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1 Statement of Work

Short- and Long-term Effects in Prostate Cancer Survival: Analysis of Treatment Efficacy and
Risk Prediction
Alexander Tsodikov, Ph.D.

In the course of the project there has been no change in the scope of work. All tasks have been
completed. A breakdown below shows what has been accomplished.

Task 1. Develop model-building techniques

Task 2. Develop estimation and hypothesis testing

Task 3. Develop variable selection procedures

Task 4. Analysis of the data for significant effects

Task 5. Computer-intensive approaches to prognosis and validation

2 Objectives

There has been no change in the project objectives. The specific aims of this project are

1. To provide a statistical model that reproduces the complex survival responses in prostate cancer.

2. To develop methodology for analysis of prognosis after treatment for prostate cancer taking into
account the long- and short-term effects of prognostic factors and treatment.

3. To develop statistical software implementing model-building, estimation, construction of prog-
nostic indices, conditional survival prognosis, and assessment of the quality of prognostic clas-
sifications based on the new models.

4. To apply the models and methodology to analyze post-treatment survival of patients with
prostate cancer using data from the Memorial Sloan Kettering Cancer Center and the SEER
database.

3 Introduction

This project represents a successful effort to develop abstract statistical theory, computational
algorithms, translate this methodology into stable shareware software products that can be used
by the broad scientific community, put this product into the R-Projects nltm and rpNLTM that
has become the dominant site for dissemination of cutting edge statistical procedures, and finally
use and showcase all this arsenal to address real data and problems in prostate cancer. We are
glad that we took the challenge of this large idea development and translational effort in the three
year project performance period and that were able to see it through.

The goal of this proposal was to investigate a novel approach to the analysis of post-treatment
survival of prostate cancer patients: the decomposition of the diversity of survival patterns into
short-term and long-term effects. We proposed to identify a model of prostate cancer survival
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incorporating long- and short-term effects of prognostic factors and treatment. Novel statistical
tools were developed to make such models work for better prognosis of prostate cancer patients.
Year 1 at the University of Utah was primarily devoted to development of methodology for point
estimation and hypothesis testing. While continuing methodological research in Year 2, we focused
on the delivery aspect of the progect addressing software development and implementation of the
algorithms, testing them by simulations, development of tools for multivariate analysis and variable
selection and preliminary applications of these tools to real data. In the last 3rd year of the grant
(a no-cost extention), we focused on justifications for asymptotic theory, development of computer-
intensive data mining tools using our models, developing an R-package that would give a broad
scientific community access to the free software tools implementing the methodology developed in
this project, and on applications of these methods to analyze data on survival of patients treated
for prostate cancer from Sloan-Kettering Cancer Center Database and SEER database.

In the following sections of the report we give a summary of the results achieved in this project.

4 Methodology

4.1 Models and inference procedures

Motivated by second-order properties of frailty models we have proposed a family of so-called
Nonlinear Transformation Models (NTM) (Year 2 report, Section 4). The models were supplied
with a general numerical inference framework based on the QEM algorithm (Year 1 report, Section
4). We developed composition techniques that allowed us to easily extend NTMs in a hierarchical
fashion into more complex models (Year 1 report, Section 5, Year 2 report Section 7). We proved
that the QEM estimation algorithm will fit any model constructed using the techniques. This
framework was used to come up with a flexible family of models that incorporate long- and short-
term survival effects. We have extensively studies the properties of this estimation procedure by
simulations (Year 2 report Section 8). In order for the models to be useful for the analysis of
prostate cancer, we developed a hypothesis testing framework. We started with the traditional
likelihood ratio test and variable selection procedures (Year 1 report, Section 6, Year 2 report
Section 5), and then developed sophisticated techniques that allowed us to obtain exact observed
profile information matrix for the models (Year 2 report Section 5). Coupled with the Wald test,
this method made complex hypothesis testing computationally tractable. Subsequent sections of
this report describe development of computer-intensive model selection and hypothesis testing
procedures and application of the whole machinery to two large datasets on survival of prostate
cancer patients.

4.2 Computer-intensive model selection

This section describes the work performed in Year 3.
Traditional forward and backward variable selection procedures as well as two computer in-

tensive extended procedures (a Tree-Based procedure for the forward search and a Backwards
Pooling procedure for the backwards search) were developed for all the models incorporated in the
software.

Variable selection is organized by cycles of elementary hypotheses testing followed by a selection
of the best model in the current cycle. The cycling is repeated until neither of the potential models
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evaluated at the current cycle satisfies a certain criteria for a continued search.
Technically, in our implementation of variable selection procedures, we always work with

the maximal model containing all model parameters representing regression coefficients β =
(β0, β1, . . . , βk). A non-cure model typically will not have an intercept term β0. Forward vari-
able selection procedures put maximal restrictions on the model parameters and work forward
by removing those restrictions sequentially until either an unrestricted model emerges or a cer-
tain criterion is met. With the backwards selection procedures, an unrestricted maximal model
is the starting point. The procedure then adds restrictions sequentially until either a maximally
restricted model is achieved, or a certain stopping criterion is met.

4.2.1 Traditional variable selection procedures

With the forward selection procedure, a model where all model parameters representing regression
coefficients β = (β1, . . . , βk) are fixed at zero. This corresponds to the hypothesis of homogeneity.
The cycle of elementary hypothesis testing consists of evaluating a likelihood ratio characterizing
the improvement in the goodness of fit resulting from removing a restriction for one of the regression
coefficients βi = 0. Model with the smallest p-value for testing the hypothesis represented by the
restriction is chosen as the next base model, i.e. a model on which the next cycle will be based.
The stopping occurs if all such p-values are larger than a certain threshold.

Forward procedures are subject to criticism that until the best model is achieved, hypothesis
testing is based on a misspecified model, and therefore the validity of p-values may be a suspect.
This consideration brings us to the forward procedures. Speed is an advantage of forward selection
procedures as only models with degrees of freedom less than that of the best model are evaluated.
Speed can further be improved by using a score test instead of likelihood ratio that requires fitting
each potential model being evaluated (currently not implemented).

In the forward selection procedure an unrestricted maximal model is the starting point. Re-
strictions of the type H0 : βi = 0 are evaluated at each point as the procedure cycles through all
potential models in the current cycle where i goes through all yet unrestricted parameters. Model
showing the largest p-value exceeding a certain threshold is selected as the base model for the
next cycle. The procedure is stopped when non of such p-values exceed the threshold or when all
parameters have been restricted. By the nature of this procedure, relatively big models with a
sizable fraction of non-significant parameters are evaluated until the best one is achieved. Speed
of the likelihood ratio test that requires fitting each potential model is a challenge. In order to
improve on the speed of search, a Wald test have been implemented for all the models. The Wald
test described in Section ?? uses our novel results on the exact profile information matrix (Section
??). When occasional problems with information matrix inverses occur in the presence of many
non-significant parameters (typically with highly overparameterized maximal models at the few
initial dimension reduction steps), the procedure uses likelihood ratio test instead, and tries to
swich back to the Wald test immediately after.

4.2.2 Backwards pooling procedure

In the backwards pooling procedure, two kinds of restrictions are considered:

• Fixing ith parameter H0 : βi = 0, and

• Pooling ith and jth parameter H0 : βi = βj, i 6= j.
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When the pooling hypothesis is first accepted, a cluster of two pooled parameters is created.
Later on, any free parameter or a different cluster of pooled parameters could be merged with the
first one. Note that by the nature of the imposed restrictions, any cluster of pooled parameters
contributes one degree of freedom (one parameter-representative) to the model, and the pooling
restriction forces all other mmembers of the cluster to be equal to the parameter-representative.

Unlike the traditional backwards variable selection procedure, its Backwards Pooling general-
ization is a much more flexible data mining tool. Indeed, the number of potential models considered
on each cycle is an order of magnitude larger than in the traditional backwards selection procedure,
and is equal to A(A−1)/2+A, where A = (# of free parameters + # of pooled parameter clusters).
To understand the difference, consider a model with single predictor eβz and one categorical covari-
ate z. If simple contrast is used, z will be represented by a number of dummy variables comparing
every possible category of z to a selected baseline category. Traditional variable selection in this
situation would preserve any effect showing significant difference with the baseline. At the same
time this ”‘best”’ model may still be imperfect and overparameterised as some categories may
show similar effects, and even though they might be significantly different from the baseline, they
may show no difference whatsoever among themselves. The Backwards Pooling procedure will
in this case continue variable selection until all differences between clusters of pooled parameters
are significant. With z representing a categorized continuous veriable, for example, the procedure
can be used to select optimal cutpoints on z that divide the sample into an optimal number of
groups maximally seperated in terms of risk predicted by z. With factorial parameterization (the
one that includes all possible interactions) of a set of categorical covariates, the output of the
Backwards Pooling procedure is conceptually similar to a pruned regression tree, or to an output
of a clustering algorithm, where groups correponding to distinct patterns of the covariate vector z
are clustered so that the difference within each cluster in minimized, while the difference between
clusters is maximized.

4.2.3 Tree-based methods

Traditional regression tree methodology [Breiman et al., 1984] is based on recursive partitioning
of the data using splits defined by cutpoints put on covariates. The optimal cuntpoint at each
step of the procedure typically maximizes a two-sample test statistic (minimizes the p-value). In
survival analysis a logrank test or any other traditional rank test can be used to define the splits.
We recognize, however, that logrank test is a score test for the Proportional Hazards model, and
is sensitive to the long-term effect in the presence of long-term survivors. When long- and short-
term effects are counteractive, logrank test can be dramatically underpowered. In Year 2 report
(Figure 6, page 20; also see [Wendland et al., 2004]) we discussed a breast cancer example where
due to counteracting long- and short-term effects survival curves crossed, and the logrank test
showed a p-value of 0.79 while the test of homogeneity and separate tests for long- and short-term
effects based on the PHPH model showed a highly significant result. Prostate cancer biochemical
failure data from MSKCC also show crossing curves (Figure ??). We therefore believe that in
the presence of both long- and short-term effects, and particularly with crossing survival curves,
PHPH or similar cure model with two predictors should be used as a basis for deriving the two-
sample test. This will insure that regression tree would still be sensitive to differences departing
from the proportional hazards assumption.

We have developed a general tree-based data mining procedure where splits are based on a
two-sample test derived from any available Nonlinear Transformation Model (NTM).
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Figure 1: Time to biochemical failure. MSKCC data. Dose categories are 0 (lowest) through
3 (highest). Prognostic category is composed of PSA and Gleason score, categorized 0 (best)
through 2 (worst).
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Given a data set and an NTM the procedure does the following:

1. Recursively splits the data.

2. Finds the AIC of each node’s model

3. Plots the tree with the AIC information

Splitting is organized according to the following algorithm.

1. For a continuous covariate x with distinct values x1, x2, . . . , xk, all possible splits of the form
x < xi are considered. This is done via an indicator dummy variable that equals 1 if x < xi,
and 0 otherwise. Using a subset of the data corresponding to the node being considered for
splitting, an NTM is fitted with the indicator covariate as the only variable in the model. A one
step of the Powell optimization procedure is used with the profile likelihood as a target function.
Profile likelihood corresponding to the outcome is retained as a criterion for the goodness of
split.

2. For a discrete covariate x, with values {a1, .., ak}, all possible subsets of {a1, ..., ak} are consid-
ered. For a given subset, the indicator dummy variable takes the value 1 if x is in the subset,
and 0 otherwise. Evaluation of each such model is done as in the case of a continuous covariate.

3. Among all splits considered, the one with the largest profile likelihood is kept. This produces 2
descendant nodes where the procedure is repeated.

4. The stopping criterion is based on the minimal number of observations allowed in a node.

AIC is calculated using a full model fitting approach at each node. At a given node, using all
the data, a model with covariates corresponding to the node in question and all its parent nodes
is fitted. Node with the smallest AIC corresponds to the best model.

With a cure NTM with two predictors, same sets of covariates are used for long- and short
term effects.

5 Computer Software and tools

This section describes the work performed in Year 2-3.

5.1 Delphi Package

The first version of the Delphi package EMc was described in our Year 2 report, Section 9. In Year
3 the package has seen many improvements and extensions. Key additions include development of
the Backward Pooling variable selection procedure (Section 4.2.2) and incorporation of the profile
information matrix theory (Section ??) into hypothesis testing, confidence intervals and variable
selection blocks. These additions helped reduce the computational burden of finding the best
model for a large dataset such as MSKCC or SEER databases to the point that such analysis
and data mining became feasible (Section 6). On the surface, these additions are seemless - when
Backwards Pooling variable selction procedure is complete, the internal structure of the software
is populated with the best model. Detailed log and result files are created.

The Figures 3-13 represent the basic fucntionality of the package.
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Figure 2: Reading data into the Delphi EMc package.
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Figure 3: Browsing for a data file.
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Figure 4: Read the data and data entry log.
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Figure 5: Select covariates to include in the maximal model and define their types.
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Figure 6: Data slicing. Show survival curves corresponding to distinct patterns of categorical
variables (groups).
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Figure 7: Choose a model to be fitted.
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Figure 8: Interim output of the likelihood maximization procedure.
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Figure 9: Superimposing survival curves expected under the model on observed Kaplan-Meier
estimates for distinct patterns of categorical variables.
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Figure 10: Performing a likelihood ratio test to compare nested models.
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Figure 11: Point estimates and confidence intervals for fitted model parameters.
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Figure 12: Variable selection procedures and interim output.
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Figure 13: Flexible model restrictions. Manually specifying a restricted model to test specific
hypotheses.
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Figure 14: Link to nltm package on the R project web page.

5.2 R package nltm

The nltm package implements the basic functionality of EMc (Section 5.1) in the R environment
without the Delphi GUI. Although these two packages are implementations of the same basic
methodology, the source code is written in two different languages. EMc is written in Delphi 7 by
Inprise, a visual and object oriented version of the Pascal programming language. The R package
nltm is written in c and R with the subsequent compilation as an R package. The source codes
and a brief package description is available on the R webpage (Figure 14). Compiled versions for
Unix and Windows will be produced by the R project team from the source codes, and at this
point the package will be directly installable from the user’s R environment. In the meanwhile,
both packages compiled for Windows are available from the PI for a manual installation. The
following models are currently supported by nltm:

• Proportional hazard model (PH):
G(t|z) = F (t)θ(z)

• Proportional hazard cure model (PHC):

G(t|z) = exp(−θ(z)(1 − F (t)))
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• Proportional odds model (PO):

G(t|z) =
θ(z)

θ(z) − log F (t)

• Proportional hazard - proportional hazard cure model (PHPHC):

G(t|z) = exp(−θ(z)(1 − F η(z)(t)))

• Proportional hazard - proportional odds cure model (PHPOC):

G(t|z) = exp

{
−θ(z)

1 − F (t)

1 − (1 − η(z))F (t)

}
• Gamma frailty model (GFM):

G(t|z) =

[
θ(z)η(z)

θ(z) − ln(F (t))

]η(z)

• Proportional hazard - proportional odds model (PHPO):

G(t|z) =
θF η(z)(t)

1 − (1 − θ)F η(z)(t)

The following R command represents the syntax for a call to an estimation procedure

nltm(formula=formula(data), data=parent.frame(), subset, na.action,

init, control, model=c("PH","PHC","PO","PHPHC","PHPOC","GFM","PHPO"),

verbose=FALSE, ...),

where the arguments have the following meaning

formula A formula object, with the response on the left of a ”‘ ”’ operator, and the terms on the right.
The response must be a survival object as returned by the Surv function.

data A data.frame in which to interpret the variables named in the formula, or in the subset

argument.

subset Expression saying that only a subset of the rows of the data should be used in the fit.

na.action A missing-data filter function, applied to the model.frame, after any subset argument has been
used. Default is options()$na.action.

init Vector of initial values for the calculation of the maximum likelihood estimator of the regression
parameters. Default initial value is zero.

control Object of class coxph.control specifying iteration limit and other control options. Default is
nltm.control(...).

model A character string specifying a non-linear transformation model. Default Proportional Hazards
Model.

verbose If TRUE it stores information from maximization of likelihood and calculation of information
matrix in a file. Default is FALSE.
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... Other arguments

The procedure returns a value (object) of the class "‘coxph"’. Thus, in its usage the package
is similar to existing R package survival.

The following is an example of usage in R.

1. Create a simple test data set with four variables, time (survival time), status (censoring index),
and two covariates, age (categorized age in years represented by the right point of the bin), and
size (tumor size in mm).

test1 <- list(time=c(10,7,32,23,22,6,16,34,32,25,11,20,19,6,17,35,6,13,9,6,1),

status=c(1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0),

size=c(1.79,7.93,2.02,6.89,2.30,7.82,1.25,9.85,6.02,3.43,4.72,7.45,8.83,

9.53,1.10,1.06,5.25,5.86,2.03,3.62,3.52),

age=factor(c(65,65,65,65,99,45,65,99,99,99,65,45,65,55,45,45,55,55,55,99,65)))

2. Call ntml procedure to fit the PO model

nltm(Surv(time,status) ~ size + age, data=test1, model="PO")

results in a table of point estimates, standard errors and p-values for dropping the term.

Call:

nltm(formula = Surv(time, status) ~ size + age, data = test1,

model = "PHPHC")

coef exp(coef) se(coef) z p

size 0.141 1.15e+00 0.174 0.812 0.420

age55 5.000 1.48e+02 9.763 0.512 0.610

age65 1.736 5.67e+00 1.219 1.424 0.150

age99 -0.264 7.68e-01 1.450 -0.182 0.860

size -0.117 8.90e-01 0.234 -0.500 0.620

age55 -4.975 6.91e-03 9.815 -0.507 0.610

age65 -3.353 3.50e-02 1.796 -1.866 0.062

age99 -3.358 3.48e-02 2.251 -1.492 0.140

cure -1.920 1.47e-01 1.368 -1.403 0.160

Likelihood ratio test=10.3 on 9 df, p=0.325 n= 21

3. A similar call to the PHPH cure model with long- and short-term predictors results in a table
twice the size of the one for a PO model, where the first set of coefficients corresponds to long-
term effects of the covariate, and the second set of coefficients corresponds to short-term effects
of the same covariates.
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nltm(Surv(time,status) ~ size + age, data=test1, model="PHPHC")

Call:

nltm(formula = Surv(time, status) ~ size + age, data = test1,

model = "PHPHC")

coef exp(coef) se(coef) z p

size 0.141 1.15e+00 0.174 0.812 0.420

age55 5.000 1.48e+02 9.763 0.512 0.610

age65 1.736 5.67e+00 1.219 1.424 0.150

age99 -0.264 7.68e-01 1.450 -0.182 0.860

size -0.117 8.90e-01 0.234 -0.500 0.620

age55 -4.975 6.91e-03 9.815 -0.507 0.610

age65 -3.353 3.50e-02 1.796 -1.866 0.062

age99 -3.358 3.48e-02 2.251 -1.492 0.140

cure -1.920 1.47e-01 1.368 -1.403 0.160

Likelihood ratio test=10.3 on 9 df, p=0.325 n= 21

5.3 R package rpNLTM

The R package rpNLTM implements Recursive Partitioning and Regression Trees algorithms using
splits with criteria supplied by fitting an NTM model using nltm package functions.

The following R command represents the syntax for a call to an estimation procedure

rpNLTM(formula, data, weights, subset, na.action=na.rpart, method,

model=FALSE, x=FALSE, y=TRUE, parms, control, cost, control.nltm,

model.nltm=c("PH","PHC","PO","PHPHC","PHPOC","GFM","PHPO"), verbose=FALSE, ...)

where the arguments have the following meaning

formula A formula, as in the lm function.

data An optional data frame in which to interpret the variables named in the formula weights optional
case weights.

subset Optional expression saying that only a subset of the rows of the data should be used in the fit.

na.action The default action deletes all observations for which y is missing, but keeps those in which one
or more predictors are missing.

method One of ”anova”, ”poisson”, ”class”, ”exp” or ”nltm”. ”nltm” method is of primary interest
as it triggers regression trees procedures based on the methodology developed in this project.
The other methods are inherited from the existing package ”rpart” and are not related to this
project.
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model If logical: keep a copy of the model frame in the result? If the input value for model is a model
frame (likely from an earlier call to the rpart function), then this frame is used rather than
constructing new data.

x Keep a copy of the x matrix in the result.

y Keep a copy of the dependent variable in the result. If missing and model is supplied this
defaults to FALSE.

parms Optional parameters for the splitting function. Anova splitting has no parameters. Poisson
splitting has a single parameter, the coefficient of variation of the prior distribution on the
rates. The default value is 1. Exponential splitting has the same parameter as Poisson. For
classification splitting, the list can contain any of: the vector of prior probabilities (component
prior), the loss matrix (component loss) or the splitting index (component split). The priors
must be positive and sum to 1. The loss matrix must have zeros on the diagnoal and positive
off-diagonal elements. The splitting index can be gini or information. The default priors are
proportional to the data counts, the losses default to 1, and the split defaults to gini.

control Options that control details of the rpart algorithm.

cost A vector of non-negative costs, one for each variable in the model. Defaults to one for all
variables. These are scalings to be applied when considering splits, so the improvement on
splitting on a variable is divided by its cost in deciding which split to choose.

control.nltm Object of class coxph.control specifying iteration limit and other control options. Default is
nltm.control(...).

model.nltm A character string specifying a non-linear transformation model. Default Proportional Hazards
Model.

verbose If TRUE it stores information from maximization of likelihood and calculation of information
matrix in a file. Default is FALSE.

... arguments to rpart.control may also be specified in the call to rpart. They are checked
against the list of valid arguments.

The procedure returns an object of class rpart, a superset of class tree.
The following is an example of usage.

1. Introduce a dataset.

leuk1 <- list(time=c(10,7,32,23,22,6,16,34,32,25,11,20,19,6,17,35,6,13,9,6,10),

status=c(1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0),

stage=factor(c(2, 1, 0, 0, 1, 2, 1, 1, 2, 0, 0, 1, 0, 0, 2, 0, 2, 1, 1, 0, 0)),

size=c(1.79,7.93,2.02,6.89,2.30,7.82,1.25,9.85,6.02,3.43,4.72,7.45,8.83,

9.53,1.10,1.06,5.25,5.86,2.03,3.62,3.52),

age=factor(c(65,65,65,65,99,45,65,99,99,99,65,45,65,55,45,45,55,55,55,99,65)))

2. Generate a regression tree based on the PO model.
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fit <- rpNLTM(formula=Surv(time,status) ~ size + age, data=leuk1,

method="nltm", model.nltm="PO", verbose=TRUE, minsplit=5)

3. Plot the regression tree.

plot(fit)

4. Mark te nodes of the tree.

text(fit, pretty=TRUE, all=TRUE)

The result is shown on Figure 15.

6 Data Analysis

This section describes the work performed in Year 3.

6.1 Memorial Sloan Kettering Cancer Center Database

We have conducted data analysis using four different endpoints.

Biochemical This endpoint is defined by ASTRO as three successive prostate specific antigen (PSA) elevations
observed from a post-treatment nadir PSAlevel. This endpoint is also termed ”‘PSA relapse”’
or ”‘PSA failure”’ (IJROBP 37:1035-1041 1997).

Local failure Local failure is defined as palpable recurrence and/or positive re-biopsy (Biopsy-confirmed re-
currence).

Distant Distant failure represents detection of distant metastasis (DM).

Survival This failure id defined as prostate cancer-specific death (cause-specific failure).

Other than local failure, all end points examined may stem from two sources: subclinical
metastases already present at the time of treatment or shedding of tumor cells that were not
sterilized during radiation therapy.

The significance of models accomodating long- and short-term effects developed in this project
is that they allow us to reproduce complex the timing patterns of failures resulting from failures
originating from different biological sources.

The long-term effect represents a combination of long-term patient’s prognosis based on clinical
characteristics of the disease at diagnosis, and the treatment effect representing the chance that
we eradicate tumor cells at the time of treatment. It is therefore expected that with the prognostic
index being fixed, a more radical treatment would result in a higher cure rate.

At the same time treatment may affect metastatic cells is a different way or exert a ”‘survival
of the fittest”’ effect on the residual tumor cells giving rise to a failure. These effects have the
potential of altering the dynamics and timing of the development of failure without necessarily
affecting the long-term survival determined by the probability that no residual tumor cells are
present rather than by their biological characteristics.
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Figure 15: An example of the regression tree built using a PO nonlinear transformation model.
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Having the biostatistical instrument at our disposal that recognizes the above mentioned com-
plexity, we approach the analysis using a nonlinear transformation cure models with two predictors.

In our preliminary data analysis reported in Year 2 progress report (Section 8) we have iden-
tified two models potentially suitable for complex survival responses observed in prostate cancer:
the Gamma Frailty model with covariates incorporated into its scale and shape parameter, and the
so-called PHPH cure model. We also observed that PHPH model was the only one that allowed
us to reproduce crossing survival curves. Having obtained an extended version of the MSKCC
database of patients undergoing radiation therapy for prostate cancer, we have observed crossing
survival curves for some of the covariate groups as shown, for example, in Figure 1. Based on this
observation, we decided to select the PHPH model as our primary tool of data analysis. Our prior
experience suggests, however, that other cure models with two predictors such as PHPOC, or a
two component mixture model, would give very similar results.

The population examined in this study consists of 1765 patients with biopsy-confirmed local-
ized prostate cancer who were treated at MSKCC with external-beam radiation therapy (EBRT).
Information on local failure was available for only 1275 patients. Clinical and treatment charac-
teristics of patients were summarized in two categorical variables: dose (0, 1, 2, 3) and prognosis
(0, 1, 2). The four dose levels are corresponding to the intervals [41.4,70.2], [71.6,75.6], [75.6,79.2]
and [84.6,86.4] Gy, and three prognosis categories (low, intermediate and high risk) were defined
by pre-treatment PSA, Gleason score and tumor stage.

6.1.1 Biochemical failure

Relative risk estimates and estimated probabilities of long-term survival resulting from computer-
intensive backwards pooling model selection procedure (Section 4.2.2) are shown in Table 1.

Relative Prognosis Dose group
Risk group

0 1 2 3
Long- 0 1.0 0.27
Term 1 1.65 1.0 0.54 0.27
Effect 2 2.24 1.65 1.0
Short- 0 1.0 3.45 1.99 1.0
Term 1 1.99 6.70
Effect 2 3.45 6.70

Probability 0 0.59 0.87
of long-term 1 0.42 0.59 0.75 0.87

survival 2 0.31 0.42 0.59

Table 1: Relative risk estimates for long- and short-term effects for the final model for biochemical
failure endpoint. MSKCC database analysis.

Shown in the following Figure 16 is a detailed EMc package output that was used to build the
table.

Based on these result, we can make the following key conclusions (all effects are highly signif-
icant, see Figure 16 for details).
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Figure 16: Output of the EMc package representing the final model for biochemical failure.
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1. Overall, increasing dose improves the chance of long-term survival of localized disease patients
with any prognosis.

2. In the favorable prognostic group dose levels 2 and 3 represent a possible over-treatment. This
is evident from the fact that long-term effects for dose levels 1,2, and 3 were pooled in search
for the best model.

3. Prognosis groups 1 and 2 show more rapid development of failure with dose increasing from
level 1 to 2. This leads to the speculation that 75.6 Gy is a possible cutpoint when dose starts
affecting the dynamics of tumor re-growth after radiation therapy.

Shown in Figure 17 is a regression tree built using the methodology developed in this project
(Section 4.2.3). While the tree does not allow us to directly test statistical hypotheses, it provides
a data mining tool that can suggest a direction for further clinical trials. For example as evident
from Figure 17, lowest AIC corresponds to nodes 5 and 6. These nodes represent a partition
of dose for low PSA high grade patients (node 5), and higher PSA early stage patients (node
6), which indicates possible subgroups of patients where increasing radiation dose may have the
highest effect.

6.1.2 Local failure

Relative risk estimates and estimated probabilities of long-term survival resulting from computer-
intensive backwards pooling model selection procedure (Section 4.2.2) applied to the local failure
endpoint are shown in Table 2.

Relative Prognosis Dose group
Risk group

0 1 2 3
Long- 0 1.0
Term 1 2.89 1.0
Effect 2 2.89 1.0
Short- 0 1.0
Term 1 2.85 1.0
Effect 2 2.85

Probability 0 0.93
of long-term 1 0.81

survival 2 0.81 0.93

Table 2: Relative risk estimates for long- and short-term effects for the final model for the local
failure endpoint. MSKCC database analysis.

From the table it is clear that the local failure endpoint is much less sensitive to the treatment
dose than a biochemical failure. This could be explained in part by the smaller number of events
observed for this endpoint and the associated power deficiency. Based on the table we may suggest
the following conclusions.

1. Overall, increasing dose is associated with a highly significant improvement in the long-term
survival.
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Figure 17: Regression tree built for biochemical failure endpoint

DAMD 7-03-1-0034 Page 32 Final Report



FINAL PROGRESS REPORT PI: Tsodikov, Alexander

2. Dose levels 1,2, and 3 may represent an over-treatment of patients with the most favorable
prognosis. This is evident from the fact that all dose levels were pooled together in long- and
short-term predictors for the favorable prognosis group (prognosis=0).

3. Patients with intermediate or unfavorable prognosis benefit primarily from highest dose levels.

4. Although the short-term effect is significant, we find it difficult to interpret due to a lack of
clear regularity.

Local failure endpoint is not informative enough to build a meaningful regression tree.

6.1.3 Distant metastasis

Relative risk estimates and estimated probabilities of long-term survival resulting from computer-
intensive backwards pooling model selection procedure (Section 4.2.2) applied to the distant metas-
tasis endpoint are shown in Table 3.

Relative Prognosis Dose group
Risk group

0 1 2 3
Long- 0 1.0
Term 1 7.32 3.69
Effect 2 25.3 18.7
Short- 0
Term 1 1.0
Effect 2

Probability 0 0.82
of long-term 1 0.82 0.92

survival 2 0.56 0.65

Table 3: Relative risk estimates for long- and short-term effects for the final model for the distant
metastasis endpoint. MSKCC database analysis.

Based on the table we may suggest the following conclusions.

1. Overall, increasing dose is associated with a reduced chance to develop distant metastasis (highly
significant).

2. No dose effect on metastasis is observed for patients with favorable prognosis. This may be due
to a lack of power as such patients generally have a low chance to develop metastases.

3. There is no short-term effect, and the optimal model for metastasis endpoint is essentially a
proportional hazards model.

Shown in Figure 18 is a regression tree built using the methodology developed in this project
(Section 4.2.3). As is evident from the figure, there is a well structured prognostic groups subdivi-
sion for early stage patients. Also the tree suggests that increasing dose might benefit early stage
high grade patients.
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Figure 18: Regression tree built for the distant metastasis endpoint
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6.1.4 Cause-specific survival

Relative risk estimates and estimated probabilities of long-term survival resulting from computer-
intensive backwards pooling model selection procedure (Section 4.2.2) applied to the cause-specific
survival endpoint are shown in Table 4.

Relative Prognosis Dose group
Risk group

0 1 2 3
Long- 0 1.0
Term 1 1.0
Effect 2 1.9 4.02
Short- 0 1.0
Term 1 9.64
Effect 2 28.79 9.64

Probability 0 0.93
of long-term 1 0.82

survival 2 0.69 0.46

Table 4: Relative risk estimates for long- and short-term effects for the final model for the cause-
specific survival endpoint. MSKCC database analysis.

Based on the table we may suggest the following conclusions.

1. Except for patients with unfavorable prognosis, no dose effect is observed on the prostate-specific
long-term survival. This may be due to lack of power.

2. A controversial adverse long-term effect of dose is observed in the unfavorable prognosis group.
This finding stands in need of explanation.

3. Patients unfavorable prognosis show short-term benefit associated with increased treatment
dose.

Shown in Figure 19 is a regression tree built using the methodology developed in this project
(Section 4.2.3). The only node involving dose has a suboptimal AIC, which suggests that there
might not be a dose effect on cause-specific survival.

6.2 SEER public database

SEER public database offers an opportunity to study the effects of surgery and radiation in subsets
of patients defined by stage and grade. In order to avoid confounding due to dissemination of the
PSA test in the population in the late 80ies and lead-time, length bias and overdiagnostic bias
that dramatically affect survival curves during this transient period, we focused on cases diagnosed
after 1990. A subset of 23,606 such cases diagnosed in the San-Francisco area was selected for the
analysis. Since a combination of surgery and radiotherapy is very uncommon in prostate cancer,
we do not show estimates pertaining to this group of patients.

Relative risk estimates resulting from computer-intensive backwards pooling model selection
procedure (Section 4.2.2) applied to the cause-specific survival endpoint are shown in Table 5.
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Figure 19: Regression tree built for the prostate cancer-specific survival endpoint
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Stage Localized/Regional Distant
Treatment No RT No RT RT No RT No RT RT

No Surg Surgery No Surg No Surg Surgery No Surg
Long-term Low Grade 1.0 0.19 2.42 1.0 0.41 1.0

Effect High Grade 3.96 1.0 2.42 1.83 0.41 1.83
Short-term Low Grade 1.0 1.0 0.25 1.0 1.0 1.93

Effect High Grade 1.52 0.48 1.0 1.0 1.93

Table 5: Relative risk estimates for long- and short-term effects for the final model for the cause-
specific survival endpoint. SEER database analysis.

Based on the table we may suggest the following conclusions.

1. Surgery shows long-term advantage over no treatment, presumably watchful waiting, accross
stages and grades.

2. A controversial adverse long-term effect of radiation is observed in low grade patients. A possible
explanation might be that the effect is confounded by PSA. PSA measurements are only available
in SEER for a couple of recent years. The decision to treat with radiotherapy may show a positive
correlation with PSA levels at diagnosis, and therefore low grade localized stage patients treated
by radiotherapy may have higher PSA levels than similar watchful waiting patients.

3. Long-term survival rates for high grade localized patients treated by surgery (predominantly
radical prostatectomy) are superior to those of radiotherapy.

4. Both surgery and radiotherapy also show a short-term advantage in high-grade localized tumors.

5. In low-grade localized patients, only surgery shows a short-term advantage.

6. Surgery is the only treatment showing an effect in SEER distant stage.

7. Short-term effect of either surgery or radiation in distant stage is an adverse one.

7 Key Research Accomplishments

Simmarizing, the key research accomplishments of the project are:

1. Development of the class of Nonlinear Transformation Models (NTM) and associated QEM
estimation procedures and their computer implementation;

2. Development of composition technique as a tool for model building.

3. Development of a numerically efficient algorithm for estimation of the inverse of profile infor-
mation matrix for the models that paved the way to efficient model selection and hypothesis
testing procedures.

4. Development of shareware software that makes these powerful tools available for broad scientific
community.
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5. Multivariate computer-intensive regression analysis of two large prostate cancer databases that
allowed us to draw many non-trivial conclusion about the efficacy of prostate cancer treatment
in various subsets of patients defined by clinical and prognostic characteristics of their tumors
(Section 6)

8 Reportable Outcomes

8.1 Manuscripts

1. Tsodikov, A. (2003) Semiparametric models: A generalized self-consistency approach, Journal
of the Royal Statistical Society, Series B, Vol. 65, 759-774.

2. Tsodikov, A., Ibrahim, J.G., and Yakovlev, A.Y. (2003) Estimating Cure Rates from Survival
Data: An Alternative to Two-Component Mixture Models, Journal of the American Statistical
Association, Vol. 98, 1063-1078.

3. Boucher, K., Asselain, B., Tsodikov, A., Yakovlev, A. (2004) Semiparametric versus parametric
regression analysis based on the Bounded Cumulative Hazard Model: An application to breast
cancer recurrence (invited paper), In Semiparametric Models in Survival Analysis, Quality of
Life and Reliability Series: Statistics for Industry and Technology, Nikulin, M.S., Balakrishnan,
N., Mesbah, M., Limnios, N. (Eds.), 2004, XLIV, 556 p. 38 illus., Hardcover, ISBN: 0-8176-
3231-X, A Birkhäuser book.

4. Tsodikov, A. (2004) Generalized self-consistency methods for cure models, In “Recent develop-
ments in censored data analysis” INSERM, Paris, 2004.

5. Broët, P., Tsodikov, A., De Rycke, Y., Moreau, T. (2004) Two-sample statistics for testing
the equality of survival functions against improper semi-parametric accelerated failure time
alternatives: An application to the analysis of a breast cancer clinical trial, Lifetime Data
Analysis, Vol. 10, 103-120.

6. Wendland, M.M., Tsodikov, A., Glenn, M.J., Gaffney, D.K. (2004) Time interval to the develop-
ment of breast cancer following treatment for Hodgkin’s Disease, Cancer, Vol. 101, 1275-1282.

7. Tsodikov, A., Szabo, A., and Wegelin, J. (2006) A population model of prostate cancer incidence,
Statistics in Medicine, in press.

8. Tsodikov, A. Compound Semiparametric Survival Models, Biometrika, under revision.

9. Tsodikov, A. and Garibotti, G. Profile Information Matrix for Nonlinear Transformation Models,
Lifetime Data Analysis, revised, under review.

8.2 Presentations

1. Tsodikov, A. (2003) Generalized Self-Consistency Methods for Cure Models, Joint Statistical
Meetings, Invited session on Cure Models. (invited), San Francisco, August 2003.

2. Tsodikov, A. (2004) Cure Models (invited), Workshop of the French National Institutes of
Health (INSERM).
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3. Tsodikov, A. (2004) Modeling and estimation of cancer incidence and mortality under variable
dissemination of screening with application to prostate cancer (invited), International Biometric
Conference, Cairns, Australia July 2004.

4. Tsodikov, A. (2004) Population impact of PSA testing. The Tenth Annual Cancer Research
Symposium October 20-21, UCD Cancer Center.

5. Tsodikov, A. (2004) Modeling and estimation of cancer incidence and mortality under variable
dissemination of screening with application to prostate cancer (invited), International Biometric
Conference, Cairns, Australia July 2004.

6. Tsodikov, A. (2004) Population impact of PSA testing. The Tenth Annual Cancer Research
Symposium October 20-21, UCD Cancer Center.

7. Tsodikov, A. (2005) The use of modeling to prove outcomes: PSA really does save lives, K30
Program Retreat, Sacramento Hilton Hotel, Program on Prostate Cancer and Metabolomics

8. Tsodikov, A. (2005) invited discussion, Biomarkers in Cancer, Mathematical Biosciences Insti-
tute (MBI) at Ohio State University, Columbus, April 20-22, 2005.

9. Tsodikov, A. (2005), Invited seminar ”Computational approaches to semiparametric models”,
MD Anderson Cancer Center, Houston, April 6, 2005

10. Tsodikov, A. (2005) Modeling and estimation of trends in cancer incidence and mortality with
application to prostate cancer (invited), Joint Statistical Meetings, Minneapolis.

9 Conclusions

We have completed methodology and software development for point and interval estimation and
variable selection for compound Nonlinear Transformation Models. We have built a number of
candidate compound models for prostate cancer and verified their properties analytically and by
simulations. We used the new software and methodology to apply these models to a number of
real and simulated test data sets. This methodology and software arsenal was used to identify
subsets of patients showing varying treatment effects. Broadly speaking, we found that increasing
radiotherapy dose is benefitial for biochemical recurrence, local failure and distant metastasis, and
has the potential to improve long-term survival except perhaps in a subgroup of patients with most
favorable prognosis. However, no proven benefit was discovered as far as cause-specific survival
is concerned, which rases the question of whether improving local control in prostate cancer is
an optimal strategy to reduce mortality from the disease. Analysis of population registry data
indicates that radical prostatectomy may have an advantage over radiotherapy in some subsets of
patients with localized disease. However, this result may be confounded by missing PSA data in
SEER registry.
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Abstract

Introducing a random effect into the Cox model is a useful tool for
building hierarchical families of univariate semiparametric regression
survival models. Hougaard [1984] used the Laplace transform to build
frailty models with explicitly defined survival functions and random ef-
fects. The family derived from stable distributions was then extended
[Aalen, 1992] to frailty variables following a Discrete–Continuous com-
pound (Poisson–Gamma) structure. Still, in this form the techniques
applies only to a subset of frailty models. In this paper we extend the
idea of compounding first to arbitrary frailty models and then to non-
frailty Nonlinear Transformation Models (NTM). EM algorithm can
be used to provide inference with frailty models. Motivated by sec-
ond moment properties of frailty models, Tsodikov [2003] generalized
the EM algorithm into a non-frailty frame represented by the Quasi-
EM algorithm (QEM). We derive a chain rule showing that QEM
will fit any model constructed using the new composition technique,
provided it is applicable to the submodels. Simulations, real data
and a variety of models are used to illustrate the composition tech-
nique. Non-identifiability aspect of semiparametric frailty models is
discussed. Many important modelling issues and links are highlighted.
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1 Introduction

The model diversity in semiparametric regression analysis has been largely
developed on a case by case basis. Models include the Proportional Hazards
(PH) model [Cox, 1972], the Proportional Odds model (PO) [Bennett, 1983],
generalized Odds-rate model [Dabrowska and Doksum, 1988], linear trans-
formation models [Cheng et al., 1995], models motivated by frailties such as
cure models [Tsodikov et al., 2003]. Despite efforts to built a universal frame-
work of statistical inference with semiparametric models, including general
instruments for model building, numerical estimation algorithms, identifia-
bility and asymptotics, general and practical results are still a challenge, and
most existing inferential tools are model-specific. In this paper we develop a
fragment of a general approach for a class of semiparametric models equipped
with model-building and inferential algorithms.

Motivated by second-order properties of frailty models Tsodikov [2003]
proposed a family of so-called Nonlinear Transformation Models (NTM) and
supplied it with a general numerical inference framework based on the QEM
algorithm, a subset of recently developed MM algorithms [Lange et al., 2000].
In this paper we will equip the NTM-QEM frame with a model-building tool
that allows us to generate a span of hierarchical models from a set of basis
models such as PH and PO, such that they remain within the frame and
QEM is guaranteed to work on any descendant model. When none of the
basis models is suitable for the data, the technique offers an automatic way
of combining features of simpler models in search of a more complex model
that would be right for the data and such that inference procedures are still
available.

Let γ(x |θ) be a parametrically specified strictly increasing distribution
function on [0, 1], where θ is a vector of parameters. To define an NTM,
we first make γ a regression model by turning θ = (θ1, . . . , θk) into a set
of predictors depending on covariates, z, and regression coefficients β =
(β1, . . . ,βk). Typically, θi(βi, z) = exp{βT

i z}. Thus, γ explicitly represents
the parametric part of the model and is called an NTM generating function.
Denote by N the class of all NTM generating functions.

Let F (t) be a nonparametrically specified (a step-function) baseline sur-
vival function. In a Nonlinear Transformation Model it is assumed that
survival function G(t |β, z) can be represented as

G(t |β, z) = γ {F (t) |β, z} = (γ ◦ F )(t |β, z). (1)

2



Consider a sample of right censored data under non-informative censoring.
The plug-in form (1) induces an Von-Mises style likelihood whose Fréchet
derivative with respect to F leads to a self-consistency score equation

ht =
Dt∑

i∈Rt
Θ(F (ti) |β, zi, ci)

, (2)

where ht = H(t) − H(t − 0) is the jump of the baseline cumulative hazard
H = − logF at time t, Rt is a set of subjects at risk at time t, ti are their
event times, c is a censoring indicator (c = 1 for a failure, c = 0 for a censored
observation), and Θ is a parametric function defined through γ as

Θ [x | ·, c] = c+ x
γ(c+1)(x | ·)
γ(c)(x | ·) , (3)

where γ(i)(x |·) is the derivative of γ of the ith order with respect to x,
γ(0) ≡ γ. For a frailty model, Θ is the conditional expectation of the frailty
variable given observed data and represents the result of the E-step of an
EM algorithm [Tsodikov, 2003].

Solving (2) by iterations

H(k+1) = ϕ(H(k)), (4)

where ϕ denotes the right part of the self-consistency equation (2) as a func-
tional of H = − logF , and k counts iterations, is an QEM algorithm. Its
point of convergence represents a fixed point of ϕ and an NPMLE of F (or
H) given β. Note that in this form the algorithm is not based on missing
data and is applicable to non-frailty models. For a frailty model though, this
is an EM algorithm. It can be shown that if Θ(x|·) is a non-decreasing func-
tion of x, which is the case for all frailty models, then each QEM iteration
improves the likelihood, which is a key property for convergence. The solu-
tion of the self-consistency equation can be written as an implicit function of
β, F = F (β). Plugging this solution into the full loglikelihood �(β, F ) gives
us the profile likelihood

�pr(β) = �(β, F (β)), (5)

that is used to provide inference for β, [Murphy and Van der Vaart, 2000,
Tsodikov, 2003].
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Aside from a broader class of models, the advantage of the NTM-QEM
approach over the traditional frailty-EM one is that analytic work required
to specify the algorithm and verify its applicability is minimized. Given a
new model G = γ(F ), with the traditional frailty framework, one would first
have to verify that γ is a completely monotonic function (Bernstein theorem,
[Feller, 1971]) to ensure that the new model is a frailty model. Then one
needs to invert the Laplace transform to find the distribution of the frailty
random variable U . With the conditional distribution of U , given observed
data, the conditional expectation of U is derived to provide missing data
imputation. Closed form expressions are required throughout to ensure a
numerically efficient algorithm. NTM-QEM approach makes the above exer-
cise obsolete and boils down to taking two derivatives of γ and verifying that
Θ (3) is nondecreasing. QEM is faster than the traditional EM that uses
partial likelihood at the M-step even with models that have a single predic-
tor [Tsodikov, 2003] and found applications in computer–intensive inference
procedures such as the bootstrap [Dixon et al., 2005]. With models having
multiple predictors or parameters, such as the Γ-frailty model, use of partial
likelihood implies that parameters outside the partial likelihood still need
to be estimated after EM converges, which makes the traditional frailty-EM
approach very inefficient numerically.

The idea of this paper is to build semiparametric models by operation
of composition of γs. Indeed, since an NTM generating function γ has the
domain [0, 1] and range in the same interval, a composition of any number
of such functions is again an NTM generating function. Let γi(x | θi), i =
1, 2, . . ., be NTM generating functions for a set of basis models. In this paper
we study models built as

γi(x |θi) ◦ γj(x |θj) = γi (γj(x |θj) |θi) = γij(x |θi, θj), (6)

from any two sumbodels γi and γj and show that QEM is applicable to
any compound model. The composition techniques will be motivated by
frailty models. We will show that it generalizes Aalen’s compound Poisson
device based on Discrete-Continuous compounding [Aalen, 1992, Moger et al.,
2004] and give examples of compound frailty models. We extend the device
to arbitrary (discrete or continuous) frailty submodels. We then consider
composition for NTMs and discuss identifiability issues. Finally, we apply
the composition technique to real data and study asymptotic properties of
the profile likelihood MLEs by simulations.
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2 Discrete-Continuous composition device

This section is a brief review of existing model-building methodology. We
will use it in the semiparametric setting to construct the PHPH model in
section 6.2.1.

Heterogeneity has been a popular tool of extending survival models. Sev-
eral authors considered variations of the so-called Proportional Hazards (PH)
frailty model [Hougaard, 1984, Aalen, 1992, Klein, 1992, Nielsen et al., 1992],

G(t) = E
{
F (t)U

}
, (7)

where G is a population survival function, F is the baseline survival function,
and U is a nonnegative random variable (frailty). Hougaard [1984] observed
that (7) can be written as a Laplace transform of U

G(t) = LU {H(t)} , LU(s) = E
{
e−sU

}
, (8)

where H = − log(F ) is the baseline cumulative hazard.
The Laplace transform connection (8) was used by Aalen [1992], Moger

et al. [2004] to build a family of models induced by a compound Poisson-
Gamma distribution for U . The family was used in the parametric setting
with H(t) specified according to Weibull distribution.

Tsodikov et al. [2003] used the idea as an instrument to build semipara-
metric survival models induced by compound Discrete-Continuous frailties.
The frailty random variable U was regressed on covariates z, so that U(β, z)
is considered as a response variable in a parametric regression model, where
β is a vector of regression coefficients. The parameters of the distribution of
U were thought of as regression predictors depending on covariates and re-
gression coefficients. Let ν(βθ, z) be a discrete nonnegative random variable
with the distribution with parameter vector θ = θ(βθ, z) and the Laplace
transform Lθ. Let ξk be i.i.d. copies of a random variable ξ(βη, z) parameter-
ized through η(βη, z) with the Laplace transform Lη. Then the compound
distribution

U(β, z) =
ν(βθ,z)∑

k=1

ξk(βη, z),
0∑
1

= 0, (9)

has the Laplace transform

Lθ, η = Lθ
{− log Lη

}
. (10)
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In view of (8) and (10), the compound survival function generated by (9) has
the form

G(t |β, z) = Lθ
{− log Lη(H(t))

}
, (11)

where β = (βθ,βη). In the semiparametric context, H is treated as an
infinite dimensional parameter, a step-function. As a result of the above
procedure a new hierarchical model G = Lθ,η(H) is constructed so that it
combines features of two submodels G = Lθ(H) and G = Lη(H).

3 PH mixture model vs. NTM

Following [Wassel and Moeschberger, 1993, Clayton and Cuzick, 1985a] who
considered frailty variables dependent on covariates, we may write a general
univariate PH mixture model as

G(t |β, z) = E
{
F (t)U(β,z)

∣∣∣ z
}
. (12)

This model can be considered a generalization of the so-called PH frailty
model, or a PH model with a random effect

G(t |β, z) = E
{
F (t)θ(β,z)V

}
, (13)

where θ is a predictor, and V is a random variable independent of the covari-
ates, considered by [Hougaard, 1984, Klein, 1992, Nielsen et al., 1992] and
many other authors, for different distributions of V .

We can make the following important observations about the class of PH
mixture models (12). The survival function (12) is built by composition

G(t |β, z) = (γ ◦ F )(t |β, z), (14)

where γ(x |β, z) belongs to the class P of probability generating functions
(p.g.f.). Here we extend the use of p.g.f. to arbitrary nonnegative random
variables and define any such p.g.f. p as p(x) = L {− log(x)}, where L is the
Laplace transform. Covariates enter γ ∈ P through the parameters θ of the
distribution of U as they are turned into regression predictors, typically as
θ = (exp{βT

1z}, . . . , exp{βT
kz})T, k = dim(θ). Note that p.g.f. thus defined

is an NTM generating function (see Introduction), so that P ⊂ N , and PH
mixture models (12) are a subclass of NTMs (1). Since p.g.f. is an analytic
function, the complement of the class of frailty models to the NTM class
includes, for example, models with a non-existent derivative γ(k) for some
k > 2.
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4 Imputation operator and the meaning of
nondecreasing Θ

Suppose, we have an observation (t,z, c) sampled from the PH mixture model
under independent censoring, where t is an observed survival time and c is
a censoring indicator (c = 0 if t is a censored survival time, and c = 1 if
t is a failure). Then, under the PH mixture model (12), the conditional
expectation of U , given the observed event (t,z, c) is given by [Tsodikov,
2003]

E {U(·) | t, ·, c} = (Θ ◦ F )(t | ·, c) = Θ [F (t) | ·, c] ,
where the function Θ is given by (3). For brevity, we use (·) to suppress
covariates and regression coeffitients β, z. While Θ in the Introduction is
defined for NTMs, we also consider the p.g.f. subclass γ ∈ P⊂N as a
motivation and to better understand the conditions that make the NTM-
QEM tandem work.

Cauchy-Schwartz inequality can be used to show that for any mixture
model γ ∈ P, Θ [x | ·, c] is nondecreasing in x for any c = 0, 1. The nonde-
creasing character of the function Θ in the above statement is quite natural.
The longer the subject stays event–free, the lower the subject’s posterior risk,
represented by Θ. So Θ{F (t) | ·, c} must be a nonincreasing function of t for
both failure (c = 1) and censoring (c = 0) events. Since the survival function
F (t) is nonincreasing in t, Θ(x | ·, c) must be nondecreasing in x. It is interest-
ing to note that the population hazard function for a heterogeneous popula-
tion under the PH mixture model is expressed as λ(t |z) = Θ{F (t) | ·, 0}h(t),
where h is the hazard function corresponding to F . Even if h(t) is increasing,
the observed population hazard function may be a decreasing one through
the decreasing behavior of Θ{F (t)|·, 0} with time. This observation repre-
sents a selection effect of the risk set becoming “healthier” with time, as frail
individuals leave the population. This effect was discovered and extensively
studied in demography [Vaupel et al., 1979] in the context of misinterpreta-
tion of mortality trends.

With γ representing a PH mixture model γ ∈ P, kth moments of the
mixing variable U , k = 1, 2, . . ., can be obtained through derivatives γ(k).
Both Θ and QEM are defined using the derivatives up to second order of γ,
k = 1, 2. Based on the above observations, NTM-QEM tandem is defined
to follow second-order properties of the Frailty-EM frame. This is all that
is needed to ensure the EM-like behavior of the QEM, and existence of all
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derivatives of γ (still a weaker assumption than that of a frailty model) is
excessive for purposes of statistical inference.

As discussed in [Tsodikov, 2003], the property of non-decreasing Θ repre-
sents a generalized form of Jensen inequality on the primitive class of func-
tions necessary to handle the QEM algorithm.

In addition to being a non-increasing function of time, the posterior risk
E {U(·) | t, ·, c} for PH mixture models (γ ∈ P) has the following two natural
properties.

1. Other things equal, the posterior risk of a failure is at least as high as
a posterior risk of a censored subject E {U(·) | t, ·, 1} ≥ E {U(·) | t, ·, 0}.
This statement is valid in the general NTM form (see proposition be-
low).

2. Since a censored observation at time t = 0 does not contribute any
information on the risk, posterior risk for t = 0, c = 0 is the same as
prior risk E {U(·)}. Expressing the mean of U through its p.g.f. γ ∈ P,
we have E {U(·) | 0, ·, 0} = E {U} = γ′(1 |·).

Proposition 4.1 Surrogate of posterior risk for NTM.
Let Θ(x |·, c), be the function defined by (3) and induced by some NTM gen-
erating function γ, given an event (t, ·, c) observed on a subject. Then

(A) If Θ(x |·) is a non-decreasing function of x, then

Θ(F (t) |·, 1) ≥ Θ(F (t) |·, 0) > 0 (15)

(B) If γ ∈ P is a p.g.f. of some nonnegative random variable U , then

E {U | t, ·, 1)} ≥ E {U | t, ·, 0)} > 0 (16)

E {U | 0, ·, 0)} = E{U | ·} = γ′(1 | ·) (17)

The proof is given in the Appendix A.1. The graph of typical behavior of the
posterior risk is given in Figure 1 based on the real data example considered
in Section 8.1.
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Figure 1: Posterior risk Θ(F (t) |β, z, c) as a function of time to event t
by type of event (failure, c = 0 and censoring c = 1), and Stage (z) (Lo-
cal/Regional and Distant)
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5 Model building

5.1 Composition with PH mixture models

The Discrete-Continuous composition device described in Section 2 is quite
restrictive. It covers only a specific subclass of frailty models. For exam-
ple, should we try to build a hierarchical model from two submodels, each
generated by a continuous frailty variable, the compound device (11) would
fail. With composition defined on the level of missing data (9) (random vari-
ables used to construct U), it is not clear how compositions other than of
a Discrete-Continuous type could be defined. In this section we extend the
device of Section 2 to arbitrary frailty models by defining the composition
on the level of transforms.

Returning to Discrete-Continuous composition described by (9), observe
that in terms of p.g.f. (10) can be written as

γθ,η = γθ ◦ γη, (18)

where γθ corresponds to a discrete random variable.
Now let γθ and γη be two p.g.f. of some arbitrary nonnegative ran-

dom variables, parameterized through predictors θ(βθ, z) and η(βη, z), re-
spectively. These functions generate two PH mixture models of the form
G(t |β·, z) = γ·(F (t) |β·, z). The following proposition shows that the com-
pound expression γθ,η(F | ·) is again a PH mixture model.

Proposition 5.1 Composition for mixture models.
Let γθ and γη be some two p.g.f. γθ(x|·) = E(xν | ·), γη(x|·) = E(xξ | ·),
where ν and ξ are some independent nonnegative random variables. Then
the compound function γθ,η = γθ ◦ γη is also a p.g.f., meaning that there
exists a nonnegative random variable U such that γθ,η(x|·) = E(xU | ·).

The proof is given in the Appendix A.2.
The above result shows that the PH mixture subclass of NTM is closed

with respect to composition of NTM generating functions, and consequently,
the self-consistency equation (2) defines an EM algorithm serving the new
compound model. Therefore, convergence of (4) for the compound model
follows from the general EM theory [Dempster et al., 1977, Wu, 1983].
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5.2 NTM composition device

In this section, we extend the composition techniques for the PH mixture
model (Section 5.1) to the NTM class.

Now, let γθ, γη ∈ N be two NTM generating functions with predictors θ,
and η, respectively, not necessarily from the p.g.f. subclass. Then

γ(x|·) = (γθ ◦ γη)(x|·) (19)

is a new NTM semiparametric model with two predictors θ and η. If γθ(x|·) ≡
x for some value of θ (usually for θ = 1), then the model (19) includes models
γθ and γη as nested special cases. The following statement shows that the
NTM class with non-decreasing Theta is closed with respect to composition.

Proposition 5.2 Composition chain rule for NTM.
Let γθ ∈ N and γη ∈ N be some two NTM–generating functions, each sat-
isfying the assumption of nondecreasing Θ, where Θ is given by (3), and let
γθ,η = γθ ◦ γη be the compound function. Let Θa be the Θ–function (3) cor-
responding to γa, for any a. Then
(A)

Θθ,η(x | ·, c) = Θη(x | ·, 0) {(Θθ ◦ γη) (x | ·, c) − c} + cΘη(x | ·, c), (20)

where c = 0, 1 and (Θ ◦ γ) (x | ·, c) is understood as Θ{γ(x | ·)|·, c}; and
(B) The compound function Θθ,η(x |·) derived from the compound NTM–
generating function γθ,η is nondecreasing in x.

Proof is given in the Appendix A.3.
Equation (20) represents a chain rule for Θ for compound models and

simplifies derivation of compound Θ through direct use of Θs corresponding
to submodels participating in the composition.

Also, operation of composition (19) preserves the property of nondecreas-
ing Θ discussed in Section 4. Therefore, convergence of the QEM algorithm
(4) for the compound model follows from the results presented in [Tsodikov,
2003].

6 Examples of models

6.1 Basic submodels

In this section we present some popular models with one predictor that will
be used as a basis to generate compound models in the next section.
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6.1.1 PO model

Semiparametric PO model G (a survival function) can be defined as the one
with log odds ratios of survival independent of time and an arbitrary baseline
survival function F . It has long been known that the proportional odds (PO)
model has frailty interpretation [Clayton and Cuzick, 1985b]. As we will see
later, the above definition identifies a family of frailty models with infinitely
many possible frailty distributions.

First, consider interpretation of the PO model as a geometric frailty
model. Let F be the baseline survival function corresponding to the co-
variate vector z0 such that θ(β, z0) = 1. For the PO model, the predictor
θ(β, z) has the meaning of odds ratio of an observation with covariate vector
z, relative to the baseline. The PO assumption

Odds{G(t|β, z)}
Odds{F (t)} = θ(β, z), (21)

where Odds(a) = a/(1 − a), yields the PO model of the form G = γ ◦ F ,
where

γ(x|·) =
θ(·)x

1 − θ̄(·)x, (22)

and ā = 1 − a for any a. To invert the transform (22), we expand it in a
Taylor power series about x = 0. We have

γ(x|·) =
∞∑

k=1

θ(·)θ̄k−1(·)xk.

We note that the coefficients of the power series represent geometric probabil-
ities, given θ(·) ≤ 1, and therefore γ(x|·) = E(xU), where U is geometrically
distributed.

Now, let us derive the interpretation of the PO model as an exponential
frailty model. Consider a PO model of the form

G(t |β, z) =
θ(β, z)

θ(β, z) +H(t)
, γ(x |·) =

θ(·)
θ(·) − log x

(23)

where H is some nonparametrically specified baseline cumulative hazard. As
with the PO model (22), for any two values of the predictor, θ1, θ2, and the
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corresponding survival functions Gi(t) = G(t | θi), i = 1, 2, the odds ratio
derived from (23)

Odds{G1(t)}
Odds{G2(t)} =

θ1

θ2

is a constant in t, and the PO assumption is satisfied. For the PO model in
the form (23), we have

Lθ(H) = γ(e−H |·) =
θ(·)

θ(·) +H
.

This is the Laplace transform of an exponential distribution with parameter
θ(·). Therefore in this case U follows an exponential regression model with
EU = θ(β, z)−1.

While it is generally believed that frailty distributions are identifiable
[Ebbers and Ridder, 1982], the observation that the two different frailty dis-
tributions lead to the same PO model illustrates an important point of non-
identifiability of frailty distributions in semiparametric frailty models. In
fact, βs representing the log-odds ratios in both models (23) and (22) are
exactly the same. This non-identifiability is due to the fact that a semipara-
metric model is defined as a class when we say that the baseline survival
function is arbitrary. This class can be represented in an infinite number of
equivalent forms. The models (23) and (22) use two different forms of an
arbitrary baseline survival function. Indeed, if F (t) is an arbitrary survival
function, so is (1 − logF (t))−1. Obviously the choice of this form along with
the parameterization of γ determines the distribution of the frailty variable
as the inverse transform. We will return to this discussion in Section 7.

In order to specify the estimation algorithm, we need to derive the pos-
terior risk function for the model. Using (3) and (23), we get

Θ(x | ·, c) =
c+ 1

θ(·) − log x
. (24)

6.1.2 PH models

The traditional PH model, later referred to as the Proper PH model,

G(t |β, z) = F (t)θ(β,z) (25)

does not need an introduction. Direct use of (3) leads us to the posterior risk
function of the form

Θθ(x | ·, c) ≡ θ(·). (26)
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Note that since Θ does not depend on the infinite dimensional part of the
model F , the QEM procedure and the self-consistency equation (2) reduce to
the Nelson-Aalen-Breslow estimator for the baseline hazard in the PH model.

Along with (25), we consider a PH model with cure (Improper PH model).
While it is sometimes believed that the chance of cure defies proportional
hazards and implies a mixture model of the form G = p(β,z) + p̄(β,z)F ,
where p is the probability of cure [Kuk and Chen, 1992], this is not the
case. The PH model with cure was motivated by the intention to combine
proportional hazards and an improper survival function [Tsodikov, 1998]. An
improper survival function G(t) implies that the cumulative hazard has an
asymptote, θ, as t → ∞. Any such hazard can be represented as θ(1−F (t)),
where F (t) is a proper survival function. Introducing covariates into the
parameter θ = θ(β, z) leads to a PH model with an asymptote

G(t |β, z) = exp {−θ(β, z)[1 − F (t)]} . (27)

Expanding the NTM generating function of the Improper PH model

γ(x) = exp{θ(1 − x)} (28)

in a Taylor power series about x = 0, we obtain a power series with Poisson
probabilities with parameter θ. Therefore, (27) is a Poisson frailty model.
Again, we note a non-identifiability issue as non-random frailty and Poisson
frailty lead to the PH model with the same hazard ratios.

Using (3) we get the posterior risk function

Θθ(x | ·, c) = c+ θ(·)x. (29)

6.1.3 Linear Transformation Models

The PO and the PH model considered above are members of the so-called
linear transformation model (LTM) family defined as [Cheng et al., 1995,
1997]

log v(T |z) = − log θ(z) + ε, (30)

where T is the failure time, ε is the random error with the distribution µ,
and v is some unspecified strictly increasing function. For the exponential
predictor θ(β, z) = exp(βTz), the model assumes a linear form in covariates
and transformed response. The connection between LTM, the PH model,
the PO model, and binary regression models was discussed in [Doksum and
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Gasko, 1990]. After a little algebra, a linear transformation model can be
represented as an NTM with the NTM–generating function

γ(x |β, z) = p {log θ(β, z) + q(x)} , (31)

where p is a parametrically specified tail function (−∞,∞) → [0, 1], (=1-
distribution function), and q is an inverse tail function. It is convenient to
specify q as the inverse of p, then θ = 1 corresponds to the baseline γ(x|·) = x.

6.2 Compound models

While the models considered below were introduced on a case by case basis
and motivated by various non-systematic considerations, in this paper we
re-invent them using composition as a tool to illustrate the method.

6.2.1 PHPH Cure Model

This model extends the Improper PH model (27) by introducing a PH short-
term effect on the normalized baseline cumulative hazard F → F η(β,z),

G(t |β, z) = exp
{

−θ(β, z)[1 − F (t)η(β,z)]
}
. (32)

Here we note that the model is constructed by composition (19) of NTM
generating functions for the Improper PH model (28) and the Proper PH
model γη(x) = xη,

γθ,η(x |·) = γθ(x |·) ◦ γη(x |·) =

[exp{−θ(·)(1 − x)}] ◦ [xη(·)] = exp
{−θ(·) (1 − xη(·))} . (33)

A review and history of this model is presented in [Tsodikov et al., 2003].
Note that based on Section 6.1.2, γθ is a p.g.f. of a Poisson random vari-

able, and γη is a p.g.f. of a nonrandom variable. Therefore the composition is
a particular case of Aalen’s device [Aalen, 1992] (9) with ν being Poisson(θ),
and ξ = η being nonrandom.

Rather than compute the conditional expectation of the frailty variable
using an integral over the compound distribution, we can use the chain rule
(20) with the submodel-Θs specified by (26) and (29) and immediately get

Θ(x|·, c) = θ(·)η(·)xη(·) + cη(·). (34)
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6.2.2 Γ-frailty model

Now, consider a model composed of the PH and the PO models.
The Γ–frailty model can be built as a composition of the NTM–generating

functions corresponding to the PO (??) and the proper PH models (25). As
a result of the composition γ = γθ ◦ γη, we have

G {t|θ(·),η(·)} =
{

θ(·)
θ(·) +H(t)

}η(·)
. (35)

Indeed,

γθ,η(e−s|·) =
[

θ(·)
θ(·) + s

]η(·)

is the Laplace transform of a Γ-distribution with scale parameter θ and shape
parameter η, and we have the interpretation of the compound model (35) as
a Γ–frailty model.

Note that since an exponentially distributed random variable correspond-
ing to γθ is a continuous one, the above composition is not a particular case
of (9).

The compound Θ is derived from the chain rule (20)

Θ(x | ·, c) =
η(·) + c

θ(·) − log x
. (36)

It is assumed that predictors depend on β, z via the form β0+βTz, where
β0 stands for the intercept term of the predictor. Also, different predictors
have independent sets of regression coefficients θ = θ(βθ0 +βT

θ z), η = η(βη0 +
βT

ηz). To avoid overparameterization of the Γ-frailty model, the intercepts
are fixed at zero. Based on the submodels, βθ, βη have the meaning of the
log-odds- and log-hazards-ratio, respectively.

It should be noted that the direct formulation (35) of the Γ–frailty re-
gression model by making shape and scale parameter into linear predictors
offers certain advantages as compared to the traditional parameterization
through the variance v of the frailty variable and restricted equal shape and
scale parameters. With the traditional model v = 0 corresponding to the
PH model is at the border of the parametric space v ≥ 0. The traditional Γ
frailty model is irregular for this reason. The model (35), on the contrary, is
a regular one for any β. We will confirm this observation in the simulation
study by showing the validity of standard MLE theory for β with the model
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(35) in Section 8.2. For the same reason we prefer (35) to the Dabrowska
and Doksum model [Dabrowska and Doksum, 1988] that can be represented
through a composition γ = γ1/a ◦ γθ ◦ γa, where γθ is an NTM–generating
function for the PO model in the form (22), γa and γ1/a correspond to the
PH model, and a is a scalar, independent of covariates

γ(x | ·) =
{

θ(·)xa

1 − θ̄(·)xa

} 1
a

, a ≥ 0. (37)

The above model becomes the PO model in the form (22) if a = 1, and it
becomes the PH model in the limit as a → 0. With the above model, the
PH assumption corresponds to the border of the parametric space (a = 0).

7 Identifiability

Given the combined model parameter ω = (β, F ), a näıve definition of iden-
tifiability would be

G(t |ω1, z) ≡t,z G(t |ω2, z) ⇒ ω1 = ω2. (38)

However, for semiparametric models, (38) does not hold. Even within the
NTM class, presentation of a semiparametric model in terms of an NTM–
generating function γ is not unique, as there is a number of ways to represent
an arbitrary monotonic function. Indeed, expression (31) suggests that a
transformation p{q(F )}, where p ia a tail function, q is an inverse tail func-
tion, and F is an arbitrary survival function, is again an arbitrary survival
function. In other words, for any model γ, the family of NTM generating
functions

γ̃(x | ·) = (γ ◦ p ◦ q)(x | ·) (39)

represents the same semiparametric model for any p and q as defined above.
As an example, let us represent the two forms (22) and (23) as members

of the family (39). Specifically, using (39), let p correspond to the logistic
distribution, and q to the smallest extreme value distribution

p(x) = (1 + ex)−1, p−1(x) = log{Odds(x)},

q−1(x) = exp{− exp(x)}, q(x) = log(− log(x)).
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Then, using the NTM–generating function (22) in conjunction with (39) and
the functions p and q as defined above, we obtain

γ̃(x | ·) =
θ(·)

θ(·) − log(x)
, (40)

which is the NTM–generating function corresponding to the PO model in
the form of exponential frailty model (23).

As a consequence of the above observations, frailty distributions are not
identifiable unless the model is restricted. Such a restriction is provided, for
example, by assuming G to be in the NTM class, and fixing the parametric
form of the model–generating function γ. Then, if γ is an absolutely contin-
uous distribution function on [0,1], then γ is a strictly increasing function,
and F is identifiable, given β, as F = γ−1(G |·).

There is no universal chain rule as far as the “parametric” identifiability
with respect to β is concerned. For example, while a composition of (Im-
proper PH)◦(Proper PH) models is identifiable as a PHPH model (Section
6.2.1), the reversed order (Proper PH)◦(Improper PH) leads to an nonidenti-
fiable Improper PH model of the form γ(x |·) = exp{−θη(1−F )}. Additional
restrictions on the parametric part of the model may be necessary to ensure
identifiability. For example, intercept term in the proper models is restricted
to zero to eliminate its interaction with the unrestricted nonparametric base-
line survival function F . For cure models built by composition of a non-cure
and cure model-generating functions, F is restricted to be zero at the last
failure [Taylor, 1995, Tsodikov, 2002], and the intercept term is removed from
the non-cure submodel predictor. The intercept parameter in the predictor
of the cure submodel codes for the baseline cure rate.

Identifiability of the PH frailty model received much attention in econo-
metric literature [Ebbers and Ridder, 1982, Heckman and Singer, 1984, Heck-
man, 1991], primarily in the parametric setting. For semiparametric models,
these results are valid under similar restrictions, and do not hold in the (38)
form. Same observation applies to the perceived identifiability of shared
frailty distribution from marginals in the bivariate case. Nonidentifiablity
of frailties is yet another argument to consider modelling on the frailty-free
NTM level.

The nonidentifiability aspect discussed in this section could be used to
our advantage. The functions γ, p and q could be optimized within the
family (39) to maximize the speed of convergence of QEM or to ensure its
applicability. For example, QEM is not applicable to the PO model in the

18



form (22) when θ > 1 because the assumption of nondecreasing posterior risk
function does not hold. At the same time, QEM is applicable to (23) for any
θ.

8 Data analysis

8.1 Real data example

As an example, we use data from the National Cancer Institutes Surveillance
Epidemiology and End Results (SEER) program. Using the publicly avail-
able SEER database, 39393 cases of primary prostate cancer diagnosed in
Greater San Francisco between 1973 and 2000 were identified. Prostate can-
cer specific survival was analyzed by stage of the disease (localized/regional,
35230 patients, vs. distant, 4163 patients). For the definition of stages as well
as for other details of the data we refer the reader to SEER documentation
http://seer.cancer.gov/.

Two basic models PH (25) and PO (23), and two hierarchical compound
models produced by compositions of PH and PO model generating functions,
Γ–frailty model (35), and the PHPH cure model (32), were applied to fit the
data. Stage of the disease was represented through two indicator dummy
variables combined into a vector z. Local/Regional stage was considered
as a baseline group and the corresponding regression coefficient restricted
to 0 for identifiability. Regression coefficient β for the distant stage codes
for the difference in survival between the two stages expressed either as a log
hazards or log odds ratio, dependent on the type of model generating function
where it is used. The basic models have one predictor θ(β, z) = exp(βz),
where z=Indicator(“Distant stage”). Compound models have two predictors,
θ(βθ, z) = exp(βθz) and η(βη, z) = exp(βηz) coding two hazard ratios, long-
term effect and short-term effect, respectively, in the PHPH cure model,
and odds (θ) and hazard (η) ratios in the Γ-frailty model. In the latter
model, odds and hazard ratio predictors have the interpretation of the scale
and shape parameter of the frailty distribution, respectively. Regression
coefficients in the PH model (βθ) and the PH submodels of the PHPH (βθ, βη)
and Γ-frailty models (βη) measure the disadvantage of being in the distant
stage relative to local/regional stage as a relative risk. Regression coefficient
in the PO model (βθ), and the one in the PO submodel of the Γ-frailty models
measure the difference from an opposite point of relative odds of survival.
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Since risk and odds of survival are opposites (high risk is bad, high survival
is good), these coefficients are expected to be of opposite signs for in the PO
and the PH model fitted to the same data.

Observed (Kaplan–Meier) and expected model–based estimates of the
survival functions by group are shown in Figure 2.

Parameter estimates and confidence intervals are shown in Table 1.

Model Parameter Point– Confidence p-Value
estimate interval

PH βθ 2.380 (2.328,2.432) <0.001

PO βθ -3.086 (-3.162,-3.011) <0.001

PHPH Improper PH: βθ 1.065 (0.923,1.207) <0.001
Proper PH: βη 1.788 (1.620,1.956) <0.001

Γ-frailty PO: βθ -3.369 (-3.580,-3.158) <0.001
PH: βη -0.179 (-0.301,-0.057) <0.001

Table 1: Parameter estimation and hypothesis testing for prostate cancer
data based on PH, PO, PHPH and Γ–frailty models. Negative β in the PO
effect and positive β in the PH effect correspond to worse survival and vise
versa.

Confidence intervals and hypotheses testing is based on the inverse of the
observed profile information matrix

Ipr = −∂
2�pr(β)
∂β∂βT ,

where the profile likelihood �pr is given by (5). Outlined in the Appendix A.4
are the main results that lead to exact computation of Ipr, [Tsodikov and
Garibotti, 2005].
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Figure 2: Prostate cancer cause-specific survival by stage. Observed (Kaplan-
Meier) and expected survival curves for four models.
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From Figure 2 it is evident that Γ-frailty model provides the best fit to
the data. The PO model is second best. Given the hierarchical structure of
Γ-frailty model, its goodness of fit can be tested vs. the PO model. This is
a test for βη = 0 in Γ-frailty model, and it results in a significant difference
χ2

1 = 7.50, p = 0.006. The deviance with all other models exceeds 60, and
we focus on the Γ-frailty model as the best choice at the level of model
complexity considered so far. We could have tried to improve on the fit by
using compositions of three or more submodels, but felt that the improvement
over the Γ frailty model would be irrelevant for our data. All models indicate
a highly significant effect of stage (p < 0.0001), which is a trivial conclusion
in this case.

The validity of standard maximum likelihood theory as applied to the Γ-
frailty model (35) will be studied by simulations in the next section. As the
first observation, in Figure 3 we show that the form of the profile likelihood
�pr in regression coefficients βη (log hazards ratio) and βθ (log odds ratio) is
remarkably quadratic. In the next section we will verify by simulations that
the curvature of the profile likelihood surface leads to consistent estimates of
the standard errors of β̂.
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Figure 3: Profile likelihood as a function of regression coefficients sampled
around the MLE point.

22



8.2 Simulations

We begin by fitting a parametric Γ-frailty model (35) to the prostate cancer
data with the baseline survival function specified as Weibull distribution. The
fit (not shown) is very similar to the semiparametric version of the model,
and the parameter estimates are as follows, βθ = −3.454, βη = −0.215, and
[median of F ]=265.571, [shape of F ]=1.491.

Each simulation experiment was replicated 1000 times. Four sets of exper-
iments were generated with samples sizes of 100 to 1000. Shown in Figure 4
are normal probability plots for the components of β = (βθ, βη)T. As evident
from the figure, small sample size may be associated with some departure
from normality of MLEs, however, with a sample size larger than 300 the esti-
mates look perfectly normal. Shown in Table 2 are the results of simulations
evaluating bias and variance of the estimates. Empirical means of β̂ show
good correspondence to the true parameter values used to simulate the data
and are within the margin of error expected from 1000 replicates. Empir-
ical standard errors Sn{β̂} estimated from replicated regression coefficients
are in excellent correspondence with the En{σ̂β}, the empirical mean of the
replicated Ipr-based estimate of standard errors. The precision of variance
estimation Sn{σ̂β} improves rapidly with the sample size.

9 Discussion

Recent years have seen an explosion of new survival models and model-
specific estimation procedures. Mostly, new models are formulated on an
ad-hoc basis and not much methodology is available to guide us on the model
choice and appropriate estimation procedures. Although challenges of mod-
ern survival analysis will likely keep the business of model choice, estimation,
identifiability and asymptotics largely on a case-by-case basis for some time,
there is a continued effort to automate the process. This paper presents yet
another step towards the goal by recognizing a mechanism of how models can
be cloned while ensuring that the descendants are served computationally by
a common Nonparametric Maximum Likelihood Estimation framework. We
used frailty models and some associated compounding techniques as a moti-
vation for the method of this paper and offered a way to build hierarchical
families of semiparametric models that can be used to reproduce complex
patterns of covariate effects using more than one predictor and to test model
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Normal probability plots of log hazard ratio by sample size
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Normal probability plots of log odds ratio by sample size
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Figure 4: Normal probability plots
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Parameter En{β̂} Sn{β̂} En{σ̂β} Sn{σ̂β} Sample
size

PH: βθ -3.168 1.394 1.451 0.415 100
PO: βη 0.117 0.725 0.700 0.481

PH: βθ -3.478 0.741 0.744 0.072 300
PO: βη -0.113 0.308 0.304 0.058

PH: βθ -3.352 0.535 0.553 0.034 500
PO: βη -0.159 0.220 0.228 0.026

PH: βθ -3.433 0.392 0.391 0.018 1000
PO: βη -0.197 0.158 0.157 0.012

Table 2: The results of computer simulation to verify asymptotic properties
of profile likelihood based MLEs.
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assumptions.
Oftentimes when we discover that one of our standard models is wrong

for the data, heterogeneity in the form of a random effect is introduced
to model the departure from the basic model. This strategy is associated
with building models on the level of missing data and it requires a large
amount of analytical work to specify the algorithms. If our goal is to come
up with a suitable model for the data rather than to build the model on
mechanistic premises, the heterogeneity instrument is neither convenient nor
necessary. Non-frailty framework such as NTM-QEM discussed in this paper
offers streamlined model building and specification of inference algorithms
with minimal analytic effort.

While rigorous evidence of identifiability, consistency and efficiency is
still spotty, we will have to resort to simulations in studying the asymptotic
properties of estimation procedures. Construction of a general computational
and model building framework could stimulate targeted efforts to develop
rigorous asymptotic theory for certain classes of models.

The non-identifiability aspect discussed in Section 7 is quite intriguing.
A transformation (39) as well as other alternative parameterizations of the
model generating function do not amount to a re-parameterization of the
model and invariant MLEs. While regularity, asymptotics, convergence and
other properties of inference procedures change under such transformations,
the semiparametric model stays the same. This poses an interesting question
of optimizing inference procedures over the functional class of model-invariant
transformations.

Interesting issues for future research include extensions of the principles
presented in this paper to multivariate survival models and time-dependent
covariates.
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A Appendix

A.1 Proof of Proposition 4.1. Properties of the surro-
gate of posterior risk.

Observe that

∂

∂x
Θ(x |·, 0) =

Θ(x |·, 0)
x

[Θ(x |·, 1) − Θ(x |·, 0)] ≥ 0,

as Θ is a non-decreasing function of x. Also, since γ is strictly increasing,

Θ(x |·, 0) =
∂ log γ(x |·)

∂x
> 0.

The above two expressions imply

Θ(x |·, 1) ≥ Θ(x |·, 0).

This proves (15). Now, observe that for PH mixture models, Θ(x |·, c) is the
conditional expectation of frailty random variable U , given observed event.
This interpretation of (15) gives (16), and

E {U | 0, ·, 0)} = γ′(1 | ·).

Since for PH mixture models γ is a p.g.f.,

E{U | ·} = γ′(1 | ·).

Combining the above two expressions gives (17).

A.2 Proof of Proposition 5.1 The class of mixture mod-
els is closed with respect to composition

By the Bernstein theorem (Feller [1971]), we need to prove that γ(e−s|·) =
(γθ ◦γη)(e−s|·) is a completely monotonic function. Let ψ·(s) = γ·(e−s|·). We
have ψ(s) = ψθ {− logψη(s)}. For any functions ξ and ζ, the composition
ξ ◦ ζ is completely monotonic if ξ is completely monotonic, ζ > 0, and ζ ′ is
completely monotonic. Applied to the functions ψ, this means that we have
to prove that for any completely monotonic function ψ(s) > 0, the function
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f(s) = {− logψ(s)}′ is completely monotonic. It can be proved by induction
that

(−1)nf (n)(s) =
n+1∑
k=1

ank(−1)k ψ(k)(s)
ψn−k+2(s)

,

where a01 = 1, an+1,1 = an1, an+1,k = ank(n−k+2)+an,k−1, k = 2, . . . , n+1,
an+1,n+2 = an,n+1, n = 0, 1, · · ·. From the above equations it follows that
ank > 0 for any n, k. Also, ψ(s) > 0, s > 0, and since ψ is completely
monotonic, (−1)kψ(k)(s) ≥ 0. Therefore, (−1)nf (n)(s) ≥ 0, s > 0. End of
proof.

A.3 Proof of Proposition 5.2. Composition chain rule.

Proof of first statement is a straightforward exercise in differentiation of com-
pound functions entering (3). Validity of second statement follows from (20)
upon observation that all components of (20) are nondecreasing functions in
x. End of proof.

A.4 Profile information matrix

Let the vector h represent a set of jumps of the baseline cumulative hazardH.
Implicit differentiation of the profile likelihood yields the following expression
for the profile information matrix

Ipr = Iββ + ĥT
βIhhĥβ + ĥT

βIhβ + IT
hβĥβ, (41)

where

ĥβ =
∂ĥ

∂β

∣∣∣∣∣
β=β̂

and Iab = − ∂2�(β, h)
∂a∂bT

∣∣∣∣
(β̂,ĥ)

with a and b equal to β or h.
Notice that Ipr has dimension d× d, d = dim(β). Therefore only a small

matrix needs to be inverted in order to get an estimator of the covariance
matrix of regression coefficients.

The difficulty in (41) is that since ĥ(β) is defined implicitly, so is the po-
tentially large Jacobian matrix ∂ĥ/∂β. Therefore, the Jacobian is generally
unavailable in a closed form and its computation is the crux of the matter. It
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can be shown [Tsodikov and Garibotti, 2005] that ∂ĥ/∂β satisfies a system
of linear equations with a special structure.

(R +D)
∂ĥ

∂βk

= b(k),

where D be the diagonal matrix with elements

dm =
Dm

(ĥm)2
, m = 1, . . . , d,

R = (Rml) with Rml =
∑n

i=max{m,l} ai, where

ai =
∑

j∈Ci∪Di

Q(Fi | β, zij, cij), i = 1, . . . , n,

Ci and Di is a set of censored observations and failures at the ith time point,
respectively,

Q(x | ·, c) = −x∂Θ(x | ·, c)
∂x

= −(Θ(x | ·, c) − c)(Θ(x | ·, c+ 1) − Θ(x | ·, c)),

and for k = 1, . . . , d,

b(k) =


−

∑
(i,j)∈R1

∂Θ(Fi | β, zij, cij)
∂βk

, . . . ,−
∑

(i,j)∈Rn

∂Θ(Fi | β, zij, cij)
∂βk




T

.

For each k = 1, . . . , n the vector ∂ĥ/βk can be obtained from the following
Proposition [Tsodikov and Garibotti, 2005].

Proposition A.1 Let D be an n × n diagonal matrix with diagonal ele-
ments di 
= 0, i = 1, . . . , n. Let R = (Rkl) be an n × n matrix, with
Rkl =

∑n
i=max{k,l} ai, where ai, i = 1, . . . n are real numbers. Let b be an

n-dimensional vector.
Define the functions ϕk : R → R, k = 1, . . . , n recursively as

ϕn(y) =
bn
dn

− an

dn

y,

ϕk(y) =
1
dk

(
bk −

n∑
i=k

aiy +
n∑

l=k+1

l−1∑
i=k

aiϕl(y)

)
, k = n− 1, . . . , 1,
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for y in R. Let ϕ̃ : R → R be the function given by ϕ̃(y) =
∑n

k=1 ϕk(y) and
let

ỹ =
ϕ̃(0)

1 + ϕ̃(0) − ϕ̃(1)
.

Then the solution to the system of equations (D + R)x = b is the n-
dimensional vector x = (ϕ1(ỹ), . . . , ϕn(ỹ))T.
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Abstract

For semiparametric models, interval estimation and hypotheses testing based on the infor-
mation matrix for the full model is a challenge because of potentially unlimited dimension.
Use of the profile information matrix for a small set of parameters of interest is an appealing
alternative. Existing approaches for the estimation of the profile information matrix are either
subject to the curse of dimensionality, or are ad-hoc and approximate and can be unstable and
numerically inefficient. We propose a numerically stable and efficient algorithm that delivers
exact observed profile information matrix for regression coefficients for the class of Nonlinear
Transformation Models [Tsodikov, 2003]. The algorithm deals with the curse of dimensionality
and requires neither large matrix inverses nor explicit expressions for the profile surface.

Keywords: profile likelihood, semiparametric models, information matrix
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1 Introduction

In semiparametric models the parameter is partitioned as (β,H) with β a low-dimensional
parameter of interest and H a high-dimensional nuisance parameter. For example, in semi-
parametric regression survival models, β is the vector of regression coefficients and H is
the baseline cumulative hazard function estimated as a step-function by the Nonparametric
Maximum Likelihood Estimator (NPMLE). The dimension of H is given by the number of
distinct failure times and increases with the sample size.

Within the NPMLE framework the following tools are available for interval estimation
and hypotheses testing for β.

1. Likelihood Ratio. The likelihood ratio statistic for testing H0 : β = β0 is defined as,

LR(β0) = 2 (`(β̂, Ĥ)− `(β0, Ĥ(β0))),

where ` is the log-likelihood function, (β̂, Ĥ) is the NPMLE of (β,H), and Ĥ(β) is the
MLE of H given β. Although classical ML theory does not directly apply to unlimited
dimension, for many semiparametric models LR has an asymptotic chi-square distribution
with d degrees of freedom, where d is the dimension of β. A (1 − α)% confidence set for
β is given by

{β : LR(β) ≤ Cd,α} ,
where Cd,α is the α percentile of the chi-square distribution with d degrees of freedom.
When the asymptotic distribution of LR is unknown, bootstrap can be used to approximate
Cd,α.

The likelihood ratio approach for building confidence regions for β involves inverting the
LR surface, which is quite computer intensive as repeated maximizations of the likelihood
with respect to H are required.

2. Wald Statistic. An alternative method of inference for β is based on the Wald statistic
defined as

W (β) = (β̂ − β)TΣ−1
ββ (β̂ − β),

where Σββ is the β–submatrix of the inverse of the observed information matrix

I =

(
−∂2`(β,H)

∂β∂βT −∂2`(β,H)
∂β∂HT

−∂2`(β,H)
∂H∂βT −∂2`(β,H)

∂H∂HT

)∣∣∣∣∣
β=β̂,H=Ĥ

.

Note that in the presence of nuisance parameters the information matrix needs to be
inverted twice [Severini, 2000], p. 121, the first time in its high-dimensional full model
form I, and the second time as a dim(β)–submatrix of Σ = I−1.
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Under certain conditions, W is asymptotically equivalent to the likelihood ratio and has
asymptotically a chi-square distribution with d degrees of freedom. In this case,

{β : W (β) ≤ Cd,α} ,

is a confidence set of approximate coverage probability 1− α.

The bottleneck of this procedure is the invertion of a potentially infinitely large matrix I.

The two methods of inference on β described above are based on the full model. An
appealing alternative is to consider the so–called profile likelihood [Murphy and van der
Vaart, 2000]

`pr(β) = max
H

`(β,H).

The profile likelihood may be used as a likelihood for β. The MLE for β, the first component
of the pair (β̂, Ĥ) that maximizes `(β,H), is the maximizer of the profile likelihood function
`pr(β).

Theoretical justification for the use of the profile likelihood for semiparametric models was
given in [Murphy and van der Vaart, 2000, van der Vaart, 1998, Murphy and van der Vaart,
1997]. It was shown that profile likelihoods with nuisance parameter estimated out behave
like ordinary likelihoods under regularity conditions. These conditions need to be verified
on a case by case basis as the general theory remains a challenge. Theoretical justification
has been obtained for the proportional odds (PO) model [Murphy and van der Vaart, 2000,
Murphy et al., 1997] and the PH frailty models [Murphy, 1994, 1995, Parner, 1998, Kosorok
et al., 2004].

The observed profile information matrix will be denoted Ipr,

Ipr = − ∂2`pr(β)

∂β∂βT

∣∣∣∣
β=β̂

.

This matrix is asymptotically same as Σ−1
ββ , and summarizes partial information on β.

The Likelihood Ratio and Wald statistics based on `pr are easier to obtain than the ones
based on the full model provided

• a numerically efficient method is available to profile out the nuisance parameter H, and

• it is possible to derive the exact observed profile information matrix or estimate it in a
computationally efficient way.
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Fulfilling both conditions is a challenge. First, maximization over H is a problem of poten-
tially very large dimension. Second, in most cases `pr cannot be differentiated analytically.
Several alternatives for estimating the profile information matrix have been proposed in the
literature. However, they are all approximations, often difficult to calibrate in practice, and
algorithms to obtain them are computationally costly.

In this paper we propose a computationally efficient exact solution for the class of semi-
parametric Nonlinear Transformation Models (NTM) [Tsodikov, 2003]. The basic assump-
tion that defines this model family is that the survival function at each timepoint t is a
function of H(t) mapping real numbers [0,∞] → [0, 1] rather than a functional mapping
a functional space to [0,1]. In other words, model-based survival function is obtained by
plugging a cumulative hazard H or a baseline survival function F = exp(−H) into a suit-
ably defined parametric function (so-called model-generating function, see Section 2). Note
that a similar assumption underlies the von-Mises Calculus [van der Vaart, 1998], p.291.
The NTM class includes the proportional hazards (PH) model, univariate PH frailty mod-
els ], the proportional odds model, cure models such as the PHPH model [Tsodikov, 2002,
Tsodikov et al., 2003]. A numerically efficient Quasi-EM algorithm, a subset of the MM
family Lange et al. [2000] was developed to obtain the maximum profile likelihood for NTM
models [Tsodikov, 2003]. The algorithm has since been used in computer intensive settings
such as the bootstrap [Dixon et al., 2005].

The algorithm for the exact Ipr proposed in this paper works under the following two
basic assumptions.

Independence of the future. Independence of the future means that the contribution to
the likelihood of an observed event at time t depends on the past H[0, t] of the function
H, but not on the future.

Nonlinear Transformation Model Assumption. The survival function given covariates is
specified as a parametric transformation of H. A detailed definition is given below.

We compare our method to the following three existing techniques used to estimate the
profile information matrix that amount to particular forms of numerical differentiation of
the second order.

1. Discretized second derivative. Corollary 3 of [Murphy and van der Vaart, 2000] shows that
under certain conditions

−2
log `pr(β̂ + hnvn)− log `pr(β̂)

nh2
n

P−→ vTIprv, (1)

for all sequences vn
P−→ v ∈ Rd and hn

P−→ 0 such that (
√
nhn)−1 = OP (1).
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This result can be used to derive an estimate of Ipr. Note that this method requires
careful maintenance of the speed of convergence of the sequence {hn} as the condition
(
√
nhn)−1 = OP (1) implies that the convergence should be neither too slow nor too fast.

The reason is that the precision of discrete differential operator as n→∞ in the left side of
(1) needs to be measured against the convergence of MLEs to the true value. Indeed, under
regularity conditions, the asymptotic expansion of the likelihood ratio statistic about the
MLE β̂ has the form n(β− β̂)TIpr(β− β̂)+oP (

√
n ‖β − β∗‖+1), where β∗ is the true value.

The procedure (1) is designed to extract the quadratic term by setting β = β̂ + hnvn, and
by ensuring the 1/

√
n rate of convergence of β to simultaneously β̂ and β∗ so that the

quadratic term is indeed the dominant one. Otherwise, the expansion would be dominated
by its oP (1) part if hn is too fast or by oP (

√
n ‖β − β∗‖) if hn is too slow.

See Section 4 for further details and implementation of this method.

2. Fitting a Quadratic Form. Asymptotically, under regularity conditions, the profile like-
lihood surface around the true β is quadratic. Nielsen et al. [1992] proposed fitting a
quadratic form to `pr(β) in some domain around the maximum likelihood estimator, β̂,
and to derive an approximate profile information matrix using the estimated coefficients
of the form. Note that globally the likelihood surface is not quadratic. The quadratic
approach is difficult to implement as a sufficiently small domain around β̂ where the
likelihood surface can be well approximated by a quadratic form is not well defined. Mis-
specification of this domain with the quadratic method often leads to estimates of the
profile information matrix that are not positive definite, particularly if the number of co-
variates is large. Yet the domain needs to be large enough to ensure adequate precision
and sufficient sample size representing the number of likelihood evaluations within the
domain. This balancing act is notoriously difficult as the true variance is unknown and
the likelihood surface is specific to the data set being analyzed.

3. Numerical Differentiation of the Profile Likelihood. Standard numerical algorithms can be
used to numerically differentiate the profile likelihood function. We use Ridder’s method
[Press et al., 1994] in the examples presented in Section 4. The difficulties in the implemen-
tation of this idea are similar to the ones with the Quadratic Form approach. Numerical
differentiation requires choosing a tolerance for the estimation of the derivatives, and typ-
ically involves interpolation of the function. The precision and speed of these methods are
in inverse relashionship and they vary widely dependent on the tolerance. Since likelihood
surface is dataset–specific, this method may require calibration and tuning for a particular
dataset.

Approximating nature of the standard approaches outlined above, the need to balance
various tradeoffs in their implementation, and a likely need to tweak implementation based on
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the dataset at hand, makes it difficult to develop these approaches to the point of automation
sufficient for use in standard statistical software.

The algorithm proposed in this paper is exact, automatic and requires no tuning or
calibration. This makes it an attractive alternative, particularly with statistical software
applications in mind.

The PO model is used in this paper to compare via simulations the performance of
the three estimation methods for Ipr and the proposed exact algorithm. For different sample
sizes, the approaches were compared in terms of the number of operations required to achieve
a reasonable standardized precision. Naturally, the exact method outperforms any approx-
imating method if an ever better precision is demanded. In our numerical study we focus
on practical precisions where approximating methods could nevertheless represent a viable
competition to an exact procedure. Numerical efficiency and precision of the computation
of Ipr is of great importance for variable selection procedures. In an example involving 7
variables, backward variable selection using the Wald statistic based on the exact profile
information matrix took less than one third of the time of the quadratic approach. We also
compared the estimation methods in terms of relative error. Of all approximating methods,
the numerical approach has the smallest relative error.

As a result of these studies we believe that the exact method should be the primary
choice for Nonlinear Transformation models.

2 Nonlinear Transformation Models

Nonlinear transformation models (NTM) are defined as follows [Tsodikov, 2002, 2003].

Definition 1 Let γ(x | β, z) be a parametrically specified distribution function with x–domain
of [0, 1]. Let F (t) be a nonparametrically specified baseline survival function. A semipara-
metric regression survival model is called a Nonlinear Transformation Model if, conditional
on the covariates z, its survival function G can be represented in the form

G(t | β, z) = γ(F (t) | β, z). (2)

The function γ is called the NTM-generating function.

Note that F (t) = exp(−H(t)) where H(t) is the baseline cumulative hazard function. With
this in mind we can write the hazard function of the model as

λ(t | β, z) =
γ′(F (t) | β, z)
γ(F (t) | β, z)

F (t)h(t), (3)
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where h(t) = H ′(t) is the baseline hazard function.
In [Tsodikov, 2003] a Quasi-EM (QEM) point estimation algorithm for the NTM was

developed and conditions that ensure its convergence were given.
The algorithm solves a functional self-consistency score equation of the formH = ψ(β,H)

for H, where ψ is a mapping that generalizes a Nelson-Aalen-Breslow estimator for the
proportional hazards model so that its denominator depends on H as well as β. Functional
iterations

H(k+1) = ψ
(
β,H(k)

)
, k = 1, 2, . . . (4)

are exercised until Ĥ, the fixed-point of ψ, has been approximated, H(k) → Ĥ, as k → ∞,
see [Tsodikov, 2003] for details.

Although any parameterization of γ in terms of β and z is allowed, in the examples
we assume that γ is parameterized through a set of parameters/predictors θ, η, . . ., where
each predictor is further parameterized using generally different sets of regression coefficients
β1, β2, . . ., so that θ = exp(βT

1 z), η = exp(βT
2 z), . . . .

2.1 Profile Likelihood Approach

Let ti, i = 1, . . . , n be a set of failure times, arranged in ascending order, tn+1 := ∞.
Associated with each ti is a set of subjects Di with covariates zij, j ∈ Di who fail at ti, and
a set of subjects Ci with covariates zij, j ∈ Ci who are censored at time t ∈ [ti, ti+1). The
observed event for the subject ij is a triple (ti, zij, cij), where c is a censoring indicator, c = 1
if failure, c = 0 if right censored. Let H be the baseline cumulative hazard, with H(0) = 0.
We assume than H(t) is a step function with jumps at the failure times ti, i = 1, . . . , n. As
a step-function, H can be characterized by the vector h = (h1, ..., hn), where hi = ∆Hi is
the jump of H at ti. With this notation, under an NT model (2), (3) and non-informative
censoring, the likelihood of survival data takes the form

` =
n∑

i=1

Di log(hi) +
n∑

i=1

∑
j∈Ci∪Di

log ϑ(Fi | β, zij, cij),

where

ϑ(x | β, z, c) = xc∂
cγ(x | β, z)
∂xc

,

∂0γ/∂x0 = γ, Di is the number of failures associated with ti and

Fi = F (ti) = exp(−
i∑

l=1

hl).
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The profile likelihood is defined as a supremum of the full likelihood ` taken over the
nonparametric part of the model

`pr(β) = max
h

`(β, h).

The MLE of h for a given β will be denoted ĥ(β) = (ĥ1, . . . , ĥn), with ĥk = ĥk(β), then
`pr(β) = `(β, ĥ(β)).

Differentiating ` with respect to h and setting the score equal to 0 we obtain ĥ(β) as the
solution of the functional self-consistency equation

ĥm =
Dm∑

(i,j)∈Rm
Θ(Fi | β, zij, cij)

, m = 1, . . . , n, (5)

where Fi is a function of h1, . . . , hi,

Θ(x | β, z, c) = −∂ log ϑ(x | β, z, c)
∂x

= c+ x
γ(c+1)(x | β, z, c)
γ(c)(x | β, z, c)

, (6)

and Rm is the set of subjects at risk just prior to tm, Rm = {(i, j) : i ≥ m, j ∈ Ci ∪ Di}.

2.2 Point estimation

Point estimation proceeds along the lines of the following nested procedure,

• maximize `pr(β) by a conventional nonlinear programming method, for example, the Powell
method [Press et al., 1994],

• for each β demanded in the above maximization procedure, find max
h

`(β, h) as the fixed

point of (5).

The Quasi-EM algorithm makes use of the straightforward recursion to obtain the profile
likelihood,

h(k+1)
m =

Dm∑
(i,j)∈Rm

Θ(exp(−
∑i

l=1 h
(k)
l ) | β, zij, cij)

, k = 1, 2, . . . ; m = 1, . . . , n, (7)

where k counts iterations. Note that an increment of k occurs only once all the parameters
hi, i = 1, . . . , n have been updated.

It can be shown that if Θ is nondecreasing in x, each update of H using (7) strictly
improves the likelihood, given β. This guarantees convergence of the sequence of likelihood
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values `(β, h(k)) to `(β, ĥ(β)) under fairly general conditions [Tsodikov, 2003]; that is, ĥ(β)
is the fixed point of the recursion given in (7).

It should be noted that the proposed information matrix algorithm is not contingent on
using a specific method for point estimation. Yet it builds on the idea of the self-consistency
through implicit differentiation of the self-consistency equation.

3 Profile Information Matrix

The profile information matrix is the observed information matrix derived from the profile
likelihood,

Ipr(β) = − ∂2`pr(β)

∂β∂βT
.

Implicit differentiation of the profile likelihood yields the following expression for the
profile information matrix

Ipr(β) = Iββ + hT

βIhhhβ + hT

βIhβ + IT

hβhβ +
n∑

m=1

`hm hm,ββ, (8)

where h = h(β) is some function of β, and

hβ =
∂h(β)

∂β
, Iab = − ∂2`

∂a∂bT
, `hm =

∂`(β, h)

∂hm

, and hm,ββ =
∂2hm(β)

∂β∂βT
,

with a and b equal to β or h.
When evaluated at the MLE ĥ(β), where ĥ is a function defined implicitly as the solution

of the score equation
`h(β, h) = 0 ⇒ ĥ = ĥ(β), (9)

the information matrix simplifies to

Ipr = Iββ + IT

ĥβ
ĥβ. (10)

Indeed, by virtue of the score equation (9),

`h(β, ĥ(β)) ≡ 0. (11)

Differentiating (11) with respect to β, we also have

d`h(β, ĥ(β))

dβ
= Iĥβ + Iĥĥĥβ ≡ 0, (12)
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with (10) now following from (8) on substitution of (11) and (12).
It should be noted, however, that unless the score equation (9) is solved for h exactly,

the short form of the observed profile information matrix (10) is generally not going to be
symmetric. Except in the Cox model, there is no closed form solution to ĥ, and this function
is an output of a numerical algorithm such as (7) converging to ĥ with some tolerance. To
preserve the symmetry of Ipr, we prefer to keep some of the theoretically redundant terms
in (8) and use the form

Ipr(β) = Iββ + ĥT

βIĥĥĥβ + ĥT

βIĥβ + IT

ĥβ
ĥβ. (13)

Notice that Ipr has dimension d× d, d = dim(β). Therefore only a small matrix needs to
be inverted in order to get an estimator of the covariance matrix of regression coefficients.

The difficulty in (13) is that since ĥ(β) is defined implicitly, so is the potentially large
Jacobian matrix ∂ĥ/∂β. Therefore, the Jacobian is generally unavailable in a closed form.
The success in the calculation of the profile information matrix is determined by the existence
of an efficient numerical method to compute ∂ĥ/∂β. Generally, computation of ∂ĥ/∂β is as
difficult as taking the inverse of the original full model information matrix (O(n3) operations
required), and this derivation defeats the purpose. However, if the functional ϑ(H, t |·) that
defines model contributions to the likelihood depends on (H, t) only through H(t), which is
the case for the NT models (2), ∂ĥ/∂β can be obtained by solving a system of linear equations
with a special structure. This specific structure of the linear system can be exploited to derive
an efficient numerical solution given in Proposition 1.

We first show how to obtain Iββ, Ihβ and Ihh.
The H–score of an NT model is,

∂`

∂hk

=
Dk

hk

−
∑

(i,j)∈Rm

Θ(Fi | β, zij, cij).

Differentiating the H–score with respect to β we get,

− ∂`2

∂hk∂βm

=
∑

(i,j)∈Rk

∂Θ

∂βm

(Fi | β, zij, cij).

Evaluation of derivatives of Θ or γ with respect to β depends on the parameterization
of the model’s predictor as a function of explanatory variables z, which is model–specific.
Once a model is specified, the calculation of Iββ and Ihβ is straightforward.

Since Fi = exp(−
∑i

l=1 hl), we have

∂Θ(Fi | ·)
∂hm

=

{
Q(Fi | ·), m ≤ i,

0, m > i,
(14)
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where

Q(x | ·, c) = −x∂Θ(x | ·, c)
∂x

= −(Θ(x | ·, c)− c)(Θ(x | ·, c+ 1)−Θ(x | ·, c)), (15)

and ”‘·”’ stands for ”‘β, z”’. Note that ∂Θ(Fi | ·)/∂hm is a constant in m for m ≤ i or m > i.
From (14) it follows that,

− ∂2`

∂hk∂hm

=
∑

(i,j)∈Rmax{k,m}

Q(Fi | β, zij, cij) +
Dk

h2
k

1{k=m},

where

1{k=m} =

{
1, k = m,
0, k 6= m.

From this we get Ihh.
Now we turn our attention to the Jacobian ∂ĥ/∂β. Proposition 1 gives the main result

used to efficiently calculate ∂ĥ/∂β in the case of NT models. Its proof is given in the
Appendix.

Proposition 1 Let D be an n × n diagonal matrix with diagonal elements di 6= 0, i =
1, . . . , n. Let R = (Rkl) be an n× n matrix, with Rkl =

∑n
i=max{k,l} ai, where ai, i = 1, . . . n

are real numbers. Let b be an n-dimensional vector.
Define the functions ϕk : R → R, k = 1, . . . , n recursively as

ϕn(y) =
bn
dn

− an

dn

y,

ϕk(y) =
1

dk

(
bk −

n∑
i=k

aiy +
n∑

l=k+1

l−1∑
i=k

aiϕl(y)

)
, k = n− 1, . . . , 1,

for y in R. Let ϕ̃ : R → R be the function given by ϕ̃(y) =
∑n

k=1 ϕk(y) and let

ỹ =
ϕ̃(0)

1 + ϕ̃(0)− ϕ̃(1)
.

Then the solution to the system of equations (D + R)x = b is the n-dimensional vector
x = (ϕ1(ỹ), . . . , ϕn(ỹ))T.
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We now show that the Jacobian ∂ĥ/∂β satisfies a relationship of the form as discussed
in Proposition 1. Differentiating the self-consistency equation (5) implicitly, we get that ĥ
satisfies the relationship

∂ĥm

∂βk

= − ĥ2
m

Dm

 n∑
l=1

∑
(i,j)∈Rmax{m,l}

Q(Fi | β, zij, cij)
∂ĥl

∂βk

+
∑

(i,j)∈Rm

∂Θ

∂βk

(Fi | β, zij, cij)

 , (16)

where Q is the function given in (15).
Let D be the diagonal matrix with elements

dm =
Dm

(ĥm)2
, m = 1, . . . , d.

Let R = (Rml) with Rml =
∑n

i=max{m,l} ai, where

ai =
∑

j∈Ci∪Di

Q(Fi | β, zij, cij), i = 1, . . . , n

and for k = 1, . . . , d let

b(k) =

− ∑
(i,j)∈R1

∂Θ(Fi | β, zij, cij)

∂βk

, . . . ,−
∑

(i,j)∈Rn

∂Θ(Fi | β, zij, cij)

∂βk

T

.

It follows from (16) that

∂ĥ

∂βk

= −D−1

(
R
∂ĥ

∂βk

− b(k)

)
.

Hence,

(R +D)
∂ĥ

∂βk

= b(k).

Therefore, for each k = 1, . . . , n the vector ∂ĥ/βk can be obtained from Proposition 1. We
now have all the components of (13) defined. This completes the exposition of our method.

4 Examples

In the examples we compare the performance of four methods to compute the observed
profile information matrix. A brief explanation of the methods and details on how they were
implemented in our examples are given below.
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1. Discretized. The estimation is based on the result of Corollary 3 in Murphy and van der
Vaart [2000]. Under certain conditions

−2
log `pr(β̂ + hnvn)− log `pr(β̂)

nh2
n

P−→ vTIprv, (17)

for all sequences vn
P−→ v ∈ Rd and hn

P−→ 0 such that (
√
nhn)−1 = OP (1).

In order to estimate all the elements of Ipr, we chose v = ei, i = 1, . . . , d and v = ei + ej,
1 ≤ i < j ≤ d, where ei are Euclidean basis vectors.

We set vn ≡ v, and hn = 10/(
√
nCk) with C = 1.4 and k such that |f(10/(

√
nCk)) −

f(10/(
√
nCk−1))| < 0.001, where f(h) is the left hand side of equation (17) considered as

a function of h. This procedure was motivated by Dixon et al. [2005] who considered a
choice of hn in the one dimensional (d = 1) situation.

2. Quadratic. This approach approximates the profile likelihood surface by a quadratic form
and derives the estimate of the information matrix from the coefficients of the form fitted
to the surface. Specifically, let ∆β be a vector of deviations of the β values sampled in
the vicinity of β̂, and let ∆`pr be the induced vector of deviations of the profile likelihood

from its maximum value, `pr(β̂). Then, if ∆β is sufficiently small

∆`pr ≈
1

2
∆βTIpr∆β.

Fitting the quadratic form (1/2)∆βTA∆β to points (∆β,∆`pr) by least squares produces

an estimate, Â, of the profile information matrix Ipr.

In our implementation of this method we limit the domain to points that are not rejected
at 0.05 significance level by the LR test (applied informally and disregarding the multi-

comparison issue). In other words, points β are included if −2
{
`pr(β̂)− `pr(β)

}
≤ Cd,0.05,

where Cd,0.05 is the 0.05th upper tail percentile of the χ2 distribution with d = dim(β)
degrees of freedom. Since the validity of the quadratic approximation is itself a prerequisite
for the validity of the likelihood ratio statistic, this choice is far from perfect. Yet this
procedure would ensure a desired property of the domain shrinking with sample size, and
we know of no better alternative.

3. Numerical. The calculation of the observed profile information matrix is carried on using
Ridder’s numerical differentiation of the profile likelihood function, see Press et al. [1994].

15



Let f : R → R be a differentiable function. By definition, the derivative of f is the limit
as h→ 0 of the incremental quotient

q(h) =
f(x+ h)− f(x)

h
.

The basic idea of Ridder’s method is to calculate q(h) for several values of h, and then
extrapolate the result to the limit h = 0. In the case of a function with domain on Rd,
the vector of first derivatives is obtained applying the algorithm on each coordinate at a
time and leaving the other coordinates fixed.

Numerical experimentation showed that this approach gives the second derivatives of
`pr(β) with very high precision, albeit at a greater computational cost than other methods.

4. Exact. This is the method developed in Section 3 of this paper for computation of the
exact observed profile information matrix for NTM.

PO model will be used as a basis for all our comparisons. The validity of NPMLE and the
profile likelihood for this model has been demonstrated elsewhere.

4.1 The Proportional Odds Model

Given covariates z, the survival function G(t | β, z) of a PO model can be written in the
form,

G(t | β, z) = G(t | θ(β, z)) =
θ(β, z)

θ(β, z) +H(t)
, (18)

where H is some nonparametrically specified baseline cumulative hazard function, and θ is
a predictor. Since H = − logF , the NTM–generating function of the PO model is

γ(x | ·) =
θ(·)

θ(·)− log x
.

A characteristic feature of the PO model is that for any two values, θ1, θ2, of the predictor,
the odds ratio

Odds(G(t | θ1))

Odds(G(t | θ2))
=
θ1

θ2

is constant in t.
It follows that

Θ(x | ·, c) =
c+ 1

θ(·)− log x
.

16



We consider an exponential parameterization of the predictor θ(β, z) = exp(βTz). With this
parameterization,

∂θ

∂β
= θz,

∂2θ

∂β∂βT
= θzzT.

The following derivatives of Θ are necessary to specify the algorithm of Section 3,

∂Θ

∂β
=
∂Θ

∂θ
θz,

∂2Θ

∂β∂βT
=

(
∂2Θ

∂θ2
θ2 +

∂Θ

∂θ
θ

)
zzT,

where
∂Θ(x | ·, c)

∂θ
= − c+ 1

(θ(·)− log x)2 , and
∂2Θ(x | ·, c)

∂θ2
=

2(c+ 1)

(θ(·)− log x)3 .

4.2 Real Data

As an example, we use data from the National Cancer Institutes Surveillance Epidemiology
and End Results (SEER) program. Using the publicly available SEER database, 11621
cases of primary prostate cancer diagnosed in the state of Utah between 1988 and 1999
were identified. The following selection criteria were applied to a total of 19819 Utah–
cases registered in the database: valid positive survival time, valid stage of the disease,
age ≥ 18 years. Prostate cancer specific survival was analyzed by stage of the disease
(localized/regional vs. distant). For the definition of stages as well as for other details of
the data we refer the reader to SEER documentation http://seer.cancer.gov/.

The data analysis presented in this paper is a continuation of the one given in [Tsodikov,
2003]. Two groups of patients representing stage at diagnosis of the disease are considered,
hence the predictor in the PO model has a single parameter β. The log odds ratio β measures
the disadvantage of being in the distant stage relative to local/regional stage. The QEM
algorithm was applied to fit the PO model to the data. The maximum likelihood estimate
of β is β̂ = −3.251. Confidence intervals for β were obtained using the Wald statistic
based on the profile information matrix. The confidence interval based on the quadratic
approximation of the profile information matrix is (−3.416,−3.086) and the one obtained
through the exact profile information matrix is (−3.415,−3.086). Excellent concordance of
the two confidence intervals is due to the large sample size and the small dimension of the
regression parameter, a situation when approximating methods tend to be accurate.

In the case of a single parameter, the observed profile information matrix is a scalar. The
estimates of the observed profile information matrix are 142.1011, 141.2158 and 141.7424 for
the Discretized, Quadratic and Numerical approaches respectively and the Exact value is
141.7423. Although the values are quite similar it is clear that the discretized and quadratic
approaches depart from the true value.
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4.3 Simulations

4.3.1 Simulations setup

We simulated age at diagnosis for an adult-onset disease using a proportional odds model.
The example in its baseline survival is loosely based on indicence of prostate cancer. The
baseline survival function was assumed to follow a Weibull distribution with the median of
38 years and shape of 1.8, the risk starting at the age of 18 (a fixed number of 18 years
was added to survival time and censoring). With these parameters incidence before the
age of 40 is negligible. Independent censoring mechanism was assumed. Censoring times
were generated using Weibull distribution with a median of 46 years and shape parameter
of 4. Observations in excess of 105 years were type-I censored at 105. Two covariates were
introcuded, one categorical with 3 levels, and one continuous (a risk factor) with a range
between -1 and 1. Values for both covariates were generated independently. The continuous
covariate followed a uniform distribution. The discrete distribution for categorical covariate
assumed the following probabilities, 0.7 (level 1), 0.5 (level 2), and 0.1 (level 3). The following
covariate effects were assumed. An effect of the log odds ratio of 2 was assumed for a unit
change in the continuous factor. Categorical covariate was assumed to have a progressing
effect on the risk of the disease. The log odds ratios comparing level 2 and level 3 to the
baseline level 1 were 1.5 and 2.5, respectively.

4.3.2 Speed

To assess the speed of performance of the four methods we calculated the number of opera-
tions required to compute the exact information matrix and its approximations. Evaluation
of Θ, γ, their analytically specified derivatives or similar comparable procedures were counted
as one operation. Figure 1 shows the number of operations by sample size and method. In
order to make the performance results comparable, the precision of estimation algorithms
was calibrated on an ad-hoc basis so that the relative error of the three methods (Discretized,
Quadratic, Numerical) was approximately the same (0.02). For any method A, the relative
error was defined as ‖Ipr(A)− Ipr(Exact)‖ / ‖Ipr(Exact)‖, where Ipr(A) is an estimate of the
observed profile information matrix computed using method A, and the norm is defined as
the sum of absolute values of all elements of the matrix. Regardless of the sample size, the
exact calculation outperformed the approximate methods. Inference based on the discretized
second derivative requires between 10 and 30 times as many operations as the exact calcula-
tion. The quadratic approach requires between 60 and 200 times as many operations as the
calculation of the exact Ipr matrix. The numerical method is computationally very costly
requiring between 600 and 7000 as many operations as the exact approach. However, the
numerical approach behaves better than the other two methods in terms of relative error as
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Figure 1: Operations by sample size characteristics of four methods of computation of the
observed profile information matrix. The Exact method developed in this paper shows the
highest numerical efficiency.

19



shown in Section 4.3.3.

4.3.3 Precision

A sample of size 500 was used to find the smallest possible relative error of the method
when adjusting the different parameters involved on an ad-hoc basis. The best relative error
achieved by the Discretized method was 0.01 and 8.13 105 operations were required. This
number was 0.013 for the quadratic approach with 5.32 106 operations required, while the
numerical approach achieved a relative error of 8 10−7 and required 3.87 108 operations. This
example shows that the numerical approach is perhaps the only one of the approximating
methods that can compete with the exact procedure in terms of precision required in real-life
analysis. It’s high computational cost though makes it a poor choice for variable selection
and other procedures requiring repeated evaluations of Ipr.

4.3.4 Statistical properties

Three sets of experiments were performed with samples of size 100, 500, and 1000. For each
sample size, 1000 simulated samples were generated. The covariance matrices based on Ipr

were computed for each sample using the four approaches discussed. The mean and standard
deviation of each of the entries of the estimators of covariance matrices under study were
estimated from the 1000 replicates. In addition, point semiparametric MLE estimates of the
three parameters entering profile likelihood (log odds ratios for the continuous factor and level
2 vs. 1 and 3 vs. 1 contrasts) were used to compute the empirical covariance matrix based
on 1000 replicates. A comparison of the estimated means of the entries of the covariance
matrices calculated using exact and numerical approaches with the empirical ones were used
to evaluate how well these methods estimate the true finite sample variance-covariance. The
results are shown in Table 1. Two factors are contributing to the distance between the
exact and numerical approaches and the empirical one: the finite-sample bias of covariance
estimates based on Ipr, and the bias in the estimate of Ipr by an approximating method
(this latter bias does not pertain to the exact method). The following basic conclusions are
evident from the Table 1.

1. All methods are much better at estimating variances (left half of the table) than covariances
(right half of the table);

2. The precision of estimation of covariance improves rapidly with sample size;

3. Under all sample sizes the numerical approach showed excellent concordance with the
exact method. This is in agreement with our earlier observation that of all approximat-
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ing methods, the numerical approach is most precise albeit computationally costly. The
quadratic method showed itself as least precise in this analysis;

4. For reasonably large sample sizes all methods are in good agreement with the empirical
estimate.

5 Discussion

In this paper we have proposed a method to compute profile information matrix based
on implicit differentiation of the self-consistency equation. Computationally the method
outperformed all existing approaches to the best of our knowledge. An attractive property
of the procedure is that it is exact contingent upon point estimates. Even though exact
point estimates are hardly ever available, the precision of variance-covariance estimation is
improved as the method does not add any error to the one associated with impresision of
point estimates. Numerically efficient and stable procedures for point estimates have been
developped earlier and provide a good complement to this methodology. We recommend the
Exact method as a preferred choice with Nonlinear Transformation Models.

Since derivatives of the profile likelihood are defined implicitly, applying Newton-Raphson
method to the profile likelihood for point estimation is a challenge. The Newton Raphson
typically requires exact inverse Hessian matrix and is not guaranteed to converge if this
matrix is approximated. The results of this paper can be used to provide an exact inverse
Hessian matrix. at any point in the parameter space and thus enable the Newton Raphson
method for use with the profile likelihood.
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6 Appendix

Proof of Proposition 1
The equation (D +R)x = b implies

dkxk +
n∑

l=1

Rklxl = bk, k = 1, . . . , n. (19)

Since Rkl =
∑n

i=max{k,l} ai, it follows from (19) that for k = 1, . . . , n,

bk = dkxk +
n∑

i=k

ai

k∑
l=1

xl +
n∑

l=k+1

n∑
i=l

aixl

= dkxk +
n∑

i=k

ai

k∑
l=1

xl +
n∑

i=k+1

i∑
l=k+1

aixl

= dkxk +
n∑

i=k

ai

(
n∑

l=1

xl −
n∑

l=i+1

xl

)
.

The second equality above is a consequence of a change of summation order.
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Hence, solving the system of equations (D +R)x = b is equivalent to solving the system

xk =
1

dk

(
bk −

n∑
i=k

aiy +
n∑

l=k+1

l−1∑
i=k

aixl

)
, k = 1, . . . , n

y =
n∑

l=1

xl.

Notice that {xk} are in fact functions of y obtained recursively, xk = ϕk(y), and y =∑n
k=1 ϕk(y) = ϕ̃(y). The solution of this system of equations is the vector (ϕ1(ỹ), . . . , ϕn(ỹ))T

where ỹ satisfies ϕ̃(ỹ) = ỹ. Since ϕk, k = 1, . . . , n are linear functions of y, so is ϕ̃. Hence,
ϕ̃(y)− y = ay + b with

a = ϕ̃(1)− 1− ϕ̃(0) and b = ϕ̃(0).

Therefore,

ỹ =
ϕ̃(0)

1 + ϕ̃(0)− ϕ̃(1)
.

End of proof.
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A population model of prostate cancer incidence
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SUMMARY

Introduction of screening for prostate cancer using the prostate-speci�c antigen (PSA) marker of the
disease led to remarkable dynamics of the incidence of the disease observed in the last two decades.
A statistical model is used to provide a link between dissemination of PSA and the observed tran-
sient population responses. The model is used to estimate lead time, overdiagnosis and other relevant
characteristics of prostate cancer screening. Copyright ? 2006 John Wiley & Sons, Ltd.

KEY WORDS: screening; mixture models; prostate cancer

1. INTRODUCTION

Continuing controversy and discussions surround the issue of whether prostate-speci�c antigen
(PSA) screening of asymptomatic men can be linked to recent decline in prostate cancer
mortality [1–4]. Shown in Figure 1 is the age-adjusted incidence and cause-speci�c mortality
curve as estimated from the Surveillance, Epidemiology and End Results (SEER) [5] database
developed and maintained by the National Cancer Institute. While the incidence curve shows
a sharp peak with the introduction of PSA testing in the late 1980s, mortality showed a much
less dramatic behaviour. Advocates of screening argue that screening induces a favourable shift
in the distribution of stage of the disease at diagnosis and that earlier detection and treatment
should lead to better prognosis and reduce mortality from the disease. The di�culty in proving
the point is rooted in the complexity of the changes that screening for a disease with high
latent prevalence brings to the observed population statistics. Lead time and overdiagnosis are
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Figure 1. Prostate cancer incidence and mortality rates by year of diagnosis age
adjusted to U.S. population in year 2000.

among the key characteristics of the impact of screening on the natural history of the disease
that can be identi�ed through latent variable modelling of prostate cancer incidence.
Lead time measures an advance in the diagnosis of prostate cancer due to screening. It

adds to the observed survival time even if early detection and treatment were of no bene�t.
A large proportion of prostate cancers identi�ed through screening would never be detected

in the absence of screening. This phenomenon is called overdiagnosis. Screening brings such
cancers to the surface predominantly in the localized stage of the disease leading to an apparent
‘favourable’ stage-shift. Overdiagnosis has multiple consequences. It leads to over-treatment
of men who would never be detected without screening. Also, it modi�es apparent estimates
of post-treatment survival as over-diagnosed cases appear to be ‘cured’. Injection of over-
diagnosed cases into the pool of all prostate cancer presentations at diagnosis changes the
distribution and the meaning of clinical covariates in men diagnosed with prostate cancer in
the PSA era. With the introduction of screening, the prognostic value of such covariates at
diagnosis is modi�ed. For these reasons the prognosis for cases diagnosed in the screening
era is markedly di�erent than for cases detected naturally. Inclusion of clinical covariates
into the model may be misleading and requires special care to adjust the covariate e�ects for
screening patterns in the population.
Modelling represents an important tool for studying screening phenomena. Mathematical

and simulation models have been used for inference in cancer screening trials to evaluate
controlled randomized screening interventions [6, 7]. While perhaps providing the best design
for evaluating the impact of screening, such randomized trials often fail to respond to impor-
tant challenges. Randomized screening trials typically require decades of observation in order
to register a signi�cant e�ect of screening on cancer mortality. During this period screening
modality is often outmoded by new diagnostic advances. Considerable changes in the practice
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of management of the disease and therapy, often concurrent with advances in screening tech-
niques, make it di�cult for screening trials to catch up with an ever evolving scienti�c and
technological progress of cancer detection and treatment.
A number of simulation and analytic models have been designed to translate the results of

screening trials into the population setting [8–10, 7]. Given the complexity of the problem at
hand no single approach can provide the �nal answer. In particular, relatively small populations
used in screening trials run the risk of not being representative for the national population.
Screening patterns operating in the national population are quite di�erent from the arti�cial
homogenized schedules pursued in screening trials. In order to capture the complexity of
screening in a population, we adopt an approach of estimation and prediction of the e�ect of
cancer screening directly from population data. We consider screening schedules as a random
point process in the population and use characteristics of PSA dissemination to inform the
model about the properties of this process. Point estimates and con�dence intervals for the
model parameters are based on the maximum likelihood technique. Population databases and
cancer registries such as SEER provide a unique resource for studying the ‘in vivo’ dynamics
of the population impact of screening.

2. CANCER INCIDENCE MODEL

2.1. The basic model

We use the classical three-stage model of the natural history of a chronic disease [11]. Prostate
cancer is a result of an irreversible transition of the disease through three consecutive stages:
disease-free stage, pre-clinical stage and clinical stage. The time spent in disease-free stage
is characterized by the age Y (a random variable) at onset of the disease. In the pre-clinical
stage disease is asymptomatic and can be detected by a screening test. The duration of the
preclinical stage in the absence of screening (a random variable) is termed the sojourn time.
If undetected by screening, the disease can either reach the clinical stage or, alternatively, the
event of clinical diagnosis gets right censored by a competing risk other than the disease of
interest.
It is clear that cancer incidence in an individual is a convolution of two generally dependent

survival times. In what follows we will use the notation � for a hazard function (incidence
rate), f for a probability density function (p.d.f.), and G for a survival function (s.f.) unless
noted otherwise. Let �O be the hazard function of Y =(age at disease onset). Denote by fO
and GO the corresponding p.d.f. and s.f. of Y , respectively.
Prostate cancer incidence �I(a; t) in year t at the age of a can be written as �I(a|t − a),

where �I(a|x) is the hazard function for cancer diagnosis at the age of a for a person born
in year x. Clearly, for the x-birth cohort

�I(a|x)= fI(a|x)GI(a|x) (1)

The functions fI and GI are in fact represented by a fairly complex mixture model which we
now start detailing.
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Let us condition on the age at tumour onset to obtain the following convolution:

fI(a|x)=
∫ a

0
fI(a− y|x; y)fO(y|x) dy (2)

where fI(�|x; y) is a conditional p.d.f. of the random time T from tumour onset to its potential
diagnosis. The random variable T represents the duration of the latent disease stage. Generally,
fI(�|x; y) is an average over random patterns of screening operating in the population. It is
clear that T is a result of two dependent competing risks: the one associated with natural
clinical diagnosis through symptoms and the one associated with detection through screening.
Dependency between the two risks is a consequence of natural detection and screen-based
detection risks sharing the same disease development process in the subject. For example, the
event of natural detection indicates a non-zero risk of screen-based detection in the subject
as it informs us that the onset of the disease has already happened. This dependency will be
modelled through the concept of shared mixed e�ect (frailty) [12].
In our �rst approach we identify the onset time Y with the shared mixing variable and

make the assumption of conditional independence of potential risks of natural and screen-
based detection, given Y . Speci�cally,

GI(�|x; y)=GCDx(�|x; y)GSDx(�|x; y) (3)

where GCDx is the s.f. of time to clinical diagnosis (CDx), the sojourn time in the absence
of screening, and GSDx is the s.f. of the potential time to screen-based diagnosis (SDx). Here
� is time since onset, x is date of birth, and y is the age at onset. Note, that GSDx in our
model corresponds to a continuous distribution as it is represented as a continuous mixture
over random screening schedules in the population.
The density fI(�|x; y) corresponding to cancer diagnosis given birth year x and onset time

y can be split into the two crude densities corresponding to the two modes of diagnosis:
screening and clinical

fI(�|x; y)=fSDx(�|x; y)GCDx(�|x; y) + fCDx(�|x; y)GSDx(�|x; y) (4)

With age at tumour onset y integrated out of (4), we obtain a similar relationship describing
the partition of the observed p.d.f. fI(a|x) into the two crude components corresponding to
the two modes of detection

fI(a|x)=fcSDx(a|x) + fcCDx(a|x) (5)

where

fcSDx(a|x)=
∫ a

0
fSDx(a− y|x; y)GCDx(a− y|x; y)fO(y|x) dy (6)

and

fcCDx(a|x)=
∫ a

0
fCDx(a− y|x; y)GSDx(a− y|x; y)fO(y|x) dy (7)

Note that the crude p.d.f. fcSDx(a|x) is a function of age of the subject while the net p.d.f.
fSDx(�|x; y) conditioned on age at tumour onset is a function of the age of tumour �= a−y.
Also, fc· here are net densities with respect to death due to causes other than prostate cancer.
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It should be noted that the assumption of conditional risk independence is not essential.
The logic of this paper can be carried forward with minor changes if GSDx is conditioned on
the sojourn time or on a more complex surrogate of natural history process. However, at this
point we stop short of making the model more complex and make this and other re�nements
contingent upon compelling evidence from the data. One class of models consistent with the
independence assumption is the one where tumour growth is assumed to be deterministic, and
where competing risks of detection are independent, given the tumour growth curve [13].
The distribution for a non-negative random variable can be represented by a survival func-

tion G, a hazard function �, or the p.d.f. f. Dependent on the situation, we will use the most
convenient representation and keep in mind that other characteristics can be obtained using
the well-known relationships

G(t) = exp
{

−
∫ t

0
�(�) d�

}
=1−

∫ t

0
f(�) d�

f(t) =
�(t)
G(t)

= − dG(t)
dt

or their discrete counterparts.

2.2. Modelling cancer detection through screening

This section is devoted to modelling the distribution of potential time to screen-based detection
GSDx(�|x; y) conditional on the year of birth x and age at tumour onset y.
For an arbitrary individual from the target population, consider the ‘risk’ of getting the

�rst screen in his life. Age at �rst screen may be regarded as a survival time with the
instantaneous risk represented by the hazard function �1S(a; t). Naturally, �1S depends on age
a of the person and the current calendar year t. Generally, it is expected that �1S(a; t) increases
in t starting with the year of PSA introduction. As a function of a, it is reasonable to expect
that �1S(a; t) is increasing initially while the residual life expectancy is still substantial and
then decreasing for very old people. An empirical histogram estimate for �1S(a; t) can be
obtained by dividing the number of subjects at the age of a receiving their �rst screen in
year t by the total number of subjects with no evidence of the disease in the (a; t) cell. More
precisely, we should count tests in the interval (t; t + dt) and divide by dt, which results in
the same estimate for the grouping interval dt=1 year. Note that this estimate is inconsistent
unless the data are grouped [14].
The evolution of an x-birth cohort up to the age of a can be represented as a line connecting

points (�; x+ �), where �∈ [0; a], on the age by year plane called the Lexis diagram [15]. The
probability of no screens by the age of a, G1S, is a survival function obtained by integrating
(accumulating) the hazard �1S over the line

G1S(a|x)= exp
{

−
∫ a

0
�1S(�; x + �) d�

}
(8)

Denote by �2S(a; t) the intensity of screening in subjects who already had their �rst screen.
Generally, we expect �2S to be larger than �1S. Indeed, the fact that the subject has had his
�rst PSA test may identify him as a member of the group that is screened more frequently for
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reasons such as easier access to secondary testing having done this once already, favourable
attitude towards screening in those who choose to have their �rst test, doctor’s recommenda-
tions for serial secondary screens following the �rst one, etc.
The model for risk of diagnosis by cancer screening is based on the following assumptions:

• The probability that a subject born in year x who has never been screened by the age
of a receives his �rst screen in the age interval (a; a+ da) is �1S(a; x + a) da+ o(da).

• The probability that a subject born in year x who has been screened at least once by the
age of a receives a screen in the age interval (a; a+da) is �2S(a; x+ a) da+ o(da). This
assumption de�nes secondary screens as following a non-homogeneous Poisson process
in age with intensity �2S(a; x + a).

• The probability that a subject born in year x, with the disease onset at the age of y,
screened at the age of a is detected with cancer is

0; y¿a

�(a− y); otherwise
(9)

where �(�) is the sensitivity of screening, and � is the age of tumour at the time of
testing. It is natural to specify �(�) as an increasing function.

It should be noted that if the whole screening schedule for a person could be considered a
realization of a non-homogeneous Poisson process, we would expect �1S ≡ �2S. This re�ects
the fact that the time to any next event in such process is characterized by the hazard function
equal to the intensity of the process. The fact that �1S �≡ �2S de�es the description of the whole
screening schedule for the subject as a non-homogeneous Poisson process. In particular, given
the intensity of a non-homogeneous Poisson process, time to the next event depends only on
the location of the previous event, but not on the number of events that already happened. In
our case it matters whether it is a �rst or secondary test.
Consider the probability G2SDx(�|x; a; y) that a subject born in year x, with onset of the

disease at the age of y who has had his �rst screen by the age of a is not diagnosed by
screening in the age interval [a; a+�], a¿y. Note that this is a probability of no event in the
interval [0; �] for a non-homogeneous Poisson process in �∈ [0; �] with intensity �2S(a+ �; x+
a+ �) thinned with probability ��(�+a−y)=1−�(�+a−y). (We use the notation �A=1−A
for any A.) The intensity of a Poisson process with intensity � thinned with probability �� is
given by the product ��, so that with a¿y,

G2SDx(�|x; a; y)= exp
{

−
∫ �

0
�2S(a+ �; x + a+ �)�(�+ a− y) d�

}
(10)

If the interval in question is before onset, a+�6y, then there is no diagnosis and G2SDx(�|x; a;
y)=1. If a¡y and a+�¿y, the time interval in � where diagnosis is possible starts at y−a,
so that G2SDx(�|x; a; y) is given by an expression similar to (10) with the lower limit in the
integral set at y − a. Summarizing, we have

G2SDx(�|x; a; y)= exp
{

−
∫ �

max(y−a;0)
�2S(a+ �; x + a+ �)�(�+ a− y) d�

}
(11)

where
∫ b
a =0 for any b6 a.
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We are now equipped to derive the probability of no screening diagnosis by the age of
y+ �, GSDx(�|x; y) conditional on year of birth x and age at disease onset y, where � is time
since onset. We have

GSDx(�|x; y) =G1S(y + �|x) + �G1S(y|x)G2SDx(�|x; y; y)

+
∫ �

0
��(�)f1S(y + �|x)G2SDx(�− �|x; y + �; y) d� (12)

The �rst term in (12) addresses the possibility of no screens by the age of y+�. The second
term addresses the situation when the �rst screen occurs before onset of the disease at the
age of y and no diagnosis is achieved through secondary screens that might happen in the
age interval (y; y + �). The third term accumulates the probability that cancer is missed at
the �rst and secondary screens occurring after disease onset.

2.3. Composition of incident cancers

For an x-birth cohort consider the following random variables that model various potential
(other risks removed) durations in the incidence model:

Y , age at onset of the disease;
�CDx, time from onset to clinical diagnosis;
�SDx, time from onset to screening diagnosis;
�OC, age at death due to other causes.

Given x, �OC is assumed to be independent of Y , �CDx and �SDx. Consider the event of cancer
diagnosis {Dx|Scr} in the presence of screening. We may write

{Dx|Scr}= {Y +min(�CDx; �SDx)¡�OC}
Cases diagnosed in the presence of screening are composed of two disjoint groups,

{Dx|Scr}= {CDx|Scr} ∪ {SDx}
where {CDx|Scr} is the event of clinical diagnosis through symptoms,

{CDx|Scr}= {Y + �CDx¡�OC} ∩ {�SDx¿�CDx}
and {SDx} is the event of screening diagnosis,

{SDx}= {Y + �SDx¡�OC} ∩ {�CDx¿�SDx}
Screen-detected cases are in turn composed of two disjoint groups,

{SDx}= {RDx} ∪ {ODx}
where {RDx} is the event of diagnosis of a relevant cancer, and {ODx} is the event of
overdiagnosis. Relevant cancer is a case diagnosed at a screen such that if screening results
on the subject were ignored, he would still be clinically diagnosed later in his life time,

{RDx}= {�SDx¡�CDx} ∩ {�OC¿Y + �CDx} (13)
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Figure 2. Composition of detected cancers {Dx|Scr}; {SDx}, screen-based diagnosis; {Dx|¬Scr}, cancer
diagnosis without screening; {CDx|Scr}, clinical cancer diagnosis in the presence of screening (interval
cases); {RDx}, screen-detected cancer that would be detected without screening (relevant case); {ODx},

screen-detected cancer that would not be detected without screening (case of overdiagnosis).

Overdiagnosis is the event of screen detection such that the subject would die from other
causes without clinical diagnosis, if the results of screening were ignored

{ODx}= {�SDx¡�CDx} ∩ {Y + �CDx¿�OC} ∩ {Y + �SDx¡�OC}
If screening were ignored, detected cancers would be represented by a composition of two
disjoint groups, relevant cancers and interval cancers missed by screening,

{Dx|¬Scr}= {RDx} ∪ {CDx|Scr}
The structure of detected cancers described above (see Figure 2) can be veri�ed by elementary
sets algebra.

2.4. Overdiagnosis

2.4.1. Overdiagnosis as a long-term outcome. Overdiagnosis as a population measure is de-
�ned as a fraction of cancers among all screen detected cancers that would not be detected in
the absence of screening. Corresponding to this population statistic is the following conditional
probability obtained using the results of Section 2.3:

Pr{ODx|SDx}= Pr{ODx}
Pr{SDx} =

Pr{Dx|Scr} − Pr{Dx|¬Scr}
Pr{SDx} (14)

It is clear that the above measure represents excess detection due to introduction of screening
relative to all screen-detected cases. Alternatively, overdiagnosis and excess detection can be
measured relative to all cancer cases.

Pr{ODx|{Dx|Scr}}= Pr{ODx}
Pr{Dx|Scr} (15)

As we will see in Section 5, the two conditional probabilities (14) and (15) show di�erent
patterns of cohort e�ects. While overdiagnosis de�ned as (14) is decreasing as the cohort
life span enters the screening era and screening a�ects the oldest individuals in the cohort,

Copyright ? 2006 John Wiley & Sons, Ltd. Statist. Med. (in press)



A POPULATION MODEL

the conditional probability (15) shows an increasing pattern. The crude probability of cancer
diagnosis with screening in place {Dx|Scr} for the x-birth cohort is given by

Pr{Dx|Scr; x}=
∫ ∞

0
GOC(a|x)fI(a|x) da (16)

where GOC(a|x) is the survival function modelling death due to other causes for age a and
birth year x. Given the hazard function �OC(a; t) by age and calendar time available for the
general population from various sources, GOC can be computed using an expression similar to
(8). Likewise, the probability of cancer diagnosis in the absence of screening can be written as

Pr{Dx|¬Scr; x}=
∫ ∞

0
GOC(a|x)fCDx(a|x) da (17)

where

fCDx =
∫ a

0
fO(y|x)fCDx(a− y|x; y) dy

is the net p.d.f. of age at clinical diagnosis Y + �CDx. The denominator of (14) is

Pr{SDx|Scr}=
∫ ∞

0
GOC(a|x)fcSDx(a|x) da

where fcSDx is the crude density given by (6). Note that overdiagnosis and lead time (see
next section) considered as a long-term outcome are a matter of prediction as well as esti-
mation. Their evaluation involves projecting population history beyond the observed box for
the duration of a lifetime. For example, a man turning 50 in year 2000 may be diagnosed by
screening in year 2004. Whether this man is a case of overdiagnosis depends on the other
cause of death risk, trends in disease development and other relevant population dynamics
during his potential future lifetime up to the year of, say, 2050. Various other de�nitions
could be proposed to make these characteristics less confounded by future scenarios.

2.4.2. Age-speci�c presentation. In this subsection we consider a measure of overdiagnosis
conditional on age and calendar year at detection. Age-speci�c conditional p.d.f. of overdiag-
nosis is proportional to the crude p.d.f. of age at the event of overdiagnosis

f(a;ODx|x) =
∫ a

0
fO(y|x)fSDx(a− y|x; y)

∫ ∞

0
fOC(a+ s|x)GCDx(a− y + s|x; y) dy ds (18)

the quantity f(a;ODx|x) da representing a fraction of the x-cohort overdiagnosed at the age
of a to a + da. Here and in the sequel we omit the subscript to f when it is clear from
its arguments what it relates to. Expression (18) represents a formula of total probability
averaging over the following sequence of events, in order of the product in (18), onset at the
age of y, screening diagnosis at the age of a, and death from other causes s years later prior
to clinical diagnosis of prostate cancer. A similar crude p.d.f. for screen-based diagnosis and
any diagnosis is given by

f(a;SDx|x)=GOC(a|x)fcSDx(a|x)
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and

fDx(a|x)=GOC(a|x)fI(a|x)
respectively. Finally, age-speci�c probabilities of overdiagnosis in screen-detected cases and
in all prostate cancer cases are given by

Pr{ODx|x; a;SDx}= fODx(a;ODx|x)
fSDx(a;SDx|x) (19)

and

Pr{ODx|x; a;Dx}= fODx(a;ODx|x)
fDx(a|x) (20)

respectively. Shown in Figure 7 (bottom) are the two age-speci�c measures of overdiagnosis
as estimated from SEER data.

2.5. Lead time

2.5.1. Lead time as long-term outcome. Lead time is the time by which diagnosis of cancer
is advanced due to screening in patients who would be detected anyway if screening were
not applied. Thus, lead time is de�ned in the group of patients detected with relevant cancer
{RDx} (see (13)). With this de�nition, we avoid the ambiguity of the lead time in over-
diagnosed cases. The group of patients with relevant cancer is characterized by the following
history of the disease:

• The subject is born in year x.
• Tumour onset occurs at the age of y. It is not interrupted by death due to other causes.
• Screen-based detection of the tumour occurs at the age of y + �SDx. This event is not
interrupted by death due to other causes.

• If screening diagnosis were ignored, the tumour would surface at the age of y + �CDx
(clinical diagnosis), �CDx¿�SDx. This event would not be interrupted by death due to
other causes.

The lead time is the random variable �CDx−�SDx. Its existence is conditional on the membership
in the {RDx} group. Formally, the probability of {RDx} for the x-birth cohort is given by

Pr{RDx|x}=
∫ ∞

0
fO(y|x)

∫ ∞

0
fCDx(�|x; y)GOC(y + �|x) �GSDx(�|x; y) dy d� (21)

where �GSDx(�|x; y)=1−GSDx(�|x; y) is the net probability of screening diagnosis in � years
after tumour onset. The product of probabilities in (21) directly follows the de�nition of
relevant cancer (13). We can now write the mean lead time in x-cohort as the conditional
expectation

E{�CDx − �SDx|RDx; x}= 1
Pr{RDx|x}

∫ ∞

0
fO(y|x)

∫ ∞

0
fCDx(�|x; y)GOC(y + �|x)

×
∫ �

0
fSDx(�|x; y)(�− �) dy d� d� (22)
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Clearly, it is reasonable to limit the time span in the improper integrals by the maximal human
lifetime.

2.5.2. Age-speci�c presentation. An age-speci�c version of the lead-time can be de�ned.
Consider a conditional mean lead time, given relevant diagnosis at the age of a. The crude
joint p.d.f. of age (a) and lead time (s) at relevant diagnosis (RDx) is represented as

fLT(s; a;RDx|x)=GOC(a+ s|x)
∫ a

0
fO(y|x)fSDx(a− y|x; y)fCDx(a− y + s) dy (23)

where the quantity fLT(s; a;RDx|x) ds da represents a fraction of the x-cohort having relevant
diagnosis at the age of a to a+ da and lead time s to s+ ds. The crude age distribution at
relevant diagnosis is obtained by integrating the lead time out of (23),

f(a;RDx|x)=
∫ ∞

0
fLT(s; a;RDx|x) ds

Now, the mean conditional lead time given age at diagnosis (a) and year of diagnosis (x+a)
is given by

E{�CDx − �SDx|RDx; x; a}=
∫ ∞

0

fLT(s; a;RDx|x)
f(a;RDx|x) s ds (24)

2.5.3. Potential lead time. Lead time de�ned in the previous sections is conditional on the
event of screen-detection and on the fact that this is a relevant diagnosis (the potential point
of clinical diagnosis at the end of sojourn time occurs before other causes interrupt the natural
history). In order to make it a good surrogate of screening dissemination, we now broaden the
de�nition to all cancer cases and consider it in the absence of other causes. The absence of
other causes makes the concept of relevant diagnosis obsolete. The lead time for an interval
(non-screening) diagnosis is de�ned as zero. Modifying the argument of the previous section,
we have the following expression for the age-speci�c potential lead time:

E{�CDx − �SDx|x; a}=
∫ ∞

0

fLT(s; a|x)
fI(a|x) s ds (25)

where

fLT(s; a|x)=
∫ a

0
fO(y|x)fCDx(a− y + s|x; y)

{
GSDx(a− y|x; y); s=0

fSDx(a− y|x; y); s¿0

}
dy

3. LIKELIHOOD

Observed data for the incidence model is represented by the following quantities available by
age a and calendar year t in a certain box:

• Population count P(a; t) of people at risk of cancer development.
• Count of cancer cases detected in year t at the age of a, C(a; t).
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The conditional likelihood of the data is built as a product of conditional probabilities of
cancer detection given the subject is in the risk set for each a; t combination from the box.

L=
∏
a; t
[1− �I(a; t)]P(a; t)−C(a; t)�I(a; t)C(a; t) (26)

In the above expression we omit dt=1 year from the product � dt. Taking the log, using the
fact that �I is small, and dropping terms that do not depend on the model parameters, we
obtain

‘=
∑
a; t
C(a; t) log �I(a; t)− P(a; t)�I(a; t) (27)

Note that the same likelihood would result if we assumed that C is Poisson distributed with
expectation P�I and that C(a; t) represent independent random variables for di�erent (a; t)
pairs (which is not the case in (27)). Maximum likelihood inference is used to obtain point
estimates and con�dence intervals for the model parameters entering �I. Maximization of the
likelihood can be regarded as minimizing a certain distance between the empirical incidence
C=P and its model-based counterpart �I.

4. SPECIFYING THE MODEL

Since incidence of prostate cancer before the age of 50 is negligibly small, we will associate
the birth year x with the year in which the man turns 50. Age variables will be counted out
accordingly from this point.

4.1. Age at tumour onset

We use three parametric distribution families in our analysis: Gamma distribution, Weibull
distribution and the so-called Moolgavkar, Venzon, Knudson (MVK) distribution [16–18] for
the baseline age at tumour onset. The Weibull baseline hazard function is given by

hO(y)= sO

(
�(1 + 1=sO)

�O

)sO
ysO−1

where y is the age past 50. In the above expression Weibull distribution is parameterized
through the mean �O and the shape parameter sO related to the coe�cient of variation√

�(1 + (2=sO))
�2(1 + (1=sO))

− 1

With the Gamma distribution, we have

fO(y)=
[
ysO
�O

]sO e−ysO=�O
y�(sO)

Gamma and Weibull distributions are the two convenience choices.
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The MVK distribution [16–18]

hO(y)=�AB
e(A+B)y − 1
B+ Ae(A+B)y

where A; B and � are identi�able parameters represents a two-stage mechanistic model of
carcinogenesis. The MVK distribution has an extra degree of freedom compared to the other
two distributions. Weibull distribution showed the best Akaike information criterion (AIC) in
the sensitivity analysis.
Included in the model is a trend function TO(t) that depends on calendar time. This function

exerts a multiplicative e�ect on the baseline hazard so that the hazard of tumour onset depends
on age and birth cohort

�O(y|x)= hO(y)TO(x + y)
The trend is used to model possible changes in the pattern of the disease onset with calendar
time due to unspeci�ed factors such as changes in diet, environment and biology of the disease.
Note that it is hardly possible to give a biological de�nition for the tumour onset. From the
modelling prospective, tumour onset represents the earliest point in time where cancer could
be detected by screening. For this reason changes in detection technology, practice of biopsies
for the disease following a positive screens and other diagnostics management issues may also
a�ect the de�nition. Changes in such practices that are not modelled in a mechanistic fashion
are thought of as part of the trend function. We used truncated linear trend functions in data
analysis.

4.2. Sojourn time distribution

Sojourn time represents the potential (other risks removed) time from tumour onset to its
clinical diagnosis. Weibull distribution with mean �CDx and shape parameter sCDx is used to
model the baseline sojourn time hazard. Two e�ects can be imposed on the baseline sojourn
time distribution:

• Age dependence. Sojourn time may be modulated by age for various reasons. Tumour
growth biology may depend on the age of the person. Also, tumours developing at a
younger age may represent a special subtype that can have di�erent progression char-
acteristics. To model age dependency, the mean sojourn time is regressed on the age
at tumour onset y as �CDx exp(−	CDxy), where the parameter 	CDx models correlation
between the sojourn time and the onset time.

• Secular trend. Sojourn time may be modulated by changes in the practice of cancer
detection other than the studied modality of screening. Most notably, before PSA was
introduced, prostate cancer was often detected as a result of surgery (transurethral resec-
tion of the prostate, TURP) for benign prostate disorders [19]. Other changes in prostate
cancer awareness in the population and detection practices may have contributed to a
trend of increasing incidence observed before PSA was introduced. These trends in calen-
dar time are modelled using a multiplicative trend function TCDx(t) acting on the baseline
sojourn time hazard.

We have the sojourn time hazard in the form

�CDx(�|x; y)= hCDx(�|y)TCDx(x + y + �) (28)
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Figure 3. Risks of �rst �1S and secondary �2S PSA tests as estimated from the simulation model by age
and calendar year. Left: proportion of never screened men at risk getting their �rst PSA test. Right:

proportion of men screened at least once getting a secondary PSA test.

where x is the birth year, y is age (past 50) at tumour onset, � is time since tumour onset,
and hCDx(�|y) is Weibull hazard with shape parameter sCDx and mean �CDx exp(−	CDxy).

4.3. PSA screening model

National Cancer Institute’s Statistical Research and Applications Branch has developed a sim-
ulator for PSA schedules for arbitrary birth cohorts in the 1916–2000 box. This simulator uses
data from the National Health Interview Survey (NHIS) [20] and Surveillance, Epidemiology
and End Results (SEER)—Medicare linked database [21]. To extrapolate the data beyond the
original age–year box, generalized additive models (R procedure gam) were used to smooth
the data. A logistic regression model was used for smoothing with the additive main e�ects
of age a and calendar year t represented by thin plate regression splines [22]. No interaction
smooth terms were speci�ed. Shown in Figure 3 is an estimate for the risks of �rst �1S(a; t)
and secondary �2S(a; t) PSA tests. It is clear from the �gure that the risk of secondary PSA
test is several times higher the one for the �rst test. This observation prompted the develop-
ment of the two-stage model for screening-based detection described in Section 2.2. Frequency
of PSA testing by age increases initially as the man enters the risk zone for prostate can-
cer. However for the older ages a decreasing pattern is observed perhaps because of limited
residual life expectancy and associated diminishing relevance of detection of prostate cancer.
Dissemination by calendar year is di�erent for the �rst and secondary tests. In men who have
been screened at least once the frequency increases as PSA is introduced into practice and the
surface settles at stable values in the 1990s. The risk of getting the �rst test by calendar year
shows a spike in early 1990s and settles at a lower level later showing a decreasing pattern in
the late 1990s. This phenomenon deserves further study. The e�ect could be a consequence of
heterogeneity in people’s acceptance of PSA testing. The group of men showing compliance
for PSA testing is dissipating with time as such men get tested and leave the set of men ‘at
risk’ for the �rst test. Another explanation might be that the recent decline in the frequency
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of new PSA tests is associated with a dissemination of knowledge of various controversial
issues surrounding screening for and treatment of prostate cancer.

5. DATA ANALYSIS

SEER database was used to obtain data on more than 350 000 cases of prostate cancer diag-
nosed in nine areas of the U.S. (San Francisco-Oakland, Connecticut, Detroit, Hawaii, Iowa,
New Mexico, Seattle, Utah, Atlanta) as well as population count �les corresponding to those
cases. We use the modelling box corresponding to age interval [50,85] and calendar year
interval [1973–2000]. Age distribution in the U.S. population in year 2000 for men over 50
is used as a standard when age-adjusted characteristics are reported. Risk of death from other
causes was derived from the Human Mortality Database [23].
As shown in Figure 1, incidence of prostate cancer before the introduction of PSA showed

an increasing trend in calendar time. This is reportedly due to TURP [19], a surgical treatment
for a benign enlargement of the prostate. Incidentally, many early stage prostate cancers were
discovered as a result of TURPS. With the introduction of PSA modelled from the year of
1987, TURP rates rapidly declined as treatment for benign disease in the prostate was replaced
by non-surgical alternatives [19]. In order to model this e�ect, a linear trend was speci�ed
for the sojourn time model (28) for the period 1973–1987, saturating in 1988

TCDx(t) =

⎧⎪⎪⎨
⎪⎪⎩
1; t¡1973

1 + c(t − 1973); 19736 t6 1988

1 + c(1988− 1973); t¿1988

The parameter c speci�es the slope of the trend. As we are mainly interested in the population
e�ects of PSA screening, the model parameters responsible for pre-PSA trends are considered
nuisance parameters. Yet modelling and joint estimation of the pre-PSA era parameters is im-
portant as it represents a reference baseline point for the relative e�ects of PSA. In specifying
PSA e�ects we were looking for a simple trend function that would allow us to provide an
adequate description of cancer incidence jointly for the pre- and post-PSA era.
We believed that changes in the onset time distribution over a relatively short observation

window are unlikely. Such changes would mean that the prostate cancer has become a di�erent
disease over the end of the 20th century. Without compelling evidence we were hesitant to
include such changes into the model, particularly since onset time is unobservable. The model
with onset trend alone showed a much worse AIC than the model where incidence trend was
addressed through sojourn time (AIC 4538 versus 510). Although introduction of both trends
showed the best AIC of 281, the estimated slope of the onset time trend in this combined
model was by two orders of magnitude smaller than that of the sojourn time trend (0.1 versus
0.004), which made it too small to be interpreted. Also, the quality of registry data and coding
practices have been improving, particularly in the period from 1973 to 1988 where incidence
trend was observed. Based on these considerations we decided to proceed without TO(t) in
the model.
The model assigned negative correlation between age at onset and the sojourn time (	CDx =

0:274, CI: (0.272,0.279)). This e�ect is attributable to underestimation of cancer incidence

Copyright ? 2006 John Wiley & Sons, Ltd. Statist. Med. (in press)



A. TSODIKOV, A. SZABO AND J. WEGELIN

S
ur

vi
va

l f
u
n
ct

io
n

0 10 20 30 40 50 60

Time to onset, years

0.0

0.2

0.4

0.6

0.8

1.0

1970
1975

1980
1985

1990
1995

2000
2005

Year

0

500

1000

1500

2000

2500

3000

3500

 MVK
 Gamma
 Weibull

Actual
dissemination

No PSA

Yearly PSA tests

Figure 4. Left: time to tumour onset survival function as estimated using Gamma,
Weibull and MVK families of parametric distributions. Time count starts at the age
of 50. Right: predictions of prostate cancer age-adjusted (U.S. males in year 2000)

incidence under various scenarios of PSA dissemination.

for men over 70 in the early 1970s (Figure 5). Negative correlation is allowing for late onset
and early detection thus increasing cancer incidence in the elderly in the absence of PSA.
We believe this is an artefact induced by assumed �at secular trends before 1973. Since no
data before 1973 was available, our ability to address the issue was limited, and we forced
	CDx =0 in the �nal �t. It should be noted that this left the other model parameters and the
shape of the incidence surface past 1980 practically unaltered.
PSA sensitivity as a function of the age of tumour � (time since tumour onset) was speci�ed

as the following increasing function:

�(�)=1− exp(−b�); b¿0

However, when �tting the model, the estimate settled at an 100 per cent sensitive PSA
test. The pro�le likelihood of b is an increasing function (not shown). Therefore, a model
with 100 per cent PSA sensitivity was used. With respect to the parameter b, maximum
likelihood estimate occurred at the border of the parametric space. It is well known that in
such cases likelihood ratio statistic does not generally follow the chi-squared distribution.
Basing model selection on the AIC criterion, we used the general rule of thumb that AIC
needs to change by more than 2 in order that models be considered as di�erent. This criterion
puts the uncertainty in the b parameter at the AIC-con�dence interval of [4;∞). This means
that the model indicates that PSA sensitivity reaches half of its maximal value in 2 months
after onset or sooner.
It should be stressed that the notion of onset time is a mathematical construct that is di�cult

to identify with speci�c in vivo biological processes leading to cancer, particularly since it
cannot be observed. It might be the case that population data provide limited information to
make reliable inference about this unobservable process. With these considerations in mind
we conducted sensitivity analyses with respect to the onset time distribution. It turned out
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Table I. Estimates of model parameters and con�dence intervals.

Parameter Legend Point estimate 95% CI

�CDx Mean baseline sojourn time 18.558 (18:345; 18:775)
sCDx Shape sojourn time 1.541 (1:5191; 1:5644)
c Slope of trend for sojourn time 0.09354 (0:09068; 0:09641)
�O Mean age past 50 at tumour onset 72.732 (72:498; 72:965)
sO Shape of age past 50 at tumour onset 1.6153 (1:6067; 1:6239)

Time and age is measured in years.
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Figure 5. Prostate cancer incidence. Observed (left): empirical estimate of prostate
cancer incidence C(a; t)=P(a; t). Expected (right): model-predicted prostate cancer

incidence �I(a; t) by age and calendar year.

that Weibull distribution showed the best AIC (510 for Weibull versus more than 1000 for
Gamma and MVK). However, we found that all distribution choices provided a very similar
estimate for the age at onset survival function (Figure 4). As evident from the �gure, the
shape of the onset time distribution is fairly unspectacular, and not much �exibility is needed
to reproduce the pattern.
Likelihood was maximized by the Powell’s method [24] of conjugate directions. Con�dence

intervals for the model parameters are based on likelihood ratio and inverting of the pro�le
likelihood surface for each parameter. Estimates of model parameters and the corresponding
con�dence intervals are shown in Table I.
Both sojourn time and onset time are potential times de�ned as if all other risks were re-

moved. Note that the age at tumour onset goes well beyond the normal human lifetime. This
is a consequence of the fact that only a proportion of men would ever develop prostate can-
cer in their life span. Shown in Figure 5 is a histogram empirical estimate of prostate cancer
incidence C(a; t)=P(a; t) and its model-predicted counterpart �I(a; t) by age and calendar year.
The model captures the basic pattern of prostate cancer incidence. The spike e�ect in the inci-
dence occurring with the introduction of PSA gets more pronounced with age except for very
old people. This is a consequence of latent prevalence of the disease accumulating with age.
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Figure 6. Overdiagnosis (left) and lead-time (right) by birth cohort. Dashed line is the
fraction of overdiagnosis in screen-detected patients. Solid line (left) is the fraction of

overdiagnosis in all cancer patients.

Shown in Figure 6 is an estimate of lead time and overdiagnosis by birth cohort. Both
notions formalized in Sections 2.4 and 2.5 relate to the potential natural history of the disease
and population screening exposure over the life span of an individual. As we move the year
of birth to the right, more and more of the cohort life span falls on the PSA dissemination era.
This leads to an increasing pattern of lead time and overdiagnosis among all detected cancer
patients (solid curves). For men entering the age risk zone for prostate cancer at the present
time, the model predicts about 6-year mean lead time and 25 per cent overdiagnosis among all
detected patients. Interestingly, overdiagnosis in screen-detected cases is a decreasing function
of the birth year and settles at about 30 per cent for the present era. Initially for a person
born in the 1950s only older ages are a�ected by PSA dissemination. If detected at such an
age, the case is very likely to be overdiagnosed. Indeed, if screening were ignored the disease
would have little chance to surface because of the very small expected residual lifetime in
older people. This is why the dashed curve in Figure 6 (left) starts high. As we move the
potential life history more and more under the PSA exposure, the pool of screen-detected
cases gets enriched with relevant cancers that have advanced diagnosis due to PSA yet would
surface clinically in their potential residual lifetime if PSA were not applied. Also, since (14)
and (15) have the same numerator and in the denominator screen-detected cases represent a
subset of all cancer cases, overdiagnosis relative to screen-detected cases (the dashed curve) is
always higher than the one relative to all cancer cases (the solid curve). Shown in Figure 7 are
the age-speci�c estimates. These estimates are conditional on cancer diagnosis at the speci�ed
age. In screen-detected cases (left part of the �gure), lead time and overdiagnosis show a
fairly stationary age distribution by calendar year. Bivariate distributions in all detected cases
(right part of the �gure) follow PSA dissemination pattern showing increasing lead time and
overdiagnosis with the introduction of PSA.
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Figure 7. Age-speci�c fractions of overdiagnosis (bottom) and lead-time (top). Top left shows lead time
de�ned using the competing risk of death due to other causes (22), while top right �gure gives mean
potential lead time in the absence of other causes (25). Bottom left shows the fraction of overdiagnosis
in screen-detected cancer patients (19), and the bottom right �gure refers to all cancer patients (20).

Finally, we evaluate two hypothetical scenarios of PSA testing: no PSA screening versus
yearly PSA tests for every men over 50 starting in 1988. Shown in Figure 4, right, are
age-adjusted predictions for the two scenarios as well as the prediction for actual PSA dis-
semination as estimated by the simulator. This �gure gives a range for possible incidence
dynamics dependent on PSA dissemination patterns.

6. DISCUSSION

In this paper we have presented a population model of prostate cancer natural history and
screening. The model was used to capture the spike of prostate cancer incidence registered
after introduction and dissemination of PSA screening for the disease. The link between
screening dissemination in the population, natural history of the disease and cancer registration
statistics allowed us to predict lead time and overdiagnosis of prostate cancer. The latter two
characteristics were rigorously de�ned in the population setting where screening schedules are
random and unknown.
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An external data source, NHIS, was used to inform the model about recent frequencies
of PSA testing. In a large scale modelling e�ort, relying on a variety of data sources is
unavoidable. However, this may create problems. In particular, there might be di�erences
in PSA dissemination between SEER population (approx 11 per cent of total U.S.) and the
NHIS national base. Available data on PSA testing do not allow us to discriminate between
a diagnostic and a screening PSA test. Diagnostic tests are usually prompted by symptoms
of an enlarged prostate. Prostate enlargement can be caused by locally advanced prostate
cancer, or, more likely by a benign disease. Thus cancer discovered as a result of PSA
may be a truly screening diagnosis, clinical diagnosis or incidental diagnosis. To prevent
misattribution of PSA dissemination, tests performed within 3 months of diagnosis were con-
sidered as diagnostic. Use of external data sources introduces additional variability of the
estimates that is di�cult to control. Bayesian methods might be preferable if this variability is
substantial.
Available data do not provide explicit information on unobservable processes such as tu-

mour onset and sensitivity of PSA test prior to diagnosis. Tumour onset can never be ob-
served, and SEER data do not have information on how many men were tested in each
particular (age,year) cell. This makes the model estimates of the sensitivity curve and the
onset time distribution di�cult to verify by the data. Sensitivity is likely to be technol-
ogy dependent which might introduce a trend in the sensitivity parameters in calendar
time.
A number of model applications remained beyond the scope of the present paper. The

model can be used to adjust estimates of survival after treatment for the lead-time and over-
diagnosis. Regression analysis of prostate cancer survival is confounded by the lead time and
overdiagnosis. People diagnosed under less intensive screening generally have shorter lead
times and shorter apparent survival times. Also, they are less likely to be over-diagnosed
and appear ‘cured’ when followed up for post-treatment failure. In order to adjust estimated
treatment e�ects for such confounding conditional history of the disease given presentation at
diagnosis can be considered as frailty when analysing survival data. The population incidence
model presented above can be used to derive the frailty distribution as it changes with year
of diagnosis, age and clinical covariates. Such model development may help reduce the biases
inherent in evaluation of treatment e�ects using non-randomized tumour registry data.
Jointly, cancer incidence and survival models can be used to build a model of mortality that

has a link to PSA dissemination parameters and the e�ects of treatment and screening. This
approach appears promising as a tool to address the reasons for recent declines in prostate
cancer mortality.
Analysis of prostate cancer incidence by race indicates that race might be a important

variable modulating the natural history of the disease. Reliable estimates are needed for
PSA dissemination by race in order to address a possible causal e�ect of race in prostate
cancer.
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