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Abstract

Information �ow in a telecommunication network is accomplished
through the interaction of mechanisms at various design layers with the
end goal of supporting the information exchange needs of the applica-
tions. In wireless networks in particular, the di¤erent layers interact in
a nontrivial manner in order to support information transfer. In this
paper we will present abstract models that capture the cross layer inter-
action from the physical to transport layer in wireless network architec-
tures including cellular, ad-hoc and sensor networks as well as hybrid
wireless-wireline. The model allows for arbitrary network topologies as
well as tra¢ c forwarding modes, including datagrams and virtual cir-
cuits. Furthermore the time varying nature of a wireless network, due
either to fading channels or to changing connectivity due to mobility, is
adequately captured in our model to allow for state dependent network
control policies. Quantitative performance measures that capture the
quality of service requirements in these systems depending on the sup-
ported applications are discussed, including throughput maximization,
energy consumption minimization, rate utility function maximization
as well as general performance functionals. Cross-layer control algo-
rithms with optimal or suboptimal performance with respect to the
above measures are presented and analyzed. A detailed exposition of
the related analysis and design techniques is provided.



Contents

1 Introduction 3

2 The Network Model and Operational Assumptions 8

2.1 Link Rate Function Examples for Di¤erent Networks 10
2.2 Routing and Network Layer Queueing 18
2.3 Flow Control and the Transport Layer 21
2.4 Discussion of the Assumptions 22

3 Stability and Network Capacity 25

3.1 Queue Stability 25
3.2 The Network Layer Capacity Region 29
3.3 The Capacity of One Hop Networks 36

4 Dynamic Control for Network Stability 40

4.1 Scheduling in an ON/OFF Downlink 40
4.2 Network Model 44

1



2 Contents

4.3 The Stabilizing Dynamic Backpressure Algorithm 47
4.4 Lyapunov Stability 50
4.5 Lyapunov Drift for Networks 55
4.6 Time Varying Arrival Rates 58
4.7 Imperfect Scheduling 58
4.8 Distributed Implementation 59
4.9 Algorithm Enhancements and Shortest Path Service 61
4.10 Multi-commodity Flows and Convex Duality 64

5 Networking Outside of the Capacity Region:
Utility Optimization and Fairness 69

5.1 The Flow Control Model and Fairness Objective 70
5.2 Dynamic Control for In�nite Demand 73
5.3 Performance Analysis 81
5.4 Flow Control for Arbitrary Input Rates 91

6 Networking with General Costs and Rewards 100

6.1 The Network Model Assumptions 100
6.2 Algorithm Design 107
6.3 Energy Optimal Networking Examples 113
6.4 A Related Algorithm 123

7 Final Remarks 129

References 133



1
Introduction

In cross-layer designs of wireless networks, a number of physical and ac-
cess layer parameters are jointly controlled and in synergy with higher
layer functions like transport and routing. Furthermore state informa-
tion associated with a speci�c layer becomes available across layers as
certain functions might bene�t from that information. Typical physical
and access layer functions include power control and channel alloca-
tion, where the latter corresponds to carrier and frequency selection in
OFDM, spreading code and rate adjustment in spread spectrum, as well
as time slot allocation in TDMA systems. Additional choices in certain
wireless network designs may include the selection of the modulation
constellation or the coding rate, both based on the channel quality and
the desired rates [55] [155]. Due to the interference properties of wire-
less communication, the communication links between pairs of nodes
in a multinode wireless environment cannot be viewed independently
but rather as interacting entities where the bit rate of one is a function
of choices for the physical and access layer parameters of the others.
Our cross-layer model in this paper captures the interaction of these
mechanisms, where all the physical and access layer parameters are col-
lectively represented through a control vector I(t). Another intricacy of
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4 Introduction

a wireless mobile communication network is the fact that the channel
and the network topology might be changing in time due to environ-
mental factors and user mobility respectively. That variation might be
happening at various time scales from milliseconds in the case of fast
fading to several seconds for connectivity variations when two nodes get
in and out of coverage of each other as they move. Actions at di¤erent
layers need to be taken depending on the nature of the variability in
order for the network to compensate in an optimal manner. All the
relevant parameters of the environment that a¤ect the communication
are represented in our model by the topology state variable S(t).The
topology state might not be fully available to the access controller,
who may observe only a su¢ cient statistic of that. The collection of bit
rates of all communicating pairs of nodes at each time, i.e. the com-
munication topology, is represented by a function C(t) = C(I(t); S(t)).
Note that the function C(:; :) incorporates among others the depen-
dence of the link rate on the Signal-to-Noise plus Interference Ratio
(SNIR) through the capacity function of the link. Over the virtual com-
munication topology de�ned by C(t), the tra¢ c �ows from the origin
to the destination according to the network and transport layer pro-
tocols. Packets may be generated at any network node having as �nal
destination any other network node, potentially several hops away. Fur-
thermore the tra¢ c forwarding might be either datagram or based on
virtual circuits while multicast tra¢ c may be incorporated as well. The
above model captures characteristics and slightly generalizes systems
that have been proposed and studied in several papers including [142]
[147] [148] [144] [135] [108] [122] [119] [136]. That model is developed
in detail in Chapter 2 while representative examples of typical wireless
models and architectures that �t within its scope are discussed there.
The network control mechanism determines the access control vec-

tor and the tra¢ c forwarding decisions in order to accomplish certain
objectives. The quantitative performance objectives should re�ect the
requirements posed by the applications. Various objectives have been
considered and studied in various papers including the overall through-
put, power optimization, utility optimization of the allocated rates as
well as optimization of general objective functions of throughput and/or
power. In the current paper we present control strategies for achieving
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these objectives.
The �rst performance attribute considered is the capacity region of

the network de�ned as the set of all end-to-end tra¢ c load matrices
that can be supported under the appropriate selection of the network
control policy. That region is characterized in two stages. First the
ensemble of all feasible long term average communication topologies
is characterized. The capacity region includes all tra¢ c load matrices
such that there is a communication topology from the ensemble for
which there is a �ow that can carry the tra¢ c load and be feasible for
the particular communication topology. Chapter 3 is devoted on the
characterization of the capacity region outlined above.
The capacity region of the network should be distinguished from

the capacity region of a speci�c policy. The latter being the collection
of all tra¢ c load matrices that are sustainable by the speci�c policy.
Clearly the capacity region of the network is the union of the individ-
ual policy capacity regions, taken over all possible control policies. One
way to characterize the performance of a policy is by its capacity region
itself. The larger the capacity region is the better the performance will
be since the network will be stable for a wider range of tra¢ c loads
and therefore more robust to tra¢ c �uctuations. Such a performance
criterion makes even more sense in the context of wireless ad-hoc net-
works where both the tra¢ c load as well as the network capacity may
vary unpredictably. A policy A is termed "better" than B with respect
to their capacity regions, if the capacity region of A is a superset of
the capacity region of B. A control policy that is optimal in the sense
of having a capacity region that coincides with the network capacity
region and is therefore a superset of the capacity region of any other
policy was introduced in [142] [147]. That policy, the max weight adap-
tive back-pressure policy, was generalized later in several ways [144]
[135] [108] [122]while it is essential component of policies that optimize
other performance objectives. It is presented in Chapter 4. The selec-
tion of the various control parameters, from the physical to transport
layer is done in two stages in the max weight adaptive back pressure
policy. In the �rst stage all the parameters that a¤ect the transmission
rates of the wireless links are selected, i.e. the function C(I(t); S(t)) is
determined. In the second stage routing and �ow control decisions to
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control multihop tra¢ c forwarding are made. The back pressure policy
consist in giving priority in forwarding through a link to tra¢ c classes
that have higher backlog di¤erentials. Furthermore the transmission
rate of a link that leads to highly congested regions of the network is
throttled down. In that manner the congestion noti�cation travel back-
wards all the way to the source and �ow control is performed. Proofs
of the results based on Lyapunov stability analysis are presented also
in Chapter 4.
The stochastic optimal control problem where the objective is the

optimization of a performance functional of the system is considered
in Chapters 5, 6. The development of optimal policies for these cases
relies on a number of advances including extensions of Lyapunov tech-
niques to enable simultaneous treatment of stability and performance
optimization, introduction of virtual cost queues to transform perfor-
mance constraints into queueing stability problems and introduction of
performance state queues to facilitate optimization of time averages.
These techniques have been developed in [108] [109] [119] [136] [137]
[45] for various performance objectives. More speci�cally in Chapter 5
the problem of optimizing a sum of utility functions of the rates al-
located to the di¤erent tra¢ c �ows is considered. That formulation
includes the case of the tra¢ c load in the system being out of the ca-
pacity region in which case some kind of �ow control at the edges of the
network needs to be employed. That is done implicitly through the use
of performance state queues, allowing to adjust the optimization accu-
racy through a parameter. The approach combines techniques similar
to those used for optimization of rate utility functions in window �ow
controlled sessions in wireline networks, with max weight scheduling
for dealing with the wireless scheduling. In Chapter 6 generalization
of these techniques for optimization functionals that combine utilities
with other objectives like energy expenditure are given and approaches
relying on virtual cost queues are developed.
Most of the results presented in the paper are robust on the statis-

tics of the temporal model both of the arrivals as well as the topology
variation process. The tra¢ c generation processes might be Markov
modulated or belong to a sample path ensemble that comply to cer-
tain burstiness constraints [36] [143]. Similarly the variability of the
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topology might be modeled by a hidden Markov process. These models
are adequate to cover most of the interesting cases that might arise in
real cases. The proofs in the paper are provided for a tra¢ c generation
model that covers all the above cases and it was considered in [108].
The de�nition of stability that was used implies bounded average back-
logs. The emphasis in the presentation is on describing the models and
the algorithms with application examples that illustrate the range of
possible applications. Representative cases are analyzed in full detail
to illustrate the applicability of the analysis techniques, while in other
cases the results are described without proofs and references to the
literature are provided.



2
The Network Model and Operational Assumptions

Consider a general network with a set N of nodes and a set L of trans-
mission links. We denote by N and L respectively the number of nodes
and links in the network. Each link represents a communication channel
for direct transmission from a given node a to another node b, and is
labeled by its corresponding ordered node pair (a; b) (where a; b 2 N ).
Note that link (a; b) is distinct from link (b; a). In a wireless network,
direct transmission between two nodes may or may not be possible
and this capability, as well as the transmission rate, may change over
time due to weather conditions, mobility or node interference. Hence
in the most general case one can consider that L consists of all ordered
pairs of nodes, where the transmission rate of link (a; b) is zero if direct
communication is impossible. However, in cases where direct commu-
nication between some nodes is never possible, it is helpful to consider
that L is a strict subset of the set of all ordered pairs of nodes.
The network is assumed to operate in slotted time with slots

normalized to integral units, so that slot boundaries occur at times
t 2 f0; 1; 2; : : :g. Hence, slot t refers to the time interval [t; t + 1). Let
�(t) = (�ab(t)) represent the matrix of transmission rates o¤ered over

8
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each link (a; b) during slot t (in units of bits/slot).1 By convention, we
de�ne �ab(t) = 0 for all time t whenever a physical link (a; b) does not
exist in the network. The link transmission rates are determined by a
link transmission rate function C(I; S), so that:

�(t) = C(I(t); S(t));

where S(t) represents the network topology state during slot t, and I(t)
represents a link control action taken by the network during slot t.
The topology state process S(t) represents all uncontrollable prop-

erties of the network that in�uence the set of feasible transmission
rates. For example, the network channel conditions and interference
properties might change from time to time due to user mobility, wire-
less fading, changing weather locations, or other external environmen-
tal factors. In such cases, the topology state S(t) might represent the
current set of node locations and the current attenuation coe¢ cients
between each node pair. While this topology state S(t) can contain a
large amount of information, for simplicity of the mathematical model
we assume that S(t) takes values in a �nite (but arbitrarily large) state
space S. We assume that the network topology state S(t) is constant for
the duration of a timeslot, but potentially changes on slot boundaries.
The link control input I(t) takes values in a general state space IS(t),

which represents all of the possible resource allocation options available
under a given topology state S(t). For example, in a wireless network
where certain groups of links cannot be activated simultaneously, the
control input I(t) might specify the particular set of links chosen for
activation during slot t, and the set IS(t) could represent the collection
of all feasible link activation sets under topology state S(t). In a power
constrained network, the control input I(t) might represent the matrix
of power values allocated for transmission over each data link. Likewise,
the transmission control input I(t) might include bandwidth allocation
decisions for every data link.
Every timeslot the network controller observes the current topol-

1 Transmission rates can take units other than bits/slot whenever appropriate. For example,
in cases when all data arrives as �xed length packets and transmission rates are constrained
to integral multiples of the packet size, then it is often simpler to let �(t) takes units of
packets/slot.
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ogy state S(t) and chooses a transmission control input I(t) 2 IS(t),
according to some transmission control policy. This enables a trans-
mission rate matrix of �(t) = C(I(t); S(t)). The function C(I; S) is
matrix valued and is composed of individual Cab(I; S) functions that
specify the individual transmission rates on each link (a; b), so that
�ab(t) = Cab(I(t); S(t)). In general, the rate function for a single link
can depend on the full control input I(t) and the full topology state
S(t) and hence distributed implementation may be di¢ cult. This is of-
ten facilitated when rate functions for individual links depend only on
the local control actions and the local topology state information asso-
ciated with those links. These issues will be discussed in more detail in
later sections.

2.1 Link Rate Function Examples for Di¤erent Networks

In this section we consider di¤erent types of networks and their corre-
sponding link rate functions C(I(t); S(t)). Our examples include static
wireline networks, rate adaptive wireless networks, and ad-hoc mobile
networks.

Example 2.1. A static wireline network with �xed link capacities.
Consider the six node network of Fig. 2.1a. The network is connected
via wired data links, where each link (a; b) o¤ers a �xed transmission
rate Cab for all time. In this case, there is no notion of a time varying
topology state S(t) or a control input I(t), and so the transmission
rate function for each link (a; b) is given by Cab(I(t); S(t)) = Cab
(where Cab = 0 if there is no link from node a to node b). The
network is thus fully described by a constant matrix (Cab) of link
capacities, which is the conventional way to describe a wireline network.

Example 2.2. A network with time varying link capacities. Consider
the same network as in Example 2.1, but assume now that every times-
lot the data links can randomly become active or inactive. In particular,
an active link (a; b) can transmit at rate Cab as before, but an inactive
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Fig. 2.1 (a) A static network with 6 nodes and constant link capacities Cab. (b) A network
with con�gurable link activation sets.

link cannot transmit. Let Sab(t) be a link state process taking values
in the two-element set fON, OFFg, where Sab(t) = ON if link (a; b) is
active during slot t, and Sab(t) = OFF otherwise. The topology state
S(t) of the network is thus the matrix (Sab(t)) composed of individual
link state processes, and the link transmission rate functions are given
by Cab(I(t); S(t)) = Cab(Sab(t)), where:

Cab(Sab(t)) =

�
Cab if Sab(t) = ON
0 if Sab(t) = OFF

:

In this example, the link transmission rate function depends on a
time varying topology state variable S(t), but there is still no notion
of resource allocation. Further note that the stochastics of the link
activation processes Sab(t) are not speci�ed here. A simple model
might be that each process Sab(t) is independently inactive with some
outage probability pab every slot, and active otherwise. However, in
general, the Sab(t) processes could be correlated with each other and
also correlated in time.

Example 2.3. A static wireless network with con�gurable link activa-
tion sets. Consider a wireless network with stationary nodes and time
invariant channel conditions between each node pair. Suppose that due
to interference and/or hardware constraints, transmission over a link
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can take place only if certain constraints are imposed on transmissions
over the other links in the network. For example, a node may not trans-
mit and receive at the same time over some of its attached links, or a
node may not transmit when a neighboring node is receiving, etc. A
given link (a; b) can support a transmission rate Cab, provided that it is
scheduled for activation and no other interfering links are activated. For
each link (a; b), we de�ne a control process Iab(t), where Iab(t) = 1 if
link (a; b) is activated during slot t, and 0 else. The control input process
I(t) thus consists of the matrix (Iab(t)), and this matrix is restricted
every timeslot to the set I consisting of all feasible link activation sets.
That is, the set I contains all sets of links that can be simultaneously
activated without creating inter-link interference. The link transmission
rate function is thus given by Cab(I(t); S(t)) = Cab(Iab(t)), where:

Cab(Iab(t)) =

�
Cab if Iab(t) = 1
0 if Iab(t) = 0

:

where the input satis�es the constraint (Iab(t)) 2 I for all t. An ex-
ample network with three activated links is shown in Fig. 2.1b. While
this link transmission rate function is similar in structure to that of
Example 2.2, we note that the link capacities of Example 2.2 depend
on random and uncontrollable channel processes, while the link capac-
ities in this example are determined by the network control decisions
made every timeslot. This is an important distinction, and the notion
of link activation sets can be used to model general problems involving
network server scheduling. Such problems are treated in [147] for multi-
hop radio networks with general activation sets I. An interesting special
case is when I is de�ned as the collection of all link sets such that no
node is the transmitter or receiver of more than one link in the set.
Such sets of links are called matchings. This special case has been used
extensively in the literature on crossbar constrained packet switches,
where the network nodes are arranged according to a bipartite graph
(see for example, [147] [104] [86] [145] [162] [120] [118]). Matchings are
also used in [145] [61] [92] [29] [163] to treat scheduling in computer sys-
tems and ad-hoc networks with arbitrary graph structures. Note that
there is an inherent di¢ culty in implementing control decisions in a
distributed manner under this model. Indeed, the constraint I(t) 2 I
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couples the link activation decisions at every node, and often exten-
sive message passing is required before a matching is computed and its
feasibility is veri�ed. Generally, the complexity associated with �nding
a valid matching increases with the size of the network. Complexity
can also be reduced by considering sub-optimal matchings, which often
yields throughput within a certain factor of optimality. This approach
is considered in [92] [163] [29] (see also Section 4.7).

Example 2.4. A time varying wireless downlink. Consider a single
wireless node that transmits to M downlink users (such as a satellite
unit or a wireless base station, see Fig. 2.2a). Let Si(t) represent the
condition of downlink i during slot t (for each link i 2 f1; : : : ;Mg). Sup-
pose that channel conditions are grouped into four categories, so that:
Si(t) 2 fGOOD;MEDIUM;BAD;ZEROg. Suppose that at most
one link can be activated during any slot, and that an active link can
transmit 3 packets when in the GOOD state, 2 packets in the MEDIUM
state, 1 in the BAD state, and none in the ZERO state. The topology
state S(t) for this system is given by the vector (S1(t); : : : ; SM (t)). The
control input I(t) is given by the vector (I1(t); : : : ; IM (t)), where Ii(t)
takes the value 1 if link i is activated in slot t, and zero else. The con-
trol space I is the set of all vectors (I1; : : : ; IM ) with at most one entry
equal to 1 and all other entries equal to zero. As there is only a single
transmitting node, we can express the link transmission rate function
as a vector: C(I(t); S(t)) = (C1(I(t); S(t)); : : : ; CM (I(t); S(t))). Each
function entry has the form Ci(I(t); S(t)) = Ci(Ii(t); Si(t)), where:

Ci(Ii(t); Si(t)) =

8>>><>>>:
3Ii(t) if Si(t) = GOOD
2Ii(t) if Si(t) = MEDIUM
1Ii(t) if Si(t) = BAD
0 else

:

This type of downlink model is used to treat satellite and wireless sys-
tems in [148] [96] [5] [121]. The model can be extended to include power
allocation in cases when transmission rates depend upon a continuous
power parameter [121]. For example, the transmission rate on each
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Fig. 2.2 (a) An example satellite downlink with M downlink channels (M = 7 in the
example). (b) An example set of rate-power curves for the power allocation problem with
four discrete channel states.

downlink i 2 f1; : : : ;Mg might be approximated by the expression for
Shannon capacity over an additive white Gaussian noise channel:

Ci(Pi(t); Si(t)) = log(1 + Pi(t)�Si(t)); (2.1)

where Pi(t) is the power allocated to channel i during timeslot t, and
�Si(t) is the attenuation-to-noise coe¢ cient associated with channel
state Si(t) (see Fig. 2.2b). In this case, the control input I(t) is given
by the power vector P (t) = (P1(t); : : : ; PM (t)), and the control space
can be a continuum of feasible power vectors, such as all vectors that
satisfy a peak power constraint

PM
i=1 Pi � Ppeak.

Example 2.5. A time varying ad-hoc network with interference. Con-
sider an ad-hoc wireless network with a set of nodes N and set of links
L. We assume that each link l = (a; b), has a transmitter located at
node a and a receiver located at node b. Let Pl(t) represent the power
that the transmitter of link l allocates for transmission over that link,
and let P (t) = (Pl(t))l2L represent the power allocation vector. In this
case, the control input I(t) is equal to the power vector P (t), and the
constraint set I is given by the set P consisting of all power vectors
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that satisfy peak power constraints at every node. The transmission
rate function for link l is given by Cl(I(t); S(t)) = Cl(P (t); S(t)). As-
sume that this function depends on the overall Signal to Interference
plus Noise Ratio (SINR) according to a logarithmic capacity curve:

Cl(P (t); S(t)) = log (1 + SINRl(P (t); S(t))) :

Here SINRl(P (t); S(t)) is given by:

SINRl(P (t); S(t)) =
Pl(t)�ll(S(t))

N0 +
P
k2L
k 6=l

Pk(t)�kl(S(t))
;

where N0 is the background noise intensity on each link and �kl(S(t))
is the attenuation factor at the receiver of link l of the signal power
transmitted by the transmitter of link k when the topology state is
S(t). Hence, in this model the interference caused at the receiver of
link l by the signals transmitted by the transmitters of the other links
in modeled as additional noise. This SINR network model is quite
common in the wireless and ad-hoc networking literature. For example,
[122] considers this model for mobile ad-hoc networks, and [43] [66]
[35] [93] [127] [128] [129] [31] [167] [123] [124] [171] for static ad-hoc
networks and cellular systems. This model in the case of a system with
antenna arrays and beamforming capabilities is considered in [48] [47]
[28] [130]. It is quite challenging to implement optimal controllers for
this type of link transmission rate function. Indeed, as in Example
2.3, the control input decisions are coupled at every node, because
the power allocated for a particular data link can act as interference
at all other links, and this interference model can change depending
on the network topology state. While distributed algorithms exist for
computing the rate associated with a particular power allocation, and
for determining if a power allocation exists that leads to a given set
of link rates [167] [171], there are no known low complexity algorithms
for �nding the power vectors that optimize the performance metrics
required for optimal network control. However, randomized distributed
approximations exist for such systems and o¤er provable performance
guarantees [57] [108] [122]. Furthermore, important special cases of the
low SINR regime are treated in [35] [127] [129] using the approximation
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log(1 + SINR) � SINR, and the high SINR regime is treated in [66]
[31] using the approximation log(1 + SINR) � log(SINR).

Example 2.6. An ad-hoc mobile network. Consider a network with a
set N of mobile users. The location of each user is quantized accord-
ing to a rectilinear cell partitioning that covers the network region of
interest, as shown in Fig. 2.3b. We assume that the channel conditions
(noise, attenuation factor) are time-invariant throughout the region so
that link transmission capabilities are determined solely by node loca-
tions. Let Sa(t) represent the cell location of node a during slot t. The
topology state variable S(t) consists of the vector (Sa(t))a2N (one com-
ponent for each node a 2 N ), and can change from slot to slot as nodes
move from cell to cell (according to some mobility process that is poten-
tially di¤erent for every node). In this case, the link transmission rate
function can be given by the SINR model of Example 2.5, where the
attenuation coe¢ cients �kl(S(t)) are determined by the current node
locations. Note that the mobility model has been left unspeci�ed. Any
desired mobility model can be used, such as Markovian random walks
[122], periodic walks, random waypoint mobility [25], independent cell
hopping [117] [91], etc. The network model can be simpli�ed by assum-
ing no inter-cell interference. Speci�cally, suppose that nodes can only
transmit to other nodes in the same cell or in adjacent cells, and that at
most one node can transmit per cell during a single timeslot. Suppose
that transmissions in adjacent cells use orthogonal frequency bands,
and that interference from non-adjacent cells is negligible. In this case,
transmission decisions can be distributed node-by-node. Let Iab(t) be
a control process that takes the value 1 if link (a; b) is activated during
slot t, and zero else (as in Example 2.3). Let I(t) = (Iab(t)) represent
the matrix of transmission decisions, restricted to the control space
IS(t) that speci�es all feasible link activations under a given topology
state S(t). Suppose that the transmission rate of an in-cell transmis-
sion is h packets/slot, and that of an adjacent cell transmission is l
packets/slot (where h � l). The link transmission rate function is thus
given by Cab(I(t); S(t)) = Cab(Iab(t); Sa(t); Sb(t)) (where Cab(�) takes
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Fig. 2.3 An ad-hoc mobile network with a cell partitioned structure.

units of packets/slot), and we have:

Cab(Iab(t); Sa(t); Sb(t)) =

8<:
h if Iab(t) = 1 and Sa(t) = Sb(t)
l if Iab(t) = 1 and Sa(t) 6= Sb(t)
0 else

:

where (Iab(t)) 2 IS(t). Similar cell partitioned network models are used
in [108] [117] [109]. Note that this model allows the possibility of a single
node transmitting over one frequency band while simultaneously receiv-
ing over another frequency band. In systems where this is infeasible,
the additional constraint that a node cannot simultaneously transmit
and receive must be imposed. This couples transmission decisions over
the entire network and complicates optimal distributed control. One
(potentially sub-optimal) scheduling alternative is to randomly choose
a set of transmitter nodes and a set of receiver nodes every timeslot
(as in [57] [122]). Only nodes in the receiving set are valid options for
the transmitters. Another approach is to allow nodes to send trans-
mission requests, and allow an arbiter to determine which requests
are granted. Several rounds of arbitration can take place to improve
scheduling decisions. Simple types of one-step arbitration schemes are
designed into wireless protocols such as 802.11, where request to send
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and clear to send messages regulate which network links are simultane-
ously active [125]. Multi-step arbitration schemes are frequently used
in packet switches for computer systems [41] [3] [103] [139]. The control
techniques that we develop in this paper reveal principled strategies for
making these scheduling decisions in terms of current network condi-
tions and desired performance objectives.

These examples illustrate the wide class of data networks that fall
within the scope of our model. In summary, the function C(I(t); S(t))
describes the physical and multiple access layer properties of a given
network.2 Viewing the network in terms of this abstract function pro-
vides insight into the fundamental control techniques applicable to all
data networks while enabling these techniques to take maximum ad-
vantage of the unique properties of each data link.

2.2 Routing and Network Layer Queueing

All data that enters the network is associated with a particular com-
modity, which minimally de�nes the destination of the data, but might
also specify other information, such as the source node of the data or
its priority service class. Let K represent the set of commodities in the
network, and let K represent the number of distinct commodities in
this set. Let A(c)i (t) represent the amount of new commodity c data
that exogenously arrives to source node i during slot t (for all i 2 N
and all c 2 K). We assume that A(c)i (t) takes units of bits, although it
can take other units when appropriate (such as units of packets). The
A
(c)
i (t) data is generated from the user or application associated with
source node i, and is not necessarily admitted directly to the network
layer. Rather, we view the A(c)i (t) data as arriving to the transport layer

at node i, and for each timeslot t we de�ne R(c)i (t) as the amount of
commodity c data allowed to enter the network layer from the transport
layer at node i.
Each node i maintains a set of internal queues for storing network

2 See [18] for a de�nition and discussion of the various layers associated with the standard
7 layer Open Systems Interconnection (OSI) networking model, including the transport,
network, and physical layers, and the multiple access sub-layer.
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Fig. 2.4 A heterogeneous network with transport layer storage reservoirs and internal net-
work layer queues at each node.

layer data according to its commodity (Fig. 2.4). Let U (c)i (t) represent
the current backlog, or un�nished work, of commodity c data stored in
a network layer queue at node i. The queue backlog U (c)i (t) can con-
tain both data that arrived exogenously from the transport layer at
node i as well as data that arrived endogenously through network layer
transmissions from other nodes. In the special case when node i is the
destination of commodity c data, we formally de�ne U (c)i (t) to be 0
for all t, so that any data that is successfully delivered to its destina-
tion is assumed to exit the network layer. We assume that all network
layer queues have in�nite bu¤er storage space. Our primary goal for
this layer is to ensure that all queues are stable, so that time average
backlog is �nite. This performance criterion tends to yield algorithms
that also perform well when network queues have �nite bu¤ers that are
su¢ ciently large.
A network layer control algorithm makes decisions about routing,

scheduling, and resource allocation in reaction to current topology
state and queue backlog information. The resource allocation decision
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I(t) 2 IS(t) determines the transmission rates �ab(t) = Cab(I(t); S(t))
o¤ered over each link (a; b) on timeslot t. In general, multiple com-
modities might be transmitted over this link during a single timeslot.3

De�ne �(c)ab (t) as the rate o¤ered to commodity c data over the (a; b)

data link during slot t. These �(c)ab (t) values represent routing decision
variables chosen by the network controller. It is often convenient to
impose routing restrictions for each commodity, and hence we de�ne
Lc as the set of all links (a; b) that commodity c data is allowed to use.
Thus, the controller at each node a 2 N chooses the routing decision
variables �(c)ab (t) subject to the following routing constraints:X

c2K
�
(c)
ab (t) � �ab(t); (2.2)

�
(c)
ab (t) = 0; if (a; b) =2 Lc: (2.3)

We assume that only the data currently in node i at the beginning
of slot t can be transmitted during that slot. Hence, the slot-to-slot
dynamics of the queue backlog U (c)i (t) satis�es the following inequality:

U
(c)
i (t+1) � max

"
U
(c)
i (t)�

X
b

�
(c)
ib (t); 0

#
+R

(c)
i (t)+

X
a

�
(c)
ai (t): (2.4)

The above expression is an inequality rather than an equality because
the actual amount of commodity c data arriving to node i during slot
t may be less than

P
a �

(c)
ai (t) if the neighboring nodes have little or no

commodity c data to transmit.

2.2.1 On the link constraint sets Lc

The routing constraint (2.3) restricts commodity c data from using
links outside of the set Lc. The constraint sets Lc are arbitrary, and
hence the above model includes the special case of single-hop networks
where only direct transmissions between nodes is allowed. This can
be accomplished by setting Lc = f(a; b)g for each commodity c whose
tra¢ c is originated at node a and destined to node b. Also, the above

3We shall �nd that we can restrict control laws to transmitting only a single commodity
per link, without loss of optimality.
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model includes the special case of unconstrained routing, where each
set Lc contains all of the links of the network. In this case, the network
does not require a pre-speci�ed route. Routing decisions can be made
dynamically at each node, and packets of the same commodity can
potentially traverse di¤erent paths. While unconstrained routing allows
for the largest set of options, it can often be complex and may lead to
large network delay in cases when some packets are transmitted in
directions that take them further away from their destinations.
To ensure more predictable performance and to (potentially) reduce

these delay problems, the link sets Lc can be designed in advance to
ensure that all transmissions move commodities closer to their destina-
tions. Note that restricting the routing options makes the network less
capable of adapting to random link failures, outages, or user mobility,
whereas unconstrained routing can in principle adapt by dynamically
choosing a new direction.
Both unconstrained and constrained routing allow for a multiplicity

of paths. In cases when it is desirable to restrict sessions to a single
path (perhaps to ensure in-order packet delivery), each set Lc can be
speci�ed as a directed tree with �nal node given by the destination
node for commodity c. Alternatively, in cases when it is desired for
di¤erent paths to cross but not merge, a di¤erent commodity c can be
associated with each di¤erent source-destination pair, and the link set
Lc is de�ned as the set of all links in the path for commodity c.

2.3 Flow Control and the Transport Layer

All exogenous arrivals A(c)i (t) �rst enter the transport layer at their
corresponding source nodes, and this data is held in storage reservoirs
to await acceptance to the network layer (Fig. 2.4). We assume there
is a separate storage reservoir for each commodity at each node, and
de�ne L(c)i (t) as the backlog of commodity c bits currently stored in
the transport layer storage reservoir at node i. Every timeslot, each
source node i makes �ow control decisions by choosing the amount of
bits R(c)i (t) to deliver to the network layer at node i, subject to the

constraint R(c)i (t) � L
(c)
i (t) +A

(c)
i (t) for all (i; c) and all t, and subject

to some additional constraints made precise in Chapter 5.
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The storage reservoirs for each commodity may be in�nite or �nite,
with size 0 � Lmaxi � 1. Therefore, some data must be dropped if
the new exogenous arrivals are not admitted to the network layer and
do not �t into the storage reservoir. Hence, L(c)i (t) � Lmaxi for all t,
and the dynamics of storage bu¤er (i; c) from one timeslot to the next
satis�es the following inequality:

L
(c)
i (t+ 1) � min

h
L
(c)
i (t)�R

(c)
i (t) +A

(c)
i (t); L

max
i

i
:

The reason that the above expression is an inequality (rather than an
equality), is that the amount of bits to drop is chosen arbitrarily by the
�ow controller, and in particular the controller might decide to drop
all bits associated with a particular packet in the case when a com-
plete packet does not �t into the storage reservoir. The storage bu¤er
size Lmaxi is arbitrary, possibly zero. In the case when Lmaxi = 0, all
data that is not immediately admitted to the network layer is neces-
sarily dropped. In cases when Lmaxi > 0, the �ow controller must make
additional decisions about which data to drop whenever appropriate.
In Chapters 3-4 we shall �nd it useful to neglect �ow control de-

cisions entirely, so that all arriving data is immediately admitted to
the network layer and R(c)i (t) = A

(c)
i (t) for all timeslots t. In this case

we say the �ow controllers are �turned o¤.� This action of �turning
o¤�the �ow controllers is only used as a thought experiment to build
understanding of network layer routing and stability issues. In prac-
tice, turning o¤ the �ow controllers can lead to instability problems
in cases when network tra¢ c exceeds network capabilities, and these
issues are considered in detail in Sections 5-6 when �ow control is again
integrated into the problem formulation.

2.4 Discussion of the Assumptions

In this section we discuss the assumptions stated previously about the
network model and its mode of operation.

2.4.1 The Time Slot Assumption

Timeslots are used to facilitate analysis and to cleanly represent periods
corresponding to new channel conditions and control actions. However,
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this assumption presumes synchronous operation, where control actions
throughout the network take place according to a common timeclock.
Although asynchronous networking is not formally considered in this
paper, the timescale expansion and approximate scheduling results of
[108] [134][122] suggest that the algorithms and analysis developed here
can be extended to systems with independent network components that
operate on their own timescales. Asynchronous systems are further ex-
plored in [26].
The assumption that channels hold their states for the duration of

a timeslot is clearly an approximation, as real physical systems do not
conform to �xed slot boundaries and may change continuously. This
approximation is valid in cases where slots are short in comparison to
the speed of channel variation. In a wireless system with predictable
slow fading and non-predictable fast fading [23] [105], the timeslot is
assumed short in comparison to the slow fading (so that a given mea-
surement or prediction of the fade state lasts throughout the timeslot)
and long in comparison to the fast fading (so that a transmission of
many symbols encoded with knowledge of the slow fade state and the
fast-fade statistics can be successfully decoded with su¢ ciently low er-
ror probability).

2.4.2 Channel Measurement

We assume that network components have the ability to monitor chan-
nel quality so that intelligent control decisions can be made. This mea-
surement can be in the form of a speci�c set of attenuation coe¢ cients,
or can be according to a simple channel classi�cation such as �Good,�
�Medium, �Bad.�Channel measurement technology is currently being
implemented for cellular communication with High Data Rate (HDR)
services [63], and the ability to measure and react to channel informa-
tion is expected to improve signi�cantly.4 In systems where it is di¢ -
cult to obtain timely feedback about channel quality, such as satellite
systems with long round-trip times, channel measurement can be com-
bined with channel prediction. Accurate channel prediction schemes for

4 Indeed, it is claimed in [152] that channel measurements can be obtained almost as often
as the symbol rate of the link in certain local area wireless networks.
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satellites are developed in [32] [33] [69].

2.4.3 The Error-Free Transmission Assumption

All data transmissions from one node to the next are considered to be
successful with su¢ ciently high probability. For example, the link bud-
get curves for wireless transmissions could be designed so that decoding
errors occur with probability less than 10�6. In such a system, there
must be some form of error recovery protocol which allows a source
to re-inject lost data back into the network [18]. If transmission errors
are rare, the extra arrival rate due to such errors is small and does not
appreciably change network performance. Throughout this paper, we
neglect such errors and treat all transmissions as if they are error-free.
An alternate model in which transmissions are successful with a given
probability can likely be treated using similar analysis. Recent work
in [75] [74] considers channel uncertainty for transmission scheduling
in MIMO systems, and work in [113] considers routing in multi-hop
networks with unreliable channels and and multi-receiver diversity.



3
Stability and Network Capacity

Here we establish the fundamental throughput limitations of a general
multi-commodity network as de�ned in the previous section. Specif-
ically, we characterize the network layer capacity region. This region
describes the set of tra¢ c rates that the network can stably support,
considering all possible strategies for choosing the control decision vari-
ables that a¤ect routing, scheduling, and resource allocation. We begin
with a precise de�nition of stability for single queues and for queueing
networks.

3.1 Queue Stability

Consider a single queue with an input process A(t) and transmission
rate process �(t), where A(t) represents the amount of new arrivals that
enter the queue during slot t, and �(t) represents the transmission rate
of the server during slot t. We assume that the A(t) arrivals occur at
the end of slot t; so that they cannot be transmitted during that slot.
Let U(t) represent the current backlog in the queue. The U(t) process
evolves according to the following discrete time queueing law:

U(t+ 1) = max[U(t)� �(t); 0] +A(t):

The queue might be located within a larger network, in which case
the arrival process A(t) is composed of random exogenous arrivals as
well as endogenous arrivals resulting from routing and transmission
decisions from other nodes of the network. Likewise, the transmission
rate �(t) can be determined by a combination of random channel state

25
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variations and controlled network resource allocations, both of which
can change from slot to slot. Therefore, it is important to develop a
general de�nition of queueing stability that handles arbitrary A(t) and
�(t) processes.

De�nition 3.1. A queue is called strongly stable if:

lim sup
t!1

1

t

t�1X
�=0

E fU(�)g <1:

That is, a queue is strongly stable if it has a bounded time average
backlog. This leads to a natural de�nition of network stability:

De�nition 3.2. A network is strongly stable if all individual queues
of the network are strongly stable.

A discussion of more general stability de�nitions can be found in
[108] [122] [58] [42] [12]. Throughout this paper we shall restrict at-
tention to the strong stability de�nition given above, and shall often
use the term �stability�to refer to strong stability. The following sim-
ple but important necessary condition holds for strongly stable queues
with any arbitrary arrival and server processes (possibly without well
de�ned time averages). Its proof can be found in [110].

Lemma 3.3. (Necessary Condition for Strong Stability) If a queue
is strongly stable and either E fA(t)g � Amax for all t; or
E f�(t)�A(t)g � Dmax for all t; where Amax, Dmax are �nite non-
negative constants, then:

lim
t!1

E fU(t)g
t

= 0: (3.1)

3.1.1 The Arrival Process Assumptions

To analyze network capacity, we assume that all exogenous arrival
processes A(c)i (t) satisfy the following structural properties for admis-
sible inputs.
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De�nition 3.4. An arrival process A(t) is admissible with rate � if:

� The time average expected arrival rate satis�es:

lim
t!1

1

t

t�1X
�=0

E fA(�)g = �:

� There exists a �nite value Amax such that E
�
A(t)2 jH (t)

	
�

A2max for all timeslots t, where H (t) represents the history
up to time t; i.e., all events that take place during slots � 2
f0; : : : ; t� 1g.

� For any � > 0, there exists an interval size T (that may
depend on �) such that for any initial time t0 the following
condition holds:

E

(
1

T

T�1X
k=0

A(t0 + k) jH (t0)

)
� �+ �: (3.2)

Some examples of admissible arrival processes are the following.

Example 3.1. Let X (t) be an ergodic Markov chain with a �nite
state space f1; : : : ; Qg. When X (t) = m; let A(t) be chosen indepen-
dently and identically distributed (i.i.d.) with distribution P (m)A (a).
If �m; m 2 f1; :::; Qg is the steady state distribution of X (t) and
E fA (t) jX (t) = mg = �m, then the process A (t) is admissible with
rate � =

PQ
m=1 �m�m. An important special case is when there is only

one state, so that A(t) is i.i.d. every slot with E fA(t)g = � for all t.

Example 3.2. Let A (t) satisfy the following burstiness constraints

� (t2 � t1) + �1 �
t2�1X
t=t1

A (t) � � (t2 � t1)� �2; for all t2 > t1 � 0 ;

where �1 and �2 are nonnegative numbers. Then A (t) is admissible
with rate �. Burstiness constrained models have been used extensively
in wired networks [36], [143], [27], [82] and in a wireless context in [159].
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Below we de�ne the concept of an admissible service process �(t):

De�nition 3.5. A server process �(t) is admissible with time average
service rate � if:

� The time average expected service rate satis�es:

lim
t!1

1

t

t�1X
�=0

E f�(�)g = �:

� There exists an upper bound �max such that �(t) � �max for
all t.

� For any � > 0, there exists an interval size T (that may
depend on �), such that for any initial time t0 the following
condition holds:

E

(
1

T

T�1X
k=0

�(t0 + k) jH (t0)

)
� �� �: (3.3)

Lemma 3.6. (Stability Conditions under Admissibility) Consider a
queue with an admissible input process A(t) with arrival rate �, and
an admissible server process with time average rate �. Then: (a) � � �
is a necessary condition for strong stability. (b) � < � is a su¢ cient
condition for strong stability.

The necessary condition is quite intuitive. Indeed, if � > �, then
expected queue backlog necessarily grows to in�nity, leading to insta-
bility. The su¢ cient condition is also intuitive, but its proof requires the
structure of admissible arrival and service processes as de�ned above
(see [108] for a proof). We note that strong stability also holds in cases
when the in�nite time average conditions for A(t) and �(t) do not neces-
sarily hold, but these processes satisfy all other inequality conditions of
the admissibility de�nitions (for some values � and � such that � < �).
We say that such an arrival process is admissible with arrival rate less
than or equal to �, and such a service process is admissible with average
service rate greater than or equal to �.
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3.2 The Network Layer Capacity Region

Consider a network with a general link transmission rate matrix
C(I(t); S(t)) = (Cab(I(t); S(t))). Recall that I(t) 2 IS(t) and S(t) 2 S,
where IS(t) is the control space for a given topology state S(t), and S is
the �nite set of all possible topology states for the network. The func-
tion C(�; �) is arbitrary (possibly discontinuous) and is only assumed
to be bounded, so that for all links (a; b) and all I 2 Is and s 2 S we
have:

0 � Cab(I; s) � �max: (3.4)

for some maximum transmission rate �max. The topology state S(t) is
assumed to evolve according to a �nite state, irreducible Markov chain
(possibly periodic). Such chains have well de�ned time averages �s, rep-
resenting the time average fraction of time that S(t) = s. Speci�cally,
with probability 1 we have: 1

lim
t!1

1

t

t�1X
�=0

1[S(t)=s] = �s ; for all s 2 S: (3.5)

where 1[S(t)=s] is an indicator function that takes the value 1 whenever
S(t) = s, and takes the value zero otherwise.
Let N and K represent the set of nodes and commodities, with

sizes N and K respectively. Let Lc be the set of links de�ning the
routing constraints for each commodity c 2 K. De�ne U (c)i (t) as the
internal queue backlog of commodity c data at node i. Due to the rout-
ing constraints, some commodities might never be able to visit certain
nodes. Further, some nodes might only be associated with destina-
tions, and hence these nodes do not keep any internal queues. Hence,
we de�ne Ki as the number of internal queues kept by node i, where
Ki 2 f0; 1; : : : ;Kg. De�ne D as the set of all node-commodity pairs
(i; c) associated with internal queues in the network, and let D repre-
sent the number of such queues:

DM
=

NX
i=1

Ki:

1 The Markov structure for S(t) is used only to facilitate presentation. Our results hold more
generally for any S(t) that satis�es the channel convergent property de�ned in [108].
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The integer D de�nes the relative dimension of the network.
Let A(c)i (t) represent the process of commodity c bits arriving ex-

ogenously to node i. Assume that these arrival processes are admissible
with time average rates �(c)i (in units of bits/slot), and let � = (�(c)i )

represent the arrival rate matrix. We assume throughout that �(c)i = 0

whenever (i; c) =2 D, so that the number of non-zero rates is less than
or equal to D. Assume that the network �ow controllers are turned
o¤, so that all incoming tra¢ c arrives directly to the network layer.

De�nition 3.7. The network layer capacity region � is the closure of
the set of all arrival rate matrices

�
�
(c)
i

�
that can be stably supported

by the network, considering all possible strategies for choosing the
control variables to a¤ect routing, scheduling, and resource alloca-
tion (including strategies that have perfect knowledge of future events).

Note that this is a network layer notion of capacity that considers all
choices of the decision variables �(c)ab (t) and I(t) for a network that op-
erates according to a given C(I(t); S(t)) function; it was introduced in
[142] [147] and generalized further in [144] [108] [122]. This is distinct
from the information theoretic notion of network capacity, which in-
cludes optimization over all possible modulation and coding strategies
and involves many of the unsolved problems of network information
theory [34]. The network layer and information theoretic capacity re-
gions are called "stability" and "capacity" regions respectively in [99],
where a third notion of "throughput region" referring to the case when
all nodes have in�nite backlogs, is also examined. In this work, we shall
use the term "capacity region" to refer to the network layer capacity
region as described above.
The issue of capacity scaling was raised in [59] where it was found

that the capacity vanishes asymptotically as the number of nodes in-
creases, with a rate that is inversely proportional to a fractional power
of the number of nodes. The type of capacity considered in [59] is
similar to the one we consider here. More speci�cally a certain model
is considered for the local interaction of the radio transmissions, that



3.2. The Network Layer Capacity Region 31

imply interference restrictions on simultaneous transmissions of nodes
with geographical proximity. Assuming a uniform end-to-end tra¢ c
load matrix then, the capacity can be speci�ed by a scalar, i.e. the
maximum tra¢ c intensity that is sustainable under any transmission
control and tra¢ c forwarding policy. In [59] a bound to that capacity
is obtained that vanishes inversely proportional to the square root of
the number of nodes. That important results indicates that large scale
ad-hoc wireless networks with �at architecture may only have limited
usability as a general purpose communication infrastructure. It moti-
vated a lot of follow up work generalizing the result in various ways,
some indicative examples are [60] [57] [78] [95] [116] [151] [166] [91]
[117].

3.2.1 Constructing the Capacity Region

To build intuition about the set �, we �rst consider the capacity region
of a traditional wireline network with no time variation, such as the
static network of Example 2.1 in Chapter 2. Such a network is described
by a constant matrix (Gab), where Gab is the �xed rate at which data
can be transferred over link (a; b), and Gab = 0 if there is no physical
link from node a to node b. The network capacity region in this case

is described implicitly as the set of all arrival rate matrices
�
�
(c)
i

�
for

which there exist multi-commodity �ow variables f (c)ab (for a; b 2 N
and c 2 K) that satisfy a set of �ow conservation equations, and that
additionally satisfy the link constraint

P
c f

(c)
ab � Gab for all links (a; b).

This constraint ensures that the total �ow over any link does not exceed
the link transmission rate. Intuitively, this coincides with the necessary
and su¢ cient conditions for queue stability described in Lemma 3.6.
Indeed, stability requires that the data arrival rate to any link is no
more than the transmission rate of the link, regardless of whether data
�ows as a continuous �uid or as packetized units.
The capacity region of a general network di¤ers from that of a static

wireline network only in the description of the link constraint. Indeed,
�rst note that the time varying network topology requires link trans-
mission capabilities to be de�ned in a time average sense, where the
resulting transmission rate over a given link (a; b) is averaged over all
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possible topology states. Second, the resulting time average link rates
are not �xed, but depend on the resource allocation policy for choosing
I(t) 2 IS(t). Thus, instead of describing the network as a single graph
with a single transmission rate matrix (Gab), the network is described
by a collection of graphs de�ned by a graph family �. The graph family
� can be viewed as the set of all long-term transmission rate matrices
(Gab) that the network can be con�gured to support on the single-hop
links connecting node pairs (a; b), and is de�ned as follows:

�M=
X
s2S

�sConv fC(I; s) jI 2 Is g ; (3.6)

where addition and scalar multiplication of sets is used2, and where
Conv fAg represents the convex hull of the set A. Speci�cally,
Conv fAg is de�ned as the set of all �nite weighted combinations
p1a1 + p2a2 + : : : + pmam of elements ai 2 A (where fpig are nonneg-
ative numbers summing to 1). Such weighted combinations are called
convex combinations. To intuitively understand why the graph family
� has the form given in (3.6), we note the following basic result from
convex set theory:
Fact 1: If � is any random vector that takes values within some

general set A, then E f�g 2 Conv fAg (assuming the expectation is
well de�ned). �
Consider now the set As de�ned as the set of all transmission rate

matrices possible under channel state s:

As M=fC(I; s) jI 2 Is g:

Two example sets As, corresponding to two di¤erent topology states,
are shown in Fig. 3.1. Suppose we have a resource allocation algo-
rithm that chooses a random control input I(t) 2 Is according to
some probability law whenever S(t) = s, yielding a random rate ma-
trix �(t) = C(I(t); s). By de�nition, this random rate matrix satis�es
�(t) 2 As, and hence by Fact 1 it follows that the expected rate ma-
trix satis�es: E f�(t) jS(t) = sg 2 Conv fAsg. Thus, randomizing the

2 For vector sets A;B and scalars �; �, the set �A + �B is de�ned as f j  = �a + �b :
for some a 2 A; b 2 Bg.
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áCÝI,s1Þ|I 5 Is1 â

áCÝI,s2Þ|I 5 Is2â

Fig. 3.1 A construction of the set � for the case of 2 dimensions, illustrating the set of
all achievable long term link rates (�1; �2). In this example, we consider only two chan-
nel states s1 and s2;each equally probable. Note that for the �rst channel state, the set
fC (I; s) jI 2 Is g is disconnected and non-convex. Its convex hull is shown in the �rst plot.
The secont plot illustrates the weighted sum of the convex hull of the regions associated
with each of the two channel states. This is the � region, and is necessarily convex.

control decisions allows the expected rate matrix to expand beyond the
set As to reach points within the larger set Conv fAsg (see Fig. 3.1).
Further, by appropriately choosing the randomized probabilities, any
point within the set � can be reached in this way. This is summarized
in the following fact.
Fact 2: A matrix G = (Gab) is in the graph family � if and only

if there exists a randomized policy that bases control decisions on the
current channel state, such that:

G =
X
s2S

�sE f�(t) jS(t) = sg ; (3.7)

where E f�(t) jS(t) = sg is the expected rate matrix o¤ered by the
randomized policy when S(t) = s. �
By ergodicity of the topology state process S(t) together with

the law of large numbers, it is easy to see that the right hand
side of (3.7) is an expression for the time average transmission rate
limt!1

1
t

Pt�1
�=0 �(�). Thus, the network can be con�gured to achieve

long term link transmission rates for any rate matrix G within the
graph family �. Let Clf�g represent the closure of the set �. The fol-
lowing theorem from [108] [122] characterizes the network layer capac-



34 Stability and Network Capacity

ity region. Recall that every timeslot, a network controller must choose
I(t) 2 IS(t), and must choose routing variables �

(c)
ab (t) that satisfy:P

c �
(c)
ab (t) � Cab(I(t); S(t)), �

(c)
ab (t) = 0 if (a; b) =2 Lc.

Theorem 3.8. (Capacity Region for a Network) The capacity region
of the network is given by the set � consisting of all input rate matrices�
�
(c)
i

�
such that �(c)i = 0 whenever (i; c) =2 D, and such that there

exists a rate matrix (Gab) 2 Clf�g together with multi-commodity
�ow variables

n
f
(c)
ab

o
satisfying:

(Flow E¢ ciency Constraints)

f
(c)
ab � 0; f

(c)
aa = f

(c)
dest(c);b = 0; for all a; b 2 N ; c 2 K; (3.8)

(Flow Conservation Constraints)

�
(c)
i =

X
b

f
(c)
ib �

X
a

f
(c)
ai ; for all (i; c) 2 D with i 6= dest(c); (3.9)

(Routing Constraints)

f
(c)
ab = 0; for all a; b 2 N , c 2 K with (a; b) =2 Lc; (3.10)

(Link Constraints)X
c

f
(c)
ab � Gab; for all a; b 2 N ; (3.11)

where dest(c) represents the destination node for commodity c data.

Thus, a rate matrix
�
�
(c)
i

�
is in the capacity region � if there exists

a matrix (Gab) 2 Clf�g that de�nes link capacities in a traditional
graph network, such that there exist multi-commodity �ow variablesn
f
(c)
ab

o
which support the

�
�
(c)
i

�
rates with respect to this graph. Note

that inequalities (3.8) constrain �ow variables to be non-negative and
to be �e¢ cient,� in that no node transmits data to itself and no node
re-injects delivered data back into the network. Inequality (3.9) is a
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conservation constraint that ensures the total �ow of commodity c data
into a given node i is less than or equal to the total �ow out of that
node, provided that node i is not the destination. We note that (3.9)
is expressed as an equality constraint only to facilitate understanding.
The same theorem holds if (3.9) is replaced by the following inequality
constraint:

�
(c)
i �

X
b

f
(c)
ib �

X
a

f
(c)
ai for all (i; c) 2 D with i 6= dest(c):

The above constraint is more useful because it leads to a simpler proof
of the theorem (see [108] [122]), and also simpli�es construction of dual

algorithms for �nding the multi-commodity �ows
n
f
(c)
ab

o
in the case

when the set Clf�g is known in advance and the problem is treated as
a convex program (see Section 4.10).
The following useful corollary establishes an important property of

the capacity region:

Corollary 3.9. If � = Cl(�) and if the topology state S(t) is i.i.d.

from slot to slot, then a rate matrix
�
�
(c)
i

�
is within the capacity region

� if and only if there exists a stationary randomized control algorithm
that makes valid �(c)ab (t) decisions based only on the current topology
state S(t), and that yields for all (i; c) and all time t:

E

(X
b

�
(c)
ib (t)�

X
a

�
(c)
ai (t)

)
= �

(c)
i ; for all (i; c) 2 D with i 6= dest (c) ;

where the expectation is taken with respect to the random topology
state S(t) and the (potentially) random control action based on this
state.

The constraints of Theorem 3.8 lead to the following structural
properties for �:

� The set � is convex, closed, and bounded [108] [19].
� The set � contains the all-zero matrix (so that 0 2 �).
� If � 2 �, then ~� 2 �, where ~� is any rate matrix that is
entrywise less than or equal to �.



36 Stability and Network Capacity

Let eD represent the subset of D consisting of all node-commodity
pairs (i; c) for which it is possible to stably support a non-zero input
rate �(c)i (assuming that all other input rates are zero). The relative
interior of the set � is given by the set of all rate matrices � for which
there exists an � > 0 such that � + � 2 �, where � is a matrix with
entries �(c)i = � for all (i; c) 2 eD, and all other entries equal to zero. The
proof of Theorem 3.8 involves showing that

�
�
(c)
i

�
2 � is necessary

for stability, and that
�
�
(c)
i

�
within the relative interior of � is su¢ -

cient. Note that although the exogenous arrival processes are assumed
to be admissible, the capacity region must capture all possible routing,
scheduling, and resource allocation strategies, including strategies that
result in non-admissible arrival or service processes at the individual
queues of the network. In the next section, we prove the su¢ cient con-
ditions of Theorem 3.8 for the special case of a one-hop network. For
the complete proof for the general multi-hop case, the reader is referred
to [108] [122].

3.3 The Capacity of One Hop Networks

Consider the special case of a one-hop network with L di¤erent exoge-
nous input processes. For simplicity, assume that data from each input
process is intended for transmission over a unique link. Let �(t) =
(�1(t); : : : ; �L(t)) represent the vector of link transmission rates during
slot t, where �l(t) = Cl(I(t); S(t)) denotes the rate over link l under
control input I(t) and topology state S(t). The corresponding graph
family � de�ned in (3.6) is thus a set of rate vectors rather than rate
matrices. Let A(t) = (A1(t); : : : ; AL(t)) represent the vector of exoge-
nous arrivals, where Al(t) is the number of bits that arrive to link l
during slot t (for l 2 f1; : : : ; Lg). Assume these processes are admissi-
ble with rate vector � = (�1; : : : ; �L). We have the following corollary
to Theorem 3.8.

Corollary 3.10. (Single Hop Capacity Region) The single hop capac-
ity region � consists of all rate vectors � = (�1; : : : ; �L) such that there
exists a vector (G1; : : : ; GL) 2 Clf�g such that �l � Gl for all network
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links l 2 f1; : : : ; Lg.

We skip the proof of necessity of this corollary and concentrate
on the proof of su¢ ciency since this is important for the subsequent
development and demonstrates the design issues involved.

Proof. (Su¢ ciency) Suppose for simplicity that � has full dimension.
Suppose each link l 2 f1; : : : ; Lg receives an admissible input process
of rate �l. Let � represent the input rate vector. Assume that � is in
the interior of the set � de�ned in Corollary 3.10, so that there exists
an � > 0 such that (�1 + �; : : : ; �L + �) 2 �. Thus, there exists a vector
G = (G1; : : : ; GL) such that G 2 Clf�g and �l + � � Gl for all links
l 2 f1; : : : ; Lg. Then there must exist a matrix G = (G1; : : : ; GL) such
that G 2 � and �l + �=2 � Gl for all links l. Because G 2 �, it can be
written as:

G =
X
s2S

�sGs; (3.12)

where Gs 2 ConvfC(I; s) jI 2 Is g for each channel state s 2 S. Fur-
thermore, by Caratheodory�s Theorem [19], each matrix Gs can be
decomposed into a convex combination of at most L + 1 elements of
fC(I; s) jI 2 Is g:

Gs = p
1
sC(I

1
s ; s) + p

2
sC(I

2
s ; s) + : : :+ p

L+1
s C(IL+1s ; s); (3.13)

where Iis 2 Is for all s 2 S and i 2 f1; : : : ; L + 1g. Given such a
decomposition for each channel state s 2 S, the following control algo-
rithm can be constructed: On each timeslot, observe the current net-
work topology state S(t). Given that S(t) = s, randomly choose one of
the L+1 control options Iis with probability p

i
s (for i 2 f1; : : : ; L+1g).

It follows that:

E f�(t) jS(t) = sg = E fC(I(t); S(t)) jS(t) = sg = Gs: (3.14)

This strategy results in a matrix �(t) consisting of individual service
rate processes �l(t) for each link l. Claim: If S(t) evolves according to a
�nite state irreducible Markov chain, then each service process �l(t) is
admissible with time average rate �l = Gl. A formal proof of the claim
is given in [108]. Intuitively, the claim holds because the time average
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of the �(t) process can be expressed as a sum over the steady state
topology state probabilities:

lim
t!1

1

t

t�1X
�=0

�(�) =
X
s2S

�sE f�(t) jS(t) = sg with probability 1;

and hence � = G by (3.12) and (3.14). Thus, the queue for each link l
has an admissible input with rate �l and an admissible service process
with time average rate �l = Gl, where �l is strictly larger than �l. From
the su¢ cient condition of Lemma 3.6 in Section 3.1.1, it follows that
each queue of the network is stable, proving the result.

The above stabilizing algorithm is not intended as a practical con-
trol strategy, as it cannot be implemented without extensive o ine
preparation. Indeed, the input rate matrix and the network capacity
region would need to be known in advance, which requires a-priori
knowledge of the topology state probabilities �s for each state s 2 S.
Further, assuming all of the probabilities could be accurately estimated,
the network controller would still need to pre-compute the decomposi-
tion of Gs in (3.13) for each possible topology state. As the number of
states can grow geometrically in the number of network links, a direct
attempt to implement the above policy would be very di¢ cult even
for a relatively small network. However, the fact that the above policy
exists plays a crucial role in the analysis of a more practical stabilizing
strategy presented in Chapter 4.

Example 3.3. The capacity of ON-OFF downlink. Consider a sim-
ple example of a two-queue wireless downlink that transmits data to
two downlink users 1 and 2 over two di¤erent channels. Assume that
the arrival processes are independent Bernoulli processes with rates �1
and �2, so that every timeslot a single packet independently arrives to
queue i with probability �i, and no packet arrives to queue i other-
wise (for i 2 f1; 2g). All packets are assumed to have �xed lengths, so
that the queue backlog is measured in units of packets. Let U1(t) and
U2(t) respectively represent the current backlog of packets waiting for
transmission to user 1 and user 2, respectively. Channels independently
vary between ON and OFF states every slot according to independent
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Bernoulli processes with ON probabilities p1 and p2. Every timeslot,
a controller observes the channel states and chooses to transmit over
either channel 1 or channel 2. We assume that a single packet can be
transmitted if a channel is ON, and no packet can be transmitted when
a channel is OFF, so that the only decision is which channel to serve
when both channels are ON. In this case, there are only four possible
topology states S(t), and the graph family � is given as the following
two dimensional set of rate pairs (g1; g2), expressed as a sum of sets as
in (3.6):

� = (1� p1)(1� p2)f(0; 0)g+ p1(1� p2)f(1; 0)g+
p2(1� p1)f(0; 1)g+ p1p2Conv f(1; 0); (0; 1)g : (3.15)

It can be veri�ed that the resulting capacity region of this system, char-
acterized by Corollary 3.10, is given by the set of all non-negative rate
vectors (�1; �2) satisfying the following three inequalities (in addition
to �1 � 0; �2 � 0):

�1 � p1; �2 � p2; �1 + �2 � p1 + p2(1� p1): (3.16)

This is a polyhedral region, where the set � forms the dominant face of
the polyhedron (See Figure 4.1 in the next section). That these three
inequalities are necessary for stability is quite intuitive: The �rst two
inequalities bound the individual input rates �i in terms of the max-
imum possible average transmission rates of their respective queues,
and the last inequality bounds the sum input rate in terms of the aver-
age sum transmission rate. This simple capacity expression arises from
the special ON/OFF structure of the system. In [148], it is shown that
any downlink with L independent ON/OFF channels has a capacity
region that is given by a set of 2L� 1 inequalities: Each inequality cor-
responds to a subset of channels and indicates that the sum input rate
into this subset is less than or equal to the probability that at least
one channel within the subset is ON. A similar structure for the capac-
ity region holds when there are burstiness constraints on the channel
state processes instead of the Bernoulli process assumption made above
[159].



4
Dynamic Control for Network Stability

In this chapter we develop a general algorithm for stabilizing networks
without requiring knowledge of the arrival rates or topology state prob-
abilities. Unlike the o ine algorithm considered in the previous chap-
ter, which makes randomized resource allocation decisions based only
on the observed topology state, the algorithm in this chapter is an
online dynamic algorithm that bases decisions both on the observed
topology state and on the current queue backlogs. We begin with a
motivating example that illustrates the design challenges.

4.1 Scheduling in an ON/OFF Downlink

Consider the ON/OFF downlink of Example 3.3, with arrival rates
�1; �2 and independent Bernoulli channels with ON probabilities p1
and p2, and assume that p1 < p2. Recall that the capacity region of
the system is given by the three inequality constraints in (3.16). While
the controller is constrained to serving only a single queue in any given
timeslot, the fact that there are two independent channels creates a
multi-user diversity gain, creating a larger probability that at least one
of the channels is ON during any particular timeslot. This gain is evi-

40
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dent in the inequalities (3.16) that describe the capacity region, where
it is clear that the sum output rate of the system can be larger than the
output rate of any single queue alone. However, this diversity gain is
mitigated on timeslots in which one of the queues is empty. Therefore,
even for this simple system, scheduling must be done carefully in order
to ensure stability.
For example, assuming the arrival rates are interior to the capac-

ity region, one might suspect that stability can be achieved simply
by serving any non-empty ON queue. However, in the case when the
choice is to serve an ON queue with two packets versus an ON queue
with twenty packets, serving the shorter queue can potentially create a
higher probability that this queue is empty in the near future, leading
to a loss of multi-user diversity and creating potential instability. This
phenomenon holds also for multi-rate systems: Choosing the non-empty
queue with the largest o¤ered transmission rate can lead to instability
and sub-optimal throughput, even though this policy would maximize
throughput in the special case when all queues are �in�nitely back-
logged� and always have packets to send. To illustrate this point, we
compare three well known scheduling algorithms applied to the special
case of the two queue downlink with ON/OFF channels: The Borst
algorithm [24], the �proportionally fair�Max �i=ri algorithm [156], and
the Max Weight Match (MWM) policy [148].1

The Borst Algorithm: The Borst algorithm chooses to serve the non-
empty channel i with the largest ~�i(t)=E f~�ig index, where ~�i(t) is the
current rate o¤ered by link i if this link is chosen for transmission, and
E f~�ig is the expected value of this rate taken over its steady state
distribution (which is assumed to be known a-priori). This algorithm is
shown in [24] to have desirable fairness properties for wireless networks
with an �in�nite�number of channels, where each incoming packet is
destined for a unique user with its own channel. Although the algo-
rithm was not designed for a two-queue downlink, it is closely related
to the Max �i=ri policy (to be described below), and it is illuminating
to evaluate its performance in this context. Applied to the two-queue

1 The MWM policy is also called the Longest Connected Queue (LCQ) policy for this special
case of ON/OFF channels.
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ÝV,VÞ

The set Γ

Fig. 4.1 The downlink capacity region � and the stability regions of the Borst policy and the
Max �i=ri policy. Input rates (�1; �2) are pushed toward point (0:5; 1:0), and the simulated
throughputs under the Borst, Max �i=ri, and MWM policies are illustrated.

downlink, the Borst algorithm reduces to serving the non-empty ON
queue with the largest value of 1=pi. Because p1 < p2, this algorithm
e¤ectively gives packets destined for channel 1 strict priority over chan-
nel 2 packets. It is not di¢ cult to show that, for this simple system,
the stability region of the Borst policy is given by the set of all rate
pairs (�1; �2) such that �1 � p1, �2 � p2 � �1p2 [119]. This is a strict
subset of the capacity region (see Fig. 4.1).
The Max �i=ri Algorithm: Consider now the related policy of serv-

ing the non-empty queue with the largest value of ~�i(t)=ri(t), where
ri(t) is the empirical throughput achieved over channel i. This di¤ers
from the Borst algorithm in that transmission rates are weighted by
the throughput actually delivered rather than the average transmis-
sion rate that is o¤ered. This Max �i=ri policy is proposed in [156]
and shown to have desirable proportional fairness properties when all
queues of the downlink are in�nitely backlogged [81] [158]. To evaluate
its performance for arbitrary tra¢ c rates (�1; �2), suppose the running
averages r1(t) and r2(t) are accumulated over the entire timeline, and
suppose the system is stable so that r1(t) and r2(t) converge to �1 and
�2. It follows that the algorithm eventually reduces to giving channel
1 packets strict priority if �1 < �2, and giving channel 2 packets strict



4.1. Scheduling in an ON/OFF Downlink 43

priority if �2 < �1. Thus, if �1 < �2 then these rates must also satisfy
the inequalities �1 � p1, �2 � p2 � �1p2 of the Borst algorithm. How-
ever, if �2 < �1 then the rates must satisfy the inverted inequalities
�2 � p2 and �1 � p1 � �2p1. Thus, at �rst glance it seems that the
stability region of this policy is a subset of the stability region of the
Borst algorithm. However, its stability region has the peculiar property
of including all feasible rate pairs (�; �) (see Fig. 4.1).
The MWM Algorithm: The MWM algorithm serves the queue with

the largest Ui(t)~�i(t) index, where Ui(t) is the current backlog in queue
i. For this special case of an ON/OFF downlink, this policy reduces to
serving the longest queue with an ON channel. The policy is shown in
[148] to stabilize the system whenever the arrival rates are interior to
the capacity region.
In Fig. 4.1 we consider the case when p1 = 0:5; p2 = 0:6, and plot

the achieved throughput of the Borst, Max �i=ri, and MWM poli-
cies when the rate vector (�1; �2) is scaled linearly towards the vector
(0:5; 1:0), illustrated by the ray in Fig. 4.1(a). One hundred di¤erent
rate points on this ray were considered (including example points a -
e), and simulations were performed for each point over a period of 5
million timeslots. Fig 4.1(a) illustrates the resulting throughput of the
Borst algorithm, where we have included example points d0 and e0 cor-
responding to input rate points d and e. Note that the Borst algorithm
always results in throughput that is strictly interior to the capacity
region, even when input rates are outside of capacity. Fig. 4.1(b) illus-
trates performance of the Max �i=ri and MWM policies. Note that the
MWM policy supports all (�1; �2) tra¢ c when this rate vector is within
the capacity region. However, when tra¢ c is outside of the capacity re-
gion the achieved throughput moves along the boundary in the wrong
direction, yielding throughputs that are increasingly �unfair�because
it favors service of the higher tra¢ c rate stream. Like the Borst policy,
the Max �i=ri policy leads to instability for all (stabilizable) input rates
on the ray segment c-d, and yields throughput that is strictly interior
to the capacity region even when inputs exceed system capacity (com-
pare points e and e0). However, the throughput eventually touches the
capacity region boundary at the �proportionally fair� point (0:4; 0:4)
when input rates are su¢ ciently far outside of the capacity region.
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This example illustrates two important points. First, the MWM al-
gorithm provides stability whenever possible, while other reasonable
algorithms may not. This �rst point is a special case of a general sta-
bility result for networks with arbitrary C(I(t); S(t)) functions, devel-
oped in the Section 4.4 via a theory of Lyapunov stability. Second, the
MWM policy does not necessarily o¤er fairness in cases when input
rates exceed the capacity region. This issue is considered in Chapter
5, where our stabilizing algorithms are complemented with an optimal
�ow control technique via a theory of Lyapunov optimization.

4.2 Network Model

We consider the general network model of Chapter 2, where there are
N nodes and K commodities (with node and commodity sets N and
K, respectively). The network is characterized by:

� A topology state process S(t) that evolves according to an
irreducible Markov chain with a �nite state space S and time
average probabilities �s for s 2 S.

� A control decision variable I(t) (representing resource allo-
cation) with a potentially topology state-dependent control
space IS(t).

� A matrix valued transmission rate function C(I(t); S(t)) =
(Cab(I(t); S(t))), where Cab(I(t); S(t)) is the transmission
rate over link (a; b) under the control action I(t) and the
topology state S(t) (for a; b 2 f1; : : : ; Ng).

Recall that the Cab(I(t); S(t)) functions are arbitrary, and are only
assumed to be bounded. De�ne �(c)ab (t) as the routing control variables,
representing the amount of commodity c data delivered over link (a; b)
during slot t. These routing variables are constrained as follows:

KX
c=1

�
(c)
ab (t) � Cab(I(t); S(t)) for all (a; b) and all t; (4.1)

�
(c)
ab (t) = 0 if (a; b) =2 Lc; (4.2)

where Lc is the set of all links that are allowed to transmit commodity c
data. Let A(c)i (t) represent the process of exogenous commodity c data
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arriving to source node i (for i 2 N and c 2 K). We assume that the
�ow controllers are turned o¤, so that all exogenous arrivals directly
enter the network layer at their source nodes. Let U (c)i (t) represent the
backlog of commodity c data currently stored in node i. The queueing
dynamics thus satisfy:

U
(c)
i (t+ 1) � max[U (c)i (t)�

X
b

�
(c)
ib (t); 0] +A

(c)
i (t) +

X
a

�
(c)
ai (t): (4.3)

Each process A(c)i (t) is assumed to be admissible with rate less than

or equal to �(c)i . De�ne � = (�
(c)
i ) as the matrix of arrival rates. We

assume that the input rate matrix is stabilizable, and in particular that
is within the relative interior of the capacity region �. Recall from
Section 3.2 that this means there exists a value � > 0 such that �+� 2
�, where:

� The set D contains all node-commodity pairs (i; c) for which
there exist network queues U (c)i (t).

� The set eD is the subset of D consisting of all node-commodity
pairs (i; c) for which it is possible to support a non-zero rate
�
(c)
i (assuming there is no other tra¢ c).

� The matrix � has entries �(c)i = � for all (i; c) 2 eD.
Thus, �+ � 2 � implies that it is possible to �nd multi-commodity

�ows to support the augmented tra¢ c rate matrix associated with
adding a new stream of rate � to each of the source queues U (c)i (t) (for
(i; c) 2 eD). Data from any new stream of rate � is simply treated as if
it has the same commodity as the source queue it enters. To simplify
analysis, we assume that D = eD. This is equivalent to the following
assumption.
�No Trapping Nodes�Assumption: If it is possible to send commod-

ity c data to a particular node i (so that a commodity c queue exists
for that node), then it is possible to support a non-zero communication
rate from node i to the destination of commodity c (possibly by using
multi-hop paths).
For example, a �trapping node�might be a node with no outgoing

links, or a node that is part of a group of nodes with outgoing links that
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only connect to other nodes of the group. Note that the �no trapping
node� assumption holds whenever it is possible to deliver data back
to the same node it came from. While this assumption is not required
for the capacity theorem (Theorem 3.8), it shall be useful in analyzing
the performance of the dynamic control policy introduced in the next
subsection. Indeed, without this assumption, a general dynamic policy
with no routing constraints might inadvertently send data to a trapping
node that prevents this data from ever reaching its destination.
The dynamic policy introduced in the next section is most easily

analyzed under the no trapping node assumption, although it can also
be applied to achieve maximum throughput in networks without this
assumption. In practice, if a particular node dies, or enough of its out-
going links die, then the node can become a trapping node. In this case,
although all of the data contained in this node will be lost, the rate of
adding more data to this node will approach zero, and so the dynamic
routing policy simply �nds alternate routes for all future data.

4.2.1 Input and Output Rate Bounds

To analyze network performance, it is useful to de�ne the maximum
transmission rates out of and into a given node i 2 N as follows:

�outmax;i
M
= max
[s2S;I2Is]

NX
b=1

Cib(I; s); �inmax;i
M
= max
[s2S;I2Is]

NX
a=1

Cai(I; s):

Finite values of the above constants exist because the C(I(t); S(t))
function is bounded. To simplify network analysis, it is also useful to
assume that the total exogenous arrivals to any node i 2 N are deter-
ministically bounded by constants Amaxi , so that for all t we have:2X

c2K
A
(c)
i (t) � A

max
i

2 The deterministic arrival bound is not necessary, and in [108] [122] the network is analyzed
under the general de�nition of admissible inputs, which assumes only a bound on the
second moment of exogenous arrivals.
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4.3 The Stabilizing Dynamic Backpressure Algorithm

We describe below an algorithm for resource allocation and routing
which, as will be shown, stabilizes the network whenever the vector
of arrival rates lies within the capacity region of the network. The
notion of controlling the system to maximize its stability region and
the following algorithm that achieves it was introduced in [142] [147]
and generalized further in [144] [108] [122].
The Dynamic Backpressure and Resource Allocation Al-

gorithm: Every timeslot t, the network controller observes the queue
backlog matrix U(t) =

�
U
(c)
i (t)

�
and the topology state variable S(t)

and performs the following actions for routing and resource allocation.
Resource Allocation: For each link (a; b), de�ne the optimal com-

modity c�ab(t) as the commodity that maximizes the di¤erential backlog
(ties broken arbitrarily):

c�ab(t)
M
=arg max

fcj(a;b)2L cg

h
U (c)a (t)� U (c)b (t)

i
;

and de�ne W �
ab(t) as the corresponding optimal weight:

W �
ab(t)

M
=max[U

(c�ab(t))
a (t)� U (c

�
ab(t))

b (t); 0]: (4.4)

Choose the control action I(t) that solves the following optimization:

Maximize:
X
ab

W �
ab(t)Cab(I(t); S(t)); (4.5)

Subject to: I(t) 2 IS(t):

Routing: For each link (a; b) such that W �
ab(t) > 0, o¤er a trans-

mission rate of �ab(t) = Cab(I(t); S(t)) to data of commodity c�ab(t).
Recall that, by de�nition, c�ab(t) is a valid commodity to send over link
(a; b) (that is, (a; b) 2 Lc�ab(t)). If there is not enough data of commod-
ity c�ab(t) in node a to transmit over all outgoing links requesting this
commodity, idle �ll bits are transmitted, with an arbitrary allocation
of actual data and idle �ll data over the corresponding outgoing links.
The weights W �

ab(t) can be determined at each node provided that
nodes are aware of the backlog sizes of their neighbors. However, the
optimization problem (4.5) that must be solved at the beginning of
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each time slot requires in general knowledge of the whole network state.
There are important special cases where this optimization problem can
be solved in a distributed fashion with each node requiring knowledge
only of the local state information on each of its outgoing channels. This
issue will be described in Section 4.8. The resource allocation problem
can also be approximated or optimized to within a constant factor using
the schemes that will be described in Section 4.7.
The optimal routing commodities c�ab(t) can be determined provided

that nodes are aware of the backlog levels of their neighbors. Note that
this routing strategy does not require paths to be speci�ed in advance:
Paths are chosen dynamically at each timestep according to the back-
pressure between neighboring nodes. The resulting algorithm assigns
larger transmission rates to links with larger di¤erential backlog, and
zero transmission rates to links with negative di¤erential backlog.
In the special case when the routing constraint sets Lc consist of all

data links, then the above policy is equivalent to the Dynamic Routing
and Power Control (DRPC) policy of [122] (where the I(t) control
variable used here plays the role of the P (t) power matrix from [122]).
The DRPC policy itself is a generalization of the original backpressure
algorithm developed for multi-hop packet radio networks in [147], where
stable scheduling algorithms were developed using maximum weight
activation sets with link weights equal to di¤erential backlog.
Consider now the case of a single-hop network where a commodity c

is associated with each link (a; b) tra¢ c. As mentioned in Section 2.2.1
this case can be treated by simply setting Lc = f(a; b)g : Taking into
account that the tra¢ c backlog at the destination node is considered
zero, we have the following simpli�ed algorithm in this case.
The Single-hop Dynamic Backpressure and Resource Allo-

cation Algorithm: Every timeslot t, the network controller observes
the queue backlog matrix U(t) =

�
U ba(t)

�
( U ba(t) is the backlog at node

a of tra¢ c destined to node b) and the topology state variable S(t) and
performs the following actions for routing and resource allocation.
Resource Allocation: Choose the control action I(t) that solves the
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following optimization:

Maximize:
X
ab

U ba(t)Cab(I(t); S(t));

Subject to: I(t) 2 IS(t):

Each link then transmits with rate �ab (t) = Cab (I (t) ; S (t)).
We close this section by describing an important property of the

proposed algorithm; in fact the algorithm is designed so that this prop-
erty is satis�ed. Consider any routing control variables ~�(c)ab (t) that are
admissible (i.e., satisfy (4.1) and (4.2)). Notice that by the de�nition
of the Resource Allocation and Routing policy,X

ab

X
c

~�
(c)
ab (t)

h
U (c)a (t)� U (c)b (t)

i
�
X
ab

X
c

~�
(c)
ab (t)W

�
ab(t)

�
X
ab

W �
ab (t)Cab (I (t) ; S (t)) ;

where the �nal inequality follows from the routing constraints (4.1)
(4.2). Moreover, the upper bound above is achievable by the control
policy that allocates resources to maximize the weighted sum of trans-
mission rates

P
abW

�
ab(t)Cab(I(t); S(t)) subject to I(t) 2 IS(t), and

then chooses control variables:

�
(c)
ab (t) =

�
Cab(I(t); S(t)) if c = c�ab(t)
0 otherwise

: (4.6)

These are exactly the routing control variables de�ned by the Dynamic
Backpressure Algorithm. Taking into account the following simple but
important identity

X
ic

U
(c)
i (t)

"X
b

�
(c)
ib (t)�

X
a

�
(c)
ai (t)

#
=
X
ab

X
c

�
(c)
ab (t)

h
U (c)a (t)� U (c)b (t)

i
;

we conclude from the above the following basic property:
Basic Property: If �(c)ab (t) are the routing control variables de�ned

by the Dynamic Backpressure and Resource Allocation Algorithm and
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~�
(c)
ab (t) those of any other feasible algorithm, then for any time t � 0;

X
ic

U
(c)
i (t)

"X
b

~�
(c)
ab (t)�

X
a

~�
(c)
ab (t)

#
�

X
ic

U
(c)
i (t)

"X
b

�
(c)
ib (t)�

X
a

�
(c)
ai (t)

#
: (4.7)

In the next section we provide the basic tools for proving stability
via Lyapunov function techniques, which are then used in Section 4.5
for proving the stability of the Dynamic Backpressure Algorithm.

4.4 Lyapunov Stability

One of the most important mathematical tools for proving stability of
queueing networks and for developing stabilizing control algorithms is
the technique of Lyapunov drift. The idea is to de�ne a non-negative
function, called a Lyapunov function, as a scalar measure of the aggre-
gate congestion of all queues in the network. Network control decisions
are then evaluated in terms of how they a¤ect the change in the Lya-
punov function from one slot to the next.
Speci�cally, consider a network with L queues, and let U(t) =

(U1(t); : : : ; UL(t)) represent the vector process of backlog in each queue
as a function of time. We de�ne the following quadratic Lyapunov func-
tion L(U):

L(U) =

LX
i=1

U2i :

Note that L(U(t)) = 0 if and only if all network queues are empty at
time t, and that L(U(t)) is large whenever one or more components of
U(t) is large.
Assume that U(t) evolves according to some probabilistic law, and

that the initial conditions are such that E fUi(0)g < 1 for all queues
i 2 f1; : : : ; Lg.

Lemma 4.1. (Lyapunov Stability) If there exist constants B > 0, � >
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0; such that for all timeslots t we have:

E fL(U(t+ 1))� L(U(t)) jU(t)g � B � �
LX
i=1

Ui(t); (4.8)

then the network is strongly stable, and furthermore:

lim sup
t!1

1

t

t�1X
�=0

LX
i=1

E fUi(�)g �
B

�
:

The expression on the left hand side of (4.8) is the Lyapunov drift,
representing the expected change in the Lyapunov function from one
slot to the next. With slight abuse of notation,3 we shall often use
�(U(t)) as a formal representation of this Lyapunov drift:

�(U(t))M=E fL(U(t+ 1))� L(U(t)) jU(t)g :

Note that if the condition (4.8) holds, then for any � > 0, the Lyapunov
drift satis�es �(U(t)) � �� whenever

PL
i=1 Ui(t) � (B+�)=�. That is,

the condition of the Lemma ensures that the Lyapunov drift is negative
whenever the sum of queue backlogs is su¢ ciently large. Intuitively, this
property ensures network stability because whenever the queue backlog
vector leaves the bounded region(

U � 0
�����
LX
i=1

Ui � (B + �)=�
)
;

the negative drift eventually drives it back to this region.

Proof. (Lemma 4.1) Assume the condition (4.8) holds for all timeslots
t. Taking expectations of (4.8) (with respect to the distribution for the
random queue backlog U(t) at time t) we have by the law of iterated
expectations:

E fL (U(t+ 1))g � E fL (U(t))g � B � �
LX
i=1

E fUi(t)g :

3 Strictly speaking, the Lyapunov drift should be expressed as �(U(t); t), as it could po-
tentially depend on the timeslot t as well as the queue backlog values U(t). However, to
simplify notation, we use �(U(t)) as a formal symbolic representation of the same thing.
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The above inequality holds for all timeslots t 2 f0; 1; 2; : : :g. Summing
the inequality over timeslots � 2 f0; : : : ;M � 1g yields a telescoping
series on the left hand side, resulting in:

E fL (U(M))g � E fL (U(0))g � BM � �
M�1X
�=0

LX
i=1

E fUi(�)g :

Dividing the above inequality by M , shifting terms, and using the fact
that L(U(M)) � 0, we have:

1

M

M�1X
�=0

LX
i=1

E fUi(�)g �
B

�
� E fL(U(0))g

M�
:

The above inequality holds for all positive integersM . Taking a lim sup
as M !1 yields the result.

The theory of Lyapunov drift has a long history in the �eld of dis-
crete stochastic processes and Markov chains (see, for example, [10]
[106]). The �rst application of the theory to the design of dynamic con-
trol algorithms for radio networks appeared in [147], where a general
algorithm was developed to stabilize a multi-hop packet radio network
with con�gurable link activation sets. The concepts of maximum weight
matching and di¤erential backlog scheduling, developed in [147], play
important roles in the dynamic control strategies we present in later
sections. The Lyapunov drift approach has been successfully used to op-
timize allocation of computer resources [22] [21], stabilize packet switch
systems [143] [80] [104] [145] [72] [86], satellite and wireless systems
[148] [149] [67] [144] [5] [121] [157], and ad-hoc mobile networks [122].
Recently, a simple extension of Lyapunov drift theory is developed in
[108] [109] [119] to provide both stability and performance optimization
(addressed in more detail in Chapters 5 and 6).
Lyapunov drift theory for queueing networks is traditionally pre-

sented in terms of Foster�s criterion for stability (see, for example,
[10]). Roughly, Foster�s criterion applies to queueing processes that
evolve according to ergodic Markov chains with countably in�nite state
spaces, and ensures that the Markov chain has a well de�ned steady
state provided that some mild assumptions hold, and provided that
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the Lyapunov drift is negative whenever the queue state is outside of
a bounded region of the state space. The form of the Lyapunov drift
Lemma (Lemma 4.1) does not require Foster�s criterion, and is adapted
from similar statements in [86] [67] [121]. This approach to Lyapunov
stability yields a simpler stability proof as well as an upper bound on
average queue occupancy. If the conditions of Lemma 4.1 are supple-
mented with the additional Markovian assumptions of Foster�s crite-
rion, then the resulting lim sup of the backlog bound in Lemma 4.1 can
be replaced with a regular limit, as Foster�s criterion guarantees the
limit exists.
A statement similar to Lemma 4.1 can also be made concerning T -

slot Lyapunov drift, which is useful in cases when network stochastics
require more than one timeslot to ensure a negative drift:

Lemma 4.2. (T -slot Lyapunov drift) If there is a positive integer T
such that E fU(�)g <1 for � 2 f0; : : : ; T�1g, and if there are positive
values B; � such that for all timeslots t0 we have:

E fL(U(t0 + T ))� L(U(t0)) jU(t0)g � B � �
LX
i=1

Ui(t0);

then the network is strongly stable, and the average congestion satis�es:

lim sup
t!1

1

t

t�1X
�=0

LX
i=1

E fUi(�)g �
B

�
:

The proof is similar to the proof of Lemma 4.1, and is omitted for
brevity (see [108] [122] for details).
As a preliminary demonstration of the power of Lyapunov drift

theory, we use the T -slot theorem to prove the su¢ cient condition for
queue stability given in Lemma 3.6 of Section 3.1.1. The next simple
lemma will be useful.

Lemma 4.3. If V;U; �;A are nonnegative real numbers and

V � max [U � �; 0] +A;
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then
V 2 � U2 + �2 +A2 � 2U (��A) :

Consider a single queue with backlog U(t) and with arrival and
server processes A(t) and �(t).

Lemma 4.4. If A(t) is admissible with rate less than or equal to �,
and if �(t) is admissible with rate greater than or equal to �, and if
� < �, then the queue is strongly stable, and queue backlog satis�es:

lim sup
t!1

1

t

t�1X
�=0

E fU(�)g � T (�2max +A
2
max)

�� � ; (4.9)

where �max is a bound such that �(t) � �max for all t, and where T
is the smallest integer such that at every timeslot t and (regardless of
past history of the system) the following condition holds:

E

(
1

T

t+T�1X
�=t

�(�)� 1

T

t+T�1X
�=t

A(�) jH (t)

)
� (�� �)=2: (4.10)

Further, if the arrivals A(t) are i.i.d. every slot with mean E fA(t)g = �,
and if �(t) service rates are i.i.d. every slot with mean E f�(t)g = �,
then:

lim sup
t!1

1

t

t�1X
�=0

E fU(�)g � (�2max +A
2
max)

2(�� �) : (4.11)

The parameter T used in the above theorem can be viewed as the
time required for the system to reach �near steady state.�Note that
the general bound (4.9) di¤ers by a factor of 2T from the bound (4.11)
for the i.i.d. case. This is due to the fact that non-i.i.d. systems may
have system states that yield low transmission rates or large arrival
bursts for many timeslots in a row. While the i.i.d. case can be viewed
as a special case when T = 1, the extra factor of 2 arises because i.i.d.
systems e¤ectively �reach steady state� on each and every timeslot,
so that the left hand side of (4.10) is exactly equal to (� � �) for all
t. Below we present a proof of Lemma 4.4 for the non-i.i.d. case. The
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argument below is the only T -slot analysis that we present in this paper.
In later sections we restrict proofs to cases that involve simpler i.i.d.
assumptions, with the understanding that these proofs can be modi�ed
using T -slot analysis to yield similar results for non-i.i.d. systems.

Proof. (Lemma 4.4) The un�nished work in the queue T slots into
the future can be bounded in terms of the current un�nished work as
follows:

U(t+ T ) � max
"
U(t)�

t+T�1X
�=t

�(�); 0

#
+

t+T�1X
�=t

A(�):

The above expression is an inequality instead of an equality because
new arrivals may depart before the T slot interval is �nished. From
Lemma 4.3 we have:

U2(t+ T ) � U2(t) + T 2�2max +
 
t+T�1X
�=t

A(�)

!2

� 2TU(t)
"
1

T

t+T�1X
�=t

�(�)� 1

T

t+T�1X
�=t

A(�)

#
:

Taking conditional expectations with respect to U (t), noting that

E fA(�1)A(�2) jU (t)g �
p
E fA(�1)2 jU (t)gE fA(�2)2 jU (t)g � A2max;

and using the de�nition of T yields:

E
�
U2(t+ T )� U2(t) jU(t)

	
� T 2�2max + T 2A2max � 2TU(t)(�� �)=2:

Applying Lemma 4.2 to the above inequality (using L(U) = U2) yields
(4.9), proving the result.

4.5 Lyapunov Drift for Networks

In this section we show that the Dynamic Backpressure Algorithm sta-
bilizes the network, using Lyapunov drift techniques described in Sec-
tion 4.4. Let U(t) represent the matrix of queue backlogs, and de�ne
the following Lyapunov function:

L(U) =
X
ic

�
U
(c)
i

�2
:
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The above sum is taken over all (i; c) entries, where we formally de�ne
U
(c)
i (t) = 0 for all t whenever (i; c) =2 D. To calculate the drift �(U(t))
we apply Lemma 4.3 to the queueing equation (4.3) and obtain,�
U
(c)
i (t+ 1)

�2
�
�
U
(c)
i (t)

�2
+

 X
b

�
(c)
ib (t)

!2
+

 
A
(c)
i (t) +

X
a

�
(c)
ai (t)

!2

� 2U (c)i (t)

"X
b

�
(c)
ib (t)�A

(c)
i (t)�

X
a

�
(c)
ai (t)

#
:

Summing over all valid entries (i; c) and using the fact that the sum of
squares of non-negative variables is less than or equal to the square of
the sum, it is not di¢ cult to show that the above inequality implies:

L(U(t+ 1))� L(U(t)) � 2BN

�2
X
ic

U
(c)
i (t)

"X
b

�
(c)
ib (t)�A

(c)
i (t)�

X
a

�
(c)
ai (t)

#
:

where
B M
=
1

2N

X
i2N

[(�outmax;i)
2 + (Amaxi + �inmax;i)

2]: (4.12)

Taking conditional expectations yields the following bound for Lya-
punov drift:

�(U(t)) � 2BN + 2
X
ic

U
(c)
i (t)E

n
A
(c)
i (t)

���U(t)o
�2E

(X
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(c)
i (t)

"X
b

�
(c)
ib (t)�

X
a

�
(c)
ai (t)

#�����U(t)
)
: (4.13)

Using the Basic Property discussed in at the end of Section 4.3 we
conclude that the Backpressure Algorithm is designed to minimize at
each time slot, over all admissible policies, the bound in the right hand
side of (4.13). This is the key property on which the proof of stability
of the algorithm, as described in the next theorem, is based.

Theorem 4.5. (Backpressure Algorithm Performance) If there exists
a value � > 0 such that � + � 2 � (where � is a matrix with all en-
tries (i; c) 2 D equal to �, and all other entries equal to zero), then the
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above dynamic backpressure algorithm stabilizes the network. Further-
more, in the special case when the arrival processes A(t) are i.i.d. over
timeslots and the topology state process is i.i.d. over timeslots (so that
E fA(t)g = � and Pr[S(t) = s] = �s for all timeslots t), the average
congestion satis�es:

lim sup
t!1

1

t

t�1X
�=0

X
ic

E
n
U
(c)
i (�)

o
� NB

�max
;

where �max is the largest value of � such that � + � 2 �, and B is
de�ned in (4.12).

The theorem is proven in [122] [108] for the case of general admis-
sible inputs and Markov modulated topology state processes, where a
congestion bound is also derived. As in the case of single hop networks,
the congestion bound for the non-i.i.d. case is roughly a factor of T
larger than the i.i.d. congestion bound given above, where T is the du-
ration required for the system to reach �near steady state.�Below we
prove the theorem for the i.i.d. case.

Proof. (Theorem 4.5) For simplicity, we assume that Cl(�) = �. Since

arrivals A(t) are i.i.d. over timeslots, we have E
n
A
(c)
i (t) jU(t)

o
= �

(c)
i

for all (i; c). Hence we can rewrite (4.13) as:

�(U(t)) � 2BN + 2
X
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i (t)
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(c)
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X
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�
(c)
ai (t)

�����U(t)
)#

: (4.14)

However, recall the basic inequality (4.7), which states that the Dy-
namic Backpressure policy minimizes the �nal term on the right hand
side of the above inequality over all possible alternative policies ~�(c)ab (t).
However, because � + � 2 �, we know from Corollary 3.9 of Chap-
ter 3 that there exists a stationary randomized algorithm that makes
decisions based only on the current topology state S(t) (and hence in-
dependent of the current queue backlog) so that for all (i; c) 2 D we
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have:

E

(X
b

~�
(c)
ib (t)�

X
a

~�
(c)
ai (t)

�����U(t)
)
= �+ �

(c)
i :

Using the above in (4.14) and considering (4.7), we conclude:

�(U(t)) � 2BN � 2�
X
ic

U
(c)
i (t):

This drift inequality is in the exact form for application of the Lyapunov
drift lemma (Lemma 4.1 of Section 4.4), proving the result.

4.6 Time Varying Arrival Rates

The Dynamic Backpressure Algorithm does not require knowledge of
input rates or topology state probabilities, and hence it easily adapts
to time varying system statistics [108] [120]. For example, suppose the
arrivals A(t) are i.i.d. with expected rate vector E fA(t)g = �(1) for
some duration of time t1 � t � t2, but that user demands change after
time t2, so that E fA(t)g = �(2) for t2 < t � t3. After time t3, the
rates might change again, and so on, so that rate changes occur at
arbitrary times. It can be shown that the system is strongly stable and
has average congestion bounded by a uniform constant, provided that
there is a positive value � such that all rate matrices are within a given
distance � of the capacity region boundary [108] [120].

4.7 Imperfect Scheduling

It is not di¢ cult to show that if a �sub-optimal�control decision I(t)
is chosen that satis�es:X

ic

W �
ab(t)Cab(I(t); S(t)) �  max

I2IS(t)

X
ab

W �
ab(t)Cab(I(t); S(t))�D;

for some constants , D such that 0 �  � 1 and 0 � D <1, then the
network is also stable, provided that the arrival rates are interior to �,
which is a  scaled version of the capacity region. Thus, if the controller
is o¤ from the optimum by no more than an additive constant D ( i.e.,
 = 1), then full stability is still possible (although the resulting con-
gestion increases by an additive constant proportional to D). However,
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if the controller deviates from optimality by a multiplicative constant,
the achievable throughput region may be a subset of the capacity re-
gion. This result is presented in [108], and similar results are presented
for low complexity switch scheduling in [134] [120]. Related �imperfect
scheduling�statements are developed for utility optimization in [92] us-
ing a convex optimization theory framework. The result can be shown
by a simple modi�cation of the proof of Theorem 4.5. Speci�cally, the
result follows by replacing (4.7) with the following inequality:
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and by assuming that (�+ �) = 2 �.
This simple result leads to two signi�cant conclusions:

First, any e¤ort to allocate resources to increase the value ofP
iW

�
ab(t)Ci(I(t); S(t)) will lead to improved network throughput,

even if the maximum is not attained. Second, full network capacity
can be achieved by using queue backlog estimates, provided that the
di¤erence between the estimate and the exact value is bounded by a
constant [108]. Therefore, assuming that the maximum per-timeslot
backlog change in any queue is bounded, full network stability can
be achieved by using out of date queue backlog information. Queue
updates can be arbitrarily infrequent without a¤ecting stability,
although the average congestion may increase in proportion to the
duration between updates. Related work in the area of imperfect
scheduling for wireless networks is developed in [92] [163] [29].

4.8 Distributed Implementation

As mentioned in Section 4.3, the weights W �
ab(t) of the optimization

problem (4.5) can be determined by node a provided that this node is
aware of the backlog sizes of its neighbors. However, the optimization
problem itself is not always easily amenable to a distributed solution,
as it could require full knowledge of the topology state S(t) and full
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coordination of all network nodes. This is the case in the server alloca-
tion problem of Example 2.3, where the constraint I(t) 2 I can only
be met by a coordinated decision, and in the power allocation problem
of Example 2.5 that requires knowledge of the full power matrix.
These problems can be avoided if the network is designed so that the

link rate functions Cab(I(t); S(t)) depend only on network conditions
and control input decisions that are local to link (a; b). In particular,
suppose that the topology state S(t), the link control input I(t), and
the control space IS(t) can be decomposed into terms associated with
G independent groups of nodes:

S(t) =
�
S1(t); S2(t); : : : ; SG(t)

�
;

I(t) =
�
I1(t); I2(t); : : : ; IG(t)

�
;

IS(t) = I1S1(t) � I
2
S2(t)

� : : :� IGSG(t);

where Sg(t) represents the local components of the topology state S(t)
measured at nodes within group g (for g 2 f1; : : : ; Gg). Likewise, Ig(t)
represents the transmission control input decisions corresponding to
nodes within group g, and satis�es the constraint Ig(t) 2 IgSg(t). Further
suppose that the link transmission rate functions for each outgoing link
(a; b) of every node a associated with a particular group ga can be
written as pure functions of Sga(t) and Iga(t):

Cab(I(t); S(t)) = Cab (I
ga(t); Sga(t)) :

In this case, resource allocation decisions associated with a given
group g can be made independently of allocation decisions for other
groups. An example network where such a decomposition is possible is
the ad-hoc mobile network of Example 2.6, where groups are de�ned
according to cell partitions. Similarly, such a decomposition is possi-
ble when communication takes place over wireline data links that do
not in�uence other channels, or when all wireless network nodes trans-
mit over orthogonal frequency bands so that there is no inter-channel
interference.
However, networks with general interference properties cannot be

decomposed in this way. One approach is to make random control deci-
sions I(t), and then to have the �ow control and routing layers simply
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react to the resulting transmission rates �ab(t) = Cab(I(t); S(t)). This
approach is considered in [57] [108] [122] for distributed control of wire-
less ad-hoc networks. Another approach is to use simpli�ed sub-optimal
scheduling to achieve results within a constant factor of optimality. For
example, in a network where link activation sets conform to matching
constraints, it is well known that a greedy contention based schedul-
ing algorithm achieves within a factor of 2 of optimality. Speci�cally,
each node greedily requests to transmit over its maximum weight out-
going link, and con�icting requests are resolved by granting the largest
weight contender (breaking ties arbitrarily). The contention scheme
must pass through several iterations before reaching a point when no
new links can be matched (where each iteration includes at least one
new link). Related �factor of k�results apply for greedy scheduling in
systems where each link has at most k other interfering links. Greedy
scheduling strategies of this type are considered for somewhat di¤er-
ent control algorithms in [92] [163] [29] [164]. We will see in Chapter
5 that the same distributed implementation issues arise when one con-
siders resource optimization problems and fairness issues in addition to
stability.

4.9 Algorithm Enhancements and Shortest Path Service

Note that the routing constraint sets Lc can be designed to ensure that
data is routed over links that make progress toward the appropriate
destination. However, these routing restrictions potentially reduce the
network capacity region, and can limit adaptivity when link or node
failures necessitate re-routing. These issues can be avoided if all sets Lc
are equal to the set of all network links. While this leads to the largest
capacity region �, it can also lead to large end-to-end network delay. For
example, if a single packet is injected into an empty network, there is no
backpressure to suggest an appropriate path. Hence, the packet might
take a random walk through the network, or might take a periodic walk
that never leads to the destination. In this case, although the network
congestion is quite low (only one packet), network delay can be in�nite.
Similarly, in cases when the network is lightly loaded, the end-to-end
delay can be large even though the congestion bound of Theorem 4.5
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is satis�ed.
To achieve low delay while still avoiding the routing restrictions

associated with the sets Lc, we can program a shortest path bias into
the weights of the dynamic backpressure algorithm. This leads to the
following �enhanced�version of the dynamic backpressure algorithm,
de�ned in terms of constants �(c)i > 0 and Q(c)i � 0.

Enhanced Dynamic Backpressure Routing Algorithm (EDR): For
all links (a; b), �nd the commodity c�ab(t) such that:

c�ab(t)
M
=arg max

c2f1;:::;Kg

n
�(c)a (U

(c)
a (t) +Q(c)a )� �

(c)
b (U

(c)
b (t) +Q

(c)
b )
o
;

and de�ne:

W �
ab(t)

M
=max

h
�
(c�ab)
a

�
U
(c�ab)
a (t) +Q

(c�ab)
a

�
� �(c

�
ab)

b

�
U
(c�ab)
b (t) +Q

(c�ab)
b

�
; 0
i
:

Control decisions are then made as before, using these new weights and
commodities W �

ab(t) and c
�
ab(t) as a replacement for the originals.

This enhanced strategy is developed in [108] [122] and called the
�Enhanced Dynamic Routing and Power Control (EDRPC)�strategy.

Using the Lyapunov function L(U) =
P
ic �

(c)
i

�
U
(c)
i

�2
, it is not di¢ cult

to show that the enhanced algorithm stabilizes the network whenever
the original algorithm does.
In particular, a shortest path bias can be programmed into the

algorithm by setting all �(c)i weights to 1, but choosing the weights Q(c)i
to be proportional to the distance (or number of hops) between node
i and the destination of commodity c along the shortest path through
the network (where Q(c)i = 0 if node i is the destination of commoditiy
c). These distances can either be estimated or computed by running a
shortest path algorithm. With these bias values, packets are inclined
to move in the direction of their shortest paths, providing low delay in
lightly loaded conditions while still ensuring stability throughout the
entire capacity region.
We note that the combined weight U (c)i (t) + Q

(c)
i associated with

commodity c data in node i can be used in the same manner as a rout-
ing table, and in situations where the network nodes do not change their
relative locations, the un�nished work quantities can be updated each
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timeslot by having neighboring nodes transmit their backlog changes
over a low bandwidth control channel. As each link transmits only a
single commodity every timeslot, the number of such backlog incre-
ments required to be transmitted over the control channel by any user
is on the order of neighboring nodes.
Below, we consider the special case of a simple �multiple source sin-

gle sink" static sensor network consisting of 100 sensor nodes randomly
placed in a 10� 10 square. We use a cell-partitioned model (similar to
the one considered in [109]) with 100 equal-sized cells. Each node can
communicate with neighboring nodes in the same or adjacent cells.
Time is slotted and each node can transmit to at most one of its neigh-
bors in a time slot, though a node can receive from multiple nodes.
Each sensor node has independent data of input rate � to deliver to
a centrally located sink node, so that there is only one commodity in
the network, and only one destination. Nodes are assumed to have a
�xed transmission power PMAX . The data rate achievable over a link
is then taken as BWlog(1 + �PMAX) where � is the attenuation over
that link, being a function of the distance between the nodes and BW
is the bandwidth of the link.
We consider two interference scenarios, one in which a node�s trans-

mission doesn�t cause interference at other nodes and the other where a
node�s transmission causes interference at nodes in the same or adjacent
cells. The performance of a distributed implementation of DRPC and
EDRPC is compared with a pure shortest path based routing scheme
in this setup. The left plot in Fig. 4.2 shows the performance of these
schemes under the �no interference" model with asymmetric bottleneck
link capacities. The right plot shows the performance with interfer-
ence and symmetric link capacities. It can be seen that in both cases,
DRPC/EDRPC signi�cantly outperform the shortest path scheme as
input rate � is pushed up. At low data rates, backlog based decisions
are likely to lead to false turns, which degrades the performance of
DRPC. By incorporating path lengths into the backpressure calcula-
tion, EDRPC improves upon the performance of DRPC at low data
rates while maintaining the advantages of backlog aware schemes at
high data rates.
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Fig. 4.2 Simulation results comparing backpressure routing, enhanced backpressure routing,
and pure shortest path routing, for a 100 node wireless sensor network with a single centrally
located destination.

4.10 Multi-commodity Flows and Convex Duality

The Dynamic Backpressure Algorithm stabilizes the network and o¤ers
average delay guarantees whenever the input rate matrix is inside the
capacity region of the wireless network. Here we consider a related
problem of computing an o ine multi-commodity �ow given a known
rate matrix (�(c)i ). Classical multi-commodity �ow problems for wired
networks can be reduced to linear programs, and fast approximation
algorithms are developed in [85]. A distributed algorithm was �rst given
in [51], and pricing and game theory approaches are developed in [71]
[70].
Here we consider the special case of a network with a time invariant

topology state, and formally pose our network stability problem as a
static multi-commodity �ow problem (following the development given
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in [108] [122]). We show that a classical subgradient search method
for solving the problem via convex duality theory corresponds almost
exactly to a deterministic network simulation of the Dynamic Backpres-
sure Algorithm. Notions of duality are also used in [165] [100] [70] [71]
[101] [66] [84] [31] [79] to consider static network optimization, where
in many cases the dual variables play the role of prices charged by
the network to multiple users competing for shared network resources
in order to maximize their own utility. Applications of static duality
theory to the area of internet congestion control are developed in [97].
In our context, the dual variables correspond to queue backlogs,

rather than network prices. This illustrates a relationship between sta-
tic optimization and the Lyapunov stability theory, suggesting that sta-
tic algorithms can be modi�ed and applied in dynamic settings while
preserving analytical optimality. This observation also motivates our
study of stochastic network optimization in the next chapter.
Consider a time invariant network with transmission rate function

C(I(t)) for I(t) 2 I (note that there is no notion of a time varying
topology state here). Suppose that a commodity corresponds to a des-
tination, so that all commodity c data is destined for node c. Given a
particular rate matrix (�(c)i ), the problem of �nding a multi-commodity
�ow corresponds to the following convex optimization problem.

Maximize : 1

Subject to: �t(c)i +
X
a

f
(c)
ai �

X
b

f
(c)
ib 8i; c with i 6= c;�n

f
(c)
ab

o
; f�abg

�
2 
; (4.15)

where 
 is the set of all variables
�n
f
(c)
ab

o
; f�abg

�
such that:

f
(c)
ab � 0 for all a; b; c 2 f1; : : : ; Ng;

f (c)aa = f
(a)
ab = 0 for all a; b; c 2 f1; : : : ; Ng; X

c

f
(c)
ab

!
� (�ab) for some (�ab) 2 Clf�g: (4.16)

The maximization function �1�is used as an arti�ce to pose this multi-
commodity �ow problem in the framework of an optimization problem.
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Note that the set 
 is convex and compact (it inherits convexity and
compactness from the set Cl(�) consisting of all link transmission rate
matrices (Gab) entrywise less than or equal to some element of �, see
[108]). Moreover, the objective function �1� and all inequality con-
straints are linear. The optimization problem is therefore convex [19],
and has a dual formulation, where the optimal solution of the dual prob-
lem exactly corresponds to an optimal solution of the original �primal�
problem (4.15). To form the dual problem, we introduce non-negative
Lagrange multipliers fU (c)i g for each of the inequality constraints in
(4.15), and de�ne the dual function:

L
�
fU (c)i g

�
M
= max�n

f
(c)
ab

o
;f�abg

�
2


24 1+
X
i6=c
U
(c)
i

 X
b

f
(c)
ib �

X
a

f
(c)
ai � �ic

!35 : (4.17)

The dual problem to (4.15) is:

Minimize: L
�n
U
(c)
i

o�
;

Subject to: U (c)i � 0 for all i; c 2 f1; : : : ; Ng:
The dual problem is always convex, and the minimizing solution can be
obtained using classical subgradient search methods (where the func-

tion �L
�n
U
(c)
i

o�
is maximized). Consider a �xed stepsize method

with stepsize T = 1. The basic subgradient search routine starts with
an initial set of values U (c)i (0) for the Lagrange multipliers, and upon
each iteration t = f1; 2; : : :g these values are updated by computing a
subgradient � for one time unit, and, if necessary, projecting the result
back onto the set of non-negative values [19]:

U
(c)
i (t+ 1) = max

h
U
(c)
i (t) + �

(c)
i ; 0

i
: (4.18)

However, it is shown in [19] that a particular subgradient of
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where the
n
f
�(c)
ab

o
variables are solutions to the maximization in (4.17)

with U (c)i = U
(c)
i (t). Using (4.19) in (4.18) for all i 6= c, we �nd:

U
(c)
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ai + �ic; 0

#
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From the above equation, it is apparent that the Lagrange multipliersn
U
(c)
i (t)

o
play the role of un�nished work in a multi-node queueing

system with input rates �ic, where U
(c)
i (t) represents the amount of

commodity c bits in node i. In this way, the f�(c)ab values can be viewed
as the transmission rates allocated to commodity c tra¢ c on link (a; b).
Equation (4.20) thus states that the un�nished work at time t + 1 is
equal to the un�nished work at time t plus the net in�ux of bits into
node i. Thus, the operation of projecting the Lagrangian variables onto
the positive orthant acts exactly as an implementation of the standard
queueing equation.
It is illuminating to calculate the optimal f�(c)ab values by perform-

ing the maximization in (4.17). To this end, we need to maximizeP
i6=c U

(c)
i (t)

�P
b f

(c)
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a f
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�
subject to the constraints of (4.16).

However, as in Section 4.5, we can switch the sum to �nd:X
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h
U (c)a � U (c)b

i
:

Remarkably, from the right hand side above, it is apparent that the
optimal values f�(c)ab are identical to the resulting link rates �(c)ab (P ) that
would be computed if the DRPC algorithm were used to calculate rout-
ing and power allocation decisions in a network problem with un�nished
work levels U (c)i (t). It follows that the DRPC algorithm can be viewed
as a dynamic implementation of a subgradient search method for com-
puting the solution to an optimization problem using convex duality.
This suggests a deeper relationship between stochastic network con-
trol algorithms and subgradient search methods. Further, it suggests
an approach to stochastic network optimization. Indeed, note that the
optimization problem (4.15), which maximizes the function �1,� can
be adjusted to maximize some other performance criteria, which may
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be of interest in the corresponding dynamic network control problem.
One approach is to use the theory of stochastic approximation and sto-
chastic subgradients (see for example [68] [44]), which has recently been
applied in [83] to a downlink scheduling problem with in�nitely back-
logged sources. In the next chapter, we develop a method that uses a
novel extension of Lyapunov drift theory to allow stability and perfor-
mance optimization simultaneously [108] [109] [119], yielding explicit
tradeo¤s in utility optimization and average delay.



5
Networking Outside of the Capacity Region: Utility

Optimization and Fairness

Up to this point we have focused attention only on the problem of
controlling a network to achieve stability. In this chapter we begin our
treatment of stochastic network optimization, where the goal is to stabi-
lize the network while additionally optimizing some performance metric
and/or satisfying some additional constraints. Speci�cally, this chapter
investigates the situation when the exogenous arrival rates are outside
of the network capacity region �. In this case, the network cannot be
stabilized without a transport layer �ow control mechanism to limit
the amount of data that is admitted. The goal is to design a cross-
layer strategy for �ow control, routing, and resource allocation that
provides stability while achieving optimal network fairness. Here, we
measure fairness in terms of a general utility function of the long term
admission rates of each session.
The solution to this �ow control problem involves three new con-

cepts. The �rst is a simple extension of Lyapunov drift theory that
enables stability and performance optimization to be treated simulta-
neously [108] [109] [119]. The second is the introduction of auxiliary
variables that are used to hold additional state information useful for
optimizing functions of time averages [119] [111] [115]. The third is

69
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the technique of using virtual cost queues to transform performance
constraints into queueing stability problems [109] [119] [136]. These
techniques are instrumental in the design of utility-optimal �ow con-
trollers, and shall also be used in Chapter 6 to address more general
problems of network optimization, including minimum energy routing
and cost constrained scheduling.

5.1 The Flow Control Model and Fairness Objective

Consider the general multi-hop network model introduced in Chapter
2, where the network has N nodes, K commodities, a topology state
process S(t), and a link transmission rate function C(I(t); S(t)) (where
I(t) 2 IS(t)). Recall that a general network control algorithm must
choose the resource allocation and routing decision variables as follows:

� Resource (Rate) Allocation: Observe the current topology
state S(t) and choose a transmission control I(t) 2 IS(t) to
yield link transmission rates �(t) = C(I(t); S(t)).

� Routing/Scheduling: For each link (a; b) and each commodity
c, choose �(c)ab (t) to satisfy the following constraints:X

c

�
(c)
ab (t) � �ab(t); (5.1)

�
(c)
ab (t) = 0 if (a; b) =2 Lc; (5.2)

(where Lc is the set of all network links that are acceptable
for commodity c data to traverse).

Newly arriving data does not immediately enter the network layer.
Rather, it �rst enters a transport layer storage reservoir. Speci�cally,
new data of commodity c that arrives to source node n is �rst placed in
a transport layer reservoir (n; c). A control valve determines the amount
of data R(c)n (t) released from this reservoir on each timeslot. This R

(c)
n (t)

process acts as the exogenous arrival process to the network layer queue
U
(c)
n (t). As discussed in Section 2.2, the following inequality holds for
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the network queues.

U (c)n (t+1) � max
"
U (c)n (t)�

X
b

�
(c)
nb (t); 0

#
+
X
a

�(c)an(t)+R
(c)
n (t): (5.3)

Let L(c)n (t) represent the current backlog in the transport layer reservoir
(n; c) at time t. The �ow control decision variables R(c)n (t) are chosen
every timeslot according to the following restriction:

� Flow Control (Type 1): Choose R(c)n (t) such that:

R(c)n (t) � L(c)n (t) +A(c)n (t) for all (n; c) and all t;X
c

R(c)n (t) � Rmaxn for all n and all t;

where the constants Rmaxn are chosen to be positive and suit-
ably large, to be made precise in the development of our
CLC1 �ow control algorithm (introduced in the next sec-
tion). The �rst constraint above ensures that admitted data
is less than or equal to the actual data available, and the
second is important for limiting the burstiness of the admit-
ted arrivals. We label the above �ow control constraints as
�Type 1�to distinguish them from the following alternative
constraint speci�cations:

� Flow Control (Type 2): Choose R(c)n (t) such that:

R(c)n (t) � L(c)n (t) +A(c)n (t) for all (n; c) and all t;

R(c)n (t) � R̂(c)n for all n and all t;

where R̂(c)n are suitably large positive constants, to be made
precise in our CLC2 algorithm in Section 5.4.2. The Type 2
constraints are simpler but are also less restrictive and gen-
erally lead to a larger bound on average network congestion.

5.1.1 The Fairness Objective

Let � =
�
�
(c)
n

�
denote the arrival rate matrix of the exogenous arrival

streams (A(c)n (t)). This rate matrix is arbitrary, and in particular the
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rates can either be inside or outside of the capacity region �. Flow
control decisions about what data to admit are crucial in the case when
the input rates exceed network capacity, and it is important to establish
a quantitative measure of network fairness. To this end, we de�ne a set
of utility functions g(c)n (r), representing the �satisfaction� received by
sending commodity c data from node n to the destination node of this
commodity at a time average rate of r bits/slot. The utility functions
are assumed to be non-decreasing and concave. Such utility functions
are a conventional means of measuring network fairness. For example,
concave utilities are used to evaluate fairness for wireline networks in
[70] [71] [97] [107], for static wireless networks in [84] [16] [66] [31]
[92], and for stochastic wireless networks in [108] [119] [45] [136] [83].
Furthermore, di¤erent choices of the g(c)n (r) functions lead to di¤erent
fairness properties [140] [70].
For our problem, the goal is to support a fraction of the tra¢ c

demand matrix � to achieve a long term throughput matrix r =
�
r
(c)
n

�
that maximizes the sum of user utilities. The optimal sum utility is
thus de�ned by the following optimization problem:

Maximize:
X
n;c

g(c)n

�
r(c)n

�
(5.4)

Subject to: r 2 �; (5.5)

0 � r(c)n � �(c)n for all (n; c): (5.6)

Inequality (5.5) is the stability constraint and ensures that the long
term admitted rates are stabilizable by the network. Inequality (5.6) is
the demand constraint that ensures the admission rate of session (n; c)
is no more than the incoming tra¢ c rate of this session.
Because the functions g(c)n (r) are non-decreasing, it is clear that if

� 2 �, then the above optimization is solved by the matrix r� = � (so
that r�(c)n = �

(c)
n for all (n; c)). If � =2 �, then the solution r� will lie

somewhere on the capacity region boundary. The above optimization
could in principle be solved if the arrival rates (�(c)n ) and the capacity
region � were known in advance, and all users could coordinate by
sending data according to the optimal solution. However, the capacity
region depends on the topology state probabilities, which are unknown
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to the network controllers and to the individual users. Furthermore,
the individual users do not know the data rates or utility functions
of the other users. In this chapter, we develop a practical dynamic
control strategy that yields a resulting matrix of throughputs r that is
arbitrarily close to the optimal solution of (5.4)-(5.6). The distance to
the optimal solution is shown to decrease like 1=V , where V is a control
parameter a¤ecting a tradeo¤ in average delay for data that is served
by the network.

5.1.2 Capacity Region Geometry

Recall that D is the set of all (n; c) pairs that represent valid network
layer queues U (c)n (t) (so that it is possible for commodity c data to be
present at node n). The integer D represents the total number of these
queues, and de�nes the e¤ective dimension of the network. We assume
throughout that U (c)n (t)M=0 , R

(c)
n (t)

M
=0 for all t whenever (n; c) =2 D,

and that g(c)n (r)M=0, �
(c)
n

M
=0 whenever (n; c) =2 D.

The capacity region � can be shown to be compact and con-
vex with D e¤ective dimensions [108]. It shall be useful to de�ne
the parameter �sym to be the largest time average admission rate
that is simultaneously supportable by all sessions (n; c) 2 D, so that
(�sym1

(c)
n ) 2 � (where 1(c)n is an indicator function that is equal to

1 whenever (n; c) 2 D, and zero else). Geometrically, the value �sym
represents the edge size of the largest D-dimensional hypercube that
can be �t into the capacity region �, and is a value that unexpectedly
arises in our analysis. We assume throughout that �sym > 0.
In the next section, we present a solution to the fairness problem

(5.4)-(5.5) in the special case when all active sessions are in�nitely
backlogged (so that the demand constraint (5.6) is removed). A modi�ed
algorithm that uses auxiliary variables and �ow state queues is then
presented in Section 5.4 to solve the general problem (5.4)-(5.6).

5.2 Dynamic Control for In�nite Demand

Here we develop a practical control algorithm that stabilizes the net-
work and ensures that utility is arbitrarily close to optimal, with a
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corresponding tradeo¤ in network delay. We de�ne an active session
(n; c) to be a source-commodity pair such that (n; c) 2 D and g(c)n (r)
is not identically zero. To highlight the fundamental issues of routing,
resource allocation, and �ow control, in this section we assume that
all active sessions (n; c) have in�nite backlog in their corresponding
reservoirs, so that �ow variables R(c)n (t) can be chosen without �rst es-
tablishing that this much data is available for admission. Flow control
is imperative in this in�nite backlog scenario, and the resulting problem
is simpler as it does not involve the demand constraint (5.6).
The following control strategy, developed in [108] [119], is decou-

pled into separate algorithms for resource allocation, routing, and �ow
control.
Cross-Layer Control Algorithm 1 (CLC1) [108] [119]:

� Flow Control � (algorithm FLOW1) Every timeslot, the �ow
controller at each node n observes the current level of queue
backlogs U (c)n (t) for each commodity c 2 f1; : : : ;Kg. It then
sets R(c)n (t) = r

(c)
n , where the r

(c)
n values are solutions to the

following optimization:

Maximize :
KX
c=1

h
V g(c)n

�
r(c)n

�
� r(c)n U (c)n (t)

i
; (5.7)

Subject to:
�
r(c)n

�
� 0;

KX
c=1

r(c)n � Rmaxn ; (5.8)

where V > 0 is a chosen constant that e¤ects the perfor-
mance of the algorithm.

� Routing and Scheduling � Each node n observes the backlog
in all neighboring nodes j to which it is connected by a
valid outgoing link (n; j). Let W (c)

nj (t) = U
(c)
n (t) � U (c)j (t)

represent the di¤erential backlog of commodity c data, and

de�ne W �
nj(t)

M
=max[cjl2Lc ]

n
W
(c)
nj (t); 0

o
. Let c�nj(t) represent

the maximizing commodity. Data of commodity c�nj(t) is
selected for (potential) routing over link (n; j) whenever
W �
nj(t) > 0.
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� Resource Allocation � The current topology state S(t) is
observed, and a transmission decision I(t) 2 IS(t) is se-
lected by maximizing

P
n;jW

�
nj(t)�nj(t), where �nj(t) =

Cnj(I(t); S(t)). The resulting transmission rate of �nj(t) is
o¤ered to commodity c�nj(t) data on link (n; j). If any node
does not have enough bits of a particular commodity to send
over all outgoing links requesting that commodity, null bits
are delivered.

The �ow control policy (5.7)-(5.8) uses a parameter V that deter-
mines the extent to which utility optimization is emphasized. Indeed, if
V is large relative to the current backlog in the source queues, then the
admitted rates R(c)n (t) will be large, increasing the time average util-
ity while consequently increasing congestion. This e¤ect is mitigated
as backlog grows at the source queues and �ow control decisions be-
come more conservative. Note that the routing and resource allocation
strategies of CLC1 are identical to the Dynamic Backpressure strat-
egy developed for network stability in Section 4.3. Issues of distributed
implementation can be dealt with using the methods of Section 4.8.
The �ow control algorithm of CLC1 is decentralized, where the con-

trol valves for each node n require knowledge only of the queue back-
logs in node n. Note that CLC1 uses �Type 1��ow control constraints.
The resulting problem (5.7)-(5.8) involves maximizing a sum of con-
cave functions subject to a simplex constraint, and can easily be solved
using standard derivative matching techniques [17]. It is useful to note
that this �ow control strategy can be replaced by a strategy that uses
�Type 2��ow control constraints, and thus maximizes (5.7) over the
less restrictive constraint set 0 � r

(c)
n � Rmaxn . This constraint set is

simpler because it allows each �ow control decision variable R(c)n (t) to
be determined by �nding the maximum of a concave function of one
variable over a given interval, a problem in which closed form solutions
are often readily available. However, this simplicity comes at the cost
of a potential increase in average network congestion and delay, due to
the fact that the maximum admission burst into node n during a single
slot would be KRmaxn , rather than Rmaxn (see delay analysis in Section
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5.3). The simpli�ed constraint set is identical to (5.8) in the special
case when there is only a single active session (n; c) at any given node
n, considered in examples in Sections 5.2.2-5.2.4.
We also note that the nature of the CLC1 �ow control algorithm

assumes that data can be admitted as �fractional packets.� This is
because the resulting R(c)n (t) values might not be integers or integer
multiples of a given packet length. This problem arises whenever the
utility functions g(c)n (r) are non-linear. The problem can be mitigated
when Rmaxn is large in comparison to the packet granularity, or can be
overcome by appending an additional stage to the �ow control reser-
voir that only sends actual packets into the network when the accumu-
lated �admitted but undelivered�data exceeds the packet length. The
problem is avoided entirely in the modi�ed algorithm CLC2 that uses
auxiliary variables to handle non-linear e¤ects (Section 5.4.2).

5.2.1 Algorithm Performance

To analyze the performance of the above CLC1 algorithm, we de�ne
the maximum transmission rates out of and into a given node n as
follows:

�outmax;n
M
= max
[S;I2IS ]

NX
b=1

Cnb(I; S); �inmax;n
M
= max
[S;I2IS ]

NX
a=1

Can(I; S):

Assume that the �ow control constants Rmaxn are positive and
satisfy Rmaxn � �outmax;n for all n. Assume utilities g

(c)
n (r) are

non-negative, non-decreasing, continuous, and concave, and de�ne

Gmax
M
=maxh�

r
(c)
n

����Pc r
(c)
n �Rmaxn :8n

iP
n;c g

(c)
n

�
r
(c)
n

�
. De�ne the constant

B as follows:

B M
=
1

2N

NX
n=1

�
(Rmaxn + �inmax;n)

2 + (�outmax;n)
2
�
: (5.9)

Theorem 5.1. If channel states are i.i.d. over timeslots and all active
reservoirs have in�nite backlog, then for any �ow parameter V > 0 the
CLC1 algorithm stabilizes the network and yields the following time
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average congestion and utility bounds:1X
n;c

U
(c)
n � NB + V Gmax

�sym
; (5.10)

lim inf
t!1

X
n;c

g(c)n (rnc(t)) �
X
n;c

g(c)n

�
r�(c)n

�
� BN

V
; (5.11)

where r� = (r�(c)n ) is the optimal solution of (5.4) subject to constraint
(5.5), and where:

X
n;c

U
(c)
n

M
= lim sup

t!1

1

t

t�1X
�=0

"X
n;c

E
n
U (c)n (�)

o#
;

rnc(t)
M
=
1

t

t�1X
�=0

E
n
r(c)n (�)

o
: (5.12)

The above result holds for all V > 0. Thus, the value of V can be
chosen so that BN=V is arbitrarily small, resulting in achieved utility
that is arbitrarily close to optimal. This performance comes at the cost
of a (potential) linear increase in network congestion with the para-
meter V . By Little�s theorem, average queue backlog is proportional
to average bit delay, and hence performance can be pushed towards
optimality with a corresponding tradeo¤ in end-to-end network delay.
We note that in the special case when the input rate matrix is inside
the capacity region, a tighter bound than (5.10) can be computed, one
that does not depend on the V parameter and has a form similar to
the bound derived in Theorem 4.5 in Section 4.5 for the di¤erential
backlog policy without �ow control.
A result similar to the above theorem holds if the �Type 1��ow con-

trol constraint
P
cR

(c)
n (t) � Rmaxn in (5.8) is replaced with the simpler

and less restrictive �Type 2�constraint R(c)n (t) � Rmaxn (for all (n; c)).
However, the constant B in the performance bounds (5.10) (5.11) would

1 Using T -slot Lyapunov analysis, the CLC1 algorithm can be shown to yield similar per-
formance for non-i.i.d. systems (with an increased constant B). The same is true for the
other performance optimal algorithms presented in this work.
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then need to be replaced with a constant ~B that is larger thanB roughly
by a factor equal to the largest number of distinct commodities that
are sourced at any single node.
The proof of Theorem 5.1 uses a Lyapunov technique that allows

stability and performance optimization to be treated simultaneously,
and is provided in Section 5.3. Below we present a simple corollary that
is useful in characterizing the performance of CLC1 under suboptimal
resource allocation strategies:

Corollary 5.2. If the resource allocation policy of CLC1 is replaced
with any (potentially randomized) policy that yields a transmission
rate function �(t) = C(I(t); S(t)) that satis�es the following for all
slots t:X
ab

W �
ab(t)E f�ab(t) jU(t)g � 

 
max
I2IS(t)

X
ab

W �
ab(t)Cab(I; S(t))

!
� C;

for some �xed constants  and C such that 0 <  � 1 and C � 0, thenX
n;c

U
(c)
n � C +NB + V Gmax

�sym
; (5.13)

lim inf
t!1

X
n;c

g(c)n (rnc(t)) �
X
n;c

g(c)n (~r
�
nc)�

C +NB

V
; (5.14)

where (~r�nc) is the optimal solution to the following optimization:

Maximize:
X
n;c

g(c)n (r
(c)
n ) (5.15)

Subject to: (r(c)n ) 2 �;
0 � r(c)n � �nc:

That is, allocating resources to come within a factor  of the optimal
solution of the CLC1 resource allocation yields a utility that is close to
the optimal utility with respect to a  scaled version of the capacity
region. The above corollary is related to the approximate Lyapunov
scheduling results presented in Section 4.7. A closely related �imperfect
scheduling�result is developed from a convex programming perspective
in [92]. Below we present the implications of these results.
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5.2.2 Maximum Throughput and the Threshold Rule

Suppose utilities are linear, so that g(c)n (r) = �ncr for some non-negative
weights �nc. The resulting objective is to maximize the weighted sum
of throughput, and the resulting FLOW1 algorithm of CLC1 has a
simple threshold form, where some commodities receive as much of the
Rmaxn delivery rate as possible, while others receive none. In the special
case where the user at node n desires communication with a single
destination node cn (so that g

(c)
n (r) = 0 for all c 6= cn), the �ow control

algorithm (5.7) reduces to maximizing V �ncnr � U
(cn)
n (t)r subject to

0 � r � Rmaxn , and the solution is the following threshold rule:

Rncn(t) =

(
Rmaxn if U (cn)n (t) � V �ncn
0 otherwise

:

The qualitative structure of this �ow control rule is intuitive: When
backlog in the source queue is large, we should refrain from sending new
data. The simple threshold form is similar to the threshold scheduling
rule developed in [159] for server scheduling in a downlink with N
ON/OFF channels and burstiness constraints on the channel states
and packet arrivals. Speci�cally, assuming �n � an+1 1 � n � N � 1,
the policy developed in [159] assigns at time t to channel queue n an
index

In (U (t)) = min fU (t) ; nTg ;

where T is a given threshold parameter, and transmits a packet from the
ON queue with the highest index. It is shown that for T large enough
this policy maximizes the weighted sum of channel throughputs. In the
special case of this downlink scenario (a commodity is identi�ed with a
channel), the resource allocation layer of the CLC1 policy would always
serve the longest ON queue, and the �ow control layer would only allow
new packets of type i into queue i if the current backlog in this queue is
below V (and so backlog in queue i would never grow beyond V +Rmaxi ).
In comparison, we see that the V and T parameters play similar roles.
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5.2.3 Proportional Fairness and the 1=U Rule

Consider now utility functions of the form g(c)n (r) = log
�
1 + �r

(c)
n

�
(for

some constant � > 0). It is shown in [70] that maximizing a sum of
such utilities over any convex set � leads to proportional fairness.2 In
the special case when there is only one destination cn for each user n,
the �ow control algorithm reduces to maximizing V log(1+�r)�U (cn)n r

subject to 0 � r � Rmaxn , which leads to the following �1=U��ow control
function:

Rncn(t) = min

"
max

"
V

U
(cn)
n (t)

� 1

�
; 0

#
; Rmaxn

#
:

Here we see that the �ow control valve restricts �ow according to a
continuous function of the backlog level at the source queue, being less
conservative in its admission decisions when backlog is low and more
conservative when backlog is high.

5.2.4 Mechanism Design and Network Pricing

The �ow control policy (5.7) has a simple interpretation in terms of
network pricing. Speci�cally, consider a scenario where the g(c)n (r) func-
tions are measured in units of dollars, representing the amount the user
at source node n is willing to pay for rate r service to destination c.

The social optimum operating point
�
r
�(c)
n

�
is de�ned as the point that

maximizes the sum of utilities
P
n;c g

(c)
n

�
r
(c)
n

�
subject to

�
r
(c)
n

�
2 �.

For simplicity, we again assume that there is a single user at node n
that desires to send a single commodity cn. Every timeslot, each user
n determines the amount of data r(cn)n (t) it desires to send based on

2 Strictly speaking, the proportionally fair allocation seeks to maximize
P
n;c log(r

(c)
n ), lead-

ing to
P
n;c

roptnc �r
(c)
n

r
opt
nc

� 0 for any other operating point (r(c)n ) 2 �. We use non-negative
utilities log(1 + �r) and thereby obtain a proportionally fair allocation with respect to

the quantity roptnc + 1=�, leading to
P
n;c

roptnc �r
(c)
n

r
opt
nc +1=�

� 0. This can be used to approximate
proportionally fair scheduling for large �. Alternatively, it can be used with � = 1, yielding
a utility function log(1 + r) which is di¤erent from proportionally fair utility but still has
many desirable fairness properties.
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a per-unit price PRICEncn(t) charged by the network. The transac-
tion between user and network takes place in a distributed fashion at
each node n. We assume all users are �greedy� and send data every
timeslot by maximizing total utility minus total cost, subject to an
Rmaxn constraint imposed by the network. That is, each user n selects
R
(cn)
n (t) = r

(cn)
n , where the r(cn)n values solve:

Maximize : g(cn)n

�
r(cn)n

�
� PRICEncn(t)r(cn)n ; (5.16)

Subject to: 0 � r(cn)n � Rmaxn :

Consider now the following dynamic pricing strategy used at each
network node n:

PRICEnc(t) =
U
(c)
n (t)

V
dollars/bit:

We note that this pricing strategy is independent of the particular
g
(c)
n (r) functions, and so the network does not require knowledge of the
user utilities. Using this pricing strategy in (5.16), it follows that users
naturally send according to processes R(c)n (t) that exactly correspond to
the FLOW1 algorithm (5.7), and hence the performance bounds (5.10)
and (5.11) are satis�ed.

5.3 Performance Analysis

To prove Theorem 5.1, we �rst introduce a simple result from [108] [109]
[119] that extends the Lyapunov stability results presented in Lemma
4.1 of Section 4.4 to include performance optimization. In particular,
the technique allows queueing stability and performance optimization
to be treated using a single drift analysis.

5.3.1 Lyapunov Optimization

To begin, consider any discrete time queueing system with vector back-
log process U(t) = (U1(t); : : : ; UN (t)) that evolves according to some
probability law, and let R(t) = (R1(t); : : : ; RK(t)) represent any as-
sociated vector control process that in�uences system dynamics (for
some integers N and K). Let L(U) be any non-negative function of U .
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Recall that the one-step Lyapunov drift �(U(t)) is de�ned as follows:

�(U(t))M=E fL(U(t+ 1))� L(U(t)) jU(t)g ;

where the conditional expectation is taken with respect to the random
one-step queueing dynamics given the current backlog U(t).

Lemma 5.3. (Lyapunov Drift) Let E fL(U(0))g < 1. If there exist
scalar random processes x(t) and y(t) such that for every timeslot t
and for all possible values of U(t), the Lyapunov drift satis�es:

�(U(t)) � E fy(t) jU(t)g � E fx(t) jU(t)g ; (5.17)

then:

lim sup
t!1

1

t

t�1X
�=0

E fx(�)g � lim sup
t!1

1

t

t�1X
�=0

E fy(�)g ;

lim inf
t!1

1

t

t�1X
�=0

E fx(�)g � lim inf
t!1

1

t

t�1X
�=0

E fy(�)g :

Proof. Taking expectations of (5.17) with respect to the distribution
of U(t) and using the law of iterated expectations yields:

E fL(U(t+ 1))g � E fL(U(t))g � E fy(t)g � E fx(t)g :

The above inequality holds for all t. Summing over t 2 f0; : : : ;M � 1g
yields:

E fL(U(M))g � E fL(U(0))g �
M�1X
�=0

E fy(�)g �
M�1X
�=0

E fx(�)g :

Shifting terms, dividing byM , and using non-negativity of L(U) yields:

1

M

M�1X
�=0

E fx(�)g � 1

M

M�1X
�=0

E fy(�)g+ E fL(U(0))g
M

:

The result follows by taking limits as M !1.
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Suppose now that the goal is to stabilize the U(t) process while min-
imizing a concave function g(�) of the time average of the R(t) process.
Speci�cally, we de�ne the following vector of time average expectations
over t slots:

r(t)M=
1

t

t�1X
�=0

E fR(t)g : (5.18)

Let g(r) be any scalar valued, concave utility function of a K dimen-
sional variable r, and let g� represent a desired �target�utility value.

Theorem 5.4. (Lyapunov Optimization) If there are positive con-
stants V; �; B such that for all timeslots t and all un�nished work ma-
trices U(t), the Lyapunov drift satis�es:

�(U(t))� V E fg(R(t)) jU(t)g � B � �
NX
i=1

Ui(t)� V g�; (5.19)

then time average utility and congestion satis�es:

lim sup
t!1

1

t

t�1X
�=0

NX
i=1

E fUi(�)g �
B + V (g � g�)

�
; (5.20)

lim inf
t!1

g(r(t)) � g� � B
V
; (5.21)

where r(t) is de�ned in (5.18), and g is de�ned:

gM= lim sup
t!1

1

t

t�1X
�=0

E fg(R(�))g :

This theorem is most useful when the quantity (g � g�) can be
bounded by a constant. For example, if 0 � g(R(t)) � Gmax for all
t (for some constant Gmax), then (g � g�) � Gmax. It follows that if
the parameter V can be chosen as desired, then the lower bound on
achieved utility can be pushed arbitrarily close to the target utility g�,
with a corresponding increase in queue congestion that is linear in V .
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Proof. (Theorem 5.4) De�ne:

x(t)M=�
X
i

Ui(t) + V g
�;

y(t)M=B + V g(R(t)):

The drift condition (5.19) thus implies:

�(U(t)) � E fy(t) jU(t)g � E fx(t) jU(t)g : (5.22)

Using the lim sup result of Lemma 5.3 yields:

lim sup
t!1

1

t

t�1X
�=0

E

(
�
X
i

Ui(t) + V g
�

)
�

lim sup
t!1

1

t

t�1X
�=0

E fB + V g(R(t))g :

The right hand side of the above inequality is equal to B + V g. Re-
arranging terms yields (5.20). Likewise, using (5.22) with the lim inf
result of Lemma 5.3 yields:

lim inf
t!1

1

t

t�1X
�=0

E fx(t)g � lim inf
t!1

1

t

t�1X
�=0

E fB + V g(R(t))g

= B + V lim inf
t!1

1

t

t�1X
�=0

E fg(R(t))g :

Noting that x(t) � V g� yields:

V g� � B + V lim inf
t!1

1

t

t�1X
�=0

E fg(R(t))g :

Dividing by V and rearranging terms yields:

g� �B=V � lim inf
t!1

1

t

t�1X
�=0

E fg(R(t))g (5.23)

� lim inf
t!1

g

 
1

t

t�1X
�=0

E fR(�)g
!

(5.24)

= lim inf
t!1

g(r(t));
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where (5.24) follows from Jensen�s inequality together with concavity
of g(�). It follows that lim inft!1 g(r(t)) � g� � B=V , proving the
theorem.

It is useful to note that a similar result can be shown for minimizing
a convex cost function h(r) by de�ning g(r) = �h(r) and reversing
inequalities where appropriate. Further, the proof uses concavity of g(r)
only in the inequality (5.24). Thus, without the concavity assumption,
the congestion bound (5.20) still holds, while the utility bound (5.24)
is replaced by (5.23).

5.3.2 Computing the Drift

To apply the Lyapunov Optimization Theorem (Theorem 5.4) to the
design and analysis of our CLC1 control policy, we de�ne the util-

ity function g(r)M=
P
n;c g

(c)
n

�
r
(c)
n

�
. This utility function is used to

evaluate the utility associated with the �ow control decision vari-

ables R(t) =
�
R
(c)
n (t)

�
. Further, we de�ne the Lyapunov function

L(U)M=1
2

P
n;c

�
U
(c)
n

�2
(the factor 1=2 is used for notational convenience

later). The Lyapunov Optimization Theorem suggests that a good con-
trol strategy is to greedily minimize the following drift metric every
timeslot:

�(U(t))� V
X
n;c

E
n
g(c)n

�
R(c)n (t)

�
jU(t)

o
: (5.25)

This is indeed the principle behind the CLC1 control algorithm.
To begin, recall that the Lyapunov drift �(U(t)) for any control

policy can be computed using methods in Section 4.5, and we have:

�(U(t)) � NB �
X
n;c

U (c)n (t)E

(X
b

�
(c)
nb (t)

�
X
a

�(c)an(t)�R(c)n (t) jU(t)
)
: (5.26)

where B is de�ned in (5.9). The expectations above are taken with
respect to the distribution of the random topology state S(t) at time



86 Networking Outside of the Capacity Region: Utility Optimization and Fairness

t, and with respect to the (potentially randomized) choice of control
decision variables.
Now de�ne the �ow function 	(U(t)) and the network function

�(U(t)) as follows:

	(U(t))M=
X
n;c

E
n
V g(c)n (R

(c)
n (t))� U (c)n (t)R(c)n (t) jU(t)

o
; (5.27)

�(U(t))M=
X
n;c

U (c)n (t)E

(X
b

�
(c)
nb (t)�

X
a

�(c)an(t) jU(t)
)
: (5.28)

Subtracting the utility component V
P
n;c E

n
g
(c)
n

�
R
(c)
n (t)

�
jU(t)

o
from both sides of (5.26) yields:

�(U(t))� V
X
n;c

E
n
g(c)n

�
R(c)n (t)

�
jU (t)

o
�

NB � �(U(t))�	(U(t)): (5.29)

The design strategy for CLC1 is now apparent: Given a particular U(t)
matrix at time t, the CLC1 policy is designed to greedily minimize the
right hand side of (5.29) over all possible routing, resource allocation,
and �ow control options. Indeed, it is clear that the �ow control strategy
(5.7) maximizes 	(U(t)) over all feasible choices of the R(c)n (t) values
(compare (5.7) and (5.27)). That the routing and resource allocation
policy of CLC1 maximizes �(U(t)) has already been seen in Section
4.3, where the di¤erential backlog policy was presented. Our analysis
proceeds by �nding a stationary control policy for choosing the decision
variables that does not depend on the queue backlog, and plugging the
resulting �(U(t)) and 	(U(t)) functions associated with such a policy
into the right hand side of (5.29).

5.3.3 A Near-Optimal Operating Point

To design a suitable stationary control policy, it is important to �rst
consider a near-optimal solution to the optimization problem (5.4)-
(5.6). Speci�cally, for any � > 0, we de�ne the set �� as follows:

��
M
=
n�
r(c)n

� ���(r(c)n + �1(c)n ) 2 �; r(c)n � 0 for all (n; c) 2 D
o
; (5.30)

where 1(c)n is equal to 1 whenever (n; c) 2 D, and zero else. Thus, the
set �� can be viewed as the resulting set of rate matrices within the
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network capacity region when an ��-layer�of the boundary is stripped
away from theD e¤ective dimensions. Note that this set is compact and
non-empty whenever � � �sym (where �sym is de�ned in Section 5.1.2).
The near-optimal operating point

�
r
�(c)
n (�)

�
is de�ned as a solution to

the following optimization problem:3

Maximize :
X
n;c

g(c)n

�
r(c)n

�
(5.31)

Subject to:
�
r(c)n

�
2 ��

0 � r(c)n � �nc for all (n; c)

This optimization di¤ers from the optimization in (5.4)-(5.6) in that
the set � is replaced by the set ��.

Lemma 5.5. (Continuity of Near-Optimal Solutions) If utility func-
tions g(c)n (r) are non-negative and concave, and if there is a positive
scalar �sym such that (�sym1

(c)
n ) 2 �, then:X

n;c

g(c)n

�
r�(c)n (�)

�
!
X
n;c

g(c)n

�
r�(c)n

�
as �! 0; (5.32)

where
�
r
�(c)
n

�
is the optimal solution of (5.4)-(5.6).

Proof. The proof uses convexity of the capacity region �, and is given
in Chapter 5.5.2 of [108].

5.3.4 Derivation of Theorem 5.1

The proof of Theorem 5.1 relies on the following two lemmas.

Lemma 5.6. If the storage reservoirs for all active input streams are
in�nitely backlogged, then for any � such that 0 < � � �sym, the �ow

3 Note that the �nal constraint
�
r
(c)
n

�
�
�
�
(c)
n

�
is satis�ed automatically in the case of in�-

nite tra¢ c demand. We include the constraint here as this optimization is also important

in the treatment of general tra¢ c matrices
�
�
(c)
n

�
in Section 5.4.2.
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control algorithm of CLC1 yields:

	CLC1(U(t)) � V
X
n;c

g(c)n

�
r�(c)n (�)

�
�
X
n;c

U (c)n (t)r�(c)n (�):

where
�
r
�(c)
n (�)

�
is the optimal solution of problem (5.31).

Lemma 5.7. If the topology state S(t) is i.i.d. over timeslots, then
for any � such that 0 < � � �sym, allocating resources and routing
according to CLC1 yields:

�CLC1(U(t)) �
X
n;c

U (c)n (t)
�
r�(c)n (�) + �

�
; (5.33)

where
�
r
�(c)
n (�)

�
is the optimal solution of problem (5.31).

Lemma 5.6 follows because the �ow control algorithm of CLC1
maximizes 	(U(t)), de�ned in (5.27), over all valid resource alloca-
tion options, including the particular choice R(c)n (t) = r

�(c)
n (�) for all

(n; c). This is a valid choice because: 1) all reservoirs are assumed to
be in�nitely backlogged, so there are always r�(c)n (�) units of data avail-
able, and 2)

P
c r
�(c)
n (�) � Rmaxn (because (r�(c)n (�)) 2 � and henceP

c r
�(c)
n (�) � �outmax;n is required). Lemma 5.7 follows because the re-

source allocation and routing algorithm of CLC1 maximizes �(U(t)),
de�ned in (5.28), over all other options, including the stationary ran-
domized strategy of Corollary 3.9 that would yield for all (n; c) 2 D:

E

(X
b

�
�(c)
nb �

X
a

��(c)an jU(t)
)
= r�(c)n (�) + �1(c)n : (5.34)
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Plugging the bounds of Lemmas 5.6 and 5.7 directly into the drift
expression (5.29) yields the following for algorithm CLC1:

�(U(t))� V
X
n;c

E
n
g(c)n

�
R(c)n (t)

�
jU(t)

o
� NB

�
X
n;c

U (c)n (t)
�
r�(c)n (�) + �

�
�V

X
n;c

g(c)n

�
r�(c)n (�)

�
+
X
n;c

U (c)n (t)r�(c)n (�):

Canceling common terms yields:

�(U(t))� V
X
n;c

E
n
g(c)n

�
R(c)n (t)

�
jU (t)

o
� NB

��
X
n;c

U (c)n (t)� V
X
n;c

g(c)n

�
r�(c)n (�)

�
:

The above drift expression is in the exact form speci�ed by Theorem
5.4. Thus, network congestion satis�es:X

n;c

U
(c)
n � (NB + V Gmax)=�; (5.35)

and time average performance satis�es:X
n;c

g(c)n (rnc) �
X
n;c

g(c)n

�
r�(c)n (�)

�
�NB=V: (5.36)

The performance bounds in (5.35) and (5.36) hold for any value
� such that 0 < � � �sym. However, the particular choice of � only
a¤ects the bound calculation and does not a¤ect the CLC1 control
policy or change any sample path of system dynamics. We can thus
optimize the bounds separately over all possible � values. The bound in

(5.35) is clearly minimized as � ! �sym, yielding:
P
n;c U

(c)
n � (NB +

V Gmax)=�sym. Conversely, the bound in (5.36) is maximized by taking

a limit as �! 0, yielding by (5.32):
P
n;c g

(c)
n (rnc) �

P
n;c g

(c)
n

�
r
�(c)
n

�
�

NB=V . This proves Theorem 5.1. �
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5.3.5 Notes

� The utility optimization problem for network �ow control
was �rst formalized by Kelly et. al. in [70] [71] for wireline
networks with �uid-like dynamics. There, network �ows are
described according to primal and dual convex programs,
and Lagrange multipliers are interpreted as shadow prices
that facilitate distributed control mechanisms. The propor-
tionally fair objective is considered in [71] [70], and related
work in [100] [107] treats di¤erent systems and objectives.
Game theory aspects of network fairness are considered in
[100] [65], auction algorithms are considered in [138], and
adversarial queueing theory approaches are considered in [4].
The relationship between utility optimization, convex dual-
ity theory, and classical TCP protocols for wireline networks
is explored in [97].

� Convex programming approaches to static wireless networks
are considered in [101] [165] [101] [16] [66] [84] [92] [79] [31]
[35]. The work in [31] investigates systems with transmission
rates that depend logarithmically on SINR. Under the as-
sumption that log(1+SINR) � log(SINR), a set of decou-
pled algorithms for �ow control, routing, and resource alloca-
tion are constructed and shown to drive resources to a �xed
optimal operating point. The work in [35] considers the case
log(1 + SINR) � SINR. In this case, it is shown that �xed
operating points are sub-optimal, and that optimal strategies
involve a time-varying link transmission schedule. A similar
problem is investigated in [77], where NP-Completeness re-
sults are developed for transmission scheduling.

� Utility optimization and proportional fairness are also
treated in [156] [81] [158] [45] for stochastic wireless down-
links with in�nite backlog. Fairness for systems with di¤erent
downlink channels for each arriving packet is treated in [24].

� Fair allocation according to the maxmin rule has been con-
sidered in [150] [133] where optimal scheduling policies were
proposed for single hop and multihop tra¢ c respectively.
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� The CLC1 policy was developed for general stochastic net-
works in [108] [119]. We note that alternative approaches to
stochastic network optimization have recently been consid-
ered in [45] [136] using �uid limit models, and in [83] using
stochastic gradient theory (see, for example, [68]). The Lya-
punov optimization technique of this chapter is related to the
theory of static and stochastic gradients, as the drift metric
(5.25) is analogous to an iterative gradient projection for a
static convex program (see Chapters 4.7-5.7 of [108]).

5.4 Flow Control for Arbitrary Input Rates

Here we consider the general �ow control problem (5.4)-(5.6), without
the in�nite backlog assumption. The transport layer storage bu¤ers are
assumed to have either in�nite or �nite capacity (possibly zero). In the
special case of a size-zero storage reservoir, all data that is not immedi-
ately admitted to the network layer is necessarily dropped. Let L(c)n (t)
represent the current backlog of commodity c data in the transport
layer storage reservoir at node n (where L(c)n (t) = 0 for all t in the case
of a size-zero storage reservoir). Flow control decisions are now sub-
ject to the additional scheduling constraint R(c)n (t) � L(c)n (t) + A(c)n (t).
This constraint is particularly challenging, as it varies with time and
so the stationary algorithm R

(c)
n (t) = r

�(c)
n (�) cannot be used as a valid

comparison every slot.
Assume that the A(c)n (t) arrivals are i.i.d. over timeslots with arrival

rates �(c)n = E
n
A
(c)
n (t)

o
. It can be shown that for any matrix (�(c)n )

(either inside or outside the capacity region), modifying the CLC1 al-
gorithm to maximize (5.7) subject to the additional reservoir backlog
constraint yields the same performance guarantees (5.10) and (5.11)
when utility functions are linear [108]. For nonlinear utilities, such a

strategy can be shown to maximize
P
n;c E

n
g
(c)
n

�
R
(c)
n (t)

�o
over all

strategies that make immediate admission/rejection decisions upon ar-

rival, but may not necessarily maximize
P
n;c g

(c)
n

�
E
n
R
(c)
n (t)

o�
, which

is the utility metric of interest.
In this section, we solve the problem by introducing two new tech-
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niques. The �rst is the use of auxiliary variables that hold additional
network �ow state information helpful for solving nonlinear problems
[119]. The second is the use of virtual cost queues that transform sto-
chastic constraints involving time averages into simple queueing stabil-
ity problems [119] [136] [115] [111].

5.4.1 Problem Transformation via Auxiliary Variables

We begin with the following transformation of the problem (5.4)-(5.6),
which introduces new variables (c)n for each input stream R

(c)
n (t):

Maximize:
X
n;c

g(c)n

�
(c)n

�
(5.37)

Subject to: r(c)n � (c)n ; (5.38)�
r(c)n

�
2 �; (5.39)

0 � r(c)n � �(c)n : (5.40)

It is not di¢ cult to show that the optimal solution of the above problem
is exactly the same as the optimal solution of the original problem (5.4)-
(5.6).4 Note that if the r(c)n variables are associated with time averages
of the �ow control inputs R(c)n (t), then any control policy that stabilizes
the system will naturally lead to time averages that satisfy (5.39) and
(5.40). Furthermore, the utility optimization is now expressed entirely
in terms of the new variables (c)n , while the additional inequality (5.38)
expresses a linear constraint between the time average �ow control
decisions and the (c)n variables.
To solve the above problem, for each active input stream A

(c)
n (t) we

de�ne additional �ow state queues Y (c)n (t) that ensure the additional
constraint (5.38) is satis�ed. Speci�cally, we de�ne Y (c)n (0) = 0 for all
(n; c), and update the �ow state queues every timeslot as follows:

Y (c)n (t+ 1) = max
h
Y (c)n (t)�R(c)n (t); 0

i
+ (c)n (t); (5.41)

where (c)n (t) represents a process of non-negative auxiliary variables
that the �ow controller computes on every timeslot. The Y (c)n (t) process

4 Recall that the g(c)n (r) utility functions are non-decreasing.
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Fig. 5.1 A queueing illustration of the dynamic equation (5.41) for the Y (c)n (t) queues.

can also be viewed as a virtual queue with �arrivals�(c)n (t) and �server
rate�R(c)n (t) (see Fig. 5.1). Let Y (t) = (Y

(c)
n (t)) represent the matrix

of these �ow state queues, and let �(t) = [Y (t);U(t)] represent the
combined matrix of �ow state queues and actual queues.
To motivate the control algorithm, suppose that the R(c)n (t) and


(c)
n (t) processes have well de�ned time averages r

(c)
n and (c)n , respec-

tively.
Observation: If a control algorithm stabilizes all actual queues U(t)

and �ow state queues Y (t) of the system, then the resulting time aver-
ages r(c)i and (c)i must satisfy all inequality conditions (5.38)-(5.40).
That (5.39) and (5.40) hold if the U(t) queues are stable is clear

because the admitted rates must always be less than or equal to the ac-
tual arrival rates, and because the admitted rate matrix must be within
the network capacity region � for stability of the network queues. The
key component of the above observation is that the constraints (5.38)
hold if all virtual queues Y (t) are stable. This follows from Lemma 3.3
and the basic queueing inequality,

t�1X
�=0

R(c)n (t) + Y
(c)
n (t) �

t�1X
�=0

(c)n (t):

The above observation was introduced in [109] for the purpose of design-
ing optimal scheduling algorithms for wireless networks with average
power constraints, where virtual power queues were used to transform
stochastic inequality constraints into queueing stability problems. Sim-
ilar techniques have recently been used to treat other stochastic cost
constraints in [136] [114] [115].
The above observation suggests the approach of designing a network
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control algorithm to stabilize all queues U(t) and Y (t) while maximiz-
ing the utility function g(�). To this end, de�ne the Lyapunov function
L(�) as follows:

L(�) =
1

2

X
n;c

�
U (c)n

�2
+
�

2

X
n;c

�
Y (c)n

�2
;

where � is a parameter that satis�es 0 < � � 1 and determines the
relative weight of virtual queues in the control problem. It turns out
that choosing � small decreases the time average backlog in the actual
queues while increasing the time average backlog in the virtual �ow
state queues. The actual queues determine the actual congestion and
delay in the network, while the virtual queues play a role in determin-
ing the transient time or �learning time� required for the system to
approach optimal performance.
The conditional Lyapunov drift is given by:

�(�(t))M=E fL(�(t+ 1))� L(�(t)) j�(t)g :

Motivated by the drift condition of the Lyapunov Optimization Theo-
rem (Theorem 5.4), we design a control policy to minimize the following
metric:

Minimize: �(�(t))� V E
(X
n;c

g(c)n

�
(c)n (t)

�
j�(t)

)
:

5.4.2 The Cross Layer Control Algorithm

To simplify exposition, suppose that the exogenous arrivals to a given
node n are deterministically bounded by a constant Rmaxn every times-
lot, so that: X

c

A(c)n (t) � Rmaxn for all t:

Further, we shall use the �Type 2��ow control constraints, so that:

R(c)n (t) � min
h
L(c)n (t) +A

(c)
n (t); R̂

(c)
n

i
;

where R̂(c)n are suitably large constants that satisfy:

A(c)n (t) � R̂(c)n for all t
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(note that choosing R̂(c)n = Rmaxn for all n ensures the above inequality is
satis�ed). This �Type 2��ow control constraint simpli�es the algorithm
at the expense of increasing the average congestion bound.
Using the queueing equations (5.41) and (5.3), the following drift

bound can be computed:

�(�(t))� V E
(X
n;c

g(c)n

�
(c)n (t)

�
j�(t)

)
� C2

�
X
n;c

U (c)n (t)E

("X
b

�
(c)
nb (t)�

X
a

�(c)an(t)

#
j�(t)

)
+
X
n;c

U (c)n (t)E
n
R(c)n (t) j�(t)

o
��
X
n;c

Y (c)n (t)E
nh
R(c)n (t)� (c)n (t)

i
j�(t)

o
�V E

(X
n;c

g(c)n

�
(c)n (t)

�
j�(t)

)
; (5.42)

where C2 is a constant that depends on �inmax;n; �
out
max;n, and R̂

(c)
n . Choos-

ing the control decision variables to minimize the right hand side of the
above inequality leads to the following Cross Layer Control algorithm:5

Cross Layer Control Algorithm (CLC2b): Every timeslot, the
topology state S(t) and the queue values U(t), Y (t) are observed, and
controllers perform the following actions:

(1) Flow Control: Every timeslot and for each active input
stream (n; c), observe U (c)n (t) and Y (c)n (t) and choose:

R(c)n (t) =

(
min

h
L
(c)
n (t) +A

(c)
n (t); R̂

(c)
n

i
if �Y (c)n (t) > U

(c)
n (t)

0 otherwise
:

Furthermore, for each (n; c), choose (c)n (t) = 
(c)
n , where 

(c)
n

5 This control algorithm is a modi�ed version of the original CLC2 algorithm from [119],
and hence we label it �CLC2b.�
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solves:

Maximize: V g(c)n ()� �Y (c)n (t);

Subject to: 0 �  � R̂(c)n :

The �ow state queues Y (c)n (t) are then updated according to
(5.41).

(2) Routing and Resource Allocation: Same as the dynamic
backpressure algorithm of CLC1.

The following theorem assumes arrival matrices A(t) and topology
states S(t) are i.i.d. over timeslots, and assumes that Gmax is a para-

meter such that
P
n;c g

(c)
n

�
R
(c)
n (t)

�
� Gmax for all t.

Theorem 5.8. For arbitrary rate matrices
�
�
(c)
n

�
(possibly outside of

the capacity region), for any V > 0, and for any reservoir bu¤er size
(possibly zero), the CLC2b algorithm stabilizes the network and yields
the following congestion and utility bounds:

lim sup
t!1

1

t

t�1X
�=0

X
n;c

U (c)n (�) � C2 + V Gmax
�sym

; (5.43)

lim inf
t!1

X
n;c

g(c)n

�
R
(c)
n (t)

�
�
X
n;c

g(c)n

�
r�(c)n

�
� C2
V
: (5.44)

Proof. The proof follows because, given a particular queue state�(t) =
[U(t);Y (t)] at time t, the CLC2b algorithm maximizes the right
hand side of (5.42) over all alternate choices of the decision variables
R
(c)
n (t); �

(c)
ab (t), 

(c)
n (t). It is not di¢ cult to construct alternate polices

that choose R�(c)n (t); �
�(c)
ab (t); 

�(c)
n (t) to yield for all (n; c) 2 D (see

[119]):

E

(X
b

�
�(c)
nb (t)�

X
a

��(c)an (t) j�(t)
)
= r�(c)n (�) + �1(c)n

�(c)n (t) = r�(c)n ; E
n
R�(c)n (t) j� (t)

o
= r�(c)n
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Plugging these particular decision variables into the right hand side of
(5.42) thus preserves the inequality and creates many terms that can
be cancelled, yielding:

�(�(t))� V E
(X
n;c

g(c)n

�
(c)n (t)

�
j�(t)

)
� C2

��
X
n;c

U (c)n (t)� V
X
n;c

g(c)n

�
r�(c)n (�)

�
:

The above inequality is in the exact for for application of the Lya-
punov Optimization Theorem (Theorem 5.4), and holds for any value
� such that 0 < � � �sym. Applying the theorem and optimizing over
all � shows that the queues U(t) are strongly stable with the conges-
tion bound (5.43), and that a utility bound similar to (5.44) holds.
A similar argument can be used to prove strong stability of the Y (t)
queues, which relates this utility bound directly to (5.44) and proves
the theorem (see [119] for details).

We note that if the constants Rmaxn and R̂(c)n are chosen to be equal
to some �xed constant R̂, then the C2 constant in Theorem 5.8 is
O(MR̂), where M is the number of active sessions (n; c) throughout
the network. The constant can be reduced by replacing the Type 2
�ow control constraints with Type 1 constraints, so that every times-
lot and for each node n the R(c)n (t) variables are chosen to maxi-
mize

PK
c=1R

(c)
n (t)[�Y

(c)
n (t) � U (c)n (t)] subject to

P
cR

(c)
n (t) � R̂, 0 �

R
(c)
n (t) � L(c)n (t)+A(c)n (t). The solution of this optimization is still quite

simple, as it amounts to admitting as much data as possible from the
commodities c with the largest (positive) values of �Y (c)n (t) � U (c)n (t).
This modi�cation would yield a constant C2 that is O((�M + N)R̂),
which can be pushed to O(NR̂) by choosing � appropriately small.
The average backlog in the virtual queues can also be decreased if,

for each source node n, the (c)n (t) optimization were replaced by the
more complex optimization of maximizing

P
c g
(c)
n (

(c)
n ) subject to the

simplex constraint (c)n � 0,
P
c 

(c)
n � R̂. In this case, we could choose

� = 1 and still have C2 = O(NR̂). Reducing the average virtual queue
backlog is advantageous as it reduces the time required for the network
to adapt to possible changes in tra¢ c rates or channel statistics.
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5.4.3 An Alternative Construction on Flow State Queues

Our presentation of the CLC2b algorithm is somewhat di¤erent than
the original CLC2 algorithm developed in [119]. The original CLC2
algorithm used Type 1 �ow control constraints, and used a di¤erent

transformation. Speci�cally, for each utility function g(c)n
�
r
(c)
n

�
, a new

function h(c)n
�
�
(c)
n

�
was formed:

h(c)n

�
�(c)n

�
M
=g

(c)
n (R

in
max)� g(c)n

�
Rinmax � �(c)n

�
;

where �(c)n (t) represents a process of auxiliary variables. Letting r
(c)
n

represent the time average of the �ow control decisions R(c)n (t) and
letting �(c)n represent the time average of the auxiliary processes �(c)n (t),
we observe the following:

Minimizing
P
n;c h

(c)
n

�
�
(c)
n

�
subject to network stability and to the

additional constraint �(c)n � Rinmax � r
(c)
n for all (n; c) is equivalent to

maximizing
P
n;c g

(c)
n

�
r
(c)
n

�
subject to network stability.

To ensure that �(c)n � Rinmax � r
(c)
n , the algorithm of [119] uses a set

of �ow state queues ~Y (c)n (t) with update equations as follows:

~Y (c)n (t+ 1) = max
h
~Y (c)n (t)� �(c)n (t); 0

i
+Rinmax �R(c)n (t): (5.45)

The CLC2 algorithm performs resource allocation and routing in
the same manner as in CLC2b, but chooses �ow control values R(c)n (t)

for each source node n to maximize
PK
c=1

h
� ~Y

(c)
n (t)� U (c)n (t)

i
R
(c)
n (t)

subject to the Type 1 �ow control constraints. The auxiliary vari-

ables �(c)n (t) are then computed by maximizing V g
(c)
n

�
Rinmax � �

(c)
n

�
+

� ~Y
(c)
n (t)�

(c)
n subject to 0 � �(c)n � Rinmax.

5.4.4 Notes

� Simulation results of the CLC2 algorithm for downlinks,
N �N packet switches, and multi-hop networks are found in
[119].

� The method of introducing auxiliary variables and �ow state
queues to solve the �ow control problem was developed in
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[119]. The transformation (5.37)-(5.40) was later considered
in [111] [115], and a related use of auxiliary variables is pre-
sented in [94]. An alternative approach to utility optimiza-
tion is developed in [136] using �uid model transformations.
It is interesting to note that the algorithm in [136] also keeps
additional variables to solve the nonlinear optimization prob-
lem, similar to the auxiliary variables and �ow state queues
developed in this chapter. A more direct comparison of the
two methods is presented in the next chapter.

� The [O(1=V ); O(V )] utility-delay tradeo¤ achieved by
CLC2b is not the optimal tradeo¤. A recent result in [115]
demonstrates that an improved tradeo¤ [O(1=V ); O(log(V ))]
is achievable using a more sophisticated �ow control algo-
rithm. Further, [115] shows that, for the special case of one-
hop networks, this logarithmic structure of the utility-delay
tradeo¤ cannot be improved by any alternative control strat-
egy. Related work in [15] [114] considers the fundamental
energy-delay tradeo¤ for single-user and multi-user wireless
systems, where a square-root tradeo¤ law is established. En-
ergy optimal networking is considered in more detail in the
next chapter.

� When the exogenous tra¢ c arrival rates are outside the ca-
pacity region, it may be of interest to control the rate of
increase of node queues in order to delay bu¤er �ll-up as
long as possible. It turns out that the dynamic backpressure
policy has desirable properties in this respect as well. The
study of this problem for networks with �xed link capacities
is presented in [52]. For networks with changing link capac-
ities the problem can be dealt with using the methodologies
developed in this paper. In this case, instead of �ow control of
exogenous tra¢ c each of the nodes of the network must exer-
cise control of its queues by adding extra �over�ow�bu¤ers.
A step towards this direction has been taken in [53].



6
Networking with General Costs and Rewards

Here we use Lyapunov optimization theory to develop a framework for
optimizing stochastic networks with general cost and reward metrics.
The results in this chapter are well suited to solve problems of energy
optimal networking, including problems of minimizing average power
expenditure in mobile ad-hoc networks, and problems of maximizing
network throughput utility subject to average power constraints. The
general solution to these problems integrates the basic Lyapunov stabil-
ity and optimization concepts developed in previous chapters, including
the use of auxiliary variables and virtual cost queues.

6.1 The Network Model Assumptions

We consider the same network as in the previous chapter, withN nodes,
K commodities (denoted by a node set N and a commodity set K),
a topology state process S(t), and a link transmission rate function
C(I(t); S(t)). Exogenous arrivals are given by A(t) = (A

(c)
n (t)). For

simplicity, we continue to assume that the pair [S(t);A(t)] is i.i.d. over
timeslots, with the understanding that similar results can be extended
to non-i.i.d. systems using T -slot analysis.

100
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Control decision variables I(t), �(c)ab (t), and R
(c)
n (t) for resource al-

location, routing, and �ow control are also the same as in previous
chapters, with the exception that we restrict attention to the �Type 2�
�ow control constraints (see Section 5.1) for simplicity, so that

R(c)n (t) � min[A(c)n (t) + L(c)n (t); R̂(c)n ];

for suitably large constants R̂(c)n . Speci�cally, for simplicity we continue
to assume that arrivals are deterministically bounded, and choose R̂(c)n
so that A(c)n (t) � R̂

(c)
n for all t. The I(t) decisions satisfy I(t) 2 IS(t)

for all t, and the �(c)ab (t) variables satisfy (5.1) and (5.2). Transport
layer storage reservoirs have arbitrary storage space (in�nite, �nite, or
zero). Network layer queueing dynamics are given in (5.3) of Chapter 5.
This general framework can also be used to treat networks without �ow
control by simply adding the additional constraint A(c)n (t) = R

(c)
n (t) for

all t. Recall that the sets Lc restrict routing decisions, and the set D
consists of all (n; c) pairs for which there is a valid queue U (c)n (t).

6.1.1 Network Penalties and Rewards

Let x(t) = (x1(t); : : : ; xMx(t)) represent a vector of Mx penalties in-
curred by the network control decisions I(t), �(c)ab (t), R

(c)
n (t) at timeslot

t, and let y(t) = (y1(t); : : : ; yMy(t)) represent a vector of My rewards
earned at timeslot t (where Mx and My are arbitrary integers). For
example, in a network with power allocation decisions, a penalty xm(t)
might represent an arbitrary function of the power expended at one or
more nodes during slot t, such as:

� xm(t) =
P
b Pnb(t) for a given node n 2 N associated with

penalty m.
� xm(t) =

P
b (Pnb(t))

2 + Pab(t)Pc;d(t) for a given node n 2 N
and some given links (a; b), (c; d) associated with penalty m.

� xm(t) = ePab(t) + �
(c)
ab (t) for some link (a; b) and some com-

modity c associated with penalty m.

Likewise, a reward ym(t) can be de�ned arbitrarily, and is usu-
ally associated with the �ow control variables R(c)n (t). This abstract
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use of network penalties was introduced in [136], where a �uid model
transformation was used to analyze performance (the result of [136] is
considered in more detail in Section 6.4). Here, we demonstrate how
these general penalty and reward functions can be treated using the
Lyapunov optimization techniques developed in the previous chapters.
We assume that penalties and rewards are non-negative and upper

bounded by positive vectorsXmax and Y max, so that 0 � x(t) �Xmax

and 0 � y(t) � Y max for all time t (inequalities taken entrywise).
Let x = (x1; : : : ; xMx) and y = (y1; : : : ; yMy

) represent the vector of
time average penalties and rewards (assuming for now that such time
averages exist). We consider the problem of minimizing the sum of a
convex increasing function of the long term average penalty vector and
a convex decreasing function of the long term average reward vector,
subject to network stability and also subject to an additional set of
convex constraints on the long term average penalties and rewards.
Speci�cally, let f(x) represent a scalar valued cost function as-

sociated with the penalty vector x. We assume that f(x) is non-
negative, continuous, convex in the multi-dimensional vector x, and
entrywise non-decreasing (so that f(x) � f(y) whenever x � y,
where inequality is taken entrywise). We assume there is a value fmax
such that f(x(t)) � fmax for all t. Let the vector valued function
q(x) = (q1(x); : : : ; qJx(x)) represent an additional set of cost func-
tions, where each component function qj(x) is similarly non-negative,
continuous, bounded, convex, and entrywise non-decreasing.
Similarly, we let g(y), h(y) = (h1(y); : : : ; hJy(y)), represent utility

functions associated with the rewards y. These functions are assumed
to be non-negative, continuous, bounded, concave, and entrywise non-
decreasing. The generalized stochastic optimal networking problem is:

Minimize: f(x)� g(y) (6.1)

Subject to: 1) q(x) � Q;
2) h(y) �H;
3) Network Stability;

where Q = (Q1; : : : ; QJx) is a vector of required upper bounds on the
cost functions q(x), and likewise H is a vector of lower bounds on the



6.1. The Network Model Assumptions 103

utility functions h(y). We de�ne �Q as the modi�ed capacity region for
this network, consisting of all arrival rate matrices that can be stably
supported by the network layer under the additional cost constraints
q(x) � Q, h(y) �H imposed on the network penalties and rewards.
Note that the general problem can be stated purely in terms of

penalties. Indeed, the reward objective is equivalent to minimizing the
function ~f(~x(t)), where ~x(t)M=Y max � y(t), and where:

~f(~x(t))M=g(Y
max)� g(Y max � ~x(t)): (6.2)

Because g(y) is concave and entrywise non-decreasing, the function
~f(~x) is convex and entrywise non-decreasing, and therefore �ts into
our general framework. This transformation is used to treat the prob-
lem of fair �ow control in [119] (as discussed in Chapter 5, Section
5.4.3). Likewise, penalties can be changed into rewards through a simi-
lar transformation. However, it is often useful to maintain a distinction
between penalties and rewards, especially for implementation purposes.

6.1.2 Assumptions on Optimal Stationary Control

Let c� = f��g� represent the optimal cost associated with the problem
(6.1), and let x�, y� represent the optimal time average penalty and
reward vectors, so that f(x�) = f�, g(y�) = g�. We consider the class
of systems for which optimality can be achieved within the class of
S-only algorithms, de�ned as follows:

De�nition 6.1. An S-only algorithm is a stationary randomized al-
gorithm that chooses control variables I(t), fR(c)n (t)g, f�(c)ab (t)g based
only on the current topology state S(t).

While our dynamic control algorithm will base decisions on current
queue backlog and hence is not S-only, its performance will be evaluated
by comparison to S-only algorithms. Speci�cally, we assume:
Assumption 1: (Optimality of an S-only Policy) There exists an S-

only algorithm such that for all t and all node-commodity pairs (n; c) 2
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D we have:X
a

E
n
�(c)an(t)

o
+ E

n
R(c)n (t)

o
=
X
b

E
n
�
(c)
nb (t)

o
; (6.3)

q (E fx(t)g) � Q; h(E fy(t)g) �H;
f (E fx(t)g)� g(E fy(t)g) = f� � g�; (6.4)

where the expectations above are taken over the random topology state
S(t) and the potentially randomized control decisions.
Further, we make the following interior point and slackness assump-

tions (which hold for all of the networks considered in this paper):
Assumption 2: (Interior Point) There exists a value �max > 0 to-

gether with an S-only algorithm such that for all t and all node-
commodity pairs (n; c) 2 D we have:X

a

E
n
�(c)an(t)

o
+ �max + E

n
R(c)n (t)

o
=
X
b

E
n
�
(c)
nb (t)

o
;

q(E fx(t)g) � Q; h(E fy(t)g) �H:

Assumption 3: (Slackness 1) There exist positive values �1; �2 to-
gether with an S-only algorithm that yields (6.3) and that simultane-
ously yields:

q(E fx(t)g) � Q� �11q; h(E fy(t)g) �H + �21h:

where 1q is a vector with all entries equal to 0 or 1, with entry i equal
to 1 if and only if function qi(�) is not identically zero, and 1h is a 0=1
vector with entry j equal to 1 if and only of hj(�) is not identically zero.
Assumption 4: (Slackness 2) There exist positive values �3; �4 and

vectors �,  such that q(�) � Q, h() � H and 0 � � � Xmax,
0 �  � Y max, such that there exists an S-only algorithm yielding
(6.3) while simultaneously yielding:

E fx(t)g � �� �31x; E fy(t)g �  + �41y:

where 1x is a 0=1 vector with entry i equal to 1 if and only if penalty
xi(t) is not identically zero for all t, and 1y is a 0=1 vector with entry
j equal to 1 if and only if reward yj(t) is not identically zero for all t.

Note that the quantities Ef�(c)nb (t)g can be viewed as �ows f
(c)
nb ,

and hence the control decisions of the S-only policy of Assumption
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1 yield �ows that satisfy the �ow conservation constraints, while also
satisfying the cost and utility inequality constraints and yielding time
average penalties and rewards that achieve the minimum network cost
f(x)� g(y) = f� � g�. The value c� = f� � g� can thus be interpreted
as the optimal cost over all S-only policies. For a large class of network
�ow problems, including the fairness problems of the previous chapter
and the energy problems to be presented in this chapter, c� is also the
optimal cost over all possible (perhaps not S-only) policies [109].
Assumption 2 e¤ectively states that there exists an S-only policy

that meets all inequality constraints while supporting a tra¢ c matrix
(EfR(c)n (t)g+�1(c)n ) (where 1(c)n is equal to 1 if (n; c) 2 D, and zero else).
Suppose S-only policies can be used to support any tra¢ c matrix within
the relative interior of the network capacity region �Q, and de�ne �sym
as the edge size of the largest D-dimensional hypercube that can �t
inside the e¤ective dimensions of �Q (with one vertex at the origin).
If �sym > 0 and if the functions q(x) and h(y) do not depend on
penalties or rewards associated with the �ow control decision variables
R
(c)
n (t), then Assumption 2 is satis�ed. This can be seen by setting

R
(c)
n (t) = 0 for all (n; c) and all t, so that �max is equal to �sym. In the

case when there are no �ow controllers (so that A(c)n (t) = R
(c)
n (t) for

all (n; c) and all t), the value of �max is the largest value of � such that
(�
(c)
n + �1

(c)
n ) 2 �Q.

Assumption 3 states that there exists an S-only algorithm that
satis�es the �ow constraints while also yielding the strict inequalities
qi (E fx(t)g) < Qi and hi(E fy(t)g) > Hi whenever the corresponding
qi(�) and hi(�) functions are not identically zero and hence de�ne legiti-
mate constraints. Assumption 4 is similar. In many networks with �ow
control and/or without cost or utility constraint functions q(�);h(�), as-
sumptions 3 and 4 can be shown to trivially hold simply by considering
the policy that sets all control variables to zero or near-zero.

6.1.3 Example: A Wireless Uplink with Power Constraints

Consider a wireless uplink where L users transmit to a bases-
tation over L time varying channels. Let C(P (t); S(t)) =

(C1(P (t); S(t)); : : : ; CL(P (t); S(t))) represent the link transmission
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rate vector as a function of the current topology state S(t) and the
power allocation vector P (t) = (P1(t); : : : ; PL(t)). The particular form
of the C(P (t); S(t)) function depends on the physical layer transmis-
sion and multi-user detection schemes used by this system. Suppose
that power allocation is restricted so that 0 � Pi(t) � Pmax for all
users i and for all t. Separate queues are maintained at each user, and
we let Ri(t) represent the amount of data user i decides to add to its
queue on timeslot t. We assume that 0 � Ri(t) � Rmax for some con-
stant Rmax. Suppose that the transport layer reservoirs at each user
are in�nite with in�nite backlog.
Consider the following network parameters, with penalties x(t) and

rewards y(t) de�ned according to power allocation and �ow control
decisions:

� x(t) = (P1(t); : : : ; PL(t)); y(t) = (R1(t); : : : ; RL(t))

� q(x) = x; Q = (:1; :1; : : : ; :1) Watts; h(y) =H = 0

� f(x)� g(y) = �1
PL
i=1 x

2
i � �2

PL
i=1 log(1 + yi)

where �1; �2 are non-negative constants that weight the relative im-
portance of energy cost and throughput utility. Thus, in this simple
example, the penalties x(t) correspond to power allocations and the
rewards y(t) correspond to transport layer admission decisions. The
inequality constraint q(x) � Q ensures that the average power ex-
pended by each user is no more than 0:1Watts. The global cost function
f(x)� g(y) contains a negative throughput utility term and a positive
term that is quadratic in the power penalties. Such a quadratic cost on
power expenditure might be de�ned to provide a measure of �energy
fairness�among the di¤erent users, so that the resulting average power
costs are balanced more evenly across users.
It can be shown that Assumption 1 holds for this example, and

that Assumption 2 holds whenever the capacity region �Q contains a
positive vector (�; : : : ; �) [109]. If C(0; S(t)) = 0 for all S(t) (so that
zero power yields zero transmission rate), then Assumption 3 trivially
holds by assigning R(t) = 0, P (t) = 0, (�(c)ab (t)) = (0) for all t, so that
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(6.3) holds, and

q(E fx(t)g) = q(0) = 0 < Q = (0:1; : : : ; 0:1);

and hence Assumption 3 is satis�ed for �1 = 0:1. Further, choosing
� = Q; = 0, and choosing positive �3; �4 values such that there
exists an S-only algorithm to support a throughput vector (�4; : : : ; �4)
subject to the reduced average power constraint Q� �31x ensures that
Assumption 4 is satis�ed.

6.2 Algorithm Design

Here we specify a dynamic control algorithm that does not require
knowledge of tra¢ c statistics or topology state probabilities, yet meets
all network constraints while yielding a total network cost that is arbi-
trarily close to the minimum cost c� = f� � g�, with a corresponding
trade-o¤ in average end-to-end network delay. To motivate the control
algorithm, note that the optimization problem (6.1) is equivalent to the
following modi�ed problem that introduces new variables � and :

Minimize:f(�)� g()
Subject to: : 1) q(�) � Q; h() �H;

2) x � �; y � ;
3) Network Stability:

As in Chapter 5, we have introduced a new vector � to decouple
the penalty variables x from the cost functions f(�) and q(�), and have
similarly introduced a new vector  to decouple the rewards from the
utility functions. The decoupling vector � is not necessary in the special
case when cost functions f(�) and q(�) are both linear.1 Likewise, the
vector  is not necessary when h(�) and g(�) are both linear. However,
these extra vectors are important for the treatment of general (poten-
tially non-linear) convex cost functions and concave utility functions.
Let �(t) and (t) represent a process of these new vector variables, to
be chosen as control parameters on each timeslot. To ensure that the

1 Using decoupling vectors � in the case of linear costs cannot hurt, but linearity can be
exploited to design a somewhat simpler algorithm (see Section 6.3).
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�rst set of inequality constraints in the above problem are satis�ed,
we de�ne virtual cost queues Dq(t), Dh(t), with update equations as
follows:

Dq(t+ 1) = max[Dq(t)�Q;0] + q(�(t)); (6.5)

Dh(t+ 1) = max[Dh(t)� h((t));0] +H: (6.6)

Likewise, to ensure the second set of inequality constraints are satis-
�ed, we de�ne virtual queues Zx(t) and Zy(t), which are generalized
versions of the �ow state queues developed in the previous chapter, and
have update equations:

Zx(t+ 1) = max[Zx(t)��(t);0] + x(t); (6.7)

Zy(t+ 1) = max[Zy(t)� y(t);0] + (t): (6.8)

Note that the Dq(t) variables can be viewed as backlogs in a virtual
queue with input process q(�(t)) and constant service rate Q. Thus, if
the Dq(t) process is strongly stable then the time average expected ar-
rival rate is less than or equal to Q (ensuring the inequality constraint
Q � q(�) � q(�)). Similarly, stabilizing the other queues ensures the
other inequality constraints are satis�ed. This technique of transform-
ing stochastic inequality constraints into queueing stability problems
generalizes the virtual power queue technique introduced in [109] for
stabilizing wireless networks subject to average power constraints.
The goal of the network controller is to minimize f(�)� g() while

stabilizing all actual and virtual queues in the network. To this end, let
�(t) = [U(t);Dq(t);Dh(t);Zx(t);Zy(t)] represent the combined net-
work state vector, and de�ne the following quadratic Lyapunov func-
tion:

L(�) =
1

2

24X
n;c

(U (c)n )2 +

JqX
i=1

D2i;q +

JhX
j=1

D2j;h

+

MxX
m=1

Z2m;x +

MyX
l=1

Z2l;y

35 ; (6.9)

where Di;q; Dj;h represent the i and j entries of vectors Dq and Dh,
respectively, and Zm;x; Zl;y represent the m and l entries of vectors Zx
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and Zy, respectively. De�ne the one-step Lyapunov drift �(�(t)) as
follows:

�(�(t))M=E fL(�(t+ 1))� L(�(t)) j�(t)g :
Motivated by the Lyapunov Optimization Theorem (Theorem 5.4 of
Chapter 5), we proceed by designing a controller that, every timeslot,
minimizes a bound on the following metric:

Minimize: �(�(t)) + V E ff(�(t))� g((t)) j�(t)g ; (6.10)

where V > 0 is a control parameter that a¤ects a performance-delay
trade-o¤.

6.2.1 The Generalized CLC Algorithm (GCLC)

An expression for the drift metric (6.10) can be computed using the dy-
namic queueing laws (5.3), (6.5)-(6.8) in the same manner as in previous
chapters. Below we state the result, omitting the details for brevity:

�(�(t)) + V E ff(�(t))� g((t)) j�(t)g �

B �
X
n;c

U (c)n (t)E

(X
b

�
(c)
nb (t)�

X
a

�(c)an(t)�R(c)n (t)
������(t)

)

�
JqX
i=1

Di;q(t) [Qi � E fqi(�(t)) j�(t)g]

�
JhX
j=1

Dj;h(t) [E fhj((t)) j�(t)g �Hj ]

�
MxX
m=1

Zm;x(t)E f�m(t)� xm(t) j�(t)g

�
MyX
l=1

Zl;y(t)E fyl(t)� l(t) j�(t)g

+V E ff(�(t))� g((t)) j�(t)g ; (6.11)

where B is a �nite and positive constant. Every timeslot, the control
decision variables are chosen to minimize the right hand side of the
above inequality.
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In order to express the algorithm as a decoupled set of �ow con-
trol decisions and routing/resource allocation decisions, we assume the
following separability criteria:

� The penalty vector x(t) depends only on the routing and
resource allocation variables I(t) and �(c)ab (t) (and not on the
�ow control variables).

� The reward vector y(t) depends only on the �ow control vari-
ables R(c)n (t) (and not on the resource allocation and routing
variables).

The above separability criteria leads to the following dynamic con-
trol algorithm.
Generalized Cross Layer Control Algorithm (GCLC):
Flow Control: The �ow controllers for each active input (n; c) ob-

serve the virtual and actual queue backlogs, and variables R(c)n (t) are
chosen to solve the following optimization problem:

Minimize:
X
n;c

U (c)n (t)R(c)n (t)�
MyX
l=1

yl(t)Zl;y(t);

Subject to: 0 � R(c)n (t) � min[A(c)n (t) + L(c)n (t); R̂(c)n ];

The values l(t) are then computed as follows:

Minimize: � V g() +
MyX
l=1

lZl;y(t)�
JhX
j=1

Dj;h(t)hj();

Subject to: 0 � l � Y maxl for all l 2 f1; : : : ;Myg:

The virtual queues Zy(t) and Dh(t) are then updated according to
(6.8) and (6.6), using the (t) values computed above, and using the
y(t) rewards associated with the �ow control decisions computed above.
Routing/Resource Allocation: The topology state S(t) and queue

backlogs are observed, and the control input I(t) 2 IS(t) is chosen
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according to the following optimization:

Minimize: �
X
n;b;c

W
(c)
nb (t)�

(c)
nb (t) +

MxX
m=1

Zm;x(t)xm(t);

Subject to:
X
c

�
(c)
nb � Cnb(I(t); S(t)) for all (n; b);

I 2 IS(t); �
(c)
nb (t) = 0 : if (n; b) =2 Lc;

where:
W
(c)
nb (t)

M
=max

h
U (c)n (t)� U (c)b (t); 0

i
:

Each link (n; b) then transmits �(c)nb (t) units of commodity c data (using

idle �ll if necessary), provided that W (c)
nb (t) > 0 and (n; b) 2 Lc.

The �(t) values are then computed as solutions of the following
optimization problem:

Minimize: V f(�)�
MxX
m=1

�mZm;x(t) +

JqX
i=1

Di;q(t)qi(�);

Subject to: 0 � �m � Xmax
m for all m 2 f1; : : : ;Mxg:

The virtual queues Dq(t) and Zx(t) are then updated according to
(6.5) and (6.7).

Assuming the �ow control rewards yl(t) are associated with distinct
nodes, and that the utility functions g(y) and h(y) are sums of indi-
vidual utilities for each node, it is not di¢ cult to show that the �ow
control optimization can be distributed node by node, using only the
local (virtual and actual) queue backlog information for that node. The
routing algorithm can be further decoupled from resource allocation if
penalties depend only on I(t) (and not on the variables �(c)nb (t) if I(t) is
given), in which case an optimal commodity c�nb can be found as in pre-
vious chapters, and the resulting resource allocation problem reduces
to the backpressure algorithm of maximizing:

X
nb

W �
nb(t)Cnb(I(t); S(t))�

MxX
m=1

Zm;x(t)xm(t): (6.12)
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The algorithm for choosing �(t) can be distributed node-by-node pro-
vided that cost functions are separable. The resource allocation algo-
rithm for choosing I(t) to maximize (6.12) is the most complex part of
the algorithm, but is easily distributed in the case when transmission
penalty functions are separable and each node transmits over orthog-
onal frequency bands, or is approximated via methods discussed in
previous chapters.

6.2.2 Algorithm Performance

Let Assumptions 1-4 from Section 6.1.2 hold. It is important to note
that Assumption 1 is valid if we assume either of the following two
cases:

(1) The �ow control rewards y(t) are linear functions of the de-
cision variables R(t) (the utilities h(�) and g(�) can still be
nonlinear). The reservoir bu¤er size is arbitrary (in�nite, �-
nite, or zero).

(2) The �ow control rewards y(t) are arbitrary functions of the
decision variables R(t). In this case, the reservoir bu¤er size
possibly a¤ects optimality, but Assumption 1 holds if we as-
sume zero reservoir space (so that all admission/rejection
decisions are made immediately upon arrival) or assume in-
�nite and always full reservoir space.

Theorem 6.2. (Algorithm Performance) Under Assumptions 1-4, the
GCLC algorithm stabilizes all actual and virtual queues in the network.
Furthermore, there exists a �nite constant B (which can be explicitly
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found by computing the Lyapunov drift of the system), such that:

lim sup
t!1

1

t

t�1X
�=0

X
n;c

E
n
U (c)n (�)

o
� B + V fmax

�max
;

lim sup
t!1

q(x(t)) � Q;

lim inf
t!1

h(y(t)) �H;

lim sup
t!1

[f(x(t))� g(y(t))] � f� � g� +B=V;

where xm(t)
M
=
1
t

Pt�1
�=0 E fxm(�)g and yl(t)

M
=
1
t

Pt�1
�=0 E fyl(�)g.

The proof of the above theorem uses techniques similar to those
presented in the previous chapter and developed in [109] [119] [108],
and is omitted for brevity. It is important to note that the proof works
for any system that satis�es Assumptions 1-4 (for a given, potentially
sub-optimal constant c� = f� � g� on the right hand side of (6.4)),
provided that the virtual queues are maintained as in (6.5)-(6.8) and
that control decision variables are chosen every timeslot to minimize
the right hand side of (6.11).

6.3 Energy Optimal Networking Examples

Here we apply the general framework to several important problems in
the area of energy-aware wireless networking.

6.3.1 Max Throughput with Average Power Constraints

Consider a multi-user wireless downlink that transmits to L users
over L distinct channels. Let S(t) describe the collective channel state
process, and let C(P (t); S(t)) = (C1(P (t); S(t)); : : : ; CL(P (t); S(t)))

represent the link transmission rate function, where P (t) =

(P1(t); : : : ; PL(t)) is the vector of power allocations for each link. Power
is constrained so that

PL
i=1 Pi(t) � Pmax for all t. The goal is to max-

imize throughput subject to an average power constraint Pav (where
Pav < Pmax). Arrival processes Ai(t) satisfy Ai(t) � R̂ for all i. Assume
there are no transport layer storage reservoirs, so that all arriving data
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is either admitted or dropped. Let Ri(t) represent the �ow control de-
cision for queue i at time t, and let Ui(t) represent the current backlog
in queue i. In this case, we have:

� x(t) = (P1(t); : : : ; PL(t)); y(t) = (R1(t); : : : ; RL(t))

� q(P ) =
PL
i=1 Pi; Q = Pav ; h(R) = H = 0

� f(P ) = 0; g(R) =
PL
i=1Ri

Because h(R) = 0, there is no utility constraint and hence we do
not use any Dh(t) queues. A further simpli�cation results by noticing
that the cost functions q(P ); f(P ) are linear. Hence, we can avoid the
virtual queues Zx(t) and simply use �(t) = x(t) = P (t) everywhere
(including the virtual queue de�nitions, and in the right hand side of
the drift bound (6.11)), without loss of optimality. Likewise, the utility
function g(R) is linear, and hence we can avoid the virtual queues Zy(t)
and simply use (t) = y(t) = R(t).
For the average power constraint, we de�ne a virtual power queue

Dq(t) (we shall use D(t) for simplicity here) with a queueing law (6.5)
that reduces to the following by setting �(t) = P (t):

D(t+ 1) = max[D(t)� Pav; 0] +
LX
i=1

Pi(t): (6.13)

with initial condition D(0) = 0. In this context, D(t) has the intuitive
interpretation of being the accumulated excess power expenditure over
and above the average power constraint. With these simpli�cations,
minimizing the right hand side of (6.11) leads to the following Energy
Constrained Control Algorithm (ECCA) from [109]:
Energy Constrained Control Algorithm (ECCA) [109]:

Flow Control: Minimize
PL
i=1[Ui(t)�V ]Ri(t) such that 0 � Ri(t) �

Ai(t) for all i. That is, every timeslot and for each queue i, we allow
the full set of new arrivals Ai(t) into the queue whenever Ui(t) � V .
Else, we drop all new arrivals for queue i entering on that timeslot.
Power Allocation: Every timeslot, observe the current topology

state S(t) and the current queue backlogs U(t) and D(t), and allocate
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power P (t) = (P1(t); : : : ; PL(t)) according to the following optimiza-
tion:

Maximize:
LX
i=1

[Ui(t)Ci(P ; S(t))�D(t)Pi(t)] (6.14)

Subject to:
LX
i=1

Pi(t) � Pmax:

The virtual power queue D(t) is then updated via (6.13).

From the nature of the �ow control algorithm, we have that Ui(t) �
V + R̂ for all i and all t, and hence the above algorithm trivially stabi-
lizes all actual queues. Using this fact, it is not di¢ cult to show that the
power allocation algorithm (6.14) allocates zero power on any timeslot
in which the virtual queue D(t) is su¢ ciently large. Speci�cally, assume
there exists a constant � > 0 such that for any link i, any topology state
S(t), and any power vector P such that

P
i Pi � Pmax, we have:

Ci(P ; S(t)) � Ci(P [i]; S(t)) + �Pi;

where P = (P1; : : : ; PL), and P [i] is equal to P with the exception
that the ith entry is set to zero. It follows that if D(t) > Ui(t)�, then
Pi(t) = 0. This leads to the following theorem.

Theorem 6.3. (ECCA Performance [109]) For any topology state
process S(t) and any input process A(t) that satis�es Ai(t) � R̂ for all
t, the ECCA algorithm ensures:

Ui(t) � Umax M=V + R̂ for all i and all t;

D(t) � Dmax M=�V + �R̂+ Pmax for all t:

Consequently, the energy expended over any interval of T slots is never
more than PavT +Dmax (and so the average power constraint clearly
holds). Further, if the arrival vector A(t) and topology state S(t) is
i.i.d. over timeslots, then achieved throughput satis�es:

lim inf
t!1

1

t

t�1X
�=0

LX
i=1

E fRi(�)g �
X
i

r�i �B=V;
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where
P
i r
�
i is the optimal throughput over all possible policies, and

B is a constant that can be computed from the Lyapunov drift of the
system [109].

The maximum throughput objective can be replaced by a con-
cave fairness objective, such as g(R) =

P
i log(1 + Ri), in which

case the �ow control portion of the ECCA algorithm can be modi-
�ed by using auxiliary variables (1(t); : : : ; L(t)) and �ow state queues
Zy(t) = (Z1;y(t); : : : ; ZL;y(t)) according to the GCLC algorithm.

6.3.2 Minimizing Power Expenditure in Mobile Networks

Consider a mobile wireless network with topology state S(t) and link
transmission rate function C(P (t); S(t)) = (Cab(P (t); S(t))), where
P (t) = (Pab(t)) is the matrix of power allocations over each link. Let P
represent the set of feasible power allocation vectors, so that P (t) 2 P
for all t. Suppose that, without average power constraints on each node,
the network capacity region is given by the set �.
Suppose that there is no �ow control, so that all arriving data is

admitted immediately into the network layer (so that A(c)n (t) = R
(c)
n (t)

for all t). Assume that the resulting tra¢ c matrix (�(c)n ) is in the relative
interior of �, and de�ne �max to be the largest scalar such that (�

(c)
n +

�max1
(c)
n ) 2 � (where 1(c)n is an indicator function that takes the value

�1�when (n; c) 2 D, and �0�else). The goal is to design a joint strategy
for resource allocation, scheduling, and routing, so that the network is
stable and total average power expenditure is minimized.
This objective can be stated within our general framework by de�n-

ing penalties to be the power expended on each link: xab(t) = Pab(t).
There are no rewards, and there is only a single cost function f(P ) =P
ab Pab. Because this function is linear and there are no additional

cost constraints, we do not require any virtual queues for this system.
Setting the virtual queue backlogs to zero, assigning y(t) = (t) = 0,
and letting �(t) = P (t) in (6.11) leads to the following Energy E¢ cient
Control Algorithm (EECA) from [109]:
Multi-hop EECA for Minimizing Average Power [109]: Every

timeslot, the current U(t) backlog and the current topology state S(t)
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is observed. Then:

(1) For all links (a; b), �nd the commodity c�ab(t) such that:

c�ab(t) , arg max
c2f1;:::;Kg

n
U (c)a (t)� U (c)b (t)

o
;

and de�ne:

W �
ab(t) , max[U

(c�ab)
a (t)� U (c

�
ab)

b (t); 0]:

(2) Power Allocation: Choose P (t) 2 P to maximize:X
ab

[W �
ab(t)Cab(P ; S(t))� V Pab(t)] :

(3) Routing: Over each link (a; b) such that W �
ab > 0, transmit

Cab(P (t); S(t)) units of commodity c�ab(t) data (using idle �ll
if necessary).

The above algorithm stabilizes the network whenever �max > 0, and

yields a total average congestion of
P
n;c U

(c)
n � (B+V Pmax)=�max and

ensures total average power expenditure is within B=V of the minimum
power required for stability. If power reception costs are also signi�cant,
the algorithm can easily be modi�ed by augmenting the penalty func-
tions to account for power costs expended by each receiver.

6.3.2.1 Simulation of a 2-Queue Downlink under EECA

Consider the special case of a 2-queue downlink with time varying chan-
nels and �Good,��Medium,�and �Bad�states on each of the two links.
At most one link can be activated for transmission every slot, and ex-
actly 1 unit of power is used on each activation. Every timeslot the
network controller must choose to activate either link 1, link 2, or to
remain idle (in order to save power). A single packet can be transmitted
when a link is in the �Bad� state, two packets can be transmitted in
the �Medium�state, and three can be transmitted in the �Good�state.
An example set of arrivals over the course of 9 timeslots is given in Fig.
6.1, where the choices associated with the MWM policy described in
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t 0 1 2 3 4 5 6 7 8
Arrivals A1(t) 3 0 3 0 0 1 0 1 0

A2(t) 2 0 1 0 1 1 0 0 0
Channels S1(t) G G M M G G M M G

S2(t) M M B M B M B G B

MWM 0 3 0 3 1 0 1 1 2
Policy U2(t) 0 2 2 2 2 3 2 1 0

Better U1(t) 0 3 3 6 6 3 1 1 2
Choices U2(t) 0 2 2 3 1 2 3 3 0

Fig. 6.1 An example set of arrivals, channel conditions, and queue backlogs for a two queue
wireless downlink under two di¤erent scheduling algorithms, illustrating the power e¢ ciency
gains enabled by having full knowledge of future arrivals and channel states.

Section 4.1 are shown, along with a more energy e¢ cient set of choices,
both of which leave the system empty on timeslot t = 9.
The EECA algorithm in this case reduces to serving the queue with

the largest value of Ui(t)�i(t)� V P (where P = 1 unit) whenever this
value is positive, and remaining idle otherwise. In our simulation, pack-
ets arrived according to Poisson processes with rates �1 = 8=9; �2 =

5=9, which are the same as the empirical rates obtained by averaging
over the �rst 9 timeslots of the example in Fig. 6.1. Channel states arise
as i.i.d. vectors (S1(t); S2(t)) every slot. The probability of each vector
state is matched to the empirical occurrence frequency in the example,
so that Pr[(G;M)] = 3=9; P r[(M;B)] = 2=9; P r[(M;M)] = 1=9, etc.
We simulated the EECA algorithm for 20 di¤erent values of the

control parameter V , ranging from 0 to 104. Each simulation was run
for 10 million timeslots. In Fig. 6.2 the resulting average power is plot-
ted against the time average backlog. The corresponding upper bound
derived in [109] is also shown in the �gure. We �nd that average power
is equal to 0:898 Watts and average sum backlog is 2:50 packets when
V = 0 (corresponding to the original MWM policy). Average power
decreases to its minimum value of 0:518 Watts as the control parame-
ter V is increased, with a corresponding tradeo¤ in average delay. As
a point of reference, we note that at V = 50, the average power is 0:53
Watts and the average sum backlog in the system is 21:0 packets.
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Fig. 6.2 Average power versus average backlog for a two queue downlink under the EECA
algorithm (from [109]).

6.3.2.2 Minimum Energy Scheduling for Mobile Networks

Here we consider an ad-hoc mobile network with 28 users and a cell
structure arranged as a 4� 4 grid, as shown in Fig. 6.3. For simplicity,
we assume there can be at most one transmission per cell per times-
lot, and that all transmissions use full power of 1 Watt. We assume
transmission rates are adaptive, and that 3 packets can be transferred
if the receiver is in the same cell as the transmitter, while only 1 packet
can be transferred if the receiver is in one of the adjacent cells to the
North, South, East, or West. Data arrives to each node according to a
Bernoulli arrival process with rate � = 0:5 packets/slot (so that a single
packet arrives with probability 0:5, else no packet arrives). We assume
source-destination pairs are given by the grouping 1 $ 2, 3 $ 4, . . . ,
27 $ 28, so that node 1 packets are destined for node 2 and node 2
packets are destined for node 1, node 3 packets are destined for node
4 and node 4 packets are destined for node 3, etc.
We simulate the multi-hop EECA algorithm for both a Markovian

random walk model and an i.i.d. mobility model, with the objective of
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Fig. 6.3 An ad-hoc mobile network with adaptive transmission rates, and the resulting per
node average power expenditure versus average node congestion for V between 0 and 200.

minimizing total power expenditure. In the Markovian mobility model,
every timeslot nodes independently move to a neighboring cell either
to the North, South, East, or West, with equal probability. In the case
when a node on the edge of the network attempts to move in an infea-
sible direction, it simply stays in its current cell. In the i.i.d. mobility
model, nodes randomly choose new cell locations every timeslot inde-
pendently and uniformly over the set of all 16 cells. It is not di¢ cult
to show that both mobility models have the same steady state node
location distribution. Hence, the network capacity region and the min-
imum average power required for stability are exactly the same for both
mobility models [109] [108]. In this case, the minimum average power
for stability under the given tra¢ c load can be exactly computed, and
is equal to 0:303 Watts [160].
Simulations were conducted using control parameters V in the range

from 0 to 200, and the results are given in Fig. 6.3. In the �gure, each
data point represents an independent simulation for a particular value
of V over the course of 4 million timeslots. The resulting per-node aver-
age power is plotted against the resulting per-node average queue con-
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gestion. From the �gure, it is clear that under both mobility models,
average power expenditure quickly converges to the minimum power
level as the control parameter V is increased (and hence, delay is in-
creased). The average delay under Markovian mobility is slightly larger
than the delay under i.i.d. mobility. As an example set of data points,
we note that for the Markovian mobility model at V = 0 (correspond-
ing to the Dynamic Backpressure strategy of Chapter 4), the per-node
average backlog is 89:2 packets (about 3:3 packets on average in each
of the 27 internal queues), and per-node average power expenditure is
0:477Watts. At V = 40, the per-node average backlog is 263:6 packets,
and per-node average power expenditure is 0:305 Watts. For values of
V beyond 50, average power expenditure di¤ers from the optimal value
of 0:303 only in the fourth or �fth signi�cant digits, while average con-
gestion continues to increase.

6.3.3 Notes

� Related work by Liu, Chong, and Shro¤ in [96] considers
maximizing a time average utility function for an in�nitely
backlogged downlink in the case when exactly one user must
transmit on each and every timeslot. The technique can be
used to address the minimum average power problem if all
transmissions consist of single packets and �utility� is mea-
sured by a negative power cost associated with transmitting
a packet in the current channel state. In this case, the algo-
rithm of [96] chooses to transmit over the link i that maxi-
mizes v�i �Pi, where fv�i gLi=1 are pre-computed indices deter-
mined by the system constraints and the channel state prob-
abilities. The EECA algorithm applied to this setting would
choose the link i that maximizes the index Ui(t)=V � Pi, so
that the pre-computed index v�i is replaced by a time varying
index Ui(t)=V that does not require any pre-computation or
prior knowledge of channel probabilities. Note also that per-
formance can be improved if the system is allowed to be idle
during some timeslots, in which case EECA would enter idle
mode whenever Ui(t)=V � Pi is non-positive for all links i.
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� The EECA and ECCA algorithms presented in this chapter
generalize several related results. Work in [153] describes the
information theoretic capacity region for multiple access fad-
ing channels, and a dynamic strategy is given there for the
case when all users are in�nitely backlogged and all channel
probabilities are a-priori known. This can be viewed as a spe-
cial case of our framework, where rate-power curves C(P ; S)
are determined by an optimal receiver algorithm that uses
successive noise cancellation every slot. Broadcast capacities
for power limited downlinks are developed in [89] [64] as-
suming in�nite backlog and known channel probabilities, and
a capacity achieving queueing strategy with average energy
constraints is developed in [168] under the assumption that
channel probabilities are known.

� Average power expenditure in an ad-hoc network with no
channel or topology state variation is considered in [35] [76]
[20]. In [35], a periodic scheduling framework is developed for
minimizing energy expenditure subject to �xed time average
rate requirements on each link. The solution is based on an
o¤-line computation of an optimization problem. The work
in [76] considers complexity issues for a similar problem, and
the work in [20] treats a network with simpler interference
constraints and provides an algorithm for computing sched-
ules that are within a constant factor of the minimum energy
solution. The EECA algorithm provides an on-line solution
strategy for all of these problems, which can also be used as
an o¤-line computation method for the scenarios of [35] [76]
[20].

� The [O(1=V ); O(V )] energy-delay tradeo¤ achieved by the
EECA algorithm is not the optimal tradeo¤. Work by Berry
and Gallager in [15] considers the energy-delay tradeo¤ for
a single wireless link with a random arrival process, a fading
channel, and a concave rate-power curve. The fundamental
tradeo¤ law is shown to have a square-root structure with
energy-delay parameters [O(1=V ); O(

p
V )]. This result is re-

cently extended to multi-user networks in [114]. An improved
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tradeo¤ [O(1=V ); O(
p
V )] is achievable in the exceptional

cases when the system has a piecewise linear structure [114]
or when a small fraction of packets can be dropped [112].
Related notions of delay limited capacities are developed in
[154] for the case when tolerable delay is no more than one
timeslot.

� Energy and delay issues for static wireless links are consid-
ered in [161] [170] [30], and a problem with a static link but
stochastic arrivals is treated using �lter theory in [73]. Similar
problems of minimizing energy subject to delay constraints
or minimizing delay subject to energy constraints are treated
for single link satellite and wireless systems in [170] [49] [50]
[56] using stochastic di¤erential equations, dynamic program-
ming, and Markov decision theory, and multi-link systems are
considered in [141]. Related problems for wireless sensor net-
works are considered in [37] [169], and delay e¢ cient sleep
scheduling is considered in [98]. Asymptotic energy results
as network size is scaled to in�nity are considered in [90].

6.4 A Related Algorithm

In this section we describe another approach for the solution to the
general optimization problem (6.1), proposed by Stolyar [136], under
modeling assumptions similar to those described above. We describe
next the assumptions in [136]. For consistency we employ the notation
used in the current paper.

(1) The network model and the set of penalties xm; m 2M are
the same as those described in Section 6.1.1.

(2) The network topology state S(t) constitutes an irreducible
�nite Markov Chain with state space S.

(3) For each state s 2 S, the set of available controls Is is �nite.
(4) When S (t) = s and a control I 2 Is is chosen, the following

occurs.

(a) A penalty xm(I) is generated for all m 2M:

(b) An amount Rn(I) of exogenous tra¢ c is admitted to
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enter node i 2 N .
(c) Each node i 2 N selects up to �i(I) units of tra¢ c

from its queue (if there are fewer units than �i(I);
the whole queue is emptied). Each of these units is
routed to the rest of the nodes in the network with
probabilities pij(I); j 2 N .

(d) When a tra¢ c unit reaches its destination, it is re-
moved from the network.

The penalties xm(I), the admitted tra¢ c Rn(I), and the tra¢ c
transmitted by each node �i(I) may also be random variables that
depend on the control chosen, but are independent of anything else.
The routing probabilities pik (I)may depend on the control but are also
independent of anything else. Multicommodity �ows can be taken care
of by considering multiple queues at each node, one for each commodity
along the lines described in earlier sections.
The Markovian assumption on the S(t) topology state is similar

in both our general framework and the framework of [136]. The as-
sumption that the available control sets Is (s 2 S) are �nite does not
include the case where controls may take continuous values, as for ex-
ample, when the control refers to transmission power of a node which
may be continuously varied. The assumption that Rn(I) depends only
on the control chosen excludes the case of using a reservoir for holding
tra¢ c that has not been admitted to the network. These assumptions
are not very restrictive and they can probably be relaxed without af-
fecting the optimality of the proposed algorithm to be described below.
The assumption imposed on routing, i.e., the use of routing probabil-
ities, may be more restrictive as it does not seem easy to include in a
simple manner the practical case where a deterministic part of the traf-
�c �i(I) selected by node i is routed to node j, rather than a random
amount with average �ij (I) = �i(I)pij(I). However in several speci�c
problems, if one formally uses the average amount as the amounts ac-
tually routed, the algorithm seems to work. Therefore, it seems that
this assumption is mainly needed for the proofs in [136] and may also
be relaxed without a¤ecting the optimality of the algorithm. Further,
in the special case when each node is restricted to sending over a single



6.4. A Related Algorithm 125

outgoing link, the probabilistic routing can be designed to choose the
desired link with probability 1.
The system is slotted. The proposed algorithm performs the follow-

ing at the beginning of each slot.
(1) The weighted averages of penalties are measured,

xm(t) = (1� �)xm(t� 1) + �xm(I(t� 1)); m 2M; (6.15)

where 0 < � < 1 is a typically small number. The smaller � is, the
closer the performance of the algorithm approaches the optimum, at
the expense of less adaptivity of the algorithm in case of parameter
changes.
(2) The queue sizes, Un(t); n 2 N are measured and the network state
S (t) is observed. The control to be employed is obtained as the solution
of the following optimization problem.

Max: �
X
i;j

(Ui(t)� Uj (t))�ij (I)� �
X
i

Ui (t)Rn (I) (6.16)

�
X
m2M

(#f (xm(t)) =#xm(t))xm(I);

subject to: I 2 IS(t):

Here we are assuming that the algorithm transmits a deterministic
amount of bits �ij(I) over each link (i; j), rather than the probabilistic
amount formally used in the framework of [136].
There are similarities as well as di¤erences between this algorithm

and the algorithm presented in Section 6.2.1. These are best explained
by an example which we discuss below.

Example 6.1. Consider a wireless network with L transmission links
denoted by a link set L. The transmission rate for each link l depends
on a power allocation vector according to the function Cl(P (t); S(t)).
Suppose that power must satisfy P (t) 2 P for all t, where P is a �nite
collection of acceptable power allocation vectors. We consider single-
hop transmissions where exogenous arrivals Al(t) arrive to the network
at the source node of link l and must be transmitted over link l. The
exogenous arrival vectors (Al (t))l2L are i.i.d. over timeslots, and we
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assume that Al(t) � Amax. At each timeslot, Rl (t) bits from this ex-
ogenous tra¢ c may enter the network, where Rl(t) � Al (t). Tra¢ c that
does not enter the network is dropped, i.e., we assume zero reservoir
space. The arrival rate vector may take arbitrary values, and in partic-
ular may lie outside the capacity region of the system. The goal is to
design a joint �ow control and resource allocation algorithm that stabi-
lizes the network and yields an optimal throughput utility

P
l2L gl(rl),

where gl(r) denotes a concave utility function of the throughput over
link l, and rl represents the long term average admitted rate into link l
(assuming for now such time averages exist). In the following we will re-
fer to the GCLC algorithm presented in Section 6.2.1 as ALG1, and to
the Algorithm presented in [136] as ALG2. According to the description
in Section 6.2.1, ALG1 consist of the following operations.
Description of ALG1: In this example, the GCLC algorithm uses

rewards y(t) = R(t) (where 0 � Rl(t) � Amax), with utility function
g(R) =

P
l2L gl(Rl). There are no utility constraints, cost constraints,

or penalties, and so queues Dh(t), Dq(t), Zx(t) are not required. As the
utility function g(R) is non-linear and concave, the auxiliary variables
and �ow state queues (t) and Zy(t) are used. For notational simplicity,
we drop the subscript on queue Zy(t) and use instead Z(t). The initial
condition is Z(0) = 0, and the queue update equation (6.8) in this
example is given by:

Z(t+ 1) = max[Z(t)�R(t); 0] + (t) (6.17)

This algorithm thus reduces to the CLC2b algorithm of Chapter 5.
In particular, every slot the �ow control variables Rl(t) are chosen
such that Rl(t) = Al(t) whenever Ul(t) � Zl(t), and Rl(t) = 0 else.
The values l(t) are then computed as the solution to the following
optimization:

Minimize:� V gl(l) + lZl(t) (6.18)

Subject to:0 � l � Amax:

The virtual queue Z(t) is then updated according to (6.17). The re-
source allocation strategy is then the same as the Dynamic Backpres-
sure strategy of Section 4.3, where P (t) 2 P is chosen to maximizeP
l2L Ul(t)Cl(P (t); S(t)).
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Description of ALG2: To bring the problem into a cost-
minimization form we de�ne penalty variables xl (t) = Amax � Rl (t)
and consider the equivalent problem of minimizingX

l2L
fl (xl) ; (6.19)

where
fl (x) = gl(A

max)� gl(Amax � x): (6.20)

Hence the �penalties�are now (xl(t))l2L : Since xl (t) � Amax we may
set Xmax

l = Amax, l 2 L. With the zero-reservoir assumption, and the
condition that Al (t) takes �nite values, we may consider that the vector
(Al(t))l2L is part of network state S (t) and that Rl(t) is part of the
exercised control bIbs(t) (interpreted as a control vector augmented with
the �ow control choice and with a state that includes the new arrivals).
The ALG2 then keeps track of the weighted averages:

xl(t+ 1) = (1� �)xl(t) + � (Amax �Rl (t)) ; l 2 L; (6.21)

Taking into account the form of the function (6.19), the optimization
problem (6.16) for determining the optimal control bIbs(t) becomes in
this case:

Max: �
X
l2L

Ul(t)Cl(P (t); S(t))� �
X
l2L

Ul (t) rl

�
X
l2L

f 0l (xl(t)) (A
max � rl) ;

0 � Rl � Al (t) ; l 2 L ; P (t) 2 P; (6.22)

where f 0l (x) denotes the derivative of fl (x). Observing the structure of
this problem it can be seen that it is decomposable into the following
subproblems.
Flow Control: The accepted tra¢ c on link l, Rl(t); is given by the

solution to the following optimization problem,

Minimize: �
X
l2L

Ul(t)rl �
X
l2L

f 0l (xl(t)) rl;

0 � rl � Al(t); l 2 L.
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The solution to this problem is simply to accept all tra¢ c Al (t) if
Ul (t) < f

0
l (xl(t)) =� and reject it otherwise. Using the computed values

of (Rl (t))l2L, the auxiliary queues are updated according to (6.21).
Resource Allocation: Same as in ALG1.
The main di¤erence between the two algorithms is that ALG1 uses

the auxiliary queue updates (6.17), while ALG2 uses the weighted av-
erages updates (6.21). It is remarkable that both algorithms introduce
additional state variables to solve the non-linear optimization. The up-
dates performed by either algorithm have an e¤ect on the adaptivity of
the system when channel state or arrival statistics change. It would be
interesting to assess the delay properties of both algorithms, and the
adaptability capabilities of the two algorithms when statistical parame-
ters change. The ALG2 requires utility functions to have computable
derivatives in order to implement the �ow control algorithm. This is not
a major assumption, as most utilities of interest are simple di¤erentiable
functions. The ALG1 does not require the existence of a derivative, but
requires the solution of problem (6.18) to implement the �ow control.
In this case, the problem is a simple concave maximization over a single
variable, and so the solution is either one of the two endpoints, or a
local maximum in the interior. In the case when a derivative exists,
any such local maximum would satisfy g0l(l) = Zl(t)=V , which can be
solved in closed form if the inverse of the derivative is known. In both
cases, the �ow control algorithms are quite simple. The main computa-
tional complexity is in the solution to the Link Power Control problem
in an e¢ cient and preferably distributed manner.



7
Final Remarks

The cross/layer resource allocation model presented in this paper was
motivated by wireless communication networks. Nevertheless it has
within its scope a number of other application areas and it can be
extended in various ways. Some are outlined below.
High speed switches with input queueing is an area that attracted

a lot of attention [104] [40] [72] [88] [87] [102]. Packet scheduling in
such a switch falls within the scope of our resource allocation model.
The switch architecture imposes restrictions of a single packet trans-
mission per slot for each input and output port, a restriction that is
captured by the transmission con�ict constraints of the resource alloca-
tion model. The capacity region characterization as well as the optimal
control policies results apply in that case. Di¤erent applications pose
di¤erent requirements on the scheduling policy regarding tolerable com-
plexity and distributed versus centralized implementations. In the case
of the switch for instance, the computational burden of scheduling is
severely constrained by the time for packet transmission and the latter
is shrinking as the bandwidth increases. Another approach to deal with
high scheduling complexity is to resort to randomized scheduling poli-
cies [145] [126] [54]. In these polices a randomized algorithm computes
the access schedule at each time and it updates the one used previously
only if it is better. The randomized algorithm being of low computa-
tional complexity simpli�es the computational requirements, without
sacri�cing any throughput but only with some increase of the delay.
When the network is geographically distributed, collecting state infor-
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mation for the access controller might be cumbersome and might result
in outdated information available to the controller. Recently there has
been several e¤orts to identify scheduling algorithms with low compu-
tational complexity and amenable to distributed implementation. The
impact of imperfect scheduling on the throughput in cases where sub-
optimal algorithms perform the scheduling is studied in [29] [46] [92]
while fully distributed scheduling policies are given as well.
Resource allocation problems in manufacturing and transportation

that have been considered recently fall within the scope of the model
we consider here as well. An extension of the back pressure policy that
is applicable in systems with random service times and non-preemptive
service is presented in [146]. The maximum pressure policy proposed in
[38] [39] follows similar principles with the adaptive back pressure pol-
icy while it was shown to possess certain optimality properties. Other
service provisioning structures that fall within the scope of the pre-
sented model have been considered in [9] [13] [14]. The analysis of the
system in the latter cases was done under general stationary ergodic
assumptions about the statistics.
Various load balancing and routing problems studied by the theo-

retical computer science community fall within the scope of the model
we consider here, while various policies proposed in that context rely
on the di¤erential backlog rule for tra¢ c forwarding. A policy similar
to adaptive back pressure policy was proposed and studied in [2] [11]
[8], in the context of adversarial queueing theory. That is, its perfor-
mance was analyzed under arrival tra¢ c patterns that might be the
worst possible within a certain family of arrival patterns, for instance
all possible arrival patterns at the output of a tra¢ c regulator that pro-
duces tra¢ c constrained bursts. It was shown that the policy achieves
maximum throughput in that context as well.
The problem of paging a mobile user may be casted in the context

of our model and the adaptive back pressure strategy provides optimal
paging policies [6] [7].
Multicasting can be viewed as a generalization of unicast informa-

tion transport, where the information generated at source node sl needs
to be transported to all nodes of the set of destinations Dl:The capac-
ity and maximum throughput results presented in the paper can be



131

extended to the case of multicasting as is reported in [131] [132]. In-
formation �ows in multicasting are identi�ed by the source node and
the group of receivers and typically there are several of them �owing
through the network (s1; D1); ::; (sL; DL): A multicast information �ow
might be served by an eligible multicast tree, i.e. a directed tree rooted
at sl and including in its leaf or intermediate nodes, all nodes ofDl: The
information �ows from the source to the destination nodes through the
unique paths designated by the multicast tree. In that sense informa-
tion transport in multicasting resembles more virtual circuit forwarding
rather than datagram. The tra¢ c of an information �ow might be split
across all multicast trees eligible for the speci�c �ow that are desig-
nated to carry tra¢ c from that �ow. A vector of the tra¢ c loads of
each information �ow is feasible, if there is a way to split the load of
each information �ow across the eligible trees for the �ow such that
the aggregate load of the tra¢ c of all trees results in tra¢ c loads for
the links that do not exceed their capacities. The transport capacity
region is de�ned to include all feasible tra¢ c load vectors as above. A
maximum throughput policy for the multicast case can be obtained by
a variation of the adaptive back pressure policy as follows. Transmis-
sion priorities among the di¤erent trees crossing a certain link are given
according to the sizes of the di¤erential backlogs, where the di¤erential
backlog of a tree in a certain link is the di¤erence of the upstream node
backlog minus the maximum of the backlogs at each one of the links
where the tree branches out at the downstream node. The above rule,
in combination with a load balancing rule for allocating the tra¢ c of
an information �ow to the various eligible trees that may support it
gives a maximum throughput transmission control policy.
In the above discussion about multicasting the information of the

di¤erent �ows after it enters the network remains intact until it reaches
the destinations. An alternative that promises signi�cant capacity
gains, for multicasting in particular, is to allow for combining of the
information of di¤erent �ows through linear or nonlinear operations
at intermediate network nodes. That approach, referred to as network
coding, [1] is intensely investigated recently. It is possible to use an ap-
proach along the lines of the adaptive back pressure control in order to
achieve maximum throughput in the case where there is intra-session
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coding. That approach is pursued in [62] where it is shown how the
capacity region including network coding can be achieved.
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