
Semantic-Based Concurrency Control
for Object-Oriented Database Systems Supporting Real-Time Applications

Juhnyoung Lee and Sang H. Son

Department of Computer Science
University of Virginia

Charlottesville, VA 22903, USA
email{jl2q,son}@cs.virginia.edu

fax(804) 982-2214

Abstract

Recently object-orienfed database technology has started to gain
the attention of researchers in real-time database systems. This
paper investigates major issues in designing semantic-based
concurrency control for object-orient database systems
supporting real-time applications, and describes an approach to
solving those problems in an eflcient way. This approach
depends on the notion of affected-set of operations to determine
operation compatibilities, and employs concurrency control
algorithms augmented with priority-based conflict resolution
schemes. With this method, it is impossible to maneuver the trade-
off between logical and temporal consistency constraints in
determining operation compatibilities, because the method deals
with the two separately in different dimensions. However, this
approach significantly lessens the complexity of the compatibility
relation construction process, and can easily apply results from
previous research on semantic-based concurrency control for
object-oriented databases and on priority-based concurrency
control for real-time database systems.

1. Introduction

A real-time database system (RTDBS) is a transaction
processing system where transactions have explicit timing
constraints. Most work on concurrency control in real-time
database systems has been done on the basis of relational data
models [Son92]. Recently, however, object-oriented data models
have attracted the attention of researchers in RTDBSs [Lort93,
Di931. The motivation of the researchers is to bring to bear the
benefits of object-oriented database technology in designing real-
time database systems. An object-oriented database differs from
relational databases since information is maintained in terms of
classes and instances of these classes. Both classes and instances
are referred to as objects. Classes define both attributes and the
procedures through which instances can be manipulated. The
procedures associated with a class are referred to as methods, and
a method may invoke other methods on other objects in the
database. This model of execution generalizes the classical model
of transaction processing by permitting arbitrary operations on
objects as opposed to traditional read and write operations, and by

This work was supported in part by ONR, Lord and CIT.

permitting nested transactions as opposed to flat transactions.

Two major benefits of object-oriented data models are
[Zdo90]: (1) better support of advanced data-intensive
applications such as design databases, multimedia databases, and
knowledge bases mainly by providing the capabilities for
modeling, storing and manipulating complex objects, and (2)
better software engineering in building large application systems
that consist of reusable modules, mainly by providing support for
encapsulated objects, i.e., instances of abstract data types. The
need for supporting real-time database requirements with object-
oriented data models may arise because real-time applications
may require modeling complex encapsulated objects.

The design of an RTDBS based on an object-oriented
data model presents a number of new and challenging problems.
In this paper, we focus on concurrency control for real-time
object-oriented database systems. In particular, we study
techniques to improve concurrency of transactions executing on
data objects through the use of semantic information of operations
defined on objects. Such techniques are referred to as semantic-
based concurrency control.

In general, object-oriented data models provide greater
opportunities for supporting semantic-based concurrency control
than traditional database models for a variety of reasons [Agra92,
Di93, Muth931. First, the capability of including user-defined
operations of arbitrary complexity in data object representation
provides greater semantic information about the operations that
can be exploited for concurrency control. Second, because of the
encapsulation mechanism of object-oriented models, operations
defined on a data object provide the only means to access the
object’s data. Thus, data contention can occur only among
operation invocations within the object. This characteristic of
object-oriented data models provides greater flexibility for
concurrency control in that it allows concurrency control specific
to individual data objects. Finally, improved capability of
handling constraints in object-oriented data models helps
concurrency control. In particular, the capability of handling both
logical and temporal consistency constraints in a uniform manner
is beneficial for concurrency control in RTDBSs.

We should also note that in some sense, the performance
improvement by using semantic information is something
required to be done in object-oriented databases. Because data
objects in object-oriented databases are often large and complex,

1068-3070/94 $03.00 0 1994 IEEE

I

156

mailto:email{jl2q,son}@cs.virginia.edu

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1994 2. REPORT TYPE

3. DATES COVERED
 00-00-1994 to 00-00-1994

4. TITLE AND SUBTITLE
Semantic-Based Concurrency Control for Object-Oriented Database
Systems Supporting Real-Time Applications

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Virginia,Department of Computer Science,151 Engineer’s
Way,Cahrlottesville,VA,22094-4740

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

locking an entire data object for concurrency control (or
transaction validation for accesses to an entire data object in case
of optimistic concurrency control) may be inefficient and
unnecessary. If semantics of operations are taken into account in
concurrency control, the necessity of locking the entire data object
vanishes, and multiple operations that do not affect the same part
of' an object can potentially execute concurrently without
violating the logical consistency constraints of the object.

The remainder of this paper is organized in the following
fashion: Section 2 examines three major issues in designing
semantic-based concurrency control for real-time database
systems based on an object-oriented data model. A brief survey of
related work is presented in Section 3. Section 4 describes an
approach to designing semantic-based concurrency control for
real-time object-oriented database systems. Finally Section 5
summarizes the main conclusions of this study and outlines future
work.

2. Design Issues

Even without considering semantic information and
timing constraints, concurrency control in object-oriented
database systems is a more difficult problem than that in relational
database systems. Object-oriented data models have inherently
inefficient nature to ensure data consistency because objects of
arbitrary complexity are the unit of locks and sometimes
concurrency control requires to lock not only the object accessed
by a transaction, but also several other objects not directly
accessed by the transaction. The latter problem is mainly caused
by class hierarchy in object-oriented data models. It was pointed
out that (1) while a transaction accesses instances of a class,
another transaction should not able to modify the definition of any
of the super classes of the class, and (2) while a transaction is
evaluating a query, a set of class sub-hierarchies must not be
modified by a conflicting transaction [Kim90].

Use of complete semantic information helps attain
higher concurrency. However, the expected performance gain
does not come for free. In general, the use of semantic information
in an object-oriented data model increases the complexity of
concurrency control for a variety of reasons. The additional
complexity may arise due to complex domain of interpretation for
various operations, and possibility of using different concurrency
control mechanisms specific to each object. In an RTDBS where
concurrency control has to consider not only logical but also
temporal consistency constraints, the concurrency control
mechanism may become even more complex. In designing a
semantic-based concurrency control mechanism for a real-time
object-oriented database system, we need to consider the
following three major issues: detection of compatibility relation
of operations defined on each object, determination of an
appropriate concurrency control algorithm for each object and
system, and support of logical data consistency across objects in
the system.

2.1. Compatibility Relation

In implementing a semantic-based concurrency control
mechanism, semantics of operations in each object needs to be

interpreted to determine allowable interleaving of each pair of
operation invocations. For a complete use of semantic
information, in general, this process has to consider various
domains of semantic information, including the set of attributes
affected by a particular operation invocation, and the parameters
of operation invocations. In particular, in an RTDBS, temporal
consistency constraints imposed on data objects and transactions
may also need to be considered in the process. Furthermore, the
process may become even more complex, when the system allows
relaxation of serializability as the correctness criterion for logical
data consistency. Due to the variety of domains of semantic
information, the process of building compatibility relation tends
to be application dependent. An ad hoc process of detecting
operation compatibilities often places a heavy burden on
application programmers to define the semantics of operations.

Another question related to the process of compatibility
relation detection is whether a compatibility relationship of an
operation to other operations in an object is determined statically
when the object is created or dynamically when the operation is
requested to be executed on the object. In case of the static policy,
a compatibility relation is defined for an object in the form of a
table when the object is created. Alternatively, the compatibility
relation can be defined by a compatibility function, where
compatibility is expressed as a run-time function. In general,
improved concurrency may be expected when the compatibility
relation is determined dynamically, because we can exploit
information about the current state of the object, and actual
parameters of the operations as well as other information.

2.2. Concurrency Control Algorithms

Once the compatibility relation of an object is given, an
easy way to implement a concurrency control mechanism of the
object is to use a simple concurrency control protocol such as two-
phase locking which controls concurrent data operations by using
the given compatibility relation to satisfy consistency constraints.
However, because the encapsulation capability of object-oriented
data models allows different concurrency control algorithms to be
used for different data objects, as we explained, we may expect
performance improved further by choosing for each object a
customized concurrency control algorithm efficient for its
operating characteristics, resource availability and workload level
in the system.

Various concurrency control algorithms basically differ
in two aspects: the time when they detect conflicts and the way
that they resolve conflicts. Locking [Esw76] and optimistic
concurrency control [Kung81] in their basic form represent the
two extremes in terms of these two aspects. Locking detects
conflicts as soon as they occur and resolves them using blocking.
Optimistic scheme detects conflicts only at transaction commit
time and resolves them using restarts.

The impact of those differences in concurrency control
algorithms on performance has been the major theme in the
performance study of concurrency control in both conventional
and real-time database systems. The results from these studies can
be summarized as follows: In conventional database systems,
locking algorithms that resolve data conflicts by blocking
transactions outperforms restart-oriented algorithms, especially

157

when physical resources are limited. If resource utilizations are
low enough so that a large amount of wasted resources can be
tolerated, and there are large number of transactions available to
execute, then a restart-oriented algorithm such as optimistic
concurrency control that allows higher concurrency is a better
choice wem871. In addition, the delayed conflict resolution of
optimistic approach helps in making better decisions in conflict
resolution, since more information about conflicting transactions
is available at this later stage. On the other hand, the immediate
conflict resolution policy of locking may lead to useless restarts
and blocking in RTDBSs due to its lack of information on
conflicting transactions at the time of conflict resolution [Hari92].

2.3. Inter-Object Data Consistency

In an object-oriented database system, concurrency
control mechanisms defined in objects have to resolve der-object
inconsistency as well as satisfy local data consistency within each
object. Transactions, in an object-oriented database system,
consist of a set of operation invocations on one or more objects.
Thus, transactions may read and write inconsistent data across
objects, when the serialization order among transactions locally
determined in one object does not agree with one built in another
object. Without keeping information about the status of
transactions executing across objects, local concurrency control
mechanisms in individual objects have no way to recognize and
resolve inter-object data inconsistency.

The problem of maintaining inter-object data
consistency in an object-oriented database system is analogous to
the problem of satisfying global data consistency in a distributed
database system. Thus, concurrency control in an object-oriented
database system can be made to support inter-object data
consistency with similar methods used for distributed database
environments. For instance, lock managers in locking protocols
and validation of transactions in optimistic algorithms, need to
take into account the serialization order determined across
objects. There are several possible schemes for implementing
such extensions to concurrency control algorithms, including the
single coordinator approach in which the system maintains one
single coordinator that resides in one single chosen object, and the
multiple coordinator approach in which the coordinator function
is distributed over several objects. Each coordinator knows the
names of all the participating objects, and sends them messages to
inform status of executing transactions.

As we explained, object-oriented data models provide
opportunities to improve performance by using different local
concurrency control mechanisms and data consistency
correctness criteria specific to individual objects. We should note,
however, that this benefit is mitigated by the problem of inter-
object data inconsistency. Allowing object-specific concurrency
control mechanisms makes the problem of inter-object
inconsistency more complex, as the situation becomes analogous
to one in a distributed database system consisting of
heterogeneous components in different sites. In particular, when
various correctness criteria are allowed for different objects,
locally consistent data within an object using one correctness
criterion may be inconsistent externally with data objects using
different correctness criteria. In addition, if various concurrency

control protocols are allowed for different objects, we need a more
complex mechanism that understands and maintains the
serialization order enforced by different local concurrency control
algorithms to support inter-object data consistency.

3. Related Work

The problem of concurrency control for object-oriented
database systems has not yet been solved effectively. There are
two major approaches to the problem: (1) exploiting the structure
of complex objects for enhanced concurrency or reduced
overhead, and (2) exploiting the semantics of operations on
encapsulated objects to enhance concurrency. Examples of
approach (1) include the concurrency control mechanisms of
Orion [Gar881 and O2 systems [Cart90]. Orion uses locking on
three orthogonal types of hierarchy: granularity locking (to
minimize the number of locks to be set), class-lattice locking (to
handle class hierarchy), and composite object locking (to handle
object clusters) [Gar88]. The eight lock modes used in Orion
requires a complex lock compatibility table without considering
operation semantics and temporal consistency.

Approach (2) is related to work on concurrency control
for abstract data types, and the use of fine and ad hoc
commutativity relation of operations [Her188, Schw84, Weih881.
Class hierarchy also introduces problems here, since two methods
with the same name may have distinct properties of
commutativity due to inheritance. Researchers in this approach
attempt to solve such problems caused by class hierarchy using
the notion of nested transactions. Examples of previous work
using this approach include [Agra92, Muth931.

Semantic-based concurrency control for real-time
object-oriented database systems has been studied only recently
since object-oriented data models are adopted for supporting real-
time applications. The work in [Di93] provides a comprehensive
view over logical and temporal consistency constraints in
designing a real-time object-oriented database system. To
determine compatibility relation of operations, their approach
considers not only a broad domain of semantic information
affecting logical consistency, but also temporal consistency
constraints. In addition, the approach allows a wide range of
correctness criteria for logical consistency that relax
serializability. Once a compatibility relation of operations is
determined in the form of run-time compatibility functions
augmented with predicates used for trade-off between temporal
and logical consistency, a locking protocol is used uniformly for
all objects in the system.

The approach in [Di93] is comprehensive and flexible.
One significant drawback is in its complexity; in general, there is
no efficient way for automating the process of detecting operation
compatibilities because logical and temporal constraints are often
semantically unrelated. An ad hoc process of compatibility
relation construction with such complexity will be a serious
burden on object designers. The other problem of their approach
is the possibility that the variety of allowable correctness criteria
for logical consistency causes inter-object inconsistency. This
issue was not addressed in [Di93].

158

4. Our Approach

A major objective of this study is to investigate a
possible approach to designing semantic-based concurrency
control for a real-time object-oriented database system that
alleviates the complexity associated with the design procedure,
especially with the step of detecting compatibility relation. By
doing so, we expect to provide a semantic-based concurrency
control mechanism easy to implement, and to provide a general
method for systematically building compatibility relation of
operations. In addition, the other goal of this study is to apply the
results from previous research on priority-driven concurrency
control for real-time database systems as well as semantic-based
concurrency control for object-oriented databases in designing
semantic-based concurrency control for real-time object-oriented
database systems.

4.1. A Simple Concurrency Control Model
To achieve the goals of this study, we made the

following decisions on our object-oriented database model. First,
we decided to use only serializability as the correctness criterion
for logical data consistency in the system. Although there are
studies on relaxation of serializability that presented correctness
criteria such as epsilon-serializability [Rama91] and similarity-
based correctness [Kuo92], at present there is no general purpose
correctness criterion as easily understandable and implementable
as serializability. Second, we decided to use only one concurrency
control protocol uniformly for all of the objects in the system.
Note that this decision does not require any particular concurrency
control algorithm for the system. The concurrency control
algorithm may be either locking or optimistic concurrency
control. The choice of the concurrency control algorithm will be
decided on the basis of resource availability and workload level of
the system. Finally, we decided not to consider temporal
consistency constraints in the process of determining
compatibility relation of operations, to simplify and
systematically perform the process. Timing constraints imposed
on data objects and transactions are taken into account only in
concurrency control protocols, which use priority and deadline
information in resolving data conflicts, i.e., resolve data conflicts
in favor of more urgent operation with higher priority. A number
of studies on concurrency control for RTDBSs presented various
algorithms with such capability and evaluated their performance
[Abbo88, Hari92, Huan89, Lee931.

These decisions will considerably lessen the complexity
in designing semantic-based concurrency control for real-time
object-oriented database systems. In particular, the first two
simplify the problem of inter-object inconsistency, and the last
alleviates the complexity in compatibility relation construction.
Also, with this approach, we can easily take advantage of the
results from previous research on semantic-based concurrency
control for object-oriented databases and priority-driven
concurrency control. One disadvantage of this approach is that we
cannot maneuver the trade-off between logical and temporal
consistency constraints in determining operation compatibilities,
because the approach deals with the two separately in different
dimensions. In the following, we briefly describe a technique for’
determining a compatibility relation of operations in an objects,

and two representative concurrency control algorithms
augmented with priority-driven conflict resolution, one is based
on locking and the other on optimistic concurrency control.

4.2. Compatibility Relation by Affected-Set

To determine operation compatibilities, we consider
only logical consistency constraints of objects, and uses the notion
of an affected-set originally presented in [Badr88]. When an
operation is invoked, the set of attributes affected by the particuiar
invocation is computed. The affected-set must be computed for
each invocation of an operation because the affected attributes
may depend on the actual arguments of the operation. In general,
the affected-set of each operation is constructed from its semantic
specification. We adopt commutativity as the basis for
determining whether a particular operation invocation can be
allowed to execute concurrently with those in progress. Two
operations commute if the order in which they execute does not
affect the results of the operations, i.e., results returned by the
operation as well as the resulting state of the objects accessed.
Two operations from different transactions commute if the
affected-sets of the respective operations are non-intersecting.

We limit members of an operation’s affected-set to be all
attributes directly accessed by the operation and any attributes
accessed by enforcement rules that may be triggered by the
operation. We divide an affected-set into two subsets; one
contains attributes only observed by the operation without their
value being updated, and the other includes attributes modified by
the operation. Those subsets are referred to as observed-set and
modified-set, respectively. By checking the intersection of their
observed-sets and modified-sets, the compatibility relation
between a pair of operation invocations, OI,, and 012 in an object
is determined. In general, OI, and 012 are incompatible if at least
one of observed-set(OIl) n modified-set(012), modified-set(OI1)
n observed-set(O12), and modified-set(OI,) n modified-set(O12)
is not empty.

With this technique, the designer of an object type only
needs to specify the semantics of operations; their compatibilities
are systematically determined from these specifications. Another
advantage of this approach is that compatibility of operations may
be determined dynamically when the operation is requested to be
executed on an object.

4.3. Real-Time Concurrency Control Algorithms

In the classical two-phase locking (2PL) protocol
[Bern87], transactions set read locks on objects that they read, and
these locks are later upgraded to write locks for the data objects
that are updated. If a lock request is denied, the requesting
transaction is blocked until the lock is released. Read locks can be
shared, while write locks are exclusive. The only difference in our
semantic-based concurrency control mechanism is that
operations, not transactions, invoked by a transaction set locks on
attributes in their affected-sets. An operation sets read locks on
attributes in its observed-set, and write locks on attributes in its
modified-set. It is important to note that locks set by an operation
are not released until the transaction that invoked the operation is
completed (or restarted), to ensure the serializable execution of

159

transactions within objects.

For real-time database systems, two-phase locking needs
to be augmented with a priority-based conflict resolution scheme
to ensure that higher priority transactions are not delayed by lower
priority transactions. In the High Priority scheme [AbboS], all
data conflicts are resolved in favor of urgent transactions with
high priority. When a transaction requests a lock on an object held
by other transactions in a conflicting lock mode, if the requester’s
priority is higher than that of all the lock holders, the holders are
restarted and the requester is granted the lock; if the requester’s
priority is lower, it waits for the lock holders to release the lock.
In addition, a new read lock requester can join a group of read lock
holders only if its priority is higher than that of all waiting write
lock operations. This protocol is referred to as 2PL-HP [AbboSS].
Although 2PL-HP loses some of the basic 2PL algorithm’s
blocking factor due to the partially restart-based nature of the
High Priority scheme, it was shown to outperform optimistic
schemes under an environment where physical resources are
limited [Lee94]. The locking protocol automatically supports the
logical data consistency across objects, under the condition that
no object is replicated in the system. The local serialization orders
on individual objects can be extended to a unique global
serialization order without introducing any cycles due to the High
Priority conflict resolution policy.

In optimistic concurrency control (OCC), transactions
are allowed to execute unhindered until they reach their commit
point, at which time they are validated. Previous studies on
concurrency control for real-time database systems have shown
that OCC is well-suited to RTDBSs because of its provision of
high degree of concurrency, and its policy of validation stage
conflict resolution. In studies [Hari92, Lee941, it was shown that
under the condition that tardy transactions are discarded from the
system, OCC outperforms locking-based algorithms over a wide
range of system workload and resource availability.

Among a number of OCC algorithms designed for
RTDBSs, it was shown that Precise Serialization (PS) algorithm
augmented with Feasible Sacrifice (FS) scheme for deadline-
sensitive conflict resolution outperforms other algorithms
currently known [Lee93]. The PS algorithm is a variant of the
forward validation scheme [Haer84], so it provides flexibility
required for priority-based conflict resolution unlike backward
validation, and reduces the wastage of resources and time by
detecting and resolving data conflicts earlier. It was shown that
forward validation incurs transaction restarts not absolutely
necessary to ensure data consistency. The PS algorithm solves the
problem wi:h a reasonably limited overhead for dynamic
adjustment of transaction execution history. In [Lee93], it was
shown that the FS scheme makes intelligent conflict resolution
decisions with reasonable estimate of transaction execution time,
and that in general, optimistic concurrency control provides a
greater opportunities for making useful estimation of transaction
execution time with reasonable amount of effort and overhead due
to its phase-wise transaction execution. The FS scheme was
shown to improve the real-time performance of the PS algorithm
further by reducing the number of missed deadlines caused by
wasted sacrifices of validating transactions, while giving
precedence to more urgent transactions.

To support inter-object data consistency, we can
incorporate into an OCC algorithm a distributed validation
scheme [Thom90], with which a transaction validates at all objects
that are involved in its read phase to ensure that validation
requests are processed in the same order at all objects. There are a
number of possible approaches to implementing such distributed
validation schemes, including the use of multi-cast messages or
timestamps. Although no study previously done on semantic-
based concurrency control has adopted optimistic concurrency
control, we think that OCC is promising for semantic-based
concurrency control in real-time object-oriented database
systems.

5. Conclusions and Future Work

In this paper, we have examined several issues in
designing semantic-based concurrency control in an object-
oriented database for supporting real-time applications, and
presented a semantic-based concurrency control mechanism for
such systems. The mechanism uses the notion of affected-set of
operations to determine the compatibility relation of operations.
Since this p r o c w can be systematically performed using the
specification of operations, the designer of an object type needs
not specify possibly conflicting operations. Also, the mechanism
employs concurrency control algorithms that gives precedence to
more urgent operations through the use of priority-driven conflict
resolution to satisfy timing constraints imposed on transactions.

Our approach to designing semantic-based concurrency
control for real-time object-oriented database systems is different
from previous work in this area in a number of ways. First, we
showed how optimistic concurrency control can be adopted in the
proposed semantic-based concurrency control mechanism. We
think that optimistic approach has a potential for implementing
semantic-based concurrency control in real-time object-oriented
database systems. Second, the proposed approach deals with
logical consistency constraints and timing requirements
separately in two different dimensions. As a result, the complexity
associated with the process of determining operation
compatibilities is significantly lessened. The price of the reduced
complexity is that our approach cannot maneuver the trade-off
between logical and temporal constraints in determining operation
compatibilities. Finally, our approach can guarantee inter-object
consistency with reasonable overhead for keeping information
about the current status of transactions executing across objects.

This work can be extended in a number of directions for
future research. First of all, it is generally fair to state that there is
still a lack of consensus on how object-oriented data models need
to be customized to efficiently support real-time applications. We
would like to investigate features of object-oriented data models
useful for supporting real-time applications, addressing related
issues such as associating constraints and triggers with objects,
specification of timing constraints as well as other constraints, and
transaction management techniques. Second, in the proposed
semantic-based concurrency control mechanism, we only
considered attributes directly accessed by object operations to
detect compatibility relation, and thus the notion of commutativity
was not fully utilized. The more semantics we use in concurrency

160

control, the more concurrency we obtain, although the
concurrency control mechanism may become more complex. We
plan to examine an approach using more semantics of operations
than the current scheme to achieve higher concurrency. Also, we
intend to devise a mechanism to automate the process of
constructing compatibility relation from object specification. It
appears unthinkable to put the burden of determining
commutativity for every pair of operation invocations (and
providing inverse operations for recovery for every operation
invocation) on application programmers or object designer. We
consider a method similar to one presented in [Malt93], in which
a simple form of commutativity is syntactically extracted from the
source codes of operations defined on objects at compile-time,
and then transitive access vectors are calculated and translated
into classical access modes in order not to incur performance
penalty at run-time. Finally, we are currently developing a real-
time database system using a multi-user object storage system,
EXODUS [Care89], which was developed at the University of
Wisconsin. We plan to implement the semantic-based
concurrency control mechanism presented in this paper on the
system, and evaluate its performance.

REFERENCE

[Abbo88]

[Agra921

[Badr88]

[Bern871

[Care891

[Cart901

[Di93]

[Esw76]

[Gar881

[Haer841

[Hari92]

Abbott, R., and H. Garcia-Molina, “Scheduling Real-
Time Transactions: A Performance Evaluation,” Proc.
of the 14th VLDB Conference, August 1988.
Agrawal, D., and A. El Abbadi, “A Non-Restrictive
Concurrency Control for Object Oriented Databases,”
Proc. of the 3rd Int. Con$ on Extending Data Base
Technology, Vienna, Austria, March 1992.
Badrinath, B. R., and K. Ramamritham,
“Synchronizing Transactions on Objects,” IEEE
Transactions on Computers, 37(5), May 1988.
Bernstein, P., V. Hadzilacos, and N . Goodman,
Concurrency Control and Recovery in Database
Systems, Addison-Wesley, Reading, MA., 1987.
Carey, M., D. DeWitt, E. Shekita, “Storage
Management for Objects in EXODUS,” in Object-
Oriented Concepts, Databases, and Applications, W.
Kim and F. Lochovsky (eds.), Addison-Wesley, 1989.
Cart, M., and J . Ferrie, “Integrating Concurrency
Control into an Object-Oriented DAtabase System,”
Proc. of the Int. Con$ on Extending Data Base
Technology, 1990.
Di Pippo, L. B. C., and V. F. Wolfe, “Object-Based
Semantic Real-Time Concurrency Control,” Proc. of
the 14th IEEE Real-Time System Symposium, Dec.
1993.
Eswaran, K. P., et al., “The Notion of Consistency and
Predicate Locks in a Database System,”
Communications of ACM, 19, November 1976.
Garza, J . F., and W. Kim, “Transaction Management
in an Object-Oriented Database System,” ACM
SIGMOD International Conference on Management
of Data, June 1988.
Haerder, T., “Observations on Optimistic
Concurrency Control Schemes,” Information Systems,
9(2), 1984.
Haritsa, J. R., M. J. Carey, and M. Livny, “Data
Access Scheduling in Firm Real-Time Database
Systems,” The Journal of Real-Time Systems, Kluwer

Academic Publishers, 4, 1992.
Her1881 Herlihy, M. P., and W. E. Weihl, “Hybrid

Concurrency Control for Abstract Data Types,” ACM
PODS Conference, 1988, pp. 201-210.

Huan891 Huang, J., J. A. Stankovic, K. Ramamritham, and D.
Towsley, “Experimental Evaluation of Real-Time
Transaction Processing,” Proc. of the IOth IEEE Real-
Time Sys tm S ~ n i p ~ i r u m , Dec. 1989.
Kim, W., “Object-Oriented Databases: Definition and
Research Directions,” lEEE Transactions on
Knowledge and Data Engineering Vol. 2 No. 3,
September 1990.

Kung811 Kung, H. T., and J. T. Robinson, “On Optimistic

Kim901

Kuo921

[Lee931

[Lee941

[Lort93]

[Malt931

[Muth93]

Methods for Concurrency Control,” ACM
Transactions on Database Systems, June 1981.
Kuo, T.-W., and A. K. Mok, “Application Semantics
and Concurrency Control of Real-Time Data-Intensive
Applications,” Proc. of the 13th IEEE Real-Time
Systems Symposium, December 1992.
Lee, J., and S. H. Son, “Using Dynamic Adjustment of
Serialization for Real-Time Database Systems,” Proc.
of the 14th IEEE Real-Time Systems Symposiuni,
December 1993.
Lee, J., and S. H. Son, “Performance of Concurrency
Control Algorithms for Real-Time Database
Systems,” in V. Kumar (ed.), Performance of
Concurrency Control Mechanisms in Centralized
Database Systems, Prentice Hall, 1994 (to appear).
Lortz, V. B., I. P. Mangiavacchi, and K. G. Shin, “An
Object-Oriented Approach to Integrating Real-Time
Manufacturing Systems,” Technical Report, Dept. of
Electrical Engineering and Computer Science, Univ.
of Michigan, 1993.
Malta, C., and J. Martinez, “Automating Fine
Concurrency Control in Object-Oriented Databases,”
Proc. of the 9th Int. Con$ on Data Engineering,
Vienna, Austria, April 1993.
Muth, P., T. C. Rakow, G. Weikum, P. Brossler, C.
Hasse, “Semantic Concurrency Control in Object-
Oriented Database Systems,” Proc. of the 9th Int.
Con$ on Data Engineering, Vienna, Austria, April 19-
23, 1993.

[Rama91] Ramamritham, K., and C. Pu, “A Formal
Characterization of Epsilon Serializability,” Technical
Report CUCS-044-91, Department of Computer
Science, Columbia University, 1991.

[Schw84] Schwartz, P. M., and A. Z. Spector, “Synchronizing
Shared Abstract Types,” ACM Transactions on
Computer Systems, 2(3):223-250, 1984.
Son, S. H., S . Yannopoulos, Y. K. Kim, and C.
Iannacone, “Integration of a Database System with
Real-Time Kernel for Time-Critical Applications,”
lnt. Con$ on System Integration, June 1992.

[Thom90] Thomasian, A., “A New Distributed Optimistic
Concurrency Control Method and a Comparison of its
Performance with Two-Phase Locking,” Proc. of the
IOth Int. Con$ on Distributed Computing Systems,
Paris, France, June 1990.

[Weih88] Weihl, W., “Commutativity-Based Concurrency
Control for Abstract Data Types,” IEEE Transactions
on Computers, 37(12): 1488-1505, December 1988.

[a0901 Zdonik, S., and D. Maier, Readings in Object-
Oriented Database Systems, Morgan Kauffman, San
Mateo, CA., 1990.

[Son921

161

