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Project Description

This project was concerned with basic scientific problems inunderstanding biological olfactory
systems and developing artificial olfactory devices. The scientific thrusts of this project were
developed along three complementary directions. We studied the biological basis of odor deci-
sion making in neurophysiological experiments. We also mathematically modeled how olfactory
signals may be effectively located during search. Finally,we also developed machine learning
algorithms to effectively deal with high-dimensional olfactory sensor signals.

Project Results

Speed-accuracy tradeoff in olfaction

The basic psychophysical principle of speed accuracy tradeoff (SAT) has been used to understand
key aspects of neuronal information processing in vision and audition, but has not yet been demon-
strated in olfaction. In designing an autonomous robot withan onboard olfactory guidance system,
we need to optimize the tradeoff between length of odor sampling and speed of decision-making
about the chemical nature of the odorant being sampled. We investigated this issue in a biological
olfactory system to develop insights for subsequent use in the robotic system. We found, for the
first time, direct evidence for the operation of SAT in olfaction.

To obtain evidence for SAT in olfaction we developed a behavioral testing paradigm for mice
in which both the duration of odor sampling by the mouse and the difficulty of the odor discrimina-
tion task were controlled by the experimenter. We found thatthe accuracy of odor discrimination
increases with the duration of imposed odor sampling and that the rate of this increase is slower
for harder odor discrimination tasks. We also developed a unifying explanation of two previous,
seemingly disparate, experimental results in the literature on 1) the dependence of odor discrimina-
tion accuracy on the difficulty of an odor discrimination task with an approximately constant odor
sampling time, and 2) the dependence of odor sampling timingon difficulty of odor discrimination
with approximately equal accuracy. The presence of SAT in olfaction provides strong evidence for
temporal integration in olfaction and puts a constraint on models of olfactory processing.
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Figure 1: Odor recognition accurary as a function of exposure time and task difficulty in individual
mice.

The mouse olfactory system can make very difficult odor discriminations in 1 3 active odor
samples (sniffs), occurring over 140 430 msec at a sniff frequency of 7 Hz. To make a series of
odor discrimination tasks of graded difficulty, we mixed twopure odors in varying proportions and
asked the mouse to identify the dominant component of the mixture. The hardest odor discrimi-
nation task is to identify the dominant component in a mixture of 54% odor A and 46% odor B.
Mice clearly required longer odor sampling times to maintain accuracy on this difficult task. In
designing artificial odor sensors and pattern recognition algorithms, we will aim to duplicate this
feat of accurate identification of the dominant odor in a binary mixture with subsecond sampling
and analysis time.
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Sparse odor coding in the mammalian olfactory bulb

Important clues about optimum odor pattern recognition will be derived from a better understand-
ing of how patterns of sensory neuron firing are transformed by synaptic processing into patterns
able to be stored as odor memories with minimal overlap and confusion of a series of stored pat-
terns. To obtain more complete understanding of stimulus representations optimized for pattern
discrimination and memory storage, we studied the responses of mitral cells in the mouse olfac-
tory bulb while the mouse performed odor-guided memory retrieval tasks. Odor-elicited mitral cell
activity represents the results of the first stage of odor processing in the olfactory bulb. Most of our
knowledge about mitral cell activity has been obtained fromrecordings in anesthetized animals.
We compared odor-elicited changes in the firing rate of mitral cells in awake behaving mice and
in anesthetized mice. We found that odor-elicited changes in mitral cell firing rate were larger and
more frequently observed in the anesthetized than in the awake condition. Only 27% of mitral cells
that showed a response to odors in the anesthetized state, were also odor responsive in the awake
state. The amplitude of the mitral cell response in the awakestate was smaller and some of the
responses changed sign compared to the responses of the samemitral cell in the anesthetized state.
We are able to follow the activity of single mitral cells fromthe awake state to the anesthetized
state and back again to the awake state using new electrode implant technology incorporating mov-
able single unit electrodes driven by micromotors in the electrode implant chamber. Our results
using this new technology show that the odor representationin the olfactory bulb is much sparser
in the awake behaving mouse than in anesthetized preparations. We also developed a model of
odor representation to provide a qualitative explanation of a mechanism that may be responsible
for the sparsening of odor representation in the awake animal compared to the anesthetized ani-
mal. The model we proposed makes testable predictions aboutthe nature and effects of intrinsic
and extrinsic modulation of synaptic interactions in the olfactory bulb.

Infotaxis: searching for odors without gradients

Chemotactic search strategies based on local concentration gradients require concentration to be
sufficiently high so that its average difference measured attwo nearby locations is larger than typ-
ical fluctuations. The signal-to-noise ratio depends of course on the averaging time and might be
improved by waiting. However, average concentration may bedecaying rapidly, e.g. exponen-
tially, with the distance away from the source and in this weak signal-to-noise (dilute) case waiting
becomes worse than exploratory motion. An example of organisms performing olfactory search
in a dilute limit is provided by moths which use pheromones tolocate their mates. Moths are
known to proceed upwind via counterturning patterns of extended (“casting”) or limited (“zigzag-
ging”) crosswind width thought to correlate with low and high rates of odor detection. A practical
situation involving the challenge of searching in dilute conditions is encountered in the design
of sniffers - robots that track chemicals emitted by drugs, chemical leaks, explosives and mines.
Existing methods apply to high-concentration conditions,where chemotactic or plume-tracking
strategies might be employed.

To balance the competing demands of exploration and exploitation in olfactory search, we
propose the following “infotaxis” strategy. At each time step, the searcher chooses the direction
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Figure 2: Olfactory search patterns guided by information theory criterion without (a) and in the
presence (b) of wind.

which locally maximizes the expected rate of information acquisition. Specifically, the searcher
chooses, among the neighboring sites on a lattice and standing still, the move which maximizes the
expected reduction in entropy of the posterior probabilityfield. The intuitive idea is that entropy
decreases (and thus information accumulates) faster closeto the source because cues arrive at a
higher rate, hence tracking maximum rate of information acquisition will guide to the source much
like concentration gradients in chemotaxis.

Sparse Bayesian learning for odor classification

To effectively learn odor features from a small amount of training data, we have investigated a
Bayesian framework for learning the optimal regularization parameters in theL1-norm penalized
least-mean-square (LMS) problem, which is also known as LASSO or basis pursuit. Although
the setting of the regularization parameters is critical for deriving a correct solution, most exist-
ing methods determine them in a empirical manner. By contrast, our approach infers the optimal
regularization setting under a Bayesian framework, which enables an independent regularization
scheme where each coefficient (or weight) is associated withan independent regularization pa-
rameter. Simulations are employed to illustrate the dramatic improvement by the new proposal in
discovering sparse structure from noisy data.

We consider the problem of finding a sparse solution of a least-mean-square (LMS) function.
This problem is a key to many applications in signal processing andL1-norm regularization has
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Figure 3: Convergence of the noise estimation in BayesianL1-norm sparse learning with varying
amount of added noise. The input signal was normalized so that it had unit power.

been well recognized as an effective approach for deriving the sparse LMS solution:

w∗ = arg min
w

1

2
‖y − Φw‖2 + λ̂

M∑

i=1

|wi|, (1)

wherey is anN×1 data vector,Φ is anN×M designed matrix,w∗ is theM×1 weight vector that
need to be optimized, and̂λ is the regularization parameter that balances the favoringbetween the
LMS fitting and the solution sparseness described by theL1-norm. We show how these parameters
may be automatically learned from a small amount of trainingdata.

Summary

This project has resulted in a number of scientific findings aswell as provided the basis for the
further development of artificial olfactory search and recognition systems:

• Characterization of the accuracy of biological odor discrimination.

• Evidence of sparse coding in the olfactory cortical areas.

• Elucidation of the advantages of certain olfactory search strategies.

• Development of sparse Bayesian learning algorithms for odor recognition.

5


