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Abstract 

Previous work in real-time database management 
systems (RT-DBMS) has primarily focused on sim- 
ulation. This paper discusses how current real-time 
technology has been applied to architect an actual RT- 
DBMS on a real-time microkernel operating system. 
A real RT-DBMS must confront many practical is- 
sues which simulations typically ignore: race condi- 
tions, concurrency, and asynchrony. The challenge of 
constructing a RT-DBMS can be divided into three ba- 
sic problems: dealing with resource contention, deal- 
ing with data contention, and enforcing timing con- 
straints. In this paper, we discuss approaches to  each 
problem. 

1 Introduction 

As real-time applications increase in complexity, 
so do their data requirements. For several years, re- 
searchers have sought a general solution to the prob- 
lem of collecting, storing, and retrieving data in real 
time by devising database management systems to 
manage data in a time-cognizant and predictable man- 
ner [7]. Despite all of its features, a conventional 
DBMS is not quite capable of meeting the demands 
of a real-time system. Typically, its goals are to 
maximize transaction throughput, minimize response 
time, and provide some degree of fairness. A real- 
time DBMS system, however, must adopt goals which 
are consistent with any real-time system: providing 
the best service to the most critical transactions and 
ensuring some degree of predictability in transaction 
processing. 

StarBase is a firm real-time DBMS which supports 
the concurrent execution of transactions and seeks 
to minimize the number of high-priority transactions 
that miss their deadlines. StarBase uses no a pri- 

ori information about the transaction workload and 
discards tardy transactions at their deadline points. 
StarBase runs on top of RT-Mach, a real-time oper- 
ating system under development at Carnegie Mellon 
University [IO]. 

StarBase differs from previous RT-DBMS work [l, 
2, 31 in that a) it relies on a real-time operating system 
which provides priority-based scheduling and time- 
based synchronization, and b) it deals explicitly with 
data contention and deadline handling in addition to 
transaction scheduling, the traditional focus of sim- 
ulation studies. The design of StarBase appears in 
Figure 1. 

The StarBase DBMS receives transaction requests 
from database clients and places them on a priority 
queue. It is assumed that database clients are physi- 
cally disparate from the server, so they pass messages 
to communicate with the DBMS server. Transaction 
requests are sent via RT-Mach’s Inter-Process Com- 
munication (IPC) mechanism and are queued at the 
server’s service port. RT-Mach provides a naming ser- 
vice with which StarBase registers its service port dur- 
ing initialization. Clients look up the service port 
by querying the name server with StarBase’s well- 
known name. There are a fixed number of threads 
(light-weight processes), called Transaction Managers 
(TrMgr’s), which dequeue those requests and perform 
the basic operations which constitute the transaction. 
The Transaction Processing unit in turn implements 
these basic operations. The transaction managers 
rely on lower-level services to obtain the resources 
(memory, relations, etc.) necessary for the transac- 
tion. These services are provided by the Concurrency 
Controller (CCMgr), the Relation 1/0 Manager (RI- 
OMgr), and the Small Memory Manager (MemMgr). 
Each resource manager must ensure that transactions 
access their resources in a consistent and orderly fash- 
ion. Transaction deadlines are enforced by special 
Deadline Manager (DMgr) threads. 
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Figure 1: StarBase Server Architecture 

2 Problems Unique to RT-DBMS 

There are essentially three problems that real-time 
DBMSs must solve: resolving resource contention, re- 
solving data contention, and enforcing timing con- 
straints. As with other real-time systems, tasks to be 
performed are stratified according to  their relative im- 
portance to the system. Priority combines this relative 
importance with task timing constraints to provide a 
picture of which of the many tasks should be scheduled 
at any given moment. The intent is to always grant 
the highest priority tasks access to resources (CPU, 
critical sections, etc.). Similarly, StarBase considers 
each transaction a task in its own right and seeks to  
provide the best service to the highest priority trans- 
actions. 

3 Approaches to Resource Contention 

Traditional database systems have sought to in- 
crease efficiency by sharing resources, but conven- 
tional methods for resolving which thread of execu- 
tion gets which resource at any given time gener- 
ally emphasize fairness, minimal response time, or 
maximal throughput time. As previously mentioned, 
the goal of real-time systems is often to minimize 
the number of high-priority transactions which miss 

their deadlines. Researchers have developed two tech- 
niques to  resolve resource contention in a real-time set- 
ting. First, priority-cognizant CPU scheduling algo- 
rithms [6] such as Rate Monotonic, Earliest Deadline 
First, and Fixed Priority, afford the most CPU time 
to tasks with the highest priorities. Second, for non- 
preemptible resources, a protocol called Basic Priority 
Inheritance [9] is used to ensure the highest priority 
tasks access busy resources within a bounded period 
of time. 

StarBase, like other applications, is highly de- 
pended on its native operating system, RT-Mach [lo], 
to help it resolve resource contention. RT-Mach pro- 
vides several priority-based scheduling regimes, in- 
cluding Fixed Priority, Earliest Deadline First, Rate 
Monotonic, and Deadline Monotonic. RT-Mach’s real- 
time thread model [lo] distinguishes real-time threads 
of execution from ordinary ones, requiring the explicit 
specification of timing constraints and criticality on a 
per-thread basis. The timing and priority information 
is then used as input to the RT-Mach scheduler. 

StarBase uses RT-Mach’s real-time message passing 
(RT-IPC) to ensure that transactions enter service in 
priority order. Once a Transaction Manager accepts a 
transaction request, RT-IPC ensures the Transaction 
Manager executes a t  the transaction’s priority. RT- 
Mach then determines the rate a t  which the Trans- 
action Manger (and hence the transaction) progresses 
according to its priority-based CPU scheduling. Fi- 
nally, resource managers such as the Concurrency 
Controller and Small Memory Manager are guarded 
by real-time synchronization mechanisms (RT-Sync) 
to ensure the highest priority Transaction Mangers 
have the best access to resources. 

For purposes of uniformity, StarBase adopts the 
same data type that RT-Mach uses to convey pri- 
orities, facilitating the straightforward translation of 
StarBase to RT-Mach priorities. Since the prior- 
ity data type, r t -pr ior i ty- t ,  includes a wide range 
of criticality and timing information, major changes 
in scheduling policy (e.g., Fixed Priority to Earliest 
Deadline First) are reduced to simple changes in the 
functions which compare priorities (e.g., changing the 
comparison of criticalities to one of deadlines) without 
any change in the client/server interface. StarBase it- 
self must make priority-based decisions (e.g., concur- 
rency control), so its priority-based comparisons in- 
volve priorities expressed as rt-priority-t-typed val- 
ues. Of course, which policy is most appropriate dif- 
fers from application to application, so the policy is to 
be used is left as a compile-time constant. Naturally, 
StarBase must use a consistent transaction scheduling 
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policy across all of its priority-based decisions. 
Since performance ultimately degrades as the num- 

ber of threads of execution in a system increase, and 
lazy allocation of resources adds unpredictability to 
the system, StarBase maintains only a fixed number 
of preallocated transaction manager threads. At the 
same time, since the StarBase DBMS has no a priori 
knowledge of transaction workload, more transactions 
may be submitted to the DBMS than it can handle 
at any given time. In order to throttle the flow in 
such circumstances, StarBase needs a mechanism to 
decide which requests to admit into service, and RT- 
Mach’s RT-IPC facilities do just that in a convenient 
and priority-cognizant manner. 

To submit a transaction to the StarBase DBMS, 
a client places the transaction instructions and prior- 
ity information into a message and uses RT-IPC to 
send the message to the DBMS server. Since RT-IPC 
queues incoming messages in priority order, the next 
available transaction manager receives the next high- 
est priority unreceived message. Requests are there- 
fore served in priority order and only the highest pri- 
ority outstanding requests are in service at any given 
time. If a high priority transaction request cannot be 
serviced immediately because all transaction manager 
threads are busy serving some lower priority requests, 
RT-IPC’s priority inheritance expedites one or more 
of the transaction managers so that the high prior- 
ity request enters service at a time bounded by the 
minimum of the in-service transaction deadlines. 

Once transactions enter service, StarBase needs 
to ensure that high priority transactions progress as 
quickly as possible. Since transactions require real- 
time execution, StarBase creates one real-time thread 
for each transaction manager and relies on RT-Mach’s 
real-time CPU scheduling to schedule them. Transac- 
tion manager priorities are not specified explicitly by 
StarBase, however. Each obtains the correct priority 
assignment automatically upon receipt of a new trans- 
action via RT-IPC’s priority handoff mechanism [4]. 

Transactions, depending on the nature of their op- 
erations, require some dynamic allocation of memory 
during their execution. StarBase maintains a Small 
Memory Manager to allocate and manage dynamic 
memory. Since transaction managers of different pri- 
orities may attempt to use it simultaneously, entry 
into the Small Memory Manager is guarded by a real- 
time mutex variable to avoid the priority inversion 
problem and to ensure the heap is accessed in mutual 
exclusion. To provide (relatively) predictable access 
to memory allocated through the manager, the heap 
is wired so that it cannot be paged out of physical 

memory. 
Although the StarBase concurrency controller is re- 

sponsible for resolving contention at  a higher level 
(i.e., data contention), it still relies on RT-Mach to 
provide basic synchronization and avoid the priority 
inversion problem. In particular, the concurrency con- 
troller must keep its own data structures consistent 
and ensure that transaction commits occur without 
interference. As such the concurrency controller is or- 
ganized as a monitor, with a single real-time mutex 
variable for the monitor lock, and one real-time con- 
dition variable for each transaction manager. 

4 Approaches to Data Contention 

In addition to resource contention, StarBase faces a 
problem unique to DBMSs: data contention. DBMS 
interpose themselves between applications and the raw 
unstructured storage media to provide the illusion of 
atomic operations called transactions. In order to pro- 
vide this illusion, DBMS use concurrency control algo- 
rithms to give the appearance that the data contained 
in relations is a result of a serial execution of these 
transactions. There are two major types of concur- 
rency control which have been considered for use in 
real-time databases: lock-based and optimistic meth- 
ods. In general, lock-based methods delay transac- 
tions to avoid having them access data in an inconsis- 
tent way, whereas optimistic methods abort transac- 
tions. 

StarBase uses a real-time optimistic concurrency 
control method called WAIT-X [2], which has been 
experimentally shown to outperform lock-based con- 
currency control methods in a firm real-time set- 
ting. With WAIT-X a transaction, T ,  executes un- 
hindered until it reaches the point where it can com- 
mit (i.e., make permanent their changes to the data) 
and WAIT-X determines which transactions T’s exe- 
cution conflict with. Unlike conventional concurrency 
control, WAIT-X employs a priority-cognizant commit 
test: If high-priority transactions comprise less than 
X% of all of T’s conflictors, T can commit, aborting 
all conflictors in the process. Otherwise T waits so 
that higher priority transactions may proceed. 

It was found experimentally that low values of X 
tend to minimize the deadline miss ratio for light 
loads, and high values of X tend to minimize the dead- 
line miss ratio for heavy loads. When X = 50% is used 
as the threshold value, it minimizes the overall dead- 
line miss ratio, but applications which require min- 
imization of the highest-priority deadline miss ratio 
must use a greater value for X. 
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As an extension to  WAIT-X, StarBase uses a spe- 
cial conflict-detection scheme called Precise Serializa- 
tion [5]. Precise Serialization is an improvement over 
WAIT-X’s usual conflict detection and is aimed at 
reducing the number of irreconcilable conflicts (and 
hence the number of transactions which must abort). 
A validating transaction which conflicts in a certain 
way (i.e., has write-read conflicts) is allowed to com- 
mit, but its conflictors must behave as if they cannot 
see the results of the validator. 

Consider a case where a validator, TI, , attempts to 
commit and write a data item x which another un- 
committed transaction TCR has read but not written. 
A strict prospective validation checks the writeset of 
the validator against the readset of its potential con- 
flictors, identifying write-read conflicts. If it detects 
such a conflict, the resolution requires aborting some 
of the conflicting transactions. Note, however, that 
if TGR were to  commit first, there would be no con- 
flict on data item 2. In Precise Serialization, it allows 
TI, to  commit while TCR is still running, but requires 
TCR to  behave as if it had committed before Tv. TCR 
is constrained so that it cannot read any data item 
written by TI, because it would see a “future” value, 
and it cannot write any data item read by TV since 
TV has committed and cannot change the past. Fi- 
nally TCR must discard (a,s late writes) updates to any 
data items which TV wrote during its commit. This 
pseudo-reserialization of TV and TCR is called back- 
ward ordering and it5 goal is to  increase the proba- 
bility that potential conflictors can complete without 
either aborting and restarting. 

Since Precise Serialization is a conflict-detection 
scheme, not a full-blown method of concurrency con- 
trol, it supplements StarBase’s WAIT-X implementa- 
tion rather than replacing it entirely. Precise Serial- 
ization modifies the WAIT-X validation conflict de- 
tection and requires the addition of a mechanism to 
detect when a pseudo-reserialized transaction does not 
behave in accordance with its virtual order in the ex- 
ecution history. 

During validation, Precise Serialization partitions 
the set of conflicting transactions into those which con- 
flict reconcilably and those which conflict irreconcil- 
ably. Should the validator be allowed to  commit, the 
reconcilable conflictors must be pseudo-reserialized by 
backward ordering, while the irreconcilable conflictors 
must be aborted. To keep track of which are which, 
StarBase maintains a reserialization candidate set for 
the validator in addition to  the conflict set of the 
WAIT-X implementation described previously. The 
conflict set still identifies which transactions conflict 

irreconcilably with the validator, but the candidate set 
identifies precisely those datasets among which recon- 
cilable write-read conflicts exist. 

To construct the candidate set and the conflict set 
at the point of validation, the CCMgr cycles through 
each dataset referenced by the validator, Tv. If TV 
has only a write-read conflict with an uncommitted 
transaction, TCR, on a dataset, then the serialization 
order should be TCR + Tv (backward validation) 
and the conflicting datasets are added to the reseri- 
alization candidate set. If TCR has only a write-read 
conflict with TI, , then the serialization order should 
be TV ---f TCR (forward validation). In this case TI, 
and TCR are considered to  be non-conflicting. If the 
CCMgr determines that the serialization order should 
be simultaneously TCR + TV and TI, ---f TCR, then 
TV and TCR are irreconcilably conflicting, and TCR 
is added to  the conflict set. Note that the CCMgr 
does not consider write-write conflicts since transac- 
tions are required to  read tuple locations to determine 
their values or to  establish that they are empty be- 
fore writing them. Consequently a writeset is always 
a subset of the readset (for a given transaction and 
relation) and checking both against a potential con- 
flictor’s writeset is redundant. 

Once the candidate set and conflict set are com- 
pletely identified, the CCMgr determines whether 
the validator should commit or wait according to  
the WAIT-X commit test. If the validator waits, 
the conflict and candidate sets are discarded-they 
will be recomputed if and when the validator retries 
validation. If the validator commits, the transac- 
tions in the conflict set are aborted and the CCMgr 
must pseudo-reserialize the reconcilable conflictors. 
Pseudo-reserialization is achieved by attaching copies 
(or remnants) of TV’S datasets to  those datasets with 
which they conflict-note that these dataset pairs are 
precisely those comprising the reserialization candi- 
date set. Thus when a conflictor later updates its read- 
and writesets, i t  can quickly check whether the opera- 
tion violates its virtual order in the execution history 
by consulting the dataset remnants attached to  the 
dataset involved in the operation. 

Since one of TV’S datasets may conflict with more 
than one of the conflictors’, a remnant is given a refer- 
ence count rather than physically copied. As conflic- 
tors commit or abort one by one, the CCMgr decre- 
ments the reference count. When the last conflictor 
terminates, the CCMgr discards TI, ’ s  dataset rem- 
nant. 
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5 Deadline Enforcement 

Each StarBase transaction is accompanied by a 
deadline specification. StarBase enforces deadlines 
on each transaction with the aid of RT-Mach facil- 
ities. Applications submit transactions to StarBase 
with application-determined criticality and deadline 
information. Since StarBase is a firm-deadline sys- 
tem, it attempts to process the transaction and reply 
to the application at or before the deadline; no pro- 
cessing occurs after the deadline. 

Firm deadline transactions may be contrasted with 
soft deadline transactions which are viewed as having 
some usefulness even if their execution extends beyond 
the deadline point. Hard deadline transactions are 
those transactions whose failure to execute on time is 
viewed as catastrophic. 

RT-Mach provides the concept of a real-time dead-  
line handler, a separate thread of execution which 
performs application-specific actions when the dead- 
line expires. Typical actions are to abort the thread 
(firm deadline) or lower its priority (soft deadline). In 
addition to RT-Mach’s real-time threads, implemen- 
tation of a deadline handler requires time-based syn- 
chronization. In order to ensure the handler action 
is ready to execute before the deadline, the real-time 
deadline handler must be eagerly allocated as a real- 
time thread to execute the deadline handler code. The 
deadline handler thread then uses a real-time timer to 
block the thread until the deadline expires. A real- 
time timer is an RT-Mach abstraction which allows 
real-time threads to  synchronize with particular points 
in time as measured by real-time clock hardware de- 
vices [8]. 

RT-Mach provides a default deadline handler con- 
structed from the building blocks discussed above, but 
it is inadequate for StarBase’s purposes. First, the de- 
fault deadline handler supports only threads with uni- 
form deadlines. StarBase, since it assumes no a priori 
information about its transaction workload, requires 
that its deadline handlers adapt to  new transactions 
and their deadlines as they enter service. Secondly, a 
RT-Mach default deadline handler forcibly suspends a 
thread when it misses its deadline so that the thread 
does not interfere with the handler’s execution. If a 
thread misses its deadline while in the middle of a crit- 
ical section, it is suspended and cannot leave the criti- 
cal section until it is resumed. StarBase uses a critical 
section to resolve potential race conditions between 
transaction commit (by the transaction manager) and 
deadline abort (by the deadline manager), so use of 
a RT-Mach-style deadline handler can result in dead- 
lock. Thirdly, default deadline handlers do not allow 

the transaction and deadline managers to synchronize 
cooperatively. A deadline manager must know when 
a transaction completes so that i t  does not generate a 
useless abort; a transaction manager must know when 
the deadline expires, so that it does not commit the 
aborted transaction. Neither is possible without some 
shared state which must be accessed in mutual exclu- 
sion. 

The solution is to devise a deadline handler im- 
plementation which handles variable deadlines, avoids 
potential deadlocks, and is eagerly allocated to pro- 
vide some degree of predictability but at the same 
time takes precedence over the transaction it manages 
when the transaction deadline expires. 

StarBase uses RT-Mach’s real-time clock and timer 
facilities, along with the real-time thread model to pro- 
vide a special deadline handler which will attempt to 
abort the transaction just before the deadline and re- 
ply to the client. 

First, a Deadline Manager must synchronize with 
the Transaction Manager with which it is paired and 
obtain the deadline of each transaction before it en- 
ters service. Next, the Deadline Manager must wait 
either for the transaction to complete or for the dead- 
line to expire. If the deadline expires, the Deadline 
Manager must abort the transaction asynchronously 
with respect to the Transaction Manager processing 
it.  StarBase has a scheme to ensure that the Deadline 
Manager is scheduled in preference to its Transaction 
Manager by assigning it a slightly higher criticality 
and slightly tighter timing constraints than the Trans- 
action Manger. 

6 Conclusions and F’uture Work 

In this paper, we have presented the architecture 
to support a firm real-time DBMS assuming no a pri- 
ori knowledge of transaction workload characteristics. 
Unlike previous simulation studies, StarBase uses a 
real-time operating system to provide basic real-time 
functionality and deals with issues beyond transaction 
scheduling: resource contention, data contention, and 
enforcing deadlines. Issues of resource contention are 
dealt with by employing priority-based CPU and re- 
source scheduling provided by the underlying real-time 
operating system. Issues of data contention are dealt 
with by use of a priority-cognizant concurrency con- 
trol algorithm with a special conflict-detection scheme, 
called Precise Serialization, to reduce the number of 
aborts. Issues of deadline-handling are dealt with by 
constructing deadline handlers which synchronize with 
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the start and end of a transaction and which don’t in- 
terfere with its execution until the deadline expires. 

The correctness of the concurrent execution of 
transactions on StarBase has been demonstrated by a 
special demonstration program. The program graphi- 
cally depicts a high-priority writer obtains better per- 
formance than a concurrently-executing low-priority 
writing transaction. There is still plenty to accom- 
plish, however. Future work includes the extension 
of the query language to include set-based relational 
algebra operations, the reduction of data conflicts by 
the use of a specially-designed indexing mechanism. 
Another interesting future work is to extend these so- 
lutions to the situation in which transaction character- 
istics are a t  least partially specified beforehand. With 
prior knowledge, a real-time DBMS can preallocate 
resources and arrange transaction schedules to mini- 
mize conflicts, resulting in more predictable service. 
Execution time estimates and off-line analysis can be 
used to increase DBMS-wide predictability. We also 
plan to port StarBase to other real-time operating sys- 
tems and identify operating system services essential 
to supporting StarBase. Once the basic, real-time, 
POSIX.4-compliant functionality needed to support a 
firm real-time database has been established, StarBase 
can be ported to other platforms. 
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