
StarBase: A Firm Real-Time Database Manager
for Time-Crit ical Applications

Matthew R. Lehr, Young-Kuk Kim and Sang H. Son
Computer Science Department

University of Virginia
Charlottesville, VA 22903, USA

Abstract

Previous work in real-time database management
systems (RT-DBMS) has primarily focused on sim-
ulation. This paper discusses how current real-time
technology has been applied to architect an actual RT-
DBMS on a real-time microkernel operating system.
A real RT-DBMS must confront many practical is-
sues which simulations typically ignore: race condi-
tions, concurrency, and asynchrony. The challenge of
constructing a RT-DBMS can be divided into three ba-
sic problems: dealing with resource contention, deal-
ing with data contention, and enforcing timing con-
straints. In this paper, we discuss approaches to each
problem.

1 Introduction

As real-time applications increase in complexity,
so do their data requirements. For several years, re-
searchers have sought a general solution to the prob-
lem of collecting, storing, and retrieving data in real
time by devising database management systems to
manage data in a time-cognizant and predictable man-
ner [7]. Despite all of its features, a conventional
DBMS is not quite capable of meeting the demands
of a real-time system. Typically, its goals are to
maximize transaction throughput, minimize response
time, and provide some degree of fairness. A real-
time DBMS system, however, must adopt goals which
are consistent with any real-time system: providing
the best service to the most critical transactions and
ensuring some degree of predictability in transaction
processing.

StarBase is a firm real-time DBMS which supports
the concurrent execution of transactions and seeks
to minimize the number of high-priority transactions
that miss their deadlines. StarBase uses no a pri-

ori information about the transaction workload and
discards tardy transactions at their deadline points.
StarBase runs on top of RT-Mach, a real-time oper-
ating system under development at Carnegie Mellon
University [IO].

StarBase differs from previous RT-DBMS work [l,
2, 31 in that a) it relies on a real-time operating system
which provides priority-based scheduling and time-
based synchronization, and b) it deals explicitly with
data contention and deadline handling in addition to
transaction scheduling, the traditional focus of sim-
ulation studies. The design of StarBase appears in
Figure 1.

The StarBase DBMS receives transaction requests
from database clients and places them on a priority
queue. It is assumed that database clients are physi-
cally disparate from the server, so they pass messages
to communicate with the DBMS server. Transaction
requests are sent via RT-Mach’s Inter-Process Com-
munication (IPC) mechanism and are queued at the
server’s service port. RT-Mach provides a naming ser-
vice with which StarBase registers its service port dur-
ing initialization. Clients look up the service port
by querying the name server with StarBase’s well-
known name. There are a fixed number of threads
(light-weight processes), called Transaction Managers
(TrMgr’s), which dequeue those requests and perform
the basic operations which constitute the transaction.
The Transaction Processing unit in turn implements
these basic operations. The transaction managers
rely on lower-level services to obtain the resources
(memory, relations, etc.) necessary for the transac-
tion. These services are provided by the Concurrency
Controller (CCMgr), the Relation 1/0 Manager (RI-
OMgr), and the Small Memory Manager (MemMgr).
Each resource manager must ensure that transactions
access their resources in a consistent and orderly fash-
ion. Transaction deadlines are enforced by special
Deadline Manager (DMgr) threads.

1068-3070/95 $4.00 0 1995 IEEE
317

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1995 2. REPORT TYPE

3. DATES COVERED
 00-00-1995 to 00-00-1995

4. TITLE AND SUBTITLE
StarBase: A Firm Real-Time Database Manager for Time-Critical
Applications

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Virginia,Department of Computer Science,151 Engineer’s
Way,Cahrlottesville,VA,22094-4740

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Figure 1: StarBase Server Architecture

2 Problems Unique to RT-DBMS

There are essentially three problems that real-time
DBMSs must solve: resolving resource contention, re-
solving data contention, and enforcing timing con-
straints. As with other real-time systems, tasks to be
performed are stratified according to their relative im-
portance to the system. Priority combines this relative
importance with task timing constraints to provide a
picture of which of the many tasks should be scheduled
at any given moment. The intent is to always grant
the highest priority tasks access to resources (CPU,
critical sections, etc.). Similarly, StarBase considers
each transaction a task in its own right and seeks to
provide the best service to the highest priority trans-
actions.

3 Approaches to Resource Contention

Traditional database systems have sought to in-
crease efficiency by sharing resources, but conven-
tional methods for resolving which thread of execu-
tion gets which resource at any given time gener-
ally emphasize fairness, minimal response time, or
maximal throughput time. As previously mentioned,
the goal of real-time systems is often to minimize
the number of high-priority transactions which miss

their deadlines. Researchers have developed two tech-
niques to resolve resource contention in a real-time set-
ting. First, priority-cognizant CPU scheduling algo-
rithms [6] such as Rate Monotonic, Earliest Deadline
First, and Fixed Priority, afford the most CPU time
to tasks with the highest priorities. Second, for non-
preemptible resources, a protocol called Basic Priority
Inheritance [9] is used to ensure the highest priority
tasks access busy resources within a bounded period
of time.

StarBase, like other applications, is highly de-
pended on its native operating system, RT-Mach [lo],
to help it resolve resource contention. RT-Mach pro-
vides several priority-based scheduling regimes, in-
cluding Fixed Priority, Earliest Deadline First, Rate
Monotonic, and Deadline Monotonic. RT-Mach’s real-
time thread model [lo] distinguishes real-time threads
of execution from ordinary ones, requiring the explicit
specification of timing constraints and criticality on a
per-thread basis. The timing and priority information
is then used as input to the RT-Mach scheduler.

StarBase uses RT-Mach’s real-time message passing
(RT-IPC) to ensure that transactions enter service in
priority order. Once a Transaction Manager accepts a
transaction request, RT-IPC ensures the Transaction
Manager executes a t the transaction’s priority. RT-
Mach then determines the rate a t which the Trans-
action Manger (and hence the transaction) progresses
according to its priority-based CPU scheduling. Fi-
nally, resource managers such as the Concurrency
Controller and Small Memory Manager are guarded
by real-time synchronization mechanisms (RT-Sync)
to ensure the highest priority Transaction Mangers
have the best access to resources.

For purposes of uniformity, StarBase adopts the
same data type that RT-Mach uses to convey pri-
orities, facilitating the straightforward translation of
StarBase to RT-Mach priorities. Since the prior-
ity data type, r t -pr ior i ty- t , includes a wide range
of criticality and timing information, major changes
in scheduling policy (e.g., Fixed Priority to Earliest
Deadline First) are reduced to simple changes in the
functions which compare priorities (e.g., changing the
comparison of criticalities to one of deadlines) without
any change in the client/server interface. StarBase it-
self must make priority-based decisions (e.g., concur-
rency control), so its priority-based comparisons in-
volve priorities expressed as rt-priority-t-typed val-
ues. Of course, which policy is most appropriate dif-
fers from application to application, so the policy is to
be used is left as a compile-time constant. Naturally,
StarBase must use a consistent transaction scheduling

3 18

policy across all of its priority-based decisions.
Since performance ultimately degrades as the num-

ber of threads of execution in a system increase, and
lazy allocation of resources adds unpredictability to
the system, StarBase maintains only a fixed number
of preallocated transaction manager threads. At the
same time, since the StarBase DBMS has no a priori
knowledge of transaction workload, more transactions
may be submitted to the DBMS than it can handle
at any given time. In order to throttle the flow in
such circumstances, StarBase needs a mechanism to
decide which requests to admit into service, and RT-
Mach’s RT-IPC facilities do just that in a convenient
and priority-cognizant manner.

To submit a transaction to the StarBase DBMS,
a client places the transaction instructions and prior-
ity information into a message and uses RT-IPC to
send the message to the DBMS server. Since RT-IPC
queues incoming messages in priority order, the next
available transaction manager receives the next high-
est priority unreceived message. Requests are there-
fore served in priority order and only the highest pri-
ority outstanding requests are in service at any given
time. If a high priority transaction request cannot be
serviced immediately because all transaction manager
threads are busy serving some lower priority requests,
RT-IPC’s priority inheritance expedites one or more
of the transaction managers so that the high prior-
ity request enters service at a time bounded by the
minimum of the in-service transaction deadlines.

Once transactions enter service, StarBase needs
to ensure that high priority transactions progress as
quickly as possible. Since transactions require real-
time execution, StarBase creates one real-time thread
for each transaction manager and relies on RT-Mach’s
real-time CPU scheduling to schedule them. Transac-
tion manager priorities are not specified explicitly by
StarBase, however. Each obtains the correct priority
assignment automatically upon receipt of a new trans-
action via RT-IPC’s priority handoff mechanism [4].

Transactions, depending on the nature of their op-
erations, require some dynamic allocation of memory
during their execution. StarBase maintains a Small
Memory Manager to allocate and manage dynamic
memory. Since transaction managers of different pri-
orities may attempt to use it simultaneously, entry
into the Small Memory Manager is guarded by a real-
time mutex variable to avoid the priority inversion
problem and to ensure the heap is accessed in mutual
exclusion. To provide (relatively) predictable access
to memory allocated through the manager, the heap
is wired so that it cannot be paged out of physical

memory.
Although the StarBase concurrency controller is re-

sponsible for resolving contention at a higher level
(i.e., data contention), it still relies on RT-Mach to
provide basic synchronization and avoid the priority
inversion problem. In particular, the concurrency con-
troller must keep its own data structures consistent
and ensure that transaction commits occur without
interference. As such the concurrency controller is or-
ganized as a monitor, with a single real-time mutex
variable for the monitor lock, and one real-time con-
dition variable for each transaction manager.

4 Approaches to Data Contention

In addition to resource contention, StarBase faces a
problem unique to DBMSs: data contention. DBMS
interpose themselves between applications and the raw
unstructured storage media to provide the illusion of
atomic operations called transactions. In order to pro-
vide this illusion, DBMS use concurrency control algo-
rithms to give the appearance that the data contained
in relations is a result of a serial execution of these
transactions. There are two major types of concur-
rency control which have been considered for use in
real-time databases: lock-based and optimistic meth-
ods. In general, lock-based methods delay transac-
tions to avoid having them access data in an inconsis-
tent way, whereas optimistic methods abort transac-
tions.

StarBase uses a real-time optimistic concurrency
control method called WAIT-X [2], which has been
experimentally shown to outperform lock-based con-
currency control methods in a firm real-time set-
ting. With WAIT-X a transaction, T , executes un-
hindered until it reaches the point where it can com-
mit (i.e., make permanent their changes to the data)
and WAIT-X determines which transactions T’s exe-
cution conflict with. Unlike conventional concurrency
control, WAIT-X employs a priority-cognizant commit
test: If high-priority transactions comprise less than
X% of all of T’s conflictors, T can commit, aborting
all conflictors in the process. Otherwise T waits so
that higher priority transactions may proceed.

It was found experimentally that low values of X
tend to minimize the deadline miss ratio for light
loads, and high values of X tend to minimize the dead-
line miss ratio for heavy loads. When X = 50% is used
as the threshold value, it minimizes the overall dead-
line miss ratio, but applications which require min-
imization of the highest-priority deadline miss ratio
must use a greater value for X.

3 19

As an extension to WAIT-X, StarBase uses a spe-
cial conflict-detection scheme called Precise Serializa-
tion [5]. Precise Serialization is an improvement over
WAIT-X’s usual conflict detection and is aimed at
reducing the number of irreconcilable conflicts (and
hence the number of transactions which must abort).
A validating transaction which conflicts in a certain
way (i.e., has write-read conflicts) is allowed to com-
mit, but its conflictors must behave as if they cannot
see the results of the validator.

Consider a case where a validator, TI, , attempts to
commit and write a data item x which another un-
committed transaction TCR has read but not written.
A strict prospective validation checks the writeset of
the validator against the readset of its potential con-
flictors, identifying write-read conflicts. If it detects
such a conflict, the resolution requires aborting some
of the conflicting transactions. Note, however, that
if TGR were to commit first, there would be no con-
flict on data item 2. In Precise Serialization, it allows
TI, to commit while TCR is still running, but requires
TCR to behave as if it had committed before Tv. TCR
is constrained so that it cannot read any data item
written by TI, because it would see a “future” value,
and it cannot write any data item read by TV since
TV has committed and cannot change the past. Fi-
nally TCR must discard (a,s late writes) updates to any
data items which TV wrote during its commit. This
pseudo-reserialization of TV and TCR is called back-
ward ordering and it5 goal is to increase the proba-
bility that potential conflictors can complete without
either aborting and restarting.

Since Precise Serialization is a conflict-detection
scheme, not a full-blown method of concurrency con-
trol, it supplements StarBase’s WAIT-X implementa-
tion rather than replacing it entirely. Precise Serial-
ization modifies the WAIT-X validation conflict de-
tection and requires the addition of a mechanism to
detect when a pseudo-reserialized transaction does not
behave in accordance with its virtual order in the ex-
ecution history.

During validation, Precise Serialization partitions
the set of conflicting transactions into those which con-
flict reconcilably and those which conflict irreconcil-
ably. Should the validator be allowed to commit, the
reconcilable conflictors must be pseudo-reserialized by
backward ordering, while the irreconcilable conflictors
must be aborted. To keep track of which are which,
StarBase maintains a reserialization candidate set for
the validator in addition to the conflict set of the
WAIT-X implementation described previously. The
conflict set still identifies which transactions conflict

irreconcilably with the validator, but the candidate set
identifies precisely those datasets among which recon-
cilable write-read conflicts exist.

To construct the candidate set and the conflict set
at the point of validation, the CCMgr cycles through
each dataset referenced by the validator, Tv. If TV
has only a write-read conflict with an uncommitted
transaction, TCR, on a dataset, then the serialization
order should be TCR + Tv (backward validation)
and the conflicting datasets are added to the reseri-
alization candidate set. If TCR has only a write-read
conflict with TI, , then the serialization order should
be TV ---f TCR (forward validation). In this case TI,
and TCR are considered to be non-conflicting. If the
CCMgr determines that the serialization order should
be simultaneously TCR + TV and TI, ---f TCR, then
TV and TCR are irreconcilably conflicting, and TCR
is added to the conflict set. Note that the CCMgr
does not consider write-write conflicts since transac-
tions are required to read tuple locations to determine
their values or to establish that they are empty be-
fore writing them. Consequently a writeset is always
a subset of the readset (for a given transaction and
relation) and checking both against a potential con-
flictor’s writeset is redundant.

Once the candidate set and conflict set are com-
pletely identified, the CCMgr determines whether
the validator should commit or wait according to
the WAIT-X commit test. If the validator waits,
the conflict and candidate sets are discarded-they
will be recomputed if and when the validator retries
validation. If the validator commits, the transac-
tions in the conflict set are aborted and the CCMgr
must pseudo-reserialize the reconcilable conflictors.
Pseudo-reserialization is achieved by attaching copies
(or remnants) of TV’S datasets to those datasets with
which they conflict-note that these dataset pairs are
precisely those comprising the reserialization candi-
date set. Thus when a conflictor later updates its read-
and writesets, i t can quickly check whether the opera-
tion violates its virtual order in the execution history
by consulting the dataset remnants attached to the
dataset involved in the operation.

Since one of TV’S datasets may conflict with more
than one of the conflictors’, a remnant is given a refer-
ence count rather than physically copied. As conflic-
tors commit or abort one by one, the CCMgr decre-
ments the reference count. When the last conflictor
terminates, the CCMgr discards TI, ’ s dataset rem-
nant.

320

5 Deadline Enforcement

Each StarBase transaction is accompanied by a
deadline specification. StarBase enforces deadlines
on each transaction with the aid of RT-Mach facil-
ities. Applications submit transactions to StarBase
with application-determined criticality and deadline
information. Since StarBase is a firm-deadline sys-
tem, it attempts to process the transaction and reply
to the application at or before the deadline; no pro-
cessing occurs after the deadline.

Firm deadline transactions may be contrasted with
soft deadline transactions which are viewed as having
some usefulness even if their execution extends beyond
the deadline point. Hard deadline transactions are
those transactions whose failure to execute on time is
viewed as catastrophic.

RT-Mach provides the concept of a real-time dead-
line handler, a separate thread of execution which
performs application-specific actions when the dead-
line expires. Typical actions are to abort the thread
(firm deadline) or lower its priority (soft deadline). In
addition to RT-Mach’s real-time threads, implemen-
tation of a deadline handler requires time-based syn-
chronization. In order to ensure the handler action
is ready to execute before the deadline, the real-time
deadline handler must be eagerly allocated as a real-
time thread to execute the deadline handler code. The
deadline handler thread then uses a real-time timer to
block the thread until the deadline expires. A real-
time timer is an RT-Mach abstraction which allows
real-time threads to synchronize with particular points
in time as measured by real-time clock hardware de-
vices [8].

RT-Mach provides a default deadline handler con-
structed from the building blocks discussed above, but
it is inadequate for StarBase’s purposes. First, the de-
fault deadline handler supports only threads with uni-
form deadlines. StarBase, since it assumes no a priori
information about its transaction workload, requires
that its deadline handlers adapt to new transactions
and their deadlines as they enter service. Secondly, a
RT-Mach default deadline handler forcibly suspends a
thread when it misses its deadline so that the thread
does not interfere with the handler’s execution. If a
thread misses its deadline while in the middle of a crit-
ical section, it is suspended and cannot leave the criti-
cal section until it is resumed. StarBase uses a critical
section to resolve potential race conditions between
transaction commit (by the transaction manager) and
deadline abort (by the deadline manager), so use of
a RT-Mach-style deadline handler can result in dead-
lock. Thirdly, default deadline handlers do not allow

the transaction and deadline managers to synchronize
cooperatively. A deadline manager must know when
a transaction completes so that i t does not generate a
useless abort; a transaction manager must know when
the deadline expires, so that it does not commit the
aborted transaction. Neither is possible without some
shared state which must be accessed in mutual exclu-
sion.

The solution is to devise a deadline handler im-
plementation which handles variable deadlines, avoids
potential deadlocks, and is eagerly allocated to pro-
vide some degree of predictability but at the same
time takes precedence over the transaction it manages
when the transaction deadline expires.

StarBase uses RT-Mach’s real-time clock and timer
facilities, along with the real-time thread model to pro-
vide a special deadline handler which will attempt to
abort the transaction just before the deadline and re-
ply to the client.

First, a Deadline Manager must synchronize with
the Transaction Manager with which it is paired and
obtain the deadline of each transaction before it en-
ters service. Next, the Deadline Manager must wait
either for the transaction to complete or for the dead-
line to expire. If the deadline expires, the Deadline
Manager must abort the transaction asynchronously
with respect to the Transaction Manager processing
it. StarBase has a scheme to ensure that the Deadline
Manager is scheduled in preference to its Transaction
Manager by assigning it a slightly higher criticality
and slightly tighter timing constraints than the Trans-
action Manger.

6 Conclusions and F’uture Work

In this paper, we have presented the architecture
to support a firm real-time DBMS assuming no a pri-
ori knowledge of transaction workload characteristics.
Unlike previous simulation studies, StarBase uses a
real-time operating system to provide basic real-time
functionality and deals with issues beyond transaction
scheduling: resource contention, data contention, and
enforcing deadlines. Issues of resource contention are
dealt with by employing priority-based CPU and re-
source scheduling provided by the underlying real-time
operating system. Issues of data contention are dealt
with by use of a priority-cognizant concurrency con-
trol algorithm with a special conflict-detection scheme,
called Precise Serialization, to reduce the number of
aborts. Issues of deadline-handling are dealt with by
constructing deadline handlers which synchronize with

32 1

the start and end of a transaction and which don’t in-
terfere with its execution until the deadline expires.

The correctness of the concurrent execution of
transactions on StarBase has been demonstrated by a
special demonstration program. The program graphi-
cally depicts a high-priority writer obtains better per-
formance than a concurrently-executing low-priority
writing transaction. There is still plenty to accom-
plish, however. Future work includes the extension
of the query language to include set-based relational
algebra operations, the reduction of data conflicts by
the use of a specially-designed indexing mechanism.
Another interesting future work is to extend these so-
lutions to the situation in which transaction character-
istics are a t least partially specified beforehand. With
prior knowledge, a real-time DBMS can preallocate
resources and arrange transaction schedules to mini-
mize conflicts, resulting in more predictable service.
Execution time estimates and off-line analysis can be
used to increase DBMS-wide predictability. We also
plan to port StarBase to other real-time operating sys-
tems and identify operating system services essential
to supporting StarBase. Once the basic, real-time,
POSIX.4-compliant functionality needed to support a
firm real-time database has been established, StarBase
can be ported to other platforms.

Acknowledgments

This work was supported in part by Loral Federal
Systems, VCIT, and ONR.

References

R. Abbott and H. Garcia-Molina. Scheduling
Real-Time Transactions: A Performance Evalu-
ation. ACM Transactions on Database Systems,
17(3):513-560, September 1992.

J . R. Haritsa. Transaction Scheduling in Firm
Real- Time Database Systems. PhD thesis, Uni-
versity of Wisconsin-Madison, August 1991.

J . Huang. Real-Tame Transactaon Processzng:
Design, Implementation, and Performance Eval-
uation. PhD thesis, University of Massachusetts
at Amherst, May 1991.

T. Kitayama, T. Nakajima, and H. Tokuda. RT-
IPC: An IPC Extension for Real-Time Mach.
Technical report, Carnegie-Mellon University,
August 1993.

J. Lee and S. H. Son. Using Dynamic Ad-
justment of Serialization Order for Real-Time
Database Systems. In Proceedings of the 14th
Real- Time Systems Symposium, pages 66-75,
Raleigh-Durham, NC, December 1993.

C. L. Liu and J. W. Layland. Scheduling
Algorithms for Multiprogramming in a Hard
Real-Time Environment. Journal of the ACM,
20(1):46-61, 1973.

Krithi Ramamritham. Real-Time Databases. In-
ternational Journal of Dastributed and Parallel
Databases, 1(1), 1992.

S. Savage and H. Tokuda. Real-Time Mach
Timers: Exporting Time to the User. In Pro-
ceedings of the Third USENIX Mach Symposium,
April 1993.

L. Sha, R. Rajkumar, and J. P. Lehoczky. Prior-
ity Inheritance Protocols: An Approach to Real-
Time Synchronization. IEEE Transactions on
Computers, 39(9):1175-1185, September 1990.

H. Tokuda, T . Nakajima, and P. Rao. Real-Time
Mach: Towards Predictable Real-Time Systems.
In Proceedings of the USENIX 1990 Mach Work-
shop, October 1990.

322

