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historical data, total longshore sediment transport rate can be estimated with reasonable 

confidence.  However, if it is not calibrated the equation provides only an order of 

magnitude accuracy.  Researchers have developed methods to estimate K by 

incorporating fall speed (Bailard 1981, 1984), wave steepness (Ozhan 1982), and grain 

size (del Valle et al. 1993).  These methods are still relatively easy to use, but require 

additional data to apply.  Inman and Bagnold (1963) kept the basic form of the CERC 

formula, but included maximum horizontal orbital velocity and the mean longshore 

current.  The Inman and Bagnold equation can be reduced to two terms, breaker height 

and longshore current, if shallow water conditions are assumed. 

A criticism of the CERC formula includes omission of wave period, beach slope, and 

grain size, which are variables that contribute to sediment transport.  Kamphuis (1991) 

included these additional terms and developed an empirical equation through analysis of 

laboratory data and limited field data.  The Kamphuis equation has had mixed results 

when applied to the field.  Wang et al. (1998) found that it consistently predicted lower 

estimates than the CERC formula and Miller (1999) found the equation underestimated 

measurements by an order of magnitude for storm conditions.  However, Schoones and 

Theron (1996) found the Kamphuis equation to be the most accurate of 52 equations 

ranked.   

Kraus et al. (1988) related longshore transport to average discharge of water moving 

alongshore.  The equation requires only three terms, breaker height, longshore current, 

and surf zone width.  Additionally, of the total load models discussed, the Kraus et al. 

equation is the only one that explicitly includes a threshold of motion term. 
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Madsen et al. (2003) developed an equation based on energy flux and includes terms 

for bed load transport and suspended load transport.  The equation was simplified from 

complex equations by scaling physical processes and choosing reasonable values for 

different coefficients.  The model does not include a threshold of motion term, but the 

model assumes that the bed shear stress must exceed a critical shear for transport to 

occur.  The equation is simple to apply, requiring the same information as the CERC 

formula; however, it has not been fully calibrated to a wide range of conditions. 

   

Distributed Load Models 

The majority of distributed longshore sediment transport models are energetics 

models or stress models.  Energetics models assume that sediment is mobilized by 

dissipation of waves, which is related to turbulence.  Stress models assume that 

mobilization of sediment is caused by a wave- and current-induced shear stress acting on 

the bottom.  

Although range in complexity varies with both methods, the energetics models are 

generally simpler to apply.  For example, the models of Bagnold (1963) and Bodge and 

Dean (1987) are straightforward and consist of a few basic engineering terms.  

Conversely, the basic equation of Walton and Chiu (1979) has a simple appearance; 

however, the equation contains a local modifying function that is more difficult to 

determine.  None of the energetics models discussed includes a threshold of motion term 

explicitly and none distinguished dissipation by breaker type. 
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The stress models of Komar (1971, 1975, 1977) and Watanabe (1992) rely on 

averaged terms and estimates can be calculated with basic data; however, the Watanabe 

equation includes a critical shear term for inception of sediment motion, whereas the 

Komar equation does not.  The Madsen (1978) model does not include a term for critical 

shear stress, but is dependent on fall velocity and grain size, which implies that 

longshore transport decreases with increasing grain size.  The models of Bijker (1967), 

Bailard and Inman (1981), Van Rijn (1993) and Tajima and Madsen (2005) include 

more physical processes, hence more terms, and are more complex and difficult to apply.  

Only the Van Rijn model and Tajima and Madsen model include critical shear stress. 
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CHAPTER III 

DESCRIPTION OF THE LABORATORY FACILITY 

 

Introduction 

 

Physical model experiments were conducted in the Large-Scale Sediment Transport 

Facility (LSTF) (Figure 3-1).  The U.S. Army Engineer Research and Development 

Center constructed the LSTF in an effort to overcome the limitations of small-scale 

facilities and to bridge the gap between field and previous laboratory measurements.  

The intent for the facility is to reproduce certain surf zone processes found on a long 

straight natural beach in a finite-length wave basin.  The LSTF simulates nearshore 

hydrodynamic and sediment transport processes at a relatively large geometric scale, 

including situations where considerable sand is mobilized and transported in suspension. 

The LSTF is specifically designed for studies on longshore sediment transport (Fowler 

et al. 1995).  The facility has the capability of simulating wave height and period that are 

almost directly comparable to annual averages along many low-wave energy coasts, for 

example, a majority of estuary beaches (Nordstrom, 1992), and many beaches along the 

Gulf of Mexico and the Great Lakes in the U.S.  Detailed design considerations, 

capabilities, and initial testing of the LSTF are described in Hamilton et al. (2001).  This 

section describes the facility, instrumentation and laboratory procedures. 
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Figure 3-1. Photograph of the Large-Scale Sediment Transport Facility (LSTF) 

 

LSTF Features 

 

The LSTF consists of a 30-m wide, 50-m long, 1.4-m deep basin (Figure 3-2), and 

includes wave generators, a sand beach, a recirculation system, sand traps, and an 

instrumentation bridge.  The origin for the LSTF coordinate system is the corner of the 

two basin walls shown in the lower right of Figure 3-2.  Hence, positive “X” is offshore 

and positive “Y” is to the left.  Although the longshore current produced in the facility is 

typically in the negative direction, it is presented as positive for simplicity.  Common 

alongshore measurement transects (Y14 to Y38) also are shown in the figure to provide  
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Figure 3-2. Layout of LSTF 

 

a perspective of sampling locations with respect to the basin.  The transect name 

indicates its location based on its distance in meters from the origin. 

 

Wave Makers 

The LSTF is equipped with four wave generators operated simultaneously 

(Figure 3-3).  Each generator has a board length of 7.62 m and is synchronized with the 

other generators to produce 30.5-m unidirectional long-crested waves.  A digitally 

controlled drive servo electric system controls the position of the piston-type wave board 

and produces waves with the periodic motion of the board.  The system allows a variety 

of regular and irregular wave types to be produced.  The generators can be positioned to  
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Figure 3-3. LSTF wave generators 

produce waves from 0 to 20 deg from shore normal, and they were positioned at 10 deg 

from shore normal for the present experiment.  A TMA shallow-water wave spectrum 

(Bouws, et al. 1985) was used to define the spectral shape for all wave conditions in the 

present study. 

 

Model Beach 

The sand beach consists of approximately 150 m3 of fine quartz sand having a mean 

grain diameter, d50, of 0.15 mm with a narrow distribution (Figure 3-4).  The sand beach 

was constructed on top of a concrete fixed-bed having a slope of 1:30 over the main 

section of the beach and a 1:18 slope at the toe, which slopes down to the basin floor.   



 39

Figure 3-4. Grain size distribution of LSTF sand 

 

The lateral boundaries of the beach were bounded by stacked 19.5-cm long by 9-cm 

wide mortar bricks having heights ranging from 1.4 to 5.6 cm.  The use of bricks of 

varying height allowed flexibility in constructing the boundaries similar to the average 

beach profile.  Additionally, because of their density, they are less likely to be displaced 

under waves and currents than other materials.  Maintaining brick elevations at the 

downdrift boundary to match the average beach profile was found to be important.  

Lower brick elevations in relation to the beach may induce sand to enter the traps and 

cause an overestimate of sediment transport.  Conversely, if the brick elevation is higher 

than the beach elevation, the bricks act as a barrier and transport into the traps is 

restricted and results in underestimation of sediment transport.  Additionally, excess or 

deficient sand near the downdrift boundary alters the local profile and uniformity of 
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longshore currents. For these reasons, the downdrift boundary was observed carefully 

during each experiment and, if necessary, bricks were removed or installed so that the 

boundary profile matched the average beach profile. 

The goal was to obtain an accurate rate of longshore sediment transport and its cross-

shore distribution with minimal longshore variation and boundary influences.  To 

achieve this goal, it was necessary to maintain straight and parallel contours throughout 

the model to maximize the length of beach over which longshore uniformity of waves 

and currents exist in the basin.  Beaches having “three-dimensionality” affect incident 

waves and the longshore currents and sediment transport associated with the waves. 

 

Recirculation System 

The model beach is of finite length and bounded at the upstream and downstream 

ends. To minimize adverse laboratory effects created by the boundaries and to produce 

uniform longshore currents across the beach, wave-driven currents are supplemented by 

an external recirculation system discussed by Hamilton, et al 2001, Hamilton and 

Ebersole 2001, and Visser 1991.  The recirculation system consisted of 20 independent 

vertical turbine pumps placed in the cross-shore direction at the downdrift boundary 

(Figure 3-5).  Flow channels placed upstream of each pump are used to direct flow to the 

pump, which externally re-circulates water to the upstream end of the facility where it is 

discharged through flow channels onto the beach.  The objective of this system is to 

maximize the length of beach over which waves and wave-driven longshore currents are  
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Figure 3-5. Recirculation pumps 

 

uniform by continually re-circulating currents of the same magnitude as the wave-driven 

longshore current through the lateral boundaries of the facility. Each pump includes a 

variable speed motor to control discharge rates.  The variable speed motors are 

controlled remotely to produce a cross-shore distribution of longshore current. 

Without the external circulation system, the longshore current would be forced to 

circulate within the test basin, which would influence the measurement accuracy, and 

potentially negate the experiment.  Visser (1991) found that if the pumped currents 
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either exceed or were less than the wave-driven currents, an undesired internal current 

would develop and recirculate within the offshore portion of the basin. Visser also found 

that as pumped currents approached the “proper” wave-driven current distribution, the 

internally recirculated current was minimized. Hamilton and Ebersole (2001) found the 

criterion proposed by Visser to be valid for the LSTF, and it was used in part to 

determine the distribution of pumped longshore currents.  

 

Instrumentation Bridge 

The facility includes a 21-m instrumentation bridge (Figure 3-6) that spans the entire 

cross-shore length of the beach.  The bridge serves as a rigid platform to mount 

instruments and observe experiments. Each end of the bridge is independently driven on 

support rails by drive motors, which allows it to travel the entire alongshore length of the 

wave basin. 

 

Instrumentation 

 
Wave Gauges 

Time series of water surface elevations were measured using single-wire 

capacitance-type wave gauges.  Ten gauges mounted on the instrumentation bridge 

provided wave height measurements as the waves transformed from offshore to 

nearshore (Figure 3-7).  The cross-shore location of the gauges can be repositioned on 

the bridge; however, the cross-shore locations remained the same for this study.  In  
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Figure 3-6. Instrumentation bridge 

 

addition to the bridge-mounted gauges, a gauge was placed in front of each wave 

generator to measure offshore wave characteristics.  The locations are given in 

Table 3-1, as are cross-shore locations of the acoustic Doppler velocimeters (ADVs) 

used to measure wave orbital velocities and currents (discussed in the following section). 

 



 44

Figure 3-7. Wave gauges, ADVS, and FOBS 

 

Calibration of the wave gauges was performed at least twice during an experiment 

series; at the beginning of the experiment series, and after the iteration phase (defined 

below) of an experiment was completed.  Additionally, the gauges were calibrated if the 

ambient temperature during the course of the experiment changed significantly from the 

ambient temperature during the calibration.  

Wave gauge calibration was performed in the flow channels of the recirculation 

system.  The flow channels provided sufficient depth to perform the calibration, which 

the sloping sand beach did not.  The procedure involved raising or removing all  
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Table 3-1.  Cross-shore sampling locations of wave gauges and ADVs 
  Cross-shore 
  Location 

Wave Gauge 

ADV 

(m) 
1 1 4.13 
2 2 5.73 
3 3 7.13 
4 4 8.73 
5 5 10.13 
6 6 11.53 
7 7 13.13 
8 8 14.63 
9 9 16.13 

10 10 18.60 
12* - 21.43 (Y = 21.0 m) 
13* - 21.43 (Y = 24.5 m) 
14* - 21.43 (Y = 32.0 m) 
15* - 21.43 (Y = 39.5 m) 

    * During Test 1, cross-shore location of wave gauges 12 through 15 was 18.0 m 
 

 

instruments from the bridge to allow the bridge to clear the flow channels, positioning 

the bridge over the flow channels, and re-mounting the wave gauges.  After re-attaching 

the gauges, the middle of each rod was positioned at the still-water level. Calibration 

was computer-controlled and involved raising and lowering each rod to 11 known 

elevations at which voltages were recorded.  A least-square fit of measurements using 21 

voltage samples per gauge minimized the errors of slack in the gear drives and hysteresis 

in the sensors.  Typical calibration errors were less than one percent of full scale for the 

capacitance wave gauges.   
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Acoustic Doppler Velocimeters 

Ten acoustic Doppler velocimeters (ADVs) were deployed to measure orbital wave 

velocities and unidirectional longshore current (Kraus et al. 1994).  The ADVs were 

positioned at the same cross-shore position on the bridge with the wave gauges 

(Table 3-1), but separated by approximately 40 cm in the longshore direction to prevent 

electrical interference between the two instrument types (Figure 3-7).  As with the wave 

gauges, the ADV cross-shore location can be repositioned on the bridge, but were 

located in the same position for the experiments in this study.  The ADVs make sample 

point measurements, but were mounted on vertical supports that allow the vertical 

position of the sampling volume to be adjusted.  Typically, the ADVs were positioned 

vertically to sample at a location that gives the average velocity in the water column (an 

elevation equal to one third of the water depth from the bottom (Hamilton, et al. 2001)).  

However, some runs were conducted in which the vertical positions of the ADVs were 

continually adjusted to obtain the velocity distribution through the water column. 

Calibration of the ADVs is based on the geometry of the acoustic transmitter and 

receiver, as well as the speed of sound in water.  The ADVs are calibrated by the 

manufacturer and do not need to be calibrated on a regular basis if the acoustic 

transmitter and receivers are not damaged, and if the geometry of the unit remains 

unchanged.  Speed of sound in water is the only parameter that influences ADV 

calibration, and the instruments were adjusted daily.   
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Beach Profiler 

Surveys of the beach were accomplished by three methods over the course of the 

experiments.  An automated beach profiler mounted to the instrumentation bridge was used 

for the first two experiment series (Figure 3-8).  The profiling system is amphibious to 

allow both the dry and submerged portions of the beach to be surveyed without draining 

the basin.  Horizontal positioning of the profiler is controlled by the bridge position and 

a cross-shore motor mounted on the bridge.  The vertical resolution of the system was 

+1 mm.  Survey data were obtained every 0.005 m in the cross-shore direction and every  

 

Figure 3-8. Mechanical beach profiler 
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0.5 or 1.0 m in the longshore direction.  Initially, the entire beach was surveyed every 

0.5 m in the longshore; however, it was found that the middle portion of the beach 

remained uniform and the higher resolution was not required.  Higher irregularity in the 

bathymetry occurred near the upstream and downstream boundaries, and denser profile 

lines were required.  The system recorded cross-shore and alongshore positions and 

associated elevations referenced to the model floor. 

After the second experiment was completed, the beach profiler failed.  Rod surveys 

were performed to obtain bathymetric data for the last two experiments.  A minimum of 

twenty subaqueous elevations and 4 to 5 subaerial elevations was obtained in the cross-

shore at 12 longshore locations.  

During the fourth wave experiment, an ultrasonic profiler was installed to conduct 

underwater beach surveys.  The instrument operated solely underwater, and beach 

profiles above the still water level (swl) were obtained using a rod.  Cross-shore 

measurements were obtained every 0.02 m with the ultrasonic profiler. 

 

Sediment Traps 

Eighteen traps are installed in the downdrift flow channels of the LSTF to collect 

sand transported through the downdrift boundary. Two additional traps are located 

landward of the first flow channel to quantify longshore sediment transport rate near the 

still-water shoreline and in the swash zone.  Each sand trap is equipped with three load 

cells to weigh the amount of trapped sand, allowing the cross-shore distribution of 

longshore sediment transport to be determined.  
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Because the total amount of longshore sediment transport during individual wave 

runs was only a small fraction, less than 1 percent, of the total amount of sand on the 

artificial beach, it was judged that continuous sand recharging during wave runs was not 

necessary (Hamilton et al. 2001).  The traps were emptied when they were full or if 

observations indicated the beach had become non-uniform in the longshore direction.  

Each trap was dredged and the material was placed back on the beach.  After the traps 

were emptied, the beach was rebuilt to uniform contours. 

The downdrift traps consist of rectangle aluminum boxes sealed to the flow channels 

and the test beach with rubble neoprene, and a certain amount of sand deposits on the 

rubber seal.  Generally, the total quantity that accumulates on all rubber seals is 3 to 12 

percent of the total that actually settles into the trap.  However, the percentage of sand 

accumulating on the seals can approach 15 to 20 percent in individual traps.  To account 

for this error, accumulated sand was washed off the rubber seals into the individual traps 

following each test segment and incorporated in the total measured sand weight. 

 

Fiber Optic Backscatter Sensors 

Profiles of sediment concentration were measured, but not used, in this study with 

Fiber Optic Backscatter  (FOBS) sensors (Figure 3-7).  The FOBS simultaneously 

measure suspended sediment concentration at 19 elevations in the water column. 

Elevations of the FOBS sensors were determined by deploying the bottom sensor 

directly on the bottom and using it as a reference for the upper sensors. 
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Laboratory Procedures 

 

To measure longshore sediment transport accurately and efficiently as well as the 

hydrodynamics that produce the transport, a set of procedures was followed for each 

wave condition generated.  To help explain the procedures discussed in this section, 

some of the terminology is defined.  Each test, or experiment, consisted of a single wave 

condition having a given incident wave height, period, wave angle and water depth.  

Data collected at a longshore (Y) location was defined as a transect, and a run consisted 

of a series of transects performed during a continuous generation of waves and current.  

Each test consisted of two phases, the iteration phase to determine proper pump settings, 

and the measurement phase to collect sediment transport and hydrodynamic data. Each 

run conducted during the iteration phase was termed an iteration, and each run during 

the measurement phase was defined as a case.  

At the onset of a test series of a particular wave condition, the initial beach was 

constructed based on the equilibrium profile shape described by Bruun (1954) and Dean 

(1977) in the form of 

 h Ax m=  (3-1) 

where h is the still-water depth, x is the horizontal distance from the shoreline, A is a 

dimensional scale parameter related to sediment grain size, and the empirical shape 

coefficient, m, was found to be equal to 2/3.  For the present experiments, A = 0.084, 

which was determined using the 0.15-mm median grain size of the very well sorted 

quartz sand.  The beach profile calculated using Equation 3-1 was approximated with 3 
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planar beach segments for the convenience of construction.  Following construction of 

the beach, the basin was filled with water to 0.9 m at the wave makers, which was the 

swl of all the experiments. 

The first goal of a test was to obtain the proper pump distribution settings and allow 

the beach to reach an equilibrium condition.  As waves and currents were generated, the 

beach responded towards an equilibrium profile.  Likewise, the waves responded to 

changes in bathymetry, altering shoaling and breaking, and the cross-shore distribution 

of longshore current.  Therefore, it was necessary to adjust the pump distribution 

continually during the beach-evolution process. This part of the test was named the 

iteration phase as mentioned above. After a series of runs, or iterations, a reasonably 

uniform longshore current pattern was achieved.   

Initial estimates of the cross-shore distribution of longshore current for the iterative 

process were calculated using NMLONG (Kraus and Larson 1991) and Nearhyds 

(Johnson 2003).  The first attempt followed the method of Hamilton and Ebersole 

(2001), in which the predicted longshore current distribution was significantly reduced, 

and longshore currents were under-pumped across the entire surf zone. The bridge was 

positioned at a longshore measurement location, or transect, and waves were generated 

for approximately 10 min prior to data collection to allow the basin to reach a steady 

state (Hamilton, et al. 2001).  Measurements of wave height and longshore velocities 

were collected at a 20-Hz rate for 600 sec.  After data collection was completed at the 

initial transect, the bridge was then moved to a new longshore location, and the 
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procedure was repeated.  Typically, current data from four to six transects were 

compared to pumped fluxes during the iteration phase.   

Following completion of each iteration, the beach was surveyed, and the pumps were 

adjusted based on measured longshore velocities and fluxes.  The measurement 

procedure was repeated until the pump settings required little further adjustment 

After completion of the iteration phase, the measurement phase of the experiment 

began. Three goals during the measurement phase were to obtain sufficient horizontal 

spatial coverage, obtain sufficient vertical spatial coverage, and repeat key 

measurements to ensure data quality and reproducibility.  Horizontal spatial coverage 

was achieved by collecting data at several transects over the length of the facility. 

Vertical spatial coverage was achieved by collecting data at one transect (normally 

Y=22 m), and adjusting the vertical position of the ADVs after each 600-sec run. A 

minimum of 10 locations was sampled to provide the vertical velocity profile for 

defining cross-shore and longshore velocities.  

Sediment flux measurements were obtained during the iterative process and the 

measurement phase.  However, only sediment fluxes obtained during the measurement 

phase were analyzed in this study.  Prior to each run during quiescent conditions, the 

traps were sampled to obtain an initial weight.  Another sample was taken during 

quiescent conditions following each wave run.  Sediment flux was calculated as the 

difference between the post- and pre-run weights divided by the wave run time. 

In principle, the sediment traps situated at the downdrift end of the beach should be 

100 percent efficient, i.e., completely trap the sand that the waves and currents transport 



 53

alongshore.  However, the physical boundaries of the facility, and imperfections in the 

systems and scheme used to control wave, current, and sediment transport processes at 

the lateral boundaries, influence the degree to which alongshore uniformity can be 

achieved.  Along the downdrift boundary, slight changes in contour orientation are 

evident within a few meters of the boundary.  This is evidence that there is some 

anomalous erosion and/or accretion along this lateral boundary.  These anomalies must 

be accounted for in estimates of LST rates that are derived from the trap weight 

measurements.  The extent and magnitude of the anomalies change with cross-shore 

position; therefore, the magnitude of the corrections varies with cross-shore position.  In 

general, anomalies were restricted to the region of beach within 1 to 3 m of the 

downdrift boundary.  At the downdrift end of the beach, between alongshore coordinates 

of 11 and 16 m, larger volume changes are evident.  Volume changes in this zone are 

assumed to be anomalous and caused by lateral boundary imperfections.  These volume 

changes are used to develop corrections to the quantities of sand that accumulate in the 

traps. 

Within each 0.75-m cross-shore section of beach in this anomalous zone (0.75 m is 

the width of each flow channel), the measured trap volume for that channel was adjusted 

to reflect the anomalous volume change within that section of beach.  Trap weights were 

converted to volume by incorporating the porosity of wet sand that accumulates in the 

traps (porosity of 0.40 is assumed).  Generally, volume changes between the downdrift 

boundary and the alongshore coordinate of 15 m were considered.  Where anomalous 

erosion occurred, the correction was subtracted from the volume that accumulated in the 
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trap; where accretion occurred, the correction was added to the volume in the trap.  All 

trapped quantities were corrected in this manner. 
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CHAPTER IV 

LSTF RESULTS AND ANALYSIS 

 

Introduction 

 

Four irregular wave signals with a relatively broad spectral shape, representing 

typical sea conditions, were generated in the LSTF.  The wave conditions were designed 

to obtain and compare LST rates for different breaker types by varying incident wave 

height and period.  Four conditions generated in the LSTF are listed in Table 4-1, where 

Hmo is energy-based significant wave height measured near the wave makers, Hsb is 

energy-based significant wave height at breaking, Tp is peak wave period, h is water 

depth at the wave generators, θb is incident wave angle at the wave generators, and m is 

the slope of the beach from the breaker line to the shoreline.  Furthermore, the wave 

conditions were grouped by energy level; Tests 1 and 3 had similar incident wave 

heights and are referred to as higher energy conditions, and Tests 5 and 6 are referred as 

lower energy conditions.  Each test was conducted with an h = 0.9 m and θ = 10 deg at 

the wave generators.  
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Table 4-1. LSTF test wave conditions 
Test 

Number 
Breaker 

Type 
Hmo 
m 

Hsb 
m 

Tp 
s 

h 
m 

θb 
deg 

 
m 

1 Spilling 0.25 0.26 1.5 0.9 6.5 0.031 

3 Plunging 0.23 0.27 3.0 0.9 6.4 0.024 

5 Spilling 0.16 0.18 1.5 0.9 6.7 0.025 

6 Plunging 0.19 0.21 3.0 0.9 6.4 0.020 

 

 

Test 1 

 

The initial test condition consisted of waves having Tp = 1.5-s, Hmo = 0.25-m, which 

produced spilling waves (ξb = 0.34). The wave spectra measured at Gauge 10 

(X = 18.6 m) is shown in Figure 4-1, and the quasi-equilibrium beach profile developed 

after 14 hr of waves is shown in Figure 4-2.  Elevations are referenced relative to the 

basin floor, and the heavy horizontal line represents the swl elevation of 0.9 m.  The 

profile shown in Figure 4-2 represents an average of 16 profiles measured in the middle 

section of the test beach, and the profile slope is nearly planar inside the surf zone from 

cross-shore locations X = 4.9 m to X = 12.6 m.  Three cases were performed for Test 1 

wave conditions and are described in the following paragraphs 
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Figure 4-1. Measured incident wave spectra, Test 1 

 

Test 1, Case 1 

The purpose of Test 1, Case 1, was to measure uniformity of the longshore current. 

Measurements were made at eleven transects spaced at 2-m intervals in the longshore 

direction between Y=14 m to Y=34 m.  Duration of the Test 1, Case 1, was 3.0 hr.  

The distribution of mean longshore currents measured during Test 1, Case 1, is shown in 

Figure 4-3.  The heavy line denoted as LB’s represents the pumped currents at the lateral 

boundaries (LB’s).  Erroneous measurements were observed with ADV 8 at 
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Figure 4-2. Quasi-equilibrium beach profile formed from Test 1 waves 

 

Figure 4-3. Cross-shore distribution of longshore currents, Test 1, Case 1 
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Y=16, 18, 24, 26, 28, 30, and 32 m, and the suspect points were removed from the 

figure.  Considering this condition was the inaugural test with a movable bed in the  

LSTF, measurements overall agreed well with the pumped values, especially between 

transects Y=18 m and Y=30 m.  Longshore currents varied greatly at the most shoreward 

location, and the current appeared to be under-pumped in this region if transects only in 

the middle of the test beach were considered.  Slight recirculation due to the lateral 

boundaries was observed at the most offshore measurement location (X = 18.6 m) where 

longshore current is negative.  

All of the wave gauges on the bridge were operating during Test 1, Case 1.  

However, the gauges positioned in front of each wave generator (X=18.0 m) gave lower 

than expected results.  Wave height distribution and mean water surface elevations are 

shown in Figure 4-4.  Wave heights show uniformity in the longshore direction and a 

gradual decay in wave height typical of spilling-type breakers. 

The distribution of longshore sediment flux, corrected for trap inefficiency, is shown 

in Figure 4-5.  Each point represents the longshore transport rate at a particular trap. 

Longshore transport showed a slightly increasing trend through the surf zone.  Transport 

rates fluctuated shoreward of 10 m, with three spikes in transport occurring at X ~ 9 m, 

X ~ 6 m, and X ~ 4 m.  No explanation can be given for these spikes, and they appear to 

be anomalous data.  
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Figure 4-4. Cross-shore distribution of wave heights, Test 1, Case 1 

Figure 4-5. Cross-shore distribution of longshore sediment flux, Test 1, Case 1 
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Test 1, Case 2 

The purpose of Test 1, Case 2, was to measure steadiness of the longshore current. 

Measurements were made at four transects between Y=14 m to Y=30 m, and repeated 

twice for a total of three sets of measurements at each transect.  The temporal spacing 

between the sets was approximately one hour.  The total duration of Test 1, Case 2, was 

3.33 hr. 

ADVs 2, 7, and 8 malfunctioned throughout the test (see Table 3-1 for cross-shore 

locations).  The cross-shore distribution of the longshore current obtained at the one-

third water depth is shown in Figure 4-6 with suspect points removed.  The letters A, B, 

and C define the first, second, and third sets of transect measurements, respectively.   

Figure 4-6. Cross-shore distribution of longshore currents, Test 1, Case 2 
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Values were similar to those of Test 1, Case 1, although longshore currents were slightly 

lower for Test 1, Case 2, between X = 7.0 and X = 10.m.  The longshore current is 

plotted by transect in Figures 4-7 through 4-10, which show consistency at each location 

throughout the test, demonstrating that conditions were steady in the basin. 

Wave height distribution through the surf zone is shown in Figure 4-11.  Gauges on 

the bridge were operating, but as with Test 1, Case1, the gauges in front of each wave 

maker gave questionable results and are omitted from the figure.  The figure shows that 

wave heights were both steady and longshore uniform. 

Longshore sediment flux distribution with trap corrections is plotted in Figure 4-12. 

Transport was similar through the surf zone as in Test 1, Case 1, showing a slightly 

increasing trend; however, the transport rate increased substantially in the swash zone 

for Test 1, Case 2, where maximum sediment flux occurred.  The difference in swash 

zone sediment flux between the two cases may have resulted from the swash zone 

downdrift boundary being observed and adjusted according to the adjacent beach profile 

during Test 1, Case 2.  

 

Test 1, Case 3 

Test 1, Case 3, was performed to measure the vertical distribution of the longshore 

current through the water column.  All measurements were obtained at Y = 22 m, and 

the duration of Test 1, Case 3, was 3.33 hr.  Velocities were obtained at each ADV for 

eleven depths given in Table 4-2.  The ADVs only record measurements if submerged; 

therefore, all measurements depths were targeted below the expected wave trough level  
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Figure 4-7. Cross-shore distribution of longshore currents, Test 1, Case 2, Y = 14 m 

Figure 4-8. Cross-shore distribution of longshore currents, Test 1, Case 2, Y = 18 m 
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Figure 4-9. Cross-shore distribution of longshore currents, Test 1, Case 2, Y = 22 m 

Figure 4-10. Cross-shore distribution of longshore currents, Test 1, Case 2, Y = 30 m 
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Figure 4-11. Cross-shore distribution of wave heights, Test 1, Case 2 

Figure 4-12. Cross-shore distribution of longshore sediment flux, Test 1, Case 2 
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Table 4-2.  Test 1, Case 3, ADV sampling depths 
 Sampling Depth 

 (m) 

ADV Y22A Y22B Y22C Y22D Y22E Y22F Y22G Y22H

Y22I 

Y22J Y22K
1 0.09 0.08 0.08 0.07 0.07 0.06 0.05 0.04 0.03 0.02 0.05 
2 0.15 0.14 0.14 0.14 0.13 0.12 0.11 0.09 0.07 0.05 0.11 
3 0.17 0.17 0.16 0.15 0.14 0.13 0.12 0.10 0.07 0.04 0.11 
4 0.20 0.20 0.19 0.18 0.17 0.16 0.14 0.11 0.08 0.07 0.15 
5 0.26 0.25 0.25 0.24 0.23 0.22 0.20 0.16 0.12 0.09 0.19 
6 0.32 0.31 0.31 0.30 0.29 0.27 0.25 0.22 0.17 0.12 0.23 
7 0.36 0.36 0.35 0.34 0.33 0.31 0.27 0.21 0.15 0.11 0.25 
8 0.36 0.35 0.35 0.34 0.33 0.31 0.27 0.21 0.15 0.12 0.28 
9 0.46 0.46 0.46 0.44 0.44 0.42 0.38 0.32 0.24 0.18 0.36 
10 0.77 0.76 0.76 0.71 0.65 0.57 0.47 0.37 0.27 0.20 0.63 

 

of the waves.  Cross-shore directed velocities are shown in Figure 4-13 in which positive 

velocity is offshore, and the thick horizontal black bars represent the bottom at each 

ADV location.  Maximum offshore velocities occurred in the lower water column, 

indicating undertow.  Although most of the data were directed offshore, the velocity 

profiles indicate that velocities were directed onshore near the surface.  The figure shows 

a boundary layer present at each location.  The vertical profile of longshore velocity is 

plotted in Figure 4-14, which also shows the presence of a boundary layer. The presence 

of a boundary layer has been observed in the field (Garcez Faria et al. 1998).  Hamilton 

and Ebersole (2001) found the mean longshore current to be generally uniform with 

depth; however, their tests were conducted on a fixed bed with a smooth concrete bottom 

with minimal effects of bottom roughness.  The present tests were conducted on a 

movable bed with sand (with a higher friction coefficient than smooth concrete), which  
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Figure 4-13. Cross-shore directed velocities as a function of depth, Test 1, Case 3 

 

Figure 4-14. Longshore directed velocities as a function of depth, Test 1, Case 3 
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formed ripples that contributed to higher bottom roughness.  Outside the surf zone, the 

vertical profiles were nearly invariant, a trend which also was observed by Hamilton and 

Ebersole (2001) for an irregular wave case on a fixed bed, but not for regular waves.  

Additionally, a theoretical model of Putrevu and Svendsen (1999) predicts a slight 

decrease of current speed with increasing distance from the bottom outside the surf zone.  

An increase in longshore velocity with distance from the bed occurred in the inner surf, 

which also was observed by Hamilton and Ebersole and agrees with the model of 

Putrevu and Svendsen. 

All of the longshore current profiles in Figure 4-14 show positive directed flow with 

the exception of measurements at ADV10.  The recirculated current at ADV 10 was due 

to the laboratory effect of the lateral boundaries. 

The cross-shore distribution of the longshore current obtained at the one-third-water 

depth for Test 1, Case 3, is plotted in Figure 4-15.  The current was slightly weaker in 

the inner surf zone than in the previous cases, but had the same distribution pattern. 

Test 1, Case 3, wave height distribution through the surf zone is plotted in 

Figure 4-16.  Gauges on the bridge were operating, but the gauges in front of each wave 

maker gave questionable results and were omitted from the figure.  As with the previous 

cases, wave height was both steady and uniform alongshore. 

Longshore sediment flux distribution with trap corrections is shown in Figure 4-17. 

Longshore sediment transport distribution increased slightly through the surf zone, but 

increased substantially to a maximum rate in the swash zone.  Sediment flux distribution 

was nearly identical to Test 1, Case 2. 
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Figure 4-15. Cross-shore distribution of longshore currents, Test 1, Case 3 

Figure 4-16. Cross-shore distribution of wave heights, Test 1, Case 3 
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Figure 4-17. Cross-shore distribution of longshore sediment flux, Test 1, Case 3 
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Figure 4-18. Measured incident wave spectra, Test 3 

 

performed for shorter durations.  Three cases were conducted for Test 3 wave conditions 

and are described in the following paragraphs. 

 

Test 3, Case 1 

The purpose of Test 3, Case 1, was to measure uniformity of the longshore current. 

Measurements were made at four transects between Y = 16 to Y = 30 m.  Duration of 

Test 3, Case 1, was 0.87 hr. 
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Figure 4-19. Quasi-equilibrium beach profile formed from Test 3 waves 
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Figure 4-20. Cross-shore distribution of longshore currents, Test 3, Case 1 

Figure 4-21. Cross-shore distribution of wave heights, Test 3, Case 1 
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bar were noted during the test, and the irregularities in bar height contributed to wave 

height variation in this vicinity.  

Distribution of longshore sediment transport for Test 3, Case 1, is given in 

Figure 4-22.  Unlike the sediment flux distributions of Test 1, a definitive peak in 

transport occurred near breaking with Test 3 waves.  Shoreward of breaking and through 

the inner surf zone, longshore sediment flux was similar to Test 1 sediment flux in the 

same region.  Sediment flux increased greatly in the swash zone, as it did for Test 1 

waves; however, swash zone sediment flux for Test 3, Case 1, was greater than three 

times the flux measured during Test 1 conditions.  The increasing trend in the swash  

Figure 4-22. Cross-shore distribution of longshore sediment flux, Test 3, Case 1 
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zone raised a concern of potential bypassing of sediment around the landward end of the 

traps. Observations during the test indicated that all of the sediment was trapped, and no 

bypassing occurred. 

 

Test 3, Case 2 

Test 3, Case 2, was performed to measure the vertical distribution of longshore 

currents through the water column.  All measurements were obtained at Y = 20 m.  The 

velocity distribution was obtained at each ADV for eight vertical locations given in 

Table 4-3.  Duration of Test 3 Case 2 was 1.68 hr.  

All ADVs were operational during the test except at ADV 4 at the highest 

measurement location.  Vertical distributions of the cross-shore and longshore directed 

velocities are plotted in Figures 4-23 and 4-24, respectively.  Measurements did not 

extend to the bottom at ADV 10 for this test.  The plots are similar to those of Test 1,  

 

Table 4-3.  Test 3, Case 2, ADV sampling depths 
 Sampling Depth 

(m) 
ADV Y20A Y20B Y20C Y20D Y20E Y20F Y20G Y20H 

1 0.150 0.140 0.130 0.120 0.110 0.080 0.050 0.010 
2 0.188 0.178 0.168 0.158 0.148 0.108 0.058 0.008 
3 0.216 0.206 0.196 0.186 0.166 0.116 0.066 0.006 
4 0.254 0.244 0.234 0.214 0.184 0.134 0.074 0.004 
5 0.267 0.257 0.247 0.227 0.187 0.137 0.077 -0.003 
6 0.307 0.297 0.277 0.257 0.207 0.157 0.087 -0.003 
7 0.395 0.385 0.355 0.325 0.275 0.195 0.095 -0.005 
8 0.272 0.262 0.252 0.232 0.192 0.142 0.072 -0.008 
9 0.403 0.393 0.363 0.333 0.283 0.203 0.103 -0.007 
10 0.494 0.484 0.434 0.374 0.294 0.194 0.094 -0.006 
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Figure 4-23. Cross-shore directed velocities as a function of depth, Test 3, Case 2 

Figure 4-24. Longshore directed velocities as a function of depth, Test 3, Case 2 
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Case 3; a boundary layer was present in both the cross-shore and longshore directions, 

cross-shore velocities were directed onshore in the upper column and offshore in the 

lower water column, longshore velocities were generally invariant outside the surf zone, 

and longshore velocity increased with distance from the bed in the inner surf.  No 

measurements were taken at the one-third depth; therefore, no plot is provided for the 

cross-shore distribution of longshore velocities. 

Wave Gauges 2, 5, and 9 malfunctioned during the entire test; however, 

measurements at Gauge 5 during runs Y20c and Y20d were considered reliable.  The 

cross-shore distribution of wave height for Test 3, Case 2, is plotted in Figure 4-25 with 

erroneous points omitted.  The figure shows that waves were steady at Y = 20 m 

throughout the test. 

Figure 4-25. Cross-shore distribution of wave heights, Test 3, Case 2 
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Figure 4-26 plots the distribution of longshore sediment flux for Test 3, Case 2, 

exhibiting two peaks in transport that were similarly observed for Test 3, Case 1.  The 

distribution was similar to that of Test 3, Case 1, except in the swash zone where a 

decrease in sediment flux occurred at the first sediment trap (X = 2.1 m). 

Figure 4-26. Cross-shore distribution of longshore sediment flux, Test 3, Case 2 
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The distribution of the mean longshore current measured during Test 3, Case 3, is 

plotted in Figure 4-27.  Measurements at Y = 34 m, which is near the upstream 

boundary, deviated greatly from pumped values. Measurements in the middle section of 

the test beach between Y = 18 and Y = 26 m exhibited more longshore uniformity.  

However, the longshore current was not as uniform as observed in Test 3, Case 1. 

Figure 4-27. Cross-shore distribution of longshore currents, Test 3, Case 3 
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Figure 4-28. Cross-shore distribution of wave heights, Test 3, Case 3 

 

Figure 4-29 plots the distribution of longshore sediment flux for Test 3, Case 3.  The 
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Figure 4-29. Cross-shore distribution of longshore sediment flux, Test 3, Case 3 

 

Test 5 
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Figure 4-30. Measured incident wave spectra, Test 5 

 

Test 5, Case 1 

The purpose of Test 5, Case 1, was to measure uniformity of the longshore current. 

Measurements were made at 11 transects spaced at 2-m alongshore between Y = 16 and 

Y = 34 m.  Duration of Test 5, Case 1, was 2.67 hr. 

The cross-shore distribution of the longshore current is plotted in Figure 4-32. 

Uniformity was generally good in the middle section of the beach between Y = 18 m and 

Y = 30 m, with exception in the inner surf zone where the current at Y = 18, 20, and 

30 m deviated from pumped values. 
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Figure 4-31. Quasi-equilibrium beach profile formed from Test 5 waves 

 

Figure 4-32. Cross-shore distribution of longshore currents, Test 5, Case 1 
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Cross-shore wave height distribution for Test 5, Case 1, is plotted in Figure 4-33. 

Wave height gradually decreased across the surf zone.  All gauges were operational 

during the test.  Heights recorded at Gauge 3 were lower than expected and the cause is 

not known.  

Longshore sediment flux distribution is plotted in Figure 4-34.  Sediment flux 

increased gradually through the surf zone and peaked in the swash zone.  The trend was 

similar to the Test 1 longshore sediment flux, but with much lower values in the surf 

zone.  The transport rate was greatest in the swash zone and was essentially the same 

rate observed for Test 1, Cases 2 and Case 3, but with a different cross-shore location. 

Figure 4-33. Cross-shore distribution of wave heights, Test 5, Case 1 
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Figure 4-34. Cross-shore distribution of longshore sediment flux, Test 5, Case 1 
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Figure 4-35. Cross-shore distribution of longshore currents, Test 5, Case 2 

Figure 4-36. Cross-shore distribution of longshore currents, Test 5, Case 2, Y = 18 m 
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Figure 4-37. Cross-shore distribution of longshore currents, Test 5, Case 2, Y = 22 m 

Figure 4-38. Cross-shore distribution of longshore currents, Test 5, Case 2, Y = 26 m 
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Figure 4-39. Cross-shore distribution of longshore currents, Test 5, Case 2, Y = 30 m 
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Figure 4-40. Cross-shore distribution of wave heights, Test 5, Case 2 

Figure 4-41. Cross-shore distribution of longshore sediment flux, Test 5, Case 2 
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Test 5, Case 3 

The purpose of Test 5, Case 3, was to measure the vertical distribution of the 

longshore current through the water column.  All measurements were obtained at 

Y = 22 m.  Measurements were made at eleven vertical positions with all gauges.  

Table 4-4 gives the vertical location of the ADV sampling volume for each.  Duration of 

Test 5, Case 3, was 2.42 hr. 

Table 4-4.  Test 5, Case 3, ADV sampling depths 
 Sampling Depth  

 (m) 
ADV Y22A Y22B Y22C Y22D Y22E Y22F Y22G Y22H Y22I Y22J Y22K

1 0.07 0.06 0.06 0.06 0.05 0.04 0.04 0.03 0.02 0.01 0.04 
2 0.16 0.16 0.15 0.14 0.14 0.13 0.12 0.10 0.08 0.06 0.10 
3 0.18 0.18 0.17 0.17 0.15 0.14 0.13 0.11 0.08 0.05 0.12 
4 0.23 0.22 0.22 0.21 0.20 0.19 0.17 0.14 0.11 0.09 0.15 
5 0.24 0.23 0.23 0.22 0.21 0.2 0.18 0.14 0.10 0.07 0.16 
6 0.29 0.28 0.28 0.27 0.26 0.24 0.22 0.19 0.14 0.09 0.19 
7 0.35 0.34 0.34 0.33 0.32 0.30 0.26 0.20 0.14 0.10 0.23 
8 0.35 0.34 0.34 0.33 0.32 0.30 0.26 0.20 0.14 0.11 0.24 
9 0.44 0.44 0.43 0.42 0.41 0.39 0.35 0.29 0.21 0.16 0.29 
10 0.76 0.75 0.70 0.58 0.47 0.41 0.35 0.27 0.17 0.61 0.50 
 

 

All ADVs were operational during the test.   Vertical distributions of the cross-shore 

and longshore-directed velocities are plotted in Figures 4-42 and 4-43, respectively.  

Measurements did not extend to the bottom at ADV 10 for this test.  A boundary layer 

was present in both the cross-shore and longshore directions, similar to the previous 

tests.  The cross-shore velocity measurements indicate a current directed onshore near 

the surface and offshore lower in the water column.  In the longshore direction, ADVs 9  
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Figure 4-42. Cross-shore directed velocities as a function of depth, Test 5, Case 3 

Figure 4-43. Longshore directed velocities as a function of depth, Test 5, Case 3 
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and 10, which were located outside the surf zone, showed invariant profiles with depth.  

Additionally, longshore velocity increased with distance from the bed in the inner surf 

zone.  The cross-shore distribution of the longshore current obtained at the one-third 

water depth for Test 5, Case 3, was similar to Test 5, Case 1 and Case 2 (Figure 4-44).  

The cross-shore distribution of wave heights for Test 5, Case 3, is plotted in 

Figure 4-45. Wave height was consistent throughout the test at Y = 22 m and was similar 

to the previous cases of Test 5, with the exception of Gauges 2 and 3; heights at Gauge 2 

were smaller than observed in the earlier cases, and heights at Gauge 3 were greater than 

previously observed.  

 

Figure 4-44. Cross-shore distribution of longshore currents, Test 5, Case 3 
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Figure 4-45. Cross-shore distribution of wave heights, Test 5, Case 3 

 

 

Figure 4-46 shows the cross-shore distribution of sediment flux for Test 5, Case 3. 
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Figure 4-46. Cross-shore distribution of longshore sediment flux, Test 5, Case 3 

 

Test 6 
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profile obtained at Y = 22 m using an ultra-sonic profile for the underwater portion of 

the beach and a rod above the swl is shown in Figure 4-48 after 23 hr of wave action. 

The points in the figure represent rod measurement locations.  Only one case is 

presented for Test 6.  It was difficult to maintain beach uniformity during the iterative 

process, and the proper pump settings were not determined.  However, the longshore  

0

20

40

60

80

100

120

140

160

180

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Cross-shore Location (m)

Se
di

m
en

t F
lu

x 
(k

g/
hr

/m
)



 95

Figure 4-47. Measured incident wave spectra, Test 6 

 

current, wave height, and longshore sediment flux were similar between many of the 

iterations.  One of the iterative cases is presented here in which data were collected at 

five longshore transects between Y = 18 and Y = 34 m.  The duration of the test was 

1.27 hr. 

The cross-shore distribution of the longshore current is plotted in Figure 4-49.  The 

current varied over the measured transects between X = 9.0 and X = 11.0 m; however, 

the current was more uniform for other cross-shore locations.  The recirculated current 

within the basin was observed at X = 16.0 m, which contributed to non-uniform  
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Figure 4-48. Quasi-equilibrium beach profile formed from Test 6 waves 

Figure 4-49. Cross-shore distribution of longshore currents, Test 6 
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conditions.  Wave heights for Test 6 were smaller than those of Test 1 and Test 3, which 

resulted in breaking closer to the shoreline and a narrower surf zone.  Consequently, a 

greater percentage of the basin resided outside the surf zone, where the longshore current 

was weak.  The recirculation pumps in this region were either pumping low flows or 

shut off.  The same situation was experienced with the Test 5 waves, but the longshore 

current produced with Test 5 waves was much weaker than the current of Test 6.  It is 

believed that the difficulty in obtaining proper pump settings was due to the strong 

longshore current produced in the surf zone in combination with the larger, non-pumped 

region outside the surf zone.  Although alongshore variation in the current was greater 

than desired, uniformity was not considered unreasonable, and longshore sediment flux 

measurements were consistent over several iterations. 

The cross-shore distribution of wave height for Test 6 is plotted in Figure 4-50. 

Gauge 8 gave erroneous measurements for all transects except Y = 18 m, and Gauges 3 

and 10 were not functioning, and values for these instruments are not included in the 

figure.  Waves shoaled from offshore and peaked at X = 13 m, where breaking occurred.  

A steep decay in height occurred directly shoreward, indicating a plunging wave 

condition, and wave decay was gradual throughout the remainder of the surf zone.  

Figure 4-51 plots the cross-shore distribution of sediment flux for Test 6.  The 

distribution exhibited two peaks in transport (one near breaking and one in the swash 

zone), which was the same pattern observed for the plunging wave condition of Test 3. 

The swash zone peak was much greater than the peak near the break point in 

Figure 4-51, whereas the peaks observed for Test 3 condition were closer in magnitude. 



 98

Figure 4-50. Cross-shore distribution of wave heights, Test 6 

 

Figure 4-51. Cross-shore distribution of longshore sediment flux, Test 6 
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Summary 

 

Measurements of waves, currents, and longshore sand transport rates were performed 

in a large-scale physical model for four incident wave conditions that were designed to 

vary by breaker type and incident energy.  Waves and currents were generally steady and 

uniform during the tests.  Two wave conditions produced spilling breakers (Test 1 and 

Test 5) and two produced plunging breakers (Test 3 and Test 6).  The wave conditions 

were grouped by energy level; Test 1 and Test 3 had similar incident wave height and 

were referred to as higher energy conditions, and Tests 5 and 6 were referred to as lower 

energy conditions.  Wave heights were averaged from the cases for each wave condition 

and plotted in Figure 4-52.  The figure shows that Test 3 and Test 6 waves shoaled prior 

to breaking and decreased sharply directly shoreward of the break point, typical of 

plunging waves.  Test 1, a spilling case, also showed a sharp decrease in height directly 

shoreward of breaking.  Test 1 had a surf similarity parameter on the upper end of 

spilling waves, 0.34, and some plunging waves were observed within the time series; 

however, waves were observed to break predominately by spilling.  Test 5 showed a 

gentle decay in wave height throughout the surf zone, typical of spilling breakers.  

Longshore sediment flux was averaged for each test, and plotted as a function of 

cross-shore location in Figure 4-53.  The figure indicates that there are three distinct 

zones of longshore sand transport; the incipient breaking zone, inner surf zone, and 

swash zone.  Transport in each zone is described in the following paragraphs. 
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Figure 4-52. Cross-shore distribution of wave heights, all tests 

Figure 4-53. Cross-shore distribution of longshore sediment flux, all tests 
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Incipient Breaking Zone 

At incipient breaking, a substantial peak in transport occurred for the 

plunging-waves of Test 3 and Test 6.  However, a similar increase in transport was not 

observed in the spilling-wave tests (Test 1 and Test 5) .  The absence of a peak in 

transport for the spilling tests can be explained as a function of breaker type.  Turbulence 

associated with spilling breakers remains close to the surface in the bore. The jet 

associated with the large plunging waves penetrated deep into the water column, 

impacted the bed, and caused sand to be suspended and transported by the longshore 

current (Kana 1977; Wang et al. 2002).  

 

Inner Surf Zone 

Figure 4-52 shows the wave height distribution for the four tests.  Test 1 and Test 3 

have similar wave height (energies) and similar sediment flux in the inner surf zone. 

Wave height and sediment flux for Test 5 and Test 6 were smaller in the inner surf zone 

than for the higher energy cases.  However, wave height and sediment flux distributions 

for Test 6 had similar shape and were slightly greater than those of Test 5.  In the inner 

surf, wave energy is saturated, and wave height is strongly controlled by depth, 

independent of wave period.  The results imply that sediment flux in the inner surf zone 

is dominated by wave height and independent of period.  
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Swash Zone 

The swash zone was defined as the region where an increase in foreshore slope was 

observed, which was within 2 m from the shoreline.  There was a peak in transport in the 

swash zone for all tests, and Figure 4-53 shows that swash zone transport has a 

dependence on wave period.  For waves having similar incident wave height, but 

different period, i.e., Test 1 and Test 3, and Tests 5 and Test 6, swash zone transport is 

much greater for the longer period tests.  This result is consistent with the Hunt (1959) 

formula for wave runup, in which runup is directly proportional to wave period.  

In all practical longshore sediment transport models, the swash transport contribution 

is either ignored or merely accounted for as part of the total sediment transport budget 

(Van Wellen et al., 2000).  However, significant swash zone transport rates have been 

observed in field and laboratory studies (Sawaragi and Deguchi 1978, Kraus et al. 1982; 

Bodge and Dean 1987), and swash zone transport can account for as much as 50 percent 

of the total longshore sediment transport (Elfrink and Baldock 2002; Van Wellen et al. 

2000).  For the higher energy tests (Test 1 and Test 3), swash zone transport accounts for 

a third of the total transport.  However, for the lower energy experiments (Test 5 and 

Test 6), swash zone transport accounts for 40 to 60 percent of the total transport.  

Additionally, the reduction in total transport between the higher and lower wave energy 

spilling tests (Test 1 and Test 5) was a factor of 2.3, but the reduction in swash transport 

was only a factor of 1.2.  The reduction in total transport between higher and lower 

energy plunging tests (Test 3 and Test 6) was 1.7, but the reduction in swash zone 

transport was 1.3.  Although data are limited, the results presented here imply that swash 
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zone transport contributes a higher percentage of the total transport rate for lower energy 

beaches, and conversely, as incident wave height increases the contribution of swash 

transport to total transport is less.  This observation agrees with findings of Elfrink and 

Baldock (2002), who found that the relative contribution of swash zone transport was 

greater during calm conditions than during storms.  The results indicate that the role of 

swash zone transport can be significant, especially in lower energy environments, which 

would include small-scale physical models. 

In addition, results from the present study have implications for field measurement of 

longshore sediment transport.  Although swash zone transport measurements are difficult 

to obtain in the field, the results indicate that the swash zone contribution is significant, 

and it is necessary to include swash zone transport to obtain accurate measurements of 

the total longshore sediment transport.  
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CHAPTER V 

DESCRIPTION OF THE FIELD STUDY 

 

Introduction 

 

Many studies have been conducted in the field to measure longshore sediment 

transport; however, there are few field studies that include direct measurements during 

storms.  One factor is the expense of procurement, calibration, and operation of the many 

instruments required to adequately define hydrodynamics and sediment transport at the 

large spatial scale of the surf zone during severe wave conditions.  Another factor is the 

robustness of the instruments for storm deployment.  A system was developed at the US 

Army Corps of Engineers Field Research Facility (FRF) to operate during severe storms. 

Data obtained from this system, the Sensor Insertion System (SIS) was selected for 

comparison to the predictive models. 

 

The Field Research Facility 

 

The FRF is located at Duck, North Carolina, near the center of a 140-km-long barrier 

island on the Atlantic Ocean.  A 561-m-long, 6-m-wide steel and concrete research pier 

provides access across the surf zone (Figure 5-1).  The FRF routinely measures 

environmental conditions with a suite of instruments including permanent current meters  
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Figure 5-1.  The Field Research Facility (FRF), Duck, NC 

 

and directional wave gauges located at an 8-m depth offshore.  Additionally, the 

bathymetry around the FRF is surveyed monthly.  

The SIS (Miller 1998) was developed at the FRF to make direct measurements of 

longshore sediment transport during storm conditions (Figure 5-2).  The SIS employs a 

70,000-kg crane, on which an array of instruments can be mounted.  The crane can be 

moved along the length of the research pier to measure waves, current, and sediment 

transport at different positions across the surf zone.  To minimize the influence of the 

pier, the SIS can place instruments on the ocean bottom in 9 m depth as far as 22 m from 

the pier centerline. The SIS can reposition sensors as the beach profile evolves during a 

storm.  A disadvantage of the system is that spatial measurements across the shore are 

not simultaneous, but occur over a 3-hr period (tide, wind, and waves may change).  
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Figure 5-2.  The Sensor Insertion System (SIS) 

 

The SIS contains several instruments mounted on a frame at the end of the crane’s 

boom (Figure 5-3).  Optical backscattering concentration sensors in combination with 

electromagnetic current meters (EMCMs) are used to calculate sediment flux throughout 

the water column.  The SIS deploys eight OBS and four EMCMs positioned through the 

water column.  Measurements have shown that most of the sediment is transported near 

the bottom (less than 1 m); therefore, the sensors are placed more densely lower in the 

water column.  In addition to OBS and EMCMs, a pressure sensor was mounted on the 

frame to measure water surface elevation. 

During October 1997, the SIS measured longshore sediment transport daily during 

the SandyDuck ’97 field experiment (Miller 1998).  During the experiment, a low-

pressure system developed along a front, strengthened, and moved north along the 

Atlantic coast.  The storm produced peak conditions at the FRF of Tp = 9.8 sec and 

Hmo = 3.3 m at the 8-m water depth.  The SIS operated continuously during the storm. 



 107

Figure 5-3.  SIS instrument array: A – EMCM, B – OBS, C – Down-looking 
sonar, D – Pressure sensor 

 

The SIS data are similar to LSTF data in that measurements of wave height, current, 

and sediment transport were made at several cross-shore locations.  The data were 

collected at 16 Hz and are ideal for comparing cross-shore distribution of longshore 

sediment transport models.  Additionally, the sediment d50 was similar to the LSTF sand. 
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Stauble (1992) performed analysis on sediment samples collected at the FRF from 

March 1984 to September 1985.  For locations where SIS measurements were made the 

mean grain size ranged from 0.12 mm to 0.20 mm.  For computations of τcr, a d50 of 

0.15 mm was used. 

A difference in the field and laboratory data was the relative position of the velocity 

measurements.  The LSTF ADVs were positioned to the one-third water depth at each 

cross-shore location.  The SIS EMCMs were mounted to a frame and their vertical 

position relative to the bottom remained the same for all cross-shore stations, i.e., their 

position relative to water depth differed between stations.  Two methods were 

considered for selecting velocity measurements for comparison to the predictive models.  

The first method would use measurements from an EMCM that was positioned in the 

lower half of the water column for all cross-shore locations.  An alternate method is to 

calculate the relative depth of each EMCM at each cross-shore location and select 

measurements from the instrument closest to the one-third depth from the bottom for 

each station.  Neither method would necessarily use measurements at the one-third 

depth.  It was preferred to select a single EMCM for all cross-shore measurements, and 

data using the first method were chosen for analysis and comparison to predictive 

transport models. 
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SIS Data 

 

Two transects recorded from the SIS SandyDuck experiments, Transects 15 and 19 

covered on 18 and 19 Oct 1997, respectively, were selected to compare to predictive 

models.  The wave conditions for transects SIS 15 and SIS 19 are listed in Table 5-1.  

The wave height distribution and bathymetry for transect SIS 15 are shown in 

Figure 5-4.  Waves gradually shoaled to a peak of 0.97 m at Station X = 271 m and 

remained relatively constant to X = 198 m (Hrms = 0.95 m).  Wave height decreased 

significantly shoreward of this point to 0.76 m at X = 162 m.  Wave heights that 

occurred over with transect SIS 19 were much higher than those of SIS 15 and the 

heights vary across shore (Figure 5-5).  From the most offshore station of X = 540 m to 

X = 238 m, wave height varied from 1.65 m to 1.36 m.  Wave breaking occurred at 

X = 238 m, where height decreased from 1.56 m to 0.76 m at X = 162. 

 

Table 5-1.  SIS experiment wave conditions 
Transect 
Number 

Breaker 
Type 

Ho 
m 

Hsb 
m 

Tp 
sec 

hb 
m 

θb 
deg 

 
m 

15 Spilling 0.99 0.97 6.4 4.2 13.8 0.029 

19 Spilling 1.49 1.56 7.1 3.4 14.9 0.037 
 

 

The average longshore current measured during SIS 15 is shown in Figure 5-6, 

where positive values indicate currents directed south.  Currents increased gradually 

from X = 518 m to X = 198 m.  The longshore current direction reversed to the north at  
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Figure 5-4. Wave height distribution and beach profile associated with SIS Transect 15 

Figure 5-5. Wave height distribution and beach profile associated with SIS Transect 19 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

100 150 200 250 300 350 400 450 500 550 600

Cross-shore Station (m)

H
rm

s (
m

)
-3

-2

-1

0

1

2

3

4

5

6

7

D
ep

th
 (m

 N
G

VD
)

Wave Height
Depth

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

100 150 200 250 300 350 400 450 500 550 600

Cross-shore Station (m)

H
rm

s (
m

)

-2

-1

0

1

2

3

4

5

6

7

D
ep

th
 (m

 N
G

VD
)

Wave Height
Depth



 111

Figure 5-6. Cross-shore distribution of longshore currents, SIS Transect 15 

 

X = 162 m.  Figure 5-7 shows average longshore current for SIS 19, which had 

significantly higher velocities. The increase in longshore current was more dramatic 

across the surf zone than shown for SIS 15, especially between X = 540 m and 

X = 320 m.  A less severe increase was observed between X = 320 m and X = 238 m.  

The current decreased sharply shoreward of this station, but remained southerly directed.  

Figure 5-8 shows a shoreward increasing trend of longshore sediment flux for 

SIS 15, with maximum transport occurring at X = 198 m.  No sediment transport 

measurement was made at X = 162 m where currents were to the north.  The peak in 

transport at X = 320 m cannot be readily explained and may be considered a suspect 

point.  Transport was an order magnitude or greater for SIS 19 (Figure 5-9).  Sediment  
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Figure 5-7. Cross-shore distribution of longshore currents, SIS Transect 19 

 

Figure 5-8. Cross-shore distribution of longshore sediment flux, SIS Transect 15 
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Figure 5-9. Cross-shore distribution of longshore sediment flux, SIS Transect 19 

 

flux increased steadily with some variation from X = 540 m to X = 238 m.  A sharp 

increase in longshore transport occurred at X = 195 m (directly shoreward of the break 

point), and transport decreased shoreward of this location. No transport measurement 

was obtained at X = 125.0 m. 
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CHAPTER VI 

COMPARISON OF SELECTED AVAILABLE TRANSPORT MODELS TO 

LABORATORY AND FIELD DATA 

 

Total Load Transport Models 

 

Total longshore sediment transport rates from the LSTF and SIS were compared to 

the CERC formula, and to the models of Bailard (1984), Ozhan (1982), Kamphuis 

(1991), and Madsen et al. (2003). The CERC formula estimates sediment transport based 

on energy flux at wave breaking.  Bailard (1984) and Ozhan (1982) each developed a 

method to compute the K-coefficient in the CERC formula.  Kamphuis (1991) developed 

an empirical formula based on small-scale laboratory and field data.  Madsen et al. 

(2003) separately estimated bed load and suspended load transport based on energy flux 

with a coupled hydrodynamic and sediment transport model.  

 

LSTF Data Comparison 

Longshore sediment transport measurements obtained from the four LSTF tests 

(Chapter IV) were compared to selected existing total load models.  Input parameters for 

these equations are listed in Table 4-1.  The values in the table represent averages of the 

individual cases of each test condition. 

For the LSTF tests, the main breaker line was determined as the location at which a 

significantly steep rate of wave-height decay initiated.  This criterion was based on the 
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comprehension that a significant wave-energy loss, and, consequently, a significant 

wave height decrease, should follow dominant wave breaking.  Visual observations 

during the LSTF tests supported the above determination.  Therefore, Hsb and hb were 

obtained from the gauge located at the onset of significant wave-energy loss. 

Breaker angle was measured visually using the digital compass in an electronic total 

station transit, which was positioned on the data-collection bridge and located over the 

mean breaker line.  Approximately 20 breaker angles were measured during each 

transect of a wave case.  An overall average, for all the wave runs for each wave 

condition, was computed to represent the breaker angle.  Wave angles can be calculated 

from the orbital velocities of ADVs; however, the small oscillatory longshore 

component relative to the steady longshore current and the precision required in 

positioning the instruments make it difficult to obtain accurate wave angles directly from 

these instruments (Johnson and Smith 2005). 

Kamphuis (2002) redefined the beach slope entering the Kamphuis (1991) equation 

as the slope that causes breaking, i.e., the slope over one or two wavelengths offshore of 

the breaker line.  However, the slope offshore of breaking in the LSTF is somewhat 

artificial because of the physical model limits.  Therefore, in the present study, m is 

defined as the slope from the breaker line to the shoreline originally proposed by 

Kamphuis (1991). 

Total longshore transport rate was computed by summing the sediment flux 

measured in all of the traps, and averaging the rates of the cases performed for each test. 

The values presented are given in immersed deposited sand volume assuming a porosity 
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of 40 percent. Measured transport rates are given in Table 6-1 along with the predicted 

values of the selected models.  

 

Table 6-1. Measured and predicted LSTF total longshore transport rates 

Experiment 
Number 

Measured 
m3/yr 

CERC 
Formula 
(K=0.39) 

m3/yr 
Bailard 
m3/yr 

Ozhan 
m3/yr 

Kamphuis 
m3/yr 

Madsen 
m3/yr 

1 2,660 21,350 10,660 4,470 2,390 6,630 

3 7,040 23,100 14,570 25,830 6,060 8,350 

5 1,130 8,400 4,500 3,010 1,010 2,090 

6 4,040 12,040 5,250 15,430 3,160 5,000 
 

 

If the recommended K-value of 0.39 is used, the CERC formula over-predicted 

measured values from the spilling cases by a factor of 8 for Test 1 and nearly 7 for 

Test 5.  Overestimates were greater than a factor of 3 for both plunging wave tests.  The 

CERC formula produced similar estimates for Test 1 and Test 3 because they have 

similar breaking wave heights, although the breaker type differed.  Measured transport 

rates were nearly 3 times greater for Test 3 (plunging) than Test 1 (spilling) and more 

than 3 times greater for Test 6 (plunging) than Test 5 (spilling).  

Predictions using the method of Bailard (1984), which includes grain size in the 

computation of K, gave better estimates than the CERC formula.  However, differences 

ranged from 30 percent (Test 6) to 300 percent (Tests 1 and 5).  It should be noted that 

the relationship of Bailard (1984) was developed based on sediment fall speeds between 
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0.025 and 0.205 m/s, breaker angles between 0.2 and 15 deg, and maximum horizontal 

orbital velocities between 0.33 and 2.83 m/s.  The LSTF parameters of θb and umb are 

within the ranges given by Bailard.  The fall speed was obtained by a formula of 

Hallermeier (1981) for the LSTF grain size of 0.15 mm and was calculated to be 

0.018 m/s, which is lower than the minimum valid value given by Bailard (1984).  

However, estimates of longshore sediment transport were made with the CERC formula 

with K estimated by Bailard for the purpose of comparison. 

The Ozhan (1982) equation produced better agreement with the spilling tests than the 

CERC formula and the Bailard (1984) equation, although it overestimated Test 1 by 

68 percent and Test 5 by 167 percent.  The equation gave the largest estimates for the 

plunging cases for the models examined; an overprediction of 267 percent for Test 3 

measurements and 282 percent for Test 6 measurements.  The Ozhan equation’s 

dependence on wave steepness yielded correct results for the higher transport rates for 

plunging waves, but it appears to be overly sensitive to the parameter.  

Results using the Kamphuis (1991) formula produced more consistent estimates with 

the LSTF measurements; differences ranged between 10 percent for Test 1 to 22 percent 

for Test 6.  The improved estimates of Kamphuis (1991) can in part be attributed to the 

incorporation of wave period, which influences breaker type.  

The Madsen et al. (2003) equation greatly overpredicts Test 1 measurements and 

slightly overpredicts measurements for the remaining tests.  The coefficients Madsen et 

al. provided were based on a limited comparison, and they stated that it is premature to 

accept its quantitative validity.  
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Influence of Breaker Type on Total Load Transport 

Saville (1950) observed that for laboratory waves of identical energy levels, greater 

longshore transport rates occurred for waves having lower wave steepness.  Ozhan 

(1982) found similar results in a laboratory study.  Breaker type is a function of wave 

steepness, and lower steepnesses indicate plunging breakers.  In summarizing a review 

of longshore sediment transport literature, Bodge and Dean (1987) stated that longshore 

sediment transport should somehow depend upon the breaker type, as concluded, for 

example by Kana (1977) and Kamphuis and Readshaw (1978).  The results shown in 

Table 6-1 support these conclusions and indicate that in addition to wave height, breaker 

type is a factor that determines the longshore sediment transport rate. 

Smith et al. (2003) evaluated the CERC formula based on breaker type for LSTF 

data.  If measured transport rates from Test 1 were used to calibrate the CERC formula, 

then K = 0.05.  Applying this coefficient to the wave conditions of the lower energy 

spilling case (Test 5) gave a transport rate of 1,080 m3/yr, or a 5 percent difference from 

the measured rates.  Likewise, if the CERC formula was calibrated with transport rates 

from Test 3, then K = 0.13.  Applying this coefficient with wave conditions of the lower 

energy plunging case (Test 6), a transport rate of 3,700 m3/yr was calculated, or an 

8 percent difference compared to measured rates.  The improved rates are illustrated in 

Figure 6-1, which shows calculated CERC formula predictions with calibrated K-values 

versus measured transport rates. The solid line in the figure represents perfect prediction.  

Additionally, CERC formula estimates with K = 0.39 and estimates from Kamphuis  
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Figure 6-1. Comparison of calculated to measured transport rates 

 

(1991) and Madsen et al. (2003) are included.  The figure indicates that the CERC 

formula gives reasonable estimates if K is calibrated to a lower value, and it is applied to 

similar breaker types.  Wang and Kraus (1999) measured longshore transport rate in the 

surf zone of a low energy beach and found K-values ranging from 0.044 to 0.541 for low 

energy conditions (0.14 m < Hrmsb < 0.38 m).  The K-values calculated for the LSTF test 

conditions are within the range of values found by Wang and Kraus. 

For most engineering projects, reliable historical data are not usually available to 

calibrate K.  An alternative solution to estimate K at these locations is to use shoreline 

change data to estimate the LST rate for such a calibration.  Also, if historical transport 

data are available at another site that has similar wave conditions, sediment grain sizes, 
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and bathymetry it may be applicable for calibration, although this introduces greater 

uncertainty.  

The Kamphuis (1991) equation, which includes wave period, a factor that influences 

breaker type, predicted measured rates well for the LSTF tests.  The Kamphuis equation 

gives transport rate as a function of H2, whereas transport rate using the CERC formula 

is a function of H5/2.  For higher waves, the Kamphuis equation will give significantly 

lower values than the CERC formula, and it is unclear if the Kamphuis formula will give 

accurate results for high-energy conditions – for which the longshore transport rate will 

be greatest during the year.  

The Madsen et al. (2003) equation overpredicted the Test 1 measurements, but 

transport estimates for the other tests have the same slope as measurements for 

increasing longshore transport (Figure 6-1).  This consistency in slope supports their 

conclusion that the form of their equation is valid.   

 

SIS Field Data Comparison 

Longshore sediment transport measurements obtained from SIS 15 and SIS 19 were 

compared to the selected models.  The input variables used in the models are given in 

Table 5-1.  It should be noted that neither of the cases presented have plunging breaker 

types.  During this particular storm, only spilling-type breakers occurred.  

Breaker height and depth were determined in the same manner as for the LSTF data; 

the location at the onset of a significant loss in wave energy.  Data from the FRF 

directional wave gauge at the 8-m depth were transformed with Snell’s law to calculate 
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the wave angle at the cross-shore station where significant wave energy was lost.  Total 

longshore transport rate was obtained by summing the cross-shore contributions. It 

should be noted that measured transport rates were calculated between the measurements 

stations, and did not include contributions of the entire swash zone. 

Measured and predicted transport rates are shown in Table 6-2. The CERC formula, 

Bailard (1984) model, and Ozhan (1982) model overestimated SIS 15 measurements by 

an order of magnitude.  The Kamphuis (1991) equation overpredicted measurements by 

a factor of 4, and Madsen et al. (2003) overestimated by a factor of 2.4.  The CERC 

formula and Ozhan estimates gave better estimates for SIS 19 measurements, but both 

overpredicted by a factor of nearly 2. The Bailard model overestimated measurements by 

a factor of 6.5.  The Kamphuis and Madsen et al. gave the closest predictions; however, 

both underestimated measurements, Kamphuis by 25 percent and Madsen et al. by 40 

percent. 

 

Table 6-2. Measured and predicted SIS total longshore transport rates 

Transect 
Number 

Measured 
x106 m3/yr 

CERC 
Formula 
(K=0.39) 

x106 

m3/yr 

Bailard 
x106 

m3/yr 

Ozhan 
x106 

m3/yr 
Kamphuis 
x106 m3/yr 

Madsen 
x106 

m3/yr 
15 0.11 1.23 4.17 1.42 0.44 0.26 

19 2.25 4.33 14.58 4.11 1.67 1.33 
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Summary of Total Load Transport Model Comparison 

Models based on energy flux at breaking, the CERC formula with recommended 

K-value, the Bailard (1984) model, and Ozhan (1982) model, yielded overpredictions for 

both laboratory and field data.  It was found that if K was calibrated and applied to 

similar breaker types, the CERC formula gave excellent results.  Bailard and Ozhan each 

developed a method based on laboratory data to estimate the CERC formula K 

coefficient. These models gave better estimates than the CERC formula for the LSTF 

data.  However, both the Bailard and Ozhan models produced similar (Ozhan) or greater 

overpredictions (Bailard) than the CERC formula in comparisons to the field data.   

The Kamphuis (1991) and Madsen et al. (2003) models gave more consistent results 

for both the laboratory and field data.  One of the common criticisms of the Kamphuis 

equation is that it greatly underpredicts field measurements; however, that was not 

observed in the present comparison.  Madsen et al. indicated that the coefficients for 

their equation are preliminary and still being developed, although the coefficients used 

gave acceptable results.  

 

Distributed Transport Models 

 

Cross-shore distribution models of Bodge and Dean (1987), Watanabe (1992), and 

Van Rijn (1993) were selected to compare to the laboratory and field data.  The selected 

models represent different approaches and degrees of difficulty.  The Bodge and Dean 

model, a wave-energetics model, and the Watanabe model, a stress model, are 
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straightforward and can be applied with ease.  The Van Rijn equations are 

comprehensive and more complicated to use.  Van Rijn provided a program to compute 

sediment transport rates; however, an adequate understanding of littoral processes and 

Van Rijn’s model are necessary in applying the model appropriately.   

 

Bodge and Dean (1987) Model 

The Bodge and Dean (1987) model is a function of energy dissipation and the 

original form of the equation, Equation 2-51, includes the bottom slope term as 

(dh/dx)0.5.  The model was applied to LSTF sediment transport data with the 

recommended laboratory value of kq of 0.057.  Figure 6-2 shows the equation followed 

the general trend of the Test 1 measurements.  However, predictions fluctuated greatly 

for the spilling wave case.  Predictions were underestimated for the Test 3 measurements 

(Figure 6-3), and no transport was reported in the trough of the breakpoint bar. The 

model is based on energy dissipated and will predict no transport where no dissipation 

occurs, i.e., increasing depths or increasing wave height.  The model predicted the 

spilling wave results of Test 5 well (Figure 6-4).  Estimates were slightly high in the 

outer portion of the surf zone and slightly low in the inner portion.  The model 

underpredicted Test 6 measurements and did not capture the peak in transport near 

breaking because the slope term was negative (Figure 6-5).   

Inclusion of the slope term in the Bodge and Dean (1987) model predicted the trend 

of distributed longshore transport well for the laboratory spilling waves. The model was 

sensitive to changes in energy flux, which caused fluctuations in the transport estimates  
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Figure 6-2. Bodge and Dean (1987) estimates (with slope term)  
compared to Test 1 measurements 

 
Figure 6-3. Bodge and Dean (1987) estimates (with slope term)  

compared to Test 3 measurements 
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Figure 6-4. Bodge and Dean (1987) estimates (with slope term)  
compared to Test 5 measurements 

 
Figure 6-5.  Bodge and Dean (1987) estimates (with slope term)  

compared to Test 6 measurements 
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that were not measured. The model underpredicted transport with plunging waves.  

Breakpoint bars are associated with plunging waves, and longshore transport is large in 

the trough of the bar.  However, the slope is negative from the bar crest to bar trough, 

and the Bodge and Dean (1987) model with the slope term does not estimate transport if 

bottom slope is negative.  

Bodge (1989) later suggested omitting the slope term of Bodge and Dean (1987) 

because scaling effects in the laboratory may have exaggerated the relationship between 

beach slope and sediment transport, Equation 2-52.  This version of the model was 

compared to longshore sediment flux measurements of the LSTF with kq = 0.057.  The 

resultant model significantly overpredicted Test 1 measurements (Figure 6-6).  The 

model estimated the trend of the Test 3 sediment distribution, but slightly overestimated 

the peak near breaking and greatly overpredicted transport shoreward of breaking 

(Figure 6-7).  Test 5 measured transport rates were greatly overpredicted and did not 

follow the trend well (Figure 6-8).  Measurements of Test 6 were overpredicted, 

although the model estimated a peak near breaking (Figure 6-9). 

The suggested form of the Bodge and Dean (1987) overestimated longshore 

sediment transport rates for all of the LSTF tests.  However, exclusion of the slope term 

produced a peak near breaking of the plunging wave cases.  The coefficient kq was 

reduced to 0.01 and compared to the LSTF tests.  Figure 6-10 shows the Bodge and 

Dean equation results with the reduced coefficient compared to Test 1 measurements. 

Predictions were similar to those obtained with the model including the slope term; the 

model estimated the general trend of the distribution, but yielded fluctuations in  
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Figure 6-6.  Bodge and Dean (1987) estimates compared to Test 1 measurements 

 
Figure 6-7.  Bodge and Dean (1987) estimates compared to Test 3 measurements 
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Figure 6-8. Bodge and Dean (1987) estimates compared to Test 5 measurements 

 

 
Figure 6-9. Bodge and Dean (1987) estimates compared to Test 6 measurements 



 129

Figure 6-10. Bodge and Dean (1987) estimates compared to Test 1 measurements (kq = 0.01) 

 

transport rates.  The model estimated a peak in transport near breaking of the Test 3 

plunging waves test (Figure 6-11).  However, all predictions underestimated the 

measurements.  Estimates with Test 5 were slightly overpredicted, although the model 

predicted the general trend of the measurements (Figure 6-12).  In general, estimates 

were good for Test 6 waves (Figure 6-13).  A peak in transport near breaking was 

predicted, although the measurements were underestimated. 

Reducing the coefficient kq to 0.01 improved predictions with the Bodge and Dean 

(1987) model that excluded the slope term.  Predictions were similar to the original 

model that included the slope term and kq = 0.057.  In addition, dropping the slope term  
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Figure 6-11. Bodge and Dean (1987) estimates compared to Test 3 measurements (kq = 0.01) 

 

 
Figure 6-12. Bodge and Dean (1987) estimates compared to Test 5 measurements (kq = 0.01) 



 131

Figure 6-13. Bodge and Dean (1987) estimates compared to Test 6 measurements (kq = 0.01) 

 

from the equation allowed peaks in transport to be estimate in the trough of breakpoint 

bars.  However, the model was very sensitive to changes in energy flux.  

Equation 2-51, the form of the equation suggested by Bodge (1989), was compared 

to field measurements.  The model was applied to SIS 15 and SIS 19 transects with the 

recommended field value of the coefficient, kq = 0.48, Figures 6-14 and 6-15, 

respectively.  Predictions greatly overestimated measurements by an order of magnitude 

for both transects.  The model also was applied with the coefficient kq reduced to 0.04 

(Figures 6-16 and 6-17).  Estimates of longshore transport were improved; however, the 

figures illustrate the sensitivity of the equation to change in energy flux.   

 



 132

Figure 6-14. Bodge and Dean (1987) estimates compared to SIS 15 measurements 

 

 
Figure 6-15. Bodge and Dean (1987) estimates compared to SIS 19 measurements 
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Figure 6-16. Bodge and Dean (1987) estimates compared to SIS 15 measurements  (kq = 0.04) 

 

 
Figure 6-17. Bodge and Dean (1987) estimates compared to SIS 19 measurements  (kq = 0.04) 
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Watanabe (1992) Model 

The Watanabe (1992) model, Equation 2-53, is based on the exceedance of the 

critical shear stress by the averaged bottom shear stress due to waves and currents.  The 

model was applied to the LSTF tests with the coefficient A = 2.0.  Transport was 

predicted for only the most shoreward ADV location for Test 1 conditions (Figure 6-18) 

because the time-averaged bottom shear stress only exceeded critical shear at that 

location.  A similar result occurred if the equation was compared to Test 3 measurements 

(Figure 6-19).  No transport was predicted for Test 5 and Test 6.  The model failed when 

comparing to the laboratory data because it only estimates transport where the time-

averaged bottom shear stress exceeds the critical shear.  Adjustment of the coefficient  

 

 
Figure 6-18. Watanabe (1992) estimates compared to Test 1 measurements 
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Figure 6-19. Watanabe (1992) estimates compared to Test 3 measurements 

 

will not produce estimates where critical shear stress is not exceeded by the time-

averaged bottom shear stress.  For example, A was increased to 30 and compared to 

Test 1 measurements (Figure 6-20).  The model estimated the measurement at the 

shoreward-most ADV, which was the only location the model predicted transport.  

Bottom shear stresses are much greater in the field; therefore, the Watanabe (1992) 

model should perform better when applied to the SIS data.  In contrast to the laboratory 

data, the model estimated transport at all cross-shore locations for SIS 15 and SIS 19, 

shown in Figures 6-21 and 6-22, respectively.  However, the equation overestimated 

measurements of both transects by an order of magnitude.  Reducing the coefficient to 

A = 0.25 improved estimates with SIS 15 (Figure 6-23).  The form of the distribution  



 136

Figure 6-20. Watanabe (1992) estimates compared to Test 1 measurements (A = 30) 

 

 
Figure 6-21. Watanabe (1992) estimates compared to SIS 15 measurements 
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Figure 6-22. Watanabe (1992) estimates compared to SIS 19 measurements 

 

 
Figure 6-23. Watanabe (1992) estimates compared to SIS 15 measurements (A = 0.25)  
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was modeled well, but the formula underpredicted measurements shoreward of 

X = 350 m.  The model predicted the distribution of SIS 19 measurements well 

(Figure 6-24).  However, the equation did not model the peak in transport at breaking 

and showed a decrease in transport at the location. 

 
Figure 6-24. Watanabe (1992) estimates compared to SIS 19 measurements (A = 0.25)  

 

The Watanabe (1992) model estimated the field data generally well if the coefficient 

A was reduced to 0.25.  However, it did not model the peak in transport observed at 

breaking for SIS 19.  The time-averaged bottom shear stress computed from the 

laboratory data did not exceed the critical shear stress, which caused the model to fail in 

predicting transport.  The Watanabe model shows the capability of reproducing the 

general trend of the field data, but because of its failure to predict the transport 



 139

measurements in the laboratory, it appears that application of the mean value of bottom 

shear stress should not be used in equations involving critical shear stress for laboratory 

applications.  More generally, this observation indicates there is a substantial scaling 

distortion for small-scale and even mid-scale laboratory experiments, where the bottom 

shear stress based on mean currents rarely exceeds the critical value for sediment 

motion.  Therefore, one would expect relatively substantial bedload transport, perhaps 

by saltation, as compared to suspended sediment transport, in contrast to the opposite 

situation expected in the field (Dean 1985; Madsen et al. 2003).   

 

Van Rijn (1993) Model 

In addition to hydrodynamic forcing conditions, application of the Van Rijn (1993) 

model requires knowledge of the grain size distribution, bed forms, and dimensions of 

the bed forms, i.e., ripple height and length, to compute roughness coefficients. 

Predictions of the Van Rijn model compared to the Test 1 measurements are shown in 

Figure 6-25.  The model overestimated measurements offshore of X = 9 m and 

underestimated measurements between X = 7 m and X = 9 m.  Measurements in the 

swash zone were slightly overpredicted.  With exception of the underestimated points, 

the model predicted the general form of the distribution.  Estimates generally compared 

well to the Test 3 measurements (Figure 6-26), although the peak in transport near 

breaking was underestimated.  Also included in the plot is a point, denoted by a circle, 

which shows estimated transport rate using a rippled bed form to calculate bed  
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Figure 6-25. Van Rijn (1993) estimates compared to Test 1 measurements 

 

 
Figure 6-26. Van Rijn (1993) estimates compared to Test 3 measurements 
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roughness at the Test 3 breakpoint bar.  Rippled bed forms were present at all locations 

in the LSTF tests, with the exception of where sheet flow occurred: the swash zone of 

each test and in the trough of the Test 3 breakpoint bar.  If a rippled bed form was 

assumed for all cross-shore locations, the peak in transport near breaking would be 

greatly underestimated and not correctly simulated.  This illustrates the requirement of 

understanding the local littoral processes to achieve accurate results when applying 

theVan Rijn model.  The model estimated the trend of the Test 5 distribution, but 

overpredicted measured transport at most cross-shore locations (Figure 6-27).  Test 6 

estimates were lower than measurements (Figure 6-28), although the model predicted a 

broad peak in transport near breaking. 

 

 
Figure 6-27. Van Rijn (1993) estimates compared to Test 5 measurements 
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Figure 6-28. Van Rijn (1993) estimates compared to Test 6 measurements 

 

Results of the Van Rijn (1993) model greatly overestimated SIS 15 and SIS 19 field 

measurements (Figures 6-29 and 6-30, respectively).  Although there are no explicit 

empirical coefficients to adjust, the results were reduced by a factor of 50 to compare the 

predicted distribution of sediment transport with measurements.  The reduction produced 

slightly underestimated results when compared to SIS 15, but the form of the distribution 

was predicted well (Figure 6-31).  The model also predicted the distribution of SIS 19 

measurements well, although estimates were slightly higher than measurements 

(Figure 6-32).  The peak in transport near breaking was significantly lower than the 

measurement and located slightly offshore. 
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Figure 6-29. Van Rijn (1993) estimates compared to SIS 15 measurements 

 

 
Figure 6-30. Van Rijn (1993) estimates compared to SIS 19 measurements 
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Figure 6-31. Van Rijn (1993) estimates reduced by 50 compared to SIS 15 measurements 

 

 
Figure 6-32. Van Rijn (1993) estimates reduced by 50 compared to SIS 19 measurements 
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The Van Rijn (1993) model predicted LSTF laboratory sediment transport 

distribution well, but greatly overpredicted field measurements of the SIS.  However, the 

model predicted the form of longshore sediment distribution well, and reducing the field 

estimates by 50 gave reasonable estimates. 

 

Summary of Distribution Models 

The Bodge and Dean (1987) energetics model was sensitive to fluctuations in energy 

dissipation and often predicted peaks in transport that were not present in the data, an 

observation noted by Smith and Wang (2001).  Because the equation is based on energy 

dissipation, no transport is predicted if waves shoal.  If the slope term is included in the 

equation, transport cannot be predicted at the trough of a breakpoint bar, where bottom 

slope is negative between the bar crest and trough.  

The Watanabe (1992) equation predicted transport for only one cross-shore location 

in two of the LSTF tests, and gave no transport at any location for the other two tests. 

The time-averaged bottom stress did not exceed the critical shear stress at the majority 

cross-shore locations, resulting in no transport estimates.  Therefore, time averaged 

bottom stresses are evidently not adequate for a model that involves critical shear stress 

or critical velocity for inception of sediment motion.  The model estimated the field data 

well if the empirical coefficient was reduced by a factor of 8 from 2.0 to 0.25.  The 

distribution was estimated well, but the model did not predict the peak in transport near 

breaking with transect SIS 19. 
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The Van Rijn (1993) model estimated the laboratory data well, but overestimated the 

field data by a factor of approximately 50.  The model estimated the distribution of the 

field data, but underestimated the peak near the breakpoint of SIS 19.  The model is 

comprehensive, and the input requires detailed information of the bed at each cross-

shore location to produce accurate estimates. 

Each of the selected models examined has shortcomings.  Comparison of the Bodge 

and Dean (1987) model to laboratory and field data indicates that energetics models are 

sensitive to energy dissipation.  The Van Rijn (1993) model is complex and requires 

information on many parameters.  Accurate estimates cannot be made quickly with the 

Van Rijn model.  The main disadvantage of the Watanabe (1992) model is that it applies 

a time-averaged bottom shear stress in excess of the critical shear to compute longshore 

sediment transport.  A more appropriate model would incorporate the fluctuations in 

bottom shear to predict transport, and this type of model will be discussed in the 

following chapter.  However, the Watanabe model is theoretically correct in 

incorporating a critical shear stress for inception of sediment motion.  In fact, such an 

assumption, from a theoretical point of view, is implied in all sediment transport 

formulas.   
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CHAPTER VII 

NEW LONGSHORE SEDIMENT TRANSPORT MODELS 

 

Introduction 

 

The predictive models evaluated in Chapter VI did not perform well in comparisons 

to high-quality laboratory and field data.  Therefore, an examination of transport 

mechanics from a more basic approach was warranted, and this work is described in this 

chapter. 

Improvements to modeling the cross-shore distribution of longshore sediment flux, 

leading to new types of predictive formulas, were based on the premise that transported 

sediment is first mobilized by the total shear stress acting on the bottom and then 

transported by the current at that location.  Madsen (1991) stated that any model of 

sediment response to fluid forces that relies on the mean turbulent flow characteristics is 

limited to be conceptual.  The shear stress, including the turbulent component together 

with the mean value, can be calculated from the wave orbital velocity measured with the 

ADVs installed in the LSTF and EMCMs deployed in the SIS.  The concept of including 

the turbulent component was motivated by the findings of Kraus et al. (1988), who 

demonstrated that trends in prediction of the local longshore sediment transport rate in 

the surf zone improved by including the dissipation by waves and standard deviation in 

the longshore current velocity, both of which increase turbulent fluctuations in the water 

and on the bed.   
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The first step in developing the transport models was to determine if shear stresses 

computed from the wave orbital velocities would produce a distribution representative of 

the distribution of longshore sediment flux.  Figure 7-1 shows the standard deviation of 

cross-shore wave orbital velocity σ(u) measured at the one-third depth from the bottom 

for each of the LSTF tests.  The distribution of σ(u) has a similar shape to longshore 

sediment transport rate (Figure 4-53).  The larger fluctuations in u associated with the 

plunging wave tests, Test 3 and Test 6, correspond to the peaks in sediment flux 

observed near breaking for those tests.  This comparison indicates that fluctuations in 

orbital velocities, or turbulence, lead to an increase in mobilized sediment, which then 

 

 
Figure 7-1. Standard deviation of cross-shore component of wave orbital velocities 
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can be transported by the longshore current.  This chapter describes models developed 

based on shear stresses computed from the time series of the LSTF ADVs, which 

includes the turbulent components of the orbital velocities.  The models are tested 

against both the laboratory data and the field data collected with the SIS.   

 

Definitions 

Development of the models assumes that the velocity records analyzed describe a 

stationary process, which implies that there is no systematic change in the mean or 

variance of the record if it is divided into smaller records.  To test this assumption, the 

velocity record of Test 1, Case 1, Y = 22 m was divided into quarters, and the cross-

shore orbital velocities were calculated.  The mean and standard deviation for each 

quarter segment are listed in Table 7-1. The mean and standard deviation of the entire 

record is defined as U and σ(u), respectively, and the subscripts 1 through 4 denote the 

statistic for each respective quarter segment.  Some variability is present, but the values 

are similar, and a systematic trend is not evident.  A small amount of variability is 

expected because the wave trains were random.   

The total cross-shore component of velocity can be written: 

 ( ) ( )u t U u t′= +  (7-1) 

where U = mean of u(t), and ( )u t′  is the turbulent or random component.  For a random 

Gaussian process: 
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0

1( ) ( ) 0
T

u t u t dt
T

′ ′= =∫  (7-2) 

Table 7-1.  Mean and standard deviation of u for Test 1, Case 1, Y = 22 m 
 

ADV 
U 

(m/s) 
U1 

(m/s) 
U2 

(m/s) 
U3 

(m/s) 
U4 

(m/s) 
σ(u) 
(m/s)

σ(u)1 
(m/s)

σ(u)2 
(m/s) 

σ(u)3 
(m/s) 

σ(u)4 
(m/s)

1 0.050 0.059 0.054 0.053 0.044 0.166 0.167 0.164 0.166 0.166

2 0.045 0.055 0.040 0.046 0.040 0.148 0.156 0.138 0.139 0.150

3 0.068 0.073 0.063 0.070 0.069 0.176 0.191 0.166 0.164 0.177

4 0.067 0.069 0.065 0.071 0.065 0.184 0.174 0.189 0.185 0.185

5 0.047 0.048 0.034 0.055 0.053 0.180 0.173 0.178 0.188 0.180

6 0.055 0.057 0.043 0.069 0.053 0.189 0.186 0.179 0.204 0.189

7 0.053 0.047 0.040 0.063 0.060 0.176 0.167 0.169 0.186 0.177

8 0.040 0.038 0.023 0.048 0.043 0.176 0.164 0.165 0.187 0.179

9 0.031 0.020 0.012 0.045 0.029 0.159 0.142 0.154 0.178 0.159

10 0.006 0.020 0.015 0.012 0.010 0.111 0.099 0.112 0.125 0.108
 

 

where T is the averaging interval that is taken as the wave period for monochromatic 

waves, and the triangular brackets denote a time average.  For random waves of many 

periods, T can be taken as the time length of the record, assuming a record encompassing 

many waves, but retaining stationarity.  A small bias may exist because of wave non-

linearity, undertow, and mass transport, as well as periodic and turbulent motions in 

nature or in the laboratory basin.  Equation 7-2 is a standard assumption in dealing with 

fluid turbulence.    

Similarly, the total longshore current velocity can be written as:  
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 ( ) ( )v t V v t′= +  (7-3) 

where V is the time mean of v(t), and ( )v t′  is the turbulent component.  For a random 

Gaussian process: 

 
0

1( ) ( ) 0
T

v t v t dt
T

′ ′= =∫  (7-4) 

 

Transport Rate Formulas 

Several transport formulas will be investigated, which can be expressed through the 

concept of:  

 q(t) = ST(t) x TR(t) (7-5) 

where q(t) is the time-dependent transport rate per unit length perpendicular to the 

transport, ST is a stirring function that mobilizes the sediment, and TR is a transporting 

function that moves the sediment (Kraus and Horikawa 1990).  All of these quantities 

are functions of time, t.  A critical shear stress or critical velocity will enter into either 

the Stirring Function or the Transporting Function, depending on the particular formula.  

Equation 7-5 must be averaged over the time record, with the average taken over the 

full expression, although the averages of each quantity on the right may be of interest in 

examining the physical processes of stirring and transport.  For example, one model is 

the time-mean of longshore transport rate:   

 ( )( ) ( )( )y cr yq K ST t TR tτ= −  (7-6) 
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where K = empirical parameter that may involve several dimensional quantities, 

depending on the particular stirring function, ST(t) and transporting function TRy(t).  The 

critical shear stress for inception of sand movement τcr is, based on the definition of the 

Shields parameter: 

 ( ) 50cr s w crgdτ ρ ρ θ= −  (7-7) 

in which ρw is density water (1,000 kg/m3 for the LSTF), ρs is density of sand (2,650 

kg/m3), g is acceleration due to gravity (9.806 m/sec2); d50 is median grain size of sand 

(0.00015 m for LSTF sand); and θcr is the critical Shields parameter for sediment 

motion, taken to be 0.08 here.  For the LSTF sand, Equation 7-7 gives τcr  = 0.12 kg 

m/sec2/m2 = 0.12 N/ m2.  

 

Power Expression 

Power law transport formulas have a long tradition in river transport and in coastal 

transport calculations.  A power law implies that water velocity cubed is the dominant 

process, signifying a relation to the power of the water movement.  This is generally 

called a Meyer-Peter and Muller formula (Meyer-Peter and Muller 1948), and we will 

adopt the Watanabe (1987) version that has found common applicability in the coastal 

community.   

The total shear stress exerted by the water on the sand bottom is: 

 ˆ ˆ( )tot x yt x yτ τ τ= +
r  (7-8) 

where the components are:    
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( )

22

2

( ) ( ) ( )
2 2

2 ( ) ( )
2

w f w f
x

w f
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t u t U u t

c
U u t U u t

ρ ρ
τ

ρ

′= = +

′ ′= + +2

 (7-9) 

and  

 
( )

( )

22

2

( ) ( ) ( )
2 2

2 ( ) ( )
2

w f w f
y

w f

c c
t v t V v t

c
V v t V v t

ρ ρ
τ

ρ

′= = +

′ ′= + +2

 (7-10) 

in which cf is the bottom friction coefficient with value on order of 0.005.  Equations 7-9 

and 7-10 must be evaluated numerically.   

The stirring function at a given time, ST(t), is for a Meyer-Peter and Muller velocity 

cubed sediment transport power law:  

 2 2( ) ( ) ( ) ( )tot x yST t t t tτ τ τ= = +
r  (7-11) 

The time average of this quantity over the record is:  

 2 2

1

1( ) ( ) ( )
N

tot x yST t t t
N

= = +∑rτ τ τ  (7-12) 

where N is the number of measurements in the velocity record producing the shear 

stresses.  The stirring function is the same for both the longshore and cross-shore 

components of transport, because any fluid motion that disturbs the bed will stir the 

sand.   
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For ease of reading, the explicit time-dependence notation (t) will be dropped if 

writing u′ and v′  and most other quantities.  The prime necessarily means time 

dependent, unless we take a mean or standard deviation over the record.   

For the longshore transport rate, the transporting function is:   

 ( )yTR t V v′= +  (7-13) 

The time average of this is:   

 ( )yTR t V v V′= + =  (7-14) 

because 0v′ = .  In other words, the mean of the transporting function is simply the 

mean velocity.  A similar expression for the cross-shore component is:  

  ( )xTR t U u′= +   (7-15) 

which should be small, at least in a depth-averaged sense, because U = 0 as a depth 

average.   

For the Watanabe (1987) version of the power law formula, the time-dependent 

longshore transport is:  

 

( ) ( )( ) ( )

( )( )

( )

2 2( ) ( ) for ( )

                           and
0 for 

y cr y

x y cr cr

cr

q t K ST t TR t

K t t V v ST t

ST t

τ

τ τ τ τ

τ

= −

′= + − + >

= ≤

 (7-16) 
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in which the coefficient K is given by:   

 
w

K
g

α
=
ρ

 (7-17) 

where α is a dimensionless empirical coefficient on order 0.1.  Therefore, K = 1.0 x 10-5 

for LSTF conditions.   

The time average longshore transport rate over the record is: 

 ( )
1

1 N

y yq q t
N

= ∑  (7-18) 

 

The units of qy are (“units of” denoted with braces): 

 
2 2

3 2

3

1 m 1 m[ ] ×kg ×kg m sec m sec
m sec

m
sec

yq K V⎡ ⎤ = ×τ × =⎣ ⎦

=

 (7-19) 

To compare data to the proposed model, the measured velocity must be sampled at a 

sufficiently high rate.  LSTF electronic instruments, including the ADVs, were sampled 

at 20 Hz, which is expected to adequately capture and represent random fluctuations of 

the wave orbital velocity.  For waves at the peak periods of 1.5 and 3.0 sec, 30 and 60 

shear stresses, respectively, would be computed in one wave period.  

The ADV records contained the total velocity components u(t) and v(t).  Fluctuations 

of these quantities were determined from the mean of the records and by Equations 7-1 

and 7-3: 
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 '( ) ( )u t u t U= −  (7-20) 

 

 '( ) ( )v t v t V= −  (7-21) 

 

The majority of velocity measurements were collected one-third of the depth from 

the bottom.  Although it would be more pertinent to consider only orbital velocities 

collected near the bottom, such data sets are lacking; no measurements were taken near 

the bottom for Test 6 and only one case was conducted with near-bottom measurements 

for the other three tests.  Additionally, the sand bottom was mobile, meaning that 

velocity measurements near the bottom would be more affected by the small changes in 

depth and are, in any case, difficult to make in setting instrument elevations many times 

through the surf zone.  Therefore, the one-third depth measurements were adopted for all 

comparisons for consistency between cases.  

The time series of totτr was calculated via Equation 7-12 for Test 1, Case 3, spilling 

waves at Y = 22k m.  The results are plotted in Figures 7-2 through 7-5, for ADVs 10, 7, 

4, and 1, respectively.  Critical shear stress also is plotted as a dashed line in the figures. 

At ADV 10, the most offshore ADV at X = 18.6 m, shear stress regularly exceeded τcr 

but often did not (Figure 7-2).  This result indicates that the sand in the LSTF for this 

location was only occasionally mobilized for transport, so the transport rate is expected 

to be small.  The magnitudes of total shear stress were much higher at ADVs 7 and 4, 

X = 13.13 m and X = 8.73 m, respectively, and transport rates would be expected to be 

greater at these cross-shore locations.  Figure 7-5 shows that shear stress magnitudes 
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Figure 7-2. Time history of τtot at ADV 10, Test 1 Case 1, Y = 22 m 

 

 
Figure 7-3. Time history of τtot at ADV 7, Test 1 Case 1, Y = 22 m 
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Figure 7-4. Time history of τtot at ADV 4, Test 1 Case 1, Y = 22 m 

 

 
Figure 7-5. Time history of τtot at ADV 1, Test 1 Case 1, Y = 22 m 
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were smaller at ADV 1, X = 4.13 m, than ADVs 4 and 7, but τcr was exceeded more 

frequently, i.e., sand was mobilized to be transported more frequently at ADV 1 than at 

the other locations shown.  This calculated greater mobilization correlates to the cross-

shore distribution of sediment flux observed for this case (Figure 4-17).    

The original Watanabe (1992) model included only the mean shear stress in the 

longshore transport equation.  The equation predicted no transport at most of the cross-

shore locations because the shear stress did not exceed the critical shear stress 

(Figures 6-18 and 6-19).  However, Figures 7-2 through 7-5 show that the total velocity 

components, which include the turbulent components u’ and v’, produce a shear stress 

that frequently exceeds the critical shear.  Therefore, accounting for turbulence appears 

to be essential for reproducing longshore sediment transport measurements in the surf 

zone under different types of breaking waves.  

  

Comparison to LSTF Data 

 

Model 1 

Predicted transport rates using Equation 7-16 were compared to LSTF data for 

ST(t) > τcr, and q(t) = 0, if the stirring coefficient was less than τcr.  It was found that 

predicted transport rates followed the trend of the measurements if a coefficient was 

applied to Equation 7-16 as: 

 1 1y yq f q=  (7-22) 
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where qy is calculated longshore sand transport rates using Equations 7-16 and 7-18, and 

f1 is a coefficient equal to 40.  The coefficient f1 and subsequent coefficients were chosen 

as those that best described the transport rate measurements from all four test cases. 

Predicted longshore transport rates for Test 1, Case 1, between transects Y = 18 m 

and Y =30 m are shown with measured values in Figure 7-6 (erroneous ADV results 

were omitted).  Predicted rates were lower than measured values, but the shape of the 

distribution was similar to measured transport rates (qmeas) in the surf zone.  In the swash 

zone, predictions showed an increase in transport, whereas measurements generally 

decreased in the swash zone. 

Test 1, Case 2, predictions are shown in Figure 7-7.  Several ADVs were omitted 

because of erroneous results; however, predictions for valid measurements were similar 

in quality to those of Test 1, Case 1.  Both measurements and predictions show increased 

transport in the swash zone, which was not the case for Test 1, Case 1, where predictions 

increased, and qmeas decreased in the swash zone 

One transect was obtained in which ADV measurements were acquired at the one-

third depth for Test 1, Case 3.  Predictions from Y = 22K, shown in Figure 7-8, were 

slightly smaller, but similar to the two other Test 1 cases.  The predicted values showed 

the same trend as measurements in general, including an increase in transport in the 

swash zone 

Predictions of Test 1, Case 1, longshore transport rates were similar to predictions of 

the other two cases; however, qmeas differs between Test 1, Case 1, and the subsequent 

cases.  As mentioned in Chapter IV, the downdrift boundary was not adjusted in the  
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Figure 7-6. Model 1 longshore transport rate estimates compared to Test 1, Case 1, 
measurements 

 
Figure 7-7. Model 1 longshore transport rate estimates compared to Test 1, Case 2, 

measurements 
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Figure 7-8. Model 1 longshore transport rate estimates compared to Test 1, Case 3, 
measurements 

 

swash zone vicinity during Test 1, Case 1, which may be the source of this discrepancy. 

For this reason, it is judged that the swash zone transport measurements for Test 1, 

Case 1, are erroneous, and subsequent comparisons with Test 1, Case 1, predictions are 

made with Test 1, Case 3, longshore sand flux measurements.  

Figure 7-9 shows predicted transport rates of Test 3, Case 1.  The predicted 

distribution of longshore transport had the same general form of longshore transport 

measurements; a peak in transport occurred near the breakpoint, and transport was fairly 

uniform through the surf zone.  However, predicted transport near the breakpoint was 

much smaller than the measurements.  Predicted rates were slightly greater than the 

measured rates in the inner surf zone. 
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Figure 7-9. Model 1 longshore transport rate estimates compared to Test 3, Case 1, 
measurements 

 

No velocity measurements were taken at the one-third depth for Test 3, Case 2. 

Estimates of longshore transport rates for Test 3, Case 3, were similar to predictions 

using Test 3, Case 1, data (Figure 7-10).  The model showed a peak near the breakpoint 

that was significantly smaller than the measurements; however, predicted transport rates 

in the surf zone shoreward of breaking matched the measurements well. 

Longshore sediment transport rate estimates of Test 5, Case 1, are shown in 

Figure 7-11.  The predictions matched measurements well through the outer surf zone, 

but underpredicted the measurements in the inner surf zone.  However, predictions 

showed an increase in transport in the swash zone, which agreed with the trend of the 

measurements. Similar results are shown for Test 5, Case 2 (Figure 7-12).  
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Figure 7-10. Model 1 longshore transport rate estimates compared to Test 3, Case 3, 
measurements 

 
Figure 7-11. Model 1 longshore transport rate estimates compared to Test 5, Case 1, 

measurements 
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Figure 7-12. Model 1 longshore transport rate estimates compared to Test 5, Case 2, 
measurements 

 

One transect was performed during Test 5, Case 3, with measurements obtained at 

the one-third depth.  Estimates of the transport rate were slightly greater than measured 

transport rates and the estimates obtained for Test 5, Case 1 and Case 2, but swash zone 

predictions were predicted well (Figure 7-13). 

Predicted Test 6, Case 1, transport rates underestimated measurements, but the 

distribution had a similar shape to measured values (Figure 7-14).  The peak in transport 

near breaking was underpredicted significantly for the Test 6 plunging breakers, as was 

the result for the Test 3 plunging breakers. 

In summary, estimates of longshore sand transport with Model 1 gave the general 

shape of the measured cross-shore distribution.  For plunging waves, predictions showed  
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Figure 7-13. Model 1 longshore transport rate estimates compared to Test 5, Case 3, 
measurements 

 
Figure 7-14. Model 1 longshore transport rate estimates compared to Test 6 measurements 
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a peak in transport near the breakpoint, but the estimated rates were greatly 

underpredicted.  Shoreward of breaking, the model predicted longshore transport rates 

well with Test 3 waves, but overpredicted Test 6 waves.  Estimates predicted Test 5 

transport rates well, but Test 1 estimates underpredicted the measurements for a given 

test condition.  

The results showed that individual transects of each wave condition gave similar 

predictions.  Because results did not differ significantly between transects, it was 

determined that measurements at one representative transect were sufficient to compare 

to the model calculations. 

 

Model 2 

Model 1 predicted the general shape of the cross-shore distribution of longshore 

sediment transport.  However it did not well estimate transport near the breakpoint that is 

associated with the plunging breaker tests.  The Model 1 equation was modified in an 

attempt to better predict transport at breaking, as: 

 
( ) ( )( ) ( ) ( )

( )

2 2

2

for

and
( ) 0 for

y cr y cr

y cr

q t f p t u TR t p t u
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 (7-23) 

where f2 is a coefficient set to 0.001, ucr is the critical shear velocity for initiation of 

sediment motion defined as: 

 cr
cru τ

ρ
=  (7-24) 
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and p(t) is the magnitude of orbital velocity fluctuations given by: 

 2 2( ) '( ) '( )p t u t v t= +  (7-25) 

The average longshore transport rate over the time record was calculated as: 

 ( )2 2
1

1 N

y yq q t
N

= ∑  (7-26) 

Predictions of longshore sediment transport rates, qy2, with Test 1 measurements are 

shown in Figure 7-15.  Although the model overestimated the measurements in the mid-

surf zone, Model 2 generally predicted transport rates well, including in the swash zone.  

Estimates of Test 3 transport rates agreed well with the measurements shoreward of 

breaking (Figure 7-16).  Although the model produced a peak in transport near the break 

point, transport rates were again significantly underpredicted in the breaking region.  

Test 5 predictions overestimated measurements throughout the surf zone (Figure 7-17). 

However, the shape of the estimated distribution followed the measurements through the 

surf zone and swash zones.  Figure 7-18 shows that estimates with Test 6 conditions 

predicted measured values well in the surf zone with a peak in transport near breaking. 

Nevertheless, estimated transport rates near the break point were much less than 

measured rates and the peak was shifted shoreward of the observed transport peak. 

In summary, Model 2 generally predicted longshore transport rates in the surf zone 

well shoreward of the break point for the four LSTF tests.  However, the model did not 

improve estimates of the transport rates near the break point for the plunging breaker 

tests. 
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Figure 7-15. Model 2 longshore transport rate estimates compared to Test 1 measurements 

 
Figure 7-16. Model 2 longshore transport rate estimates compared to Test 3 measurements 
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Figure 7-17. Model 2 longshore transport rate estimates compared to Test 5 measurements 

 
Figure 7-18. Model 2 longshore transport rate estimates compared to Test 6 measurements 
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Model 3 

A third model was considered by modifying the calculation of totτr . The revised 

stirring function was calculated as: 

 2 2( ) '( )
2

f
tot

c
ST t U u t

ρ
τ= = +
r  (7-27) 

which emphasizes the role of cross-shore velocity in stirring sediment.  

Model 3 was of the form: 
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where f3 is an empirical coefficient set to 10.  The time averaged longshore transport rate 

for Model 3 was calculated as: 

 ( )3 3
1

1 N

y yq q t
N

= ∑  (7-29) 

Results using Model 3 with Test 1 conditions were similar to Model 2 results 

(Figure 7-19).  Estimated transport rates agreed with the measurements, although they 

were slightly greater in the mid surf zone.  Model 3 predicted Test 3 transport rates well 

shoreward of breaking, but estimates were significantly smaller near breaking 

(Figure 7-20).  Estimated transport rates overpredicted measurements of Test 5 

conditions, but the shape of the distribution was predicted well (Figure 7-21).  Transport 

rates were estimated well shoreward of breaking with Test 6 conditions (Figure 7-22).   
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Figure 7-19. Model 3 longshore transport rate estimates compared to Test 1 measurements 

 
Figure 7-20. Model 3 longshore transport rate estimates compared to Test 3 measurements 
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Figure 7-21. Model 3 longshore transport rate estimates compared to Test 5 measurements 

 
Figure 7-22. Model 3 longshore transport rate estimates compared to Test 6 measurements 
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However, estimated transport near breaking was less and shifted shoreward of the 

measured values. 

In summary, results using Model 3 were similar to Model 2.  Transport in the inner 

surf zone was estimated well.  However, the longshore transport rate near the plunging 

break point was still underpredicted by this model. 

 

Model 4 

Models 1 through 3 gave reasonable estimates of longshore sand flux with the 

exception of transport rates at the break point for the plunging wave tests.  The general 

form of the stirring function times transporting function concept appears to be valid; 

however, an additional term must evidently be added to capture rates near plunging 

wave breaking.  It was observed during the plunging wave experiments that sediment 

remained in suspension at the trough of the breakpoint bar for the duration of the tests.  

The plunging waves distributed sediment throughout the water column, and sand 

entrained in the upper water column had a longer distance to settle to the bed – a time 

longer than several wave periods.  Subsequent waves would redistribute the suspended 

sand through the water column.  Therefore, sand entrained into the water column by a 

single plunging wave would continue to be transported during several subsequent waves.  

Model 4 was formulated with an additional term to account for events that cause sand to 

be suspended through the water column and increase the transport rate near the break 

point of plunging waves.  The suspension term, s(t), was defined as: 
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k
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where k4 is an empirical exponent set to 1.  Model 4 was therefore defined as: 
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where f4 is an empirical coefficient equal to 500, and totτr was calculated using 

Equation 7-12.  The average transport rate over the time record was calculated as: 

 ( )4 4
1

1 N

y yq q t
N

= ∑  (7-32) 

Results of Model 4 with Test 1 conditions are shown in Figure 7-23.  Estimates 

compared well to measured values offshore of X = 12 m, but underpredicted 

measurements inshore of this location.  Test 3 estimates were slightly greater than 

measurements shoreward of breaking (Figure 7-24).  The estimated peak at the break 

point agreed with the magnitude of measured transport, although it was located slightly 

offshore of the measured peak.  The apparent discrepancy in locations of the peaks is 

such that the measured peak occurs at a sand trap located between ADVs.  If ADV 

measurements were available at the same cross-shoe location of the trap, predicted and 

measured peak locations might agree more closely.  However, because the magnitudes 

of the peaks agree with the presently applied coefficients, it is anticipated that the 

estimated transport rate would overpredict measurement rates.  Model 4 predicted Test 5 

transport generally well (Figure 7-25).  Estimates were slightly smaller in the inner surf  
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Figure 7-23. Model 4 longshore transport rate estimates compared to Test 1 measurements 

 
Figure 7-24. Model 4 longshore transport rate estimates compared to Test 3 measurements 
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Figure 7-25. Model 4 longshore transport rate estimates compared to Test 5 measurements 

 

and swash zone, and the overall distribution had a flatter profile than qmeas.  Transport at 

the Test 6 break point was underpredicted, but the rate was improved over previous 

models (Figure 7-26).  Estimates were slightly smaller than measured transport rates 

shoreward of breaking. 

In summary, estimates of longshore transport rate at the break point of the plunging 

cases were improved using Model 4.  Predicted distributions had a generally flatter 

profile than measured transport rates, and qy4 underestimated measurements in the inner 

surf and swash zones for the spilling breaker cases. 
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Figure 7-26. Model 4 longshore transport rate estimates compared to Test 6 measurements 

 

Model 5 

Inclusion of s(t) in Model 4 improved estimates near the break point for the plunging 

breaker cases.  Model 5 was devised to improve estimates in the inner surf zone, 

particularly for spilling wave cases.  Model 5 included the suspension term added to the 

elements of Model 1: 
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where fb5 = 10, fs5 = 0.0175, and k5 = 2 are all empirical coefficients.  The time-averaged 

transport rate over the record was calculated by: 
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Estimates of Test 1 longshore sand transport rates were improved using Model 5 

(Figure 7-27).  Model 5 estimated transport rates near breaking for Test 3 well, but 

predicted rates were significantly greater through the surf zone (Figure 7-28).  As was 

observed with the Model 4 estimates, the location of the peak in measured transport 

occurred between ADV locations, which resulted in a discrepancy in location of the 

peaks between estimated and measured longshore transport rates.  Figure 7-29 shows 

predicted transport rates of Test 5 using Model 5.  The predictions were judged to be 

good overall, with estimates slightly greater than measurements in the surf zone, and 

slightly lower in the swash zone.  

In summary, estimates with Test 6 conditions gave good general agreement with 

measurements (Figure 7-30).  The estimated peak in transport near breaking with Test 6 

waves was lower than qmeas, and the location of peak transport was shifted shoreward. 

However, estimates with Model 5 show closest agreement to transport near the break 

point than the previous models applied for Test 6.  

Model 6 

Model 6 consisted of a modified suspension term: 
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Figure 7-27. Model 5 longshore transport rate estimates compared to Test 1 measurements 

 
Figure 7-28. Model 5 longshore transport rate estimates compared to Test 3 measurements 
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Figure 7-29. Model 5 longshore transport rate estimates compared to Test 5 measurements 

 
Figure 7-30. Model 5 longshore transport rate estimates compared to Test 6 measurements 
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in which the coefficients fs6 = 0.25 and k6 = 1.  Time-dependent transport rates were 

calculated by: 
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where f6 was set to 20.  Estimated time-averaged transport rates were calculated from: 

 ( )6 6
1

1 N

y yq q t
N

= ∑  (7-37) 

Model 6 gave a flatter cross-shore distribution of longshore transport rates with 

Test 1 (Figure 7-31).  Estimates were much smaller than qmeas through most of the surf 

zone and slightly greater in the offshore region of the model.  Results for Test 3 are 

shown in Figure 7-32.  The model overestimated the peak in transport near the break 

point, but estimates shoreward of breaking agreed well with the measurements.  

Estimates of Test 5 transport rates were significantly overpredicted, with exception of 

the swash zone, which was underestimated (Figure 7-33).  Additionally, previous models 

in this chapter followed the increasing trend of longshore sediment flux through the surf 

zone, but Model 6 showed no increasing trend.  Model 6 estimated the distribution of 

Test 6 waves well, including the location of the transport peak near breaking 

(Figure 7-34). 
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Figure 7-31. Model 6 longshore transport rate estimates compared to Test 1 measurements 

 
Figure 7-32. Model 6 longshore transport rate estimates compared to Test 3 measurements 
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Figure 7-33. Model 6 longshore transport rate estimates compared to Test 5 measurements 

 
Figure 7-34. Model 6 longshore transport rate estimates compared to Test 6 measurements 
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In summary, Model 6 did not predict transport rates for the spilling cases well.  Good 

agreement was found shoreward of breaking with Test 3 conditions, but the peak in 

transport near the breakpoint was overpredicted.  The model performed well in 

predicting the Test 6 cross-shore distribution of sand flux. 

 

Model 7 

Model 7 included the product of the stirring function and sum of the transport 

function and suspension term: 
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where f7 = 20.  The suspension term was of the same form as used previously, but with 

different coefficients: 
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where fs7 was set to 1.0 and k7 equaled 0.5.  The transport rate averaged over the time 

record was calculated by: 
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= ∑  (7-40) 

Model 7 followed the measured cross-shore distribution shape of Test 1 well 

(Figure 7-35).  The model overpredicted qmeas offshore of X = 11.5 m, but predicted the  
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Figure 7-35. Model 7 longshore transport rate estimates compared to Test 1 measurements 

 

inner surf and swash zones well with exception to estimates at X =5.7 m.  Figure 7-36 

shows estimates of Test 3, which agreed well with the magnitude of measured transport 

near the break point.  Predictions overestimated the measurements shoreward of 

breaking, however.  Test 5 transport measurements were significantly overpredicted 

offshore of X = 5.7 m by Model 7 (Figure 7-37).  Model 7 estimated the measured cross-

shore distribution of Test 6 sediment flux well (Figure 7-38).  The peak in transport near 

breaking was underpredicted, but the estimated distribution shoreward of breaking 

agreed well with qmeas. 
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Figure 7-36. Model 7 longshore transport rate estimates compared to Test 3 measurements 

 
Figure 7-37. Model 7 longshore transport rate estimates compared to Test 5 measurements 
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Figure 7-38. Model 7 longshore transport rate estimates compared to Test 6 measurements 

 

Summary of LSTF comparisons 

Model 1 gave similar results for the different transects of each test. Therefore, one 

representative transect for each test was considered to be sufficient for comparison with 

subsequent models.  

The basic form of Equation 7-16, which entered Models 1 through 3, generally 

estimated longshore sediment transport rates well for spilling breaker cases.  The 

equation predicted transport well shoreward of breaking for the plunging breaker cases. 

At breaking, the model indicated a peak in transport, but underpredicted the 

measurements.  Inclusion of s(t) (Models 4 through 7) improved transport predictions for 
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the plunging breaker cases.  The magnitude of sand flux at breaking was predicted well 

for Test 3, but the flux was underpredicted with Test 6 waves. 

 

Comparison to Field (SIS) Data 

 

Models 4, 5, and 7 gave the best overall representation of measured transport rates 

for the LSTF data (and considerably better predictions than other formulas discussed in 

Chapter VI).  Therefore, these models were selected for comparison to field 

measurements. Although the LSTF experiments were conducted at a relatively large 

scale, wave heights in the field typically are much greater, especially during storms 

when wave heights can be more than an order of magnitude greater. 

The models were compared to SIS Transects 15 and 19.  The time series of 

( )tot tτr computed from SIS 15 orbital velocities is shown in Figures 7-39 to 7-42 for 

stations X = 518 m, 347 m, 234 m and 198 m, respectively.  The computed critical shear 

stress (Equation 7-7) using d50 = 0.15 mm also is plotted.  The figures show increasing 

shear stress as the waves transform across the surf zone, which corresponds to the 

magnitude of longshore sediment flux.  Shear stresses are an order greater than observed 

in the LSTF, and almost all shear stresses exceed τcr.  
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Figure 7-39. Time history of τtot at Station 518, SIS Transect 15 

 
Figure 7-40. Time history of τtot at Station 347, SIS Transect 15 
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Figure 7-41. Time history of τtot at Station 234, SIS Transect 15 

 
Figure 7-42. Time history of τtot at Station 198, SIS Transect 15 
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Model 4 

Estimates of SIS 15 longshore transport rates using Model 4 (Equations 7-31 

and 7-32) were compared to measurements with coefficient values k4 = 1 and f4 = 3.5 

(Figure 7-43).  The model estimated both the shape of the distribution and the magnitude 

of sediment flux well.  Predicted rates were slightly greater in the swash zone.  The 

model underestimated the peak in measured transport at X = 320 m; however, this 

measurement is believed to be erroneous. 

Model 4 also predicted the SIS 19 measurements well (Figure 7-44).  The model 

replicated the cross-shore distribution of sediment flux, but slightly overestimated 

measurements in the surf zone and underestimated the peak transport at X = 195 m.  

 

 
Figure 7-43. Model 4 longshore transport rate estimates compared to SIS 15 measurements 
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Figure 7-44. Model 4 longshore transport rate estimates compared to SIS 19 measurements 

 

Model 5 

Model 5 (Equations 7-33 and 7-34) estimates of SIS 15 data are shown in 

Figure 7-45 using coefficient values fb5 = 10, fs5 = 1.75e-4, and k5 = 2.  Predictions 

agreed with the shape of the observed cross-shore distribution; however, the model gave 

greater estimates than measurements inshore of Station X = 271 m. 

The model predicted sediment flux well for SIS 19 measurements, and estimates 

equaled the measured transport peak (Figure 7-46).  
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Figure 7-45. Model 5 longshore transport rate estimates compared to SIS 15 measurements 

 
Figure 7-46. Model 5 longshore transport rate estimates compared to SIS 19 measurements 
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Model 7 

Model 7 (Equations 7-38 and 7-40) results with coefficient values f7 = 1, fs7 = 1, and 

k7 = 0.5 did not estimate SIS 15 measurements as well as Models 4 and 5 (Figure 7-47).  

The shape of the estimated distribution corresponded to measurements; however, the 

model overestimated transport in the inner surf zone of SIS 15 measurements.  

Calculation of SIS 19 transport was estimated well at most of the cross-shore 

locations (Figure 7-48), with exception of the peak in transport near breaking at 

X = 195 m, which was underpredicted.  

 

 
Figure 7-47. Model 7 longshore transport rate estimates compared to SIS 15 measurements 
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Figure 7-48. Model 7 longshore transport rate estimates compared to SIS 19 measurements 

 

Summary 

 

The predictive models developed and explored in this chapter were based on 

Equation 7-16, a conceptual model that involves the product of a sediment stirring 

function and a transporting function.  Estimates using the basic form of the equation 

gave good results except near breaking with plunging waves.  A suspension term 

included in Models 4 through 7 improved predictions near the plunging wave break 

point.  Models 4, 5 and 7 gave the best overall estimate of the LSTF cross-shore 

distribution of sediment flux, and were compared to SIS field data obtained at the FRF.  

A summary of model comparisons is described in the following paragraphs. 
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The distribution of longshore sediment transport for the spilling wave cases 

increased as waves transformed across the beach, i.e., transport increased closer to shore. 

Model 4 predictions with Tests 1 and 5 gave a gentler slope to the cross-shore 

distribution.  Test 1 measurements were underpredicted in the inner surf and swash 

zones, and Test 5 transport rates were overpredicted in the outer surf zone and slightly 

underpredicted in the inner surf zone. Model 5 estimated Test 1 measurements well, 

except at the ADV 2 location, where sediment flux was underpredicted.  Estimates of 

Test 5 were slightly overpredicted for most of the surf zone; however, the shape of the 

distribution was described well with Model 5.  Model 7 overestimated transport with the 

spilling wave cases through most of the surf zone.  Models 4, 5, and 7 gave similar 

estimates for Test 3 conditions.  The peak in transport magnitude near breaking 

compared well with measurements, but estimates shoreward of breaking were 

overpredicted.  Models 4, 5, and 7 underpredicted the peak in transport near breaking 

associated with Test 6.  However, the models estimated transport shoreward of breaking 

well and predicted the shape of longshore transport distribution well.  

Model 4 gave excellent estimates of longshore sediment transport for SIS 15 data, 

and predicted SIS 19 measurements well.  Model 5 gave better results for the SIS 19 

transport measurements than Model 4, and predicted the SIS 15 measurements well, but 

longshore transport in the inner surf zone was overestimated.  Model 7 estimated 

transport well at the majority of cross-shore locations for both SIS cases.  However, 

transport was overpredicted in the inner surf zone of SIS 15 and the peak in transport 
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near breaking of SIS 19 was underpredicted.  Additionally, Model 7 did not replicate the 

peak in transport near breaking of SIS 19 well.  

Models 4, 5, and 7 all compared well to LSTF data, and none of the three produced 

results significantly better than any other.  Models 4 and 5 gave good estimates for the 

field data of the SIS. 

Each model included one or more empirical coefficients, values of which were not 

optimized for best results for a single test condition, but visually determined to give the 

best overall performance of the model.  One set of coefficients was determined for the 

LSTF tests, and another set was determined for the SIS measurements for a particular 

model.  The coefficients associated with the LSTF data are 1 to 2 orders of magnitude 

greater than those related to the SIS data.  Critical shear stress is included in the 

equations, which accounts for sediment mobilization.  However, transport under lower 

wave conditions of physical models is primarily through bedload transport, whereas 

transport in the field, particularly storm conditions, is dominated by suspended load 

transport (Komar 1978; Dean 1985; Madsen et al. 2003).  There is a scale effect in the 

suspension process in the LSTF; suspended sediment associated with wave conditions in 

the LSTF does not properly scale to field measurements.  Additional field data with a 

differing wave climate should be used to properly optimize the coefficients.   

Swash zone transport was not addressed with the models because hydrodynamic data 

were not available from the LSTF or SIS measurements, although the LSTF experiments 

include swash sediment transport data.  However, the models presented are capable of 

estimating swash zone transport if swash zone hydrodynamics are available for input.  
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A key finding of the present study is that it is essential to include the turbulent 

component of the orbital velocity in predictive sediment transport rate equations.  The 

equations include the critical shear stress, and bottom shear stress calculated from mean 

velocities rarely exceed critical value for sediment motion for low energy conditions or 

for sediments with a large grain size. Figures 6-18 and 6-19 illustrate that the Watanabe 

(1992) equation, which is based on mean bottom shear stress, predicts no sediment 

transport for most of the LSTF cross-shore locations.  Also, mean values of the 

longshore current and cross-shore current do not contain significant information on the 

wave breaking process, which determines in great part the amount and vertical extent of 

turbulence produced.  Therefore, it is concluded that turbulence modeling must be 

included in future hydrodynamic simulations aimed at providing forcing information for 

calculating longshore sediment transport.    
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CHAPTER VIII 

SUMMARY AND CONCLUSIONS 

 

This study was conducted to develop and verify an improved method to determine 

the cross-shore distribution of longshore sediment transport.  Mid-scale laboratory 

experiments were performed in the LSTF to measure longshore transport rate and 

nearshore hydrodynamics in a controlled environment.  Field measurements from the 

FRF were included in comparisons of existing longshore transport equations and in the 

development of new transport models.  This chapter summarizes the tests performed and 

the findings of the research. 

 

Laboratory and Field Measurements 

 

Four irregular wave conditions were generated in the LSTF with the purpose of 

obtaining longshore sediment transport rates for different breaker types.  All wave 

conditions were generated at a 0.9 m water depth and with an incident wave angle of 10 

deg from shore normal. Waves and currents were generally steady and uniform during 

the tests.  Two of the wave conditions produced spilling-type breakers (Tests 1 and 5) 

and two produced plunging-type breakers (Tests 3 and 6).  The wave conditions were 

grouped by energy level; Tests 1 and 3 had similar incident wave heights and are 
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referred to as higher energy conditions, and Tests 5 and 6 are referred to as lower energy 

conditions. 

Three distinct zones of longshore sediment flux were observed; the incipient 

breaking zone, inner surf zone, and swash zone.  At incipient breaking, a substantial 

peak in transport occurred for the plunging wave tests, which was not observed in the 

spilling wave tests.  Kana (1977) and Wang et al. (2002) found that sediment 

concentration was higher under plunging waves than spilling waves.  Turbulence 

associated with spilling breakers is contained close to the surface in the bore.  However, 

the jet associated with the plunging waves penetrates deep into the water column, 

impacts the bed, and causes sand to be suspended and transported by the longshore 

current. 

In the inner surf zone, wave energy is saturated, and wave height is strongly 

controlled by depth, independent of period.  Test 1 and Test 3 have similar wave height 

(energies) and similar sediment flux in the inner surf zone. Wave height and sediment 

flux for Test 5 and Test 6 are smaller in the inner surf zone than for the higher energy 

cases.  The results imply that sediment flux in the inner surf zone is dominated by wave 

height and independent of period.  

A transport peak was present in the swash zone for all tests, and swash zone 

transport has a dependence on wave period.  Swash zone transport is much greater for 

the longer period tests.  This result is consistent with the Hunt (1959) formula, in which 

runup is directly proportional to wave period.  Swash zone transport accounted for a 

third of the total transport for the higher energy tests (Tests 1 and 3), and 40 to 60 
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percent of the total transport of the lower energy tests (Tests 5 and 6).  This result agrees 

with the findings of Elfrink and Baldock (2002) who found that the relative contribution 

of swash zone transport was greater during calm conditions than during storms.  

Although swash zone transport measurements are difficult to obtain in the field, the 

results indicate that the swash zone contribution is significant, and it is necessary to 

include swash zone transport to obtain accurate measurements of the total longshore 

sediment transport.  

Field data from the Field Research Facility in Duck, NC, were compared to selected 

available predictive formulas and to new models developed as part of this study.  Data 

from two SIS transects, SIS 15 and 19, were obtained during a northeaster storm on 18 

and 19 October 1997.   The SIS data are similar to LSTF data in that measurements of 

wave height, current, and sediment transport are made at several cross-shore locations. 

 

Comparison Between Selected Available Models to the Laboratory and Field Data  

 

Selected models from the literature were compared to measured transport rates from 

the LSTF and SIS.  Comparisons were made with total load equations and with 

distributed load equations. 

 

Total Load Models 

The CERC formula, which is based on energy flux, overestimated both laboratory 

and field data with the recommended K-value of 0.39.  When compared to the laboratory 
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tests, the CERC formula overestimated transport of the spilling breakers by a factor of 8 

for Test 1 and nearly 7 for Test 5.  Overestimates were greater than a factor of 3 for both 

plunging wave tests.  The CERC formula produced similar estimates for Test 1 and 

Test 3 because they have similar breaking waves, although measured transport rates 

were nearly 3 times greater for Test 3 (plunging) than Test 1 (spilling).  However, if K 

was calibrated and applied to similar breaker types, the CERC formula gave excellent 

results. 

The models of Bailard (1984) and Ozhan (1982) also overestimated laboratory and 

field measurements.  The Bailard model was developed from field and laboratory data to 

estimate the CERC coefficient K based on sediment fall speed. The Ozhan model, based 

on laboratory data, used deepwater wave steepness to estimate the K coefficient.   

The Kamphuis (1991) and Madsen et al. (2003) equations gave more consistent 

results for the laboratory and field data.  In addition to breaker height and angle, the 

Kamphuis equation includes wave period, beach slope, and sediment grain size.  The 

Kamphuis equation is appealing because it includes wave height, wave period and beach 

slope; factors that determine the breaker type.  The Madsen et al. equation was based on 

physically realistic, but simple, numerical models of surf zone hydrodynamics and 

sediment transport processes.  The coefficients Madsen et al. gave for the equation are 

preliminary, but gave acceptable results. 

 



 204

Distributed Load Models 

The energetics model of Bodge and Dean (1987) was sensitive to fluctuations in 

energy dissipation and often predicted peaks in sediment transport that were not present 

in the data.  The original form of the equation, which included a slope term, was 

compared to the LSTF data.  The equation estimated the longshore transport trend well 

for the spilling breaker tests, but underpredicted measurements of the plunging breaker 

tests. Because of the slope term, no transport is estimated if the water depth increases 

shoreward.  Therefore, no transport was predicted in the trough of the breakpoint bar 

formed by the plunging waves of Test 3.  Bodge (1989) later suggested the slope term be 

omitted from the equation.  When compared to measurements, the suggested form of the 

Bodge and Dean model overpredicted both the laboratory and field transport rates.  The 

model gave better estimates if the recommended value of the coefficient kq was reduced 

from 0.057 to 0.01 for the LSTF data and from 0.48 to 0.04 for the SIS data. 

The Watanabe (1992) equation is based on time-averaged bottom stress.  The 

averaged bottom stress of the laboratory waves exceeded the critical shear stress at only 

one cross-shore location for Test 1 and Test 3, and it did not exceed critical shear stress 

at any location for Test 5 and Test 6.  As a result no transport was predicted for the 

majority of the cross-shore locations.  Time-averaged bottom stresses are not adequate 

for a model that includes critical shear stress or critical velocity for inception of 

sediment motion.  The Watanabe equation estimated the SIS transport rates well if the 

empirical coefficient was reduced from 2.0 to 0.25; however, it did not predict the peak 

in transport near breaking with transect SIS 19. 
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The Van Rijn (1993) model is comprehensive and requires hydrodynamic data and 

information on the bedforms and grain sizes at each cross-shore location.  The model 

estimated the LSTF distributed transport rates well, but overestimated the SIS transport 

rates by a factor of 50. 

 

New Longshore Transport Models 

 

New models were developed based on the principle that transported sediment is first 

mobilized by the total shear stress acting on the bottom and transported by the current at 

that location.  The shear stress, including the turbulent component and the mean value, 

were calculated from the wave orbital velocity measured with the LSTF ADVs and SIS 

EMCMs.   

Seven models were developed, and all were based on the power law expression.  The 

Watanabe (1987) form was adopted as the basis of all the models.  Each model was first 

compared to LSTF data.  Models 1 through 3 gave good results, but underpredicted the 

peak in transport near the breakpoint of the plunging wave cases.  It was observed during 

the LSTF tests that sediment in the trough of the breakpoint bar stayed in suspension 

over the duration of the entire tests.  Therefore, a suspension term was included in 

Models 4 through 7, which improved estimates near the plunging wave break point. 

Models 4, 5 and 7 gave the best overall estimates of the distribution of longshore 

sediment transport and were compared to SIS data obtained at the FRF.  Model 4 gave 

excellent estimates of sediment flux for SIS 15 data and predicted SIS 19 measurements 
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well.  Model 5 predicted SIS 19 transport rates very well, but SIS 15 transport rates were 

overestimated transport the inner surf zone.  Model 7 overestimated transport in the 

inner surf zone of SIS 15 measurements.  Model 7 predicted transport at most of the 

SIS 19 cross-shore locations well, but it did not replicate the peak in transport near 

breaking.  

Each model included at least one empirical coefficient that was visually determined 

to give the best overall performance of the model.  One set of coefficients was described 

for the LSTF tests and one for the SIS measurements for a particular model.  The 

laboratory coefficients were 1 to 2 orders of magnitude greater than the field 

coefficients.  The difference was attributed to a scale effect in the suspension process in 

the LSTF.  Transport under lower wave conditions associated with physical models is 

primarily through bedload transport, whereas transport under higher wave conditions 

found in the field is dominated by suspended load transport.  It was determined that the 

model coefficients should be optimized with additional field data. 

A key finding of this research is that it is essential to include the turbulent 

component of the orbital velocity in predictive sediment transport equations.  Mean 

velocities rarely exceed the critical value for incipient sediment motion for low energy 

conditions or for sediments with a large grain size.  Additionally, breaker type was found 

to be an important variable in the amount of sediment transport that occurs at a location.  

Plunging breakers produce greater turbulence throughout the water column whereas 

turbulence associated with spilling breakers remains near the surface in the bore.  Mean 
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values of the longshore and cross-shore current do not provide information on the wave 

breaking process, which determines the amount of turbulence produced.  
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Equations by Kamphuis (1991) and Madsen et al. (2003) gave consistent total sediment transport estimates for both laboratory 
and field data.  Additionally, the CERC formula predicted measurements well if calibrated and applied to similar breaker types.  
Each of the distributed load models had shortcomings.  The energetics model of Bodge and Dean (1987) was sensitive to fluc-
tuations in energy dissipation and often predicted transport peaks that were not present in the data.  The Watanabe (1992) 
equation, based on time-averaged bottom stress, predicted no transport at most laboratory locations.  The Van Rijn (1993) model 
was comprehensive and required hydrodynamic, bedform, and sediment data.  The model estimated the laboratory cross-shore 
distribution well, but greatly overestimated field transport.  (Continued) 
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14. (Concluded) 

Seven models were developed in this study based on the principle that transported sediment is mobilized 
by the total shear stress acting on the bottom and transported by the current at that location.  Shear stress, 
including the turbulent component, was calculated from the wave orbital velocity.  Models 1 through 3 gave 
good estimates of the transport distribution, but underpredicted the transport peak near the plunging wave 
breakpoint.  A suspension term was included in Models 4 through 7, which improved estimates near breaking 
for plunging breakers.  Models 4, 5, and 7 also compared well to the field measurements.   

It was concluded that breaker type is an important variable in determining the amount of transport that 
occurs at a location.  Lastly, inclusion of the turbulent component of the orbital velocity is vital in predictive 
sediment transport equations.   
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