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Abstract

A Neural Relevance Model for Feature Extraction from
Hyperspectral Images, and its Application

in the Wavelet Domain

by

Michael J. Mendenhall

Our research is motivated by military applications related to aspects of contingency

planning. Of recent interest is the identification of landmasses which can support the landing

and takeoff of fixed wing and rotary aircraft where accurate classification of the surface cover

is of utmost importance.

In a supervised classification scenario, a natural question is whether a subset of the

input features (spectral bands) could be used without degrading classification accuracy.

Our interest in feature extraction is twofold. First, we desire a significantly reduced set of

features by which we can compress the signal. Second, we desire to enhance classification

performance by alleviating superfluous signal content. Feature extraction models based on

PCA or wavelets judge feature importance by the magnitude of the transform coefficients,

rarely leading to an appropriate set of features for classification.

We analyze a recent neural paradigm, Generalized Relevance Learning Vector Quantiza-

tion (GRLVQ) [1], to discover input dimensions relevant for classification. GRLVQ is based

on, and substantially extends, Learning Vector Quantization (LVQ) [21 by learning relevant

input dimensions while incorporating classification accuracy in the cost function. LVQ is

the supervised version of Kohonen's unsupervised Self-Organizing Map [2]. LVQs iteratively

20060926040



adjust prototype vectors to define class boundaries while minimizing the Bayes risk. Our

analysis reveals two major algorithmic deficiencies of GRLVQ. Fixing these deficiencies leads

to improved convergence performance and classification accuracy. We call our improved ver-

sion GRLVQ-Improved (GRLVQI). By using only the relevant spectral channels discovered

by GRLVQ, we show that one can produce as good or better classification accuracy as by

using all spectral channels. We support this claim by running an independent classifier on

the reduced feature set, using 23 classes of a real 194-band remotely sensed hyperspectral im-

age. The higher the data dimension and/or larger the number of classes, the more advantage

GRLVQI shows over GRLVQ.

The improved performance of GRLVQI over GRLVQ is substantiated using several dif-

ferent methods discussed in the literature. We come to the important conclusion that the

improved results obtained by our GRLVQI are statistically significant.

A new and exciting feature extraction model is presented by applying GRLVQI in the

wavelet domain. Our model is focused on classification requirements, rather than signal re-

construction. It does not follow the largest magnitude coefficient selection as is more typical

in wavelet analysis. The most relevant wavelet features turn out to be something different.

Further, it allows for a linearly selection of wavelet coefficients based on their computed

relevances. We extend this work to complex wavelets in order to mitigate the effects of

discontinuities introduced in the spectra due to the deletion of spectral bands containing

irrecoverably corrupted data. The Dual-Tree Complex Wavelet Transform shows improved

classification results with similar feature extraction capabilities as with the Critically Sam-

pled Discrete Wavelet Transform. Our results demonstrate the superior classification and

feature reduction performance of our relevance-wavelet model.
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Chapter 1

Introduction

1.1 Military requirements for imaging systems

Military intelligence and planning relies on aerial and satellite reconnaissance data for a

multitude of planning and reporting functions including: target analysis and reporting, battle

damage assessment, identification of enemy threats, and forward troop deployment planning.

More recently, these communities are interested in assessing surface cover composition and

terrain flatness to locate regions capable of supporting the landing and takeoff of fixed wing

and rotary aircraft for two scenarios. The first scenario requires real-time assessment for

emergency landing situations, for rapid deployment of special forces and their equipment

to high-threat areas, and for "quick-looks" of the terrain to guide reconnaissance efforts.

The second scenario is long term planning functions where one is interested in mapping

potential landing sites for future troop deployments. We developed the Airfield Confidence

Map (ACM) concept that proposes a solution for this second scenario [3].

1.2 Why traditional imagery will not do - hyperspectral imagery

is a must

Many of the tasks discussed above are currently accomplished using imagery with high

spatial resolution often necessitating low altitude aerial reconnaissance missions. However,

such imagery is often umattainable due to enemy threats. Planning tasks can be greatly

enhanced with remotely sensed hyperspectral data as high spectral resolution imagery (with

potentially hundreds of spectral bands) provide all discriminating details needed for fine

delineation of many material classes offering flexibility where purely spatial data falls short.

We describe briefly how spectral data can overcome the pitfalls of purely spatial data as it
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pertains to the tasks defined above.

"* The detection of small targets is nearly impossible without high spatial resolution

imagery. Due to the dangers of low altitude reconnaissance flights, we are forced to

use high altitude imagery with low spatial resolution. In this scenario, high spectral

resolution data can be used to detect sub-pixel sized targets if the spectral resolution

is high. For the safety of troops and equipment, target assessment necessitates high

spectral resolution data for target analysis and reporting.

"• Spectral information can be used to detect and identify dangerous airborne chemi-

cals before sending in ground troops to perform a detailed battle damage assessment.

Spatial data cannot be used for such a function.

"* The assessment of small guerrilla cells threatening operations can be detected by spec-

tral signatures unique to enemy clothing, camouflage paints, and equipment where they

are likely invisible to a spatial-only sensor.

"* Troop deployments can be aided by identifying trafficable regions thus ensuring troops

and equipment have the safest route from their staging point to their forward deployed

location.

"• Finally, the identification of surface cover is a key component of the Airfield Confidence

Map problem, a task for which spatial data alone cannot provide a solution.

We focus on hyperspectral imagery for the many reasons summarized above.

The use of unmanned aerial vehicles (UAV) is ever increasing for reconnaissance efforts

because it is cost effective and more importantly, there is no danger of human loss. We envi-

sion next-generation UAVs with high spectral resolution sensors for reconnaissance purposes.

Fig. 1.1 depicts the acquisition of a hyperspectral scene by a UAV, which then transmits

processed data to an Air Operations Center (AOC.) Using the newly acquired data, AOC

personnel are ready to carry out the intelligence and planning functions we described earlier.
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(A) i (C)

Figure 1.1 Surface information (A) is gathered via unmanned aerial vehicle (UAV) (B)
and sent to the air operations center (AOC) (C) for analysis in real time. The predator UAV
image (B) was obtained from http://www.aeronaut.ru. Image (C) is a conceptual drawing
of the AN/TSQ-165 modular AOC (MAOC) for deployed operations and was obtained from
http://www.fas.org.

1.3 Classifier requirements - flexibility, accuracy, and feature ex-
traction

We presented two scenarios under which we can operate with the ACM; a concept we de-

veloped in an earlier work [3] with follow-on field analysis [4]. In the first scenario, we

are interested in the real-time assessment of surface cover for emergency landing and the

rapid deployment of troops, and for "quick-looks" to guide reconnaissance efforts. For this

function, we need a classifier on board the UAV so we can transmit the class labels. In

non-emergency cases, if we are only interested in a few classes, and we have poor commu-

nications conditions, it might be more feasible to classify on-board the UAV and send the

class labels to the AOC. If we are interested in a large number of classes and we have ade-

quate communications conditions, it could require less processing time to send a reduced set

of features (if our feature extraction is fast), allowing us to classify the data as it is being

received at the AOC. Whatever the conditions, we need a flexible classifier we can adapt

to different real-time situations without adversely affecting classification accuracy. At the
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same time, we may want to continuously train our classifier with newly acquired samples to

capture a potentially changing environment. If intelligence data indicates the need to look

for additional surface materials, we need a classifier with the flexibility to add one or more

classes on-the-fly without having to discard the state of the current classifier.

The requirements for long-term planning are different. This function is executed upon

the completion of a reconnaissance mission and after data is retrieved from the UAV. In a

deployment planning scenario, one would be interested in charting a large number of poten-

tial landing zones requiring perhaps thousands of hyperspectral scenes. The sheer volume

of hyperspectral data would make classification an extremely long process. One common

solution is to add computing resources in order to reduce the processing time. However, in

a deployed environment, computing resources are often scarce. For processing efficiency, we

desire a reduced feature set to classify the hyperspectral scenes. We are not, however, willing

to use a reduced feature set at the expense of degraded classification accuracy.

Our discussion leads us to the following critical question:

Can we define a unified feature extraction and classification model for hyperspec-

tral data with the constraint that we can achieve the same (or better) classification

accuracy for a specific set of material classes of interest, as can be achieved with

the original unaltered data?

1.4 Thesis organization

This thesis effort will answer the stated research question with a resounding yes! The thesis

document consists of seven chapters. Each chapter is arranged in such a manner as to allow

those with current knowledge of certain theoretical aspects to easily skim those sections and

quickly focus on the important contributions of this work.

Chapter 1 motivates the use of hyperspectral images as an aide to military planners.
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Our work is not specific to one small subset of applications but rather has a broad audience.

We discussed several critical tasks for which regular photographic-type imagery is ill-suited.

The presentation of several specific tasks leads us to a set of very broad set of classifier

requirements. Finally, we propose a challenging research question; the remainder of this

thesis is focused on answering that question.

Chapter 2 presents two philosophies of feature extraction and classification processes.

We provide background information on the feature extraction and classification paradigm of

Generalized Relevance Learning Vector Quantization (GRLVQ). An original analysis of the

update window of GRLVQ and its predecessor (LVQ2.1) are discussed in light of a common

misconceptions regarding the importance of these windows. In our investigation, we find that

GRLVQ suffers from two deficiencies which we address in our GRLVQ-Improved (GRLVQI).

Chapter 3 provides a more detailed discussion of hyperspectral images and some interest-

ing applications to illustrate the flexibility of this coveted data. The Lunar Crater Volcanic

Field (LCVF) data set is discussed in detail as is the design of the classification experi-

ments. Specific design considerations for an LVQ network are presented along with a review

of current literature to gain insights on design guidance. Finally, we review a challenging

benchmark classification of the LCVF data by a hybrid artificial neural network so we may

evaluate the classification capabilities of the baseline GRLVQ and our improved GRLVQI.

Chapter 4 presents the results of our experiments. We start with background information

on how we measure classification success and how we determine the number of important

features as well as methodology on an independent evaluation of the discrimination capabil-

ity of those features. Finally, we present the GRLVQ(I) results on the LCVF data set in two

parts. Part I is an evaluation of classifier performance while Part II evaluates the feature ex-

traction capabilities. A manuscript submitted for publication [5] is comprised of our original

analysis, contributions to GRLVQ (GRLVQI), and results (material from Chapters 2 - 4).



6

Chapter 5 answers the following question: "Are the improvements of GRLVQI over GR-

LVQ significant?" We delve into a comparison of the classification performance of GRLVQI

versus GRLVQ. We analyze the significance of the improvements using several techniques

presented in the literature. We come to the important conclusion that the classification im-

provements exhibited by GRLVQI over GRLVQ on hyperspectral data are indeed significant.

A majority of this chapter's material (less discussion on generalization boumds) was recently

submitted for publication [6].

Chapter 6 is a rather large chapter which contributes greatly to the feature reduction

aspect of our research question. This chapter consists of two major parts. Part I investigates

the Critically Sampled Discrete Wavelet Transform (CSDWT) for its sparseness and nearly

decorrelated coefficients as a feature space for GRLVQI processing. Results of GRLVQI

processing on the CSDWT representation of the data are presented and potential issues with

data discontinuities are discussed. The information covered to this point were presented at a

remote sensing conference and published in its proceedings [7]. Part II provides an in-depth

look at the problem of data discontinuities and their effect on the wavelet coefficients. We

investigate the magnitude of the Dual-Tree Complex Wavelet Transform as a feature space for

GRLVQI processing. We find that the odd basis functions of the imaginary component leads

to better classification accuracy with similar feature reduction performance as the CSDWT.

Part II of this chapter was presented at the IEEE Mountain Workshop on Adaptive and

Learning Systems conference and published in their proceedings [8].

Finally, in Chapter 7 we summarize our research and our important contributions. Al-

though we discuss potential areas of continued research at the end of each chapter, we also

provide a brief review of topics in this summary chapter. Finally, we present areas of poten-

tial research that were not covered in the main body of the thesis document.
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Chapter 2

Joint classification and feature extraction

This chapter motivates the use of joint feature extraction and classification methods and

in particular, neural learning paradigms. We briefly discuss works related to our research

focus and conclude that Generalized Relevance Learning Vector Quantization (GRLVQ),

an adaptive neural learning paradigm, realizes a joint classification and feature extraction

paradigm which is appropriate for processing very high-dimensional data. We present the

GRLVQ algorithm and formulae, then provide an original analysis of the windowing effects

of Learning Vector Quantization (LVQ)2.1 (GRLVQ's predecessor) relating discussion in the

literature on the "effective" update window for GRLVQ based on prototype vector update

rules. Keeping with the traditional view that the window in LVQ2.1 is used to promote deci-

sion boumdary development, we consider further restricting the update window of GRLVQ,

to do the same. This leads us to an important conclusion that restricting the prototype vec-

tor updates by a window is not necessary, and can prohibit the development of the classifier.

Our original analysis of GRLVQ reveals two critical issues: potential for diverging prototype

vectors and poor prototype utilization. We address these two issues as our contribution to

GRLVQ yielding our improved version, GRVQ-Improved (GRLVQI).

2.1 Motivation and Background

Remotely sensed hyperspectral images are sophisticated data sets that provide the discrim-

ination capability needed for the military planning functions discussed in Chapter 1. The

intricacy of this data pose very challenging problems for pattern classification algorithms,

classification being its primary use. For air planners to extract the full potential from hy-
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perspectral images coupled with the challenges in accurate material identification, signal

processing techniques with the utmost sophistication are required. We seek a signal pro-

cessing "edge" so we can more easily and more accurately distinguish the material classes of

interest. One way to achieve such an edge is to reduce the information to exactly that which

is needed for classification. That is, feature extraction can play a key role in processing

hyperspectral signatures by reducing the superfluous signal content while preserving that

part of the signal important for classification.

Given a particular image where several classification problems may be drawn (e.g., a

study on vegetation for a specific image would likely yield a different set of classes than a

soil study for that same image), the optimal set of features for classification will be different

for each study, regardless of whether or not the image is the same. That is to say, it is not

reasonable to assume that a global set of features exists for all hyperspectral images with any

arbitrary number of classification problems. An example of which would be using as features

the N largest magnitude wavelet coefficients (or wavelet subband energy). However, several

studies indicate that the N largest magnitude wavelet coefficients are not an adequate feature

set for classification [7,9,10]. One should be aware that certain feature extraction methods

well suited for particular applications are often ineffective for preserving information for

classification (e.g., largest magnitude wavelet selection is well suited to signal reconstruction

and denoising, yet ineffective for selecting features for classification).

Several feature extraction and classification processes are available. We categorize them

as independent processes (i.e., where feature extraction is accomplished independently of

classification as in [9-11]) or joint processes (where feature extraction and pattern classifi-

cation are intertwined process as in [1, 5,12]). The former can lead to inferior results where

classification is likely hindered because the wrong information is retained. This deteriorated

performance occurs because the feature extraction process is unaware of what is important
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for the classifier to distinguish class structure. The latter, in our opinion, offers the great-

est chance at successful classification and feature extraction because there is an interplay

between the two processes.

Many current methods claiming joint or unified feature extraction and classification do

not optimize the former for the latter [12]. According to Oehler and Gray [12], some optimize

for compression of several different signals (e.g., in speech processing) where the compres-

sor yielding the smallest distortion indicates the class to which the signal belongs. Others

optimize for compression first, then cascade the compressed output to a classifier that mini-

mizes the probability of error based on the feature set. Oehler and Gray present a true joint

compression and classification system which uses a Learning Vector Quantization (LVQ) al-

gorithm to minimize a distortion function which includes a squared error term and a Bayes

risk term in a Lagrange multiplier form [12]. Although this specific method fits well with our

requirements, a parametric model for the posterior class probabilities is needed. Without

the posterior class probabilities, the distortion function degrades to a squared error term.

As with any task, one must select the right tool for the job. In order to do this, one must

understand the specific challenges of the problem at hand. Remotely sensed hyperspectral

data is particularly difficult to process and makes appropriate selection of the joint feature

extractor and classifier hard. It is most often the case that parametric models do not exist.

As such, we are unable to use methods that require parametric models for class probabilities

(e.g., [12]). Measurement noise and missing or incomplete data also influence which joint

feature extraction and classification algorithms may be of use. Further, it is common to have

relatively few training samples, often fewer than the number of dimensions in the spectra.

The presence of rarely occurring material types within a particular scene further complicates

matters. It is most often the case where each class does not have at least one more training

sample than input dimensions so methods such as Maximum Likelihood classification are



10

completely removed from our signal processing tool box. Those methods that require the

entire training sample pool to have at least one more training sample than the number of

input dimensions (such as Principal Components) often do not equally represent all classes

and do not work well for hyperspectral data (see e.g., [13] and Section 6.6.)

In our scenario, we make the following assumptions. First, a known mapping between the

acquisition system of the newly acquired reconnaissance data and the acquisition system of

the training data exists. Training data are often obtained from the same sensor used during

acquisition making this first assumption automatically valid. Second, atmospheric conditions

of both acquisition and training data axe the same or at least known, and therefore can be

corrected for. Records of weather conditions across the globe exist, so it is reasonable to

assume under which conditions the different data are acquired. Third, we have a (potentially

large) set of predefined classes (surface materials) of interest. Planning for a specific task

will dictate the use of the imagery and necessitate a defined set of classes validating this

final assumption.

Based on our requirements from Chapter 1 and our assumptions stated above, we con-

sider the doubly adaptive neural learning paradigm of Generalized Relevance Learning Vec-

tor Quantization (GRLVQ) [11, by Hammer and Villmann, for classification-driven feature

extraction. The GRLVQ adapts a set of prototype vectors to define classification bound-

aries while adapting a weighting of the input dimensions to reflect what was important in

classification. In our analysis of GRLVQ, we discover two deficiencies: instability and poor

resource allocation for large, complex data sets such as hyperspectral data. We remedy those

deficiencies resulting in faster convergence and better classification accuracy.
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2.2 Learning Vector Quantization (LVQ) for feature extraction

Kohonen's Learning Vector Quantization 2.1 (LVQ2.1) [2] is a supervised neural learning

paradigm where each class is assigned a fixed number of prototype vectors. These prototype

vectors are iteratively adjusted to represent (model) the classes. LVQ2.1 variants position

prototype vectors by differentially shifting (Fig. 2.1) a best matching (winning) prototype

vector with the same label as the input training sample and a best matching (winning)

prototype vector with a different label than the input training sample, at each iteration.

w, Xm  WK
In-class f '-• Out-of-class

winning prototype Input Sample winning prototype

Figure 2.1 : Differential shifting of the in-class winning prototype vector (wJ) and the out-
of-class winning prototype vector (wK).

After a sufficient number of adaptation steps, prototype vectors are placed to define clas-

sification boundaries while minimizing the Bayes risk. LVQs belong to a class of maximal-

margin algorithms that maximize the hypothesis margin [14] and certain forms of LVQ (Gen-

eralized LVQ and Generalized Relevance LVQ for example) are gradient descent algorithms

with the following general update form for the weights (prototype vectors) [15]:

w(t + 1) = w(t) - F(t)VC(w(t)), (2.1)

where C(w(t)) is the cost function we wish to minimize, e.(t) is the learn parameter (or learn

rate), w(t) is the state of the prototype vector at time t, and V is the gradient operator.

Sato and Yamada [16] developed the Generalized LVQ (GLVQ) to address divergence

issues issues exhibited by LVQ2.1. The specific issue is one of prototypes drifting from their

optimal locations once placed which results in a degradation in classification accuracy. This

divergence issue is addressed by descending a cost function C which includes a measure of

the misclassifications.
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Using GLVQ as the starting point, Hammer and Villmann [1] incorporate an impor-

tance weighting of the input dimensions for classification. This adaptive diagonal metric

is the so-called relevance and gives us Generalized Relevance LVQ (GRLVQ). The GRLVQ

is then a double adaptive neural learning paradigm. Prototype vectors are adapted, in an

iterative fashion, to define classification boundaries. While prototypes learn class structure,

the relevance adapts to reflect which input dimensions are most important for the given

classification.

Let us facilitate our discussion of GRLVQ by defining variables similar to [1]:

" Define the training sample set as {xm, ym E f e x RI. There are M samples x

with n dimensions and class labels y.

"* Define {W} as the set of all prototype vectors where wJ E {W} is the best matching

in-class prototype vector with class label ym, the same as that of the input sample xm .

The number of prototypes for class yin is P and prototypes in class ym are indexed by

p = {1..., P}. Further define wK E {W} as the best matching out-of-class prototype

vector with class label y4 ym.

"* Define dg and d' as the squared Euclidean distance between the input sample xm and

prototype vectors wi and wK, respectively. The notation dP is the squared Euclidean

distance between prototype vector wP, p E {1, ... ,P} with class label y", and the

sample xm.

"* Define A = {A,, A2 ,..., An} as an n-dimensional vector of relevance factors and A as a

diagonal matrix with A, = Ai where i E {1, ... ,n}.

"* Define the weighted squared Euclidean distance between the input sample xm and

prototype wJ and wK as dg and dK, respectively, where A indicates relevance factors

used in the Euclidean distance calculation.

"* Denote fi(x) as the misclassification measure.

"* Denote f(M(xin)) as the loss function.

"* Denote C as the cost function.
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*Define MJK = WJ,+WK, .J
2 the midpoint between wJ and wK. Further define dJK as the

2 K

squared Euclidean distance between wJ and wK.

Definitions for the misclassification measure, loss finction, and cost function are given in

Eq. 2.2, Eq. 2.3, and Eq. 2.5 respectively.

There are two aspects to the gradient descent problem of Eq. 2.1. The first is to define a

misclassification measure to represent a correct versus wrong classification. Sato and Yamada

define the misclassification measure as:

S-m) =d (2.2)

In Eq. 2.2, pL(x") is a normalized distance bounded by -1 and 1. This definition has

a nice numerical interpretation of how well the current sample was classified. A correct

classification occurs if p(xm ) < 0 and the sample is classified perfectly if L((xm) = -1. A

wrong decision is made if It(xi) > 0.

The second aspect is to define a differentiable loss function that takes into account the

misclassification measure it(x). Sato and Yamada define the loss function as:

1
f (Iu(xm )) 1 + e-•(xm)I

1

1 ( •.'-d) " (2.3)
1+ ek-'T"

Using the sigmoid function (Fig. 2.2 top) as the loss function (Eq. 2.3) has the distinct

advantage of having a derivative (Fig. 2.2 bottom) that is a function of itself:

fI(Ikxm)) =f(1•(x')1-f(A(xM,

( ddK (2.4)
(1+ e(--d.----'T)d

The cost function C minimized in Eq. 2.1 is a simple sum of the loss for each sample [16]:

M

C E f wxm)) (2.5)
m=1
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Figure 2.2 : Top: The sigmoid function. Bottom: Derivative of the sigmoid function.

Hammer and Villmann [1] use as the basis for their algorithm, the misclassification measure,

loss function, and cost function described above. One can change the behavior of the algo-

rithm by defining a different loss function or a different misclassification measure (see, e.g.,

Sato and Yamada [17] and Juang and Katagiri [18]).

2.2.1 Generalized Relevance LVQ (GRLVQ) winner selection

The index of the winning prototype vector, w', is selected as

c = argmin EAj(xT- w!)2 (2.6)

Winner selection in GRLVQ is performed twice, once where wq has class label yq =yn'

and a second time where wehas class label yq•y'•, to give both an in-class winning

prototype vector (w') and out-of-class winning prototype vector (w)respectively. The

squared Euclidean distances, weighted using the relevance factors Aj, between the input
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sample xm and prototypes w and wK are:

n

n _ W2,(2.7)

i=1

dK= ZAj(x7- ) 2 . (2.8)
j=~1

2.2.2 GRLVQ prototype updates - descending a cost function

Prototype vectors learn in an iterative fashion to define boundaries between neighboring

classes using the differential shifting prototype update strategy of LVQ2.1 [2]. The best

matching in-class prototype vector (wJ) is moved toward the input training sample and the

best matching out-of-class prototype vector (wK) is moved away from the input training

sample, regardless of a correct or incorrect decision about class membership. Following the

gradient descent form of Eq. 2.1, updates for the in-class and out-of-class winning prototype

vectors in [1] are:

AWJ - 4E(t)jf'[;(-)d- - A(xm - wJ), and (2.9)

K _ 4c(t)Kf'[ (xm)dj mW (d= +- d A(x - WK), (2.10)

where the loss function f is the sigmoid function (Eq. 2.3), f' the derivative of the sigmoid

function (Eq. 2.4), e(t)g the in-class learn rate, and e(t)K the out-of-class learn rate.

2.2.3 Relevance updates - identifying important input features

Relevance factors hold the potential for dimensionality reduction by learning which input

dimensions are important for classification. Importance is learned in a weight vector with

values (computed by GRLVQ) called relevances (A). The interpretation of the relevance is

rather straightforward, input dimensions with larger relevances are interpreted as being more
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important for classification than input dimensions with smaller relevances. We can select the

most important input features to achieve a good classification by ordering features (input

dimensions) based on their relevance.

The relevance factor updates are found via gradient descent in [1], similar to the prototype

vector updates, giving the following update rule:

2c(t)"f'I"(X.) (dK(xT - wI) - dj(x- w) 211
=max{ Ai (dJ + dK5) 0}. (.1

Relevance factors are scaled such that 11AI 1 = 1 in order to avoid numerical instabilities [1].

Any p-norm may be used to scale A, however, we choose the 11-norm because it may have a

convenient interpretation as a probability.

2.3 Original analysis of the LVQ2.1 and G(R)LVQ update win-

dows

In this section we present and original analysis of the LVQ2.1 and G(R)LVQ update windows.

We investigate the effects of further constraining the updates to wJ and wK to reflect

windowing philosophy discussed in the literature. Finally, we provide details on two problems

with GRLVQ that lead the potential for prototype divergence and poor prototype utilization.

Addressing these two issues is our contribution to the neural learning paradigm of GRLVQ.

2.3.1 Part I - windowing in LVQ2.1 and G(R)LVQ

The LVQ2.0 is the predecessor to LVQ2.1 where the difference between these two paradigms

is the addition of an "update window". A window is used to influence the development of the

decision boundary by (what is believed to be almost exclusively) focusing on input samples

which lie in the middle of the decision boundary described by the current (fixed) state of

the prototype vectors. This is consistent with a description of the LVQ2.1 update window

as a step function about the mid-point of the in-class and out-of-class winning prototype
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vectors [2, 17]. In this section, we look closer at the LVQ2.1 update window as originally

defined by Kohonen and compare the window to that which is defined by the update rules

in Eq. 2.9 and Eq. 2.10 for G(R)LVQ.

2.3.1.1 The LVQ2.1 update window

Recall that G(R)LVQ uses the differential shifting prototype update strategy of LVQ2.1

discussed in Section 2.2.2. In Kohonen's treatment of LVQ2.1, a window is used to promote

development of the decision boundary. This window is often viewed as a step function (in

the one-dimensional case) as portrayed in Fig. 2.3.

Update WindowWJ + WK I Wi.=dth
2 47

In-class -I "', Out-of-class
winning prototype Input Sample winning prototype

Figure 2.3 : The LVQ2.1 update window is often described as a step function centered
between prototypes wJ and wK with a window of width D, where D is the percentage of
the distance between wJ and wg.

In Kohonen's definition of LVQ2.1, the in-class and out-of-class prototype vectors are

updated if and only if the following condition holds [2]:

mm dK'f dJ} 1D (2.12)
rain , > T+D

The variable D in Eq. 2.12 represents a window of relative width which is the percentage of

the Euclidean distance (v/d-JK between wJ and wK. For example, a window width D = 0.5

would occupy 50% of the this distance. We show that which is described by Eq. 2.12 is not

a step fimction about MJK (the midpoint of wJ and wK) as viewed by others [2,17], it is

something different.
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We will show for a two-dimensional case that Eq. 2.12 defines a circular boundary around

each prototype vector where input samples (xm) lying outside of the circle result in updates

to both prototype vectors. Instead of focusing on what lies in or out of the circular boundary,

we focus on the boundary itself. In a simple two-class problem with a single prototype vector

assigned to each class, there are only two boundaries, one for the in-class prototype vector

and one for the out-of-class prototype vector.

For the in-class prototype w we define the boundary by equating the left and right

sides of Eq. 2.12, rewriting - as 1 where a = (1 - D) and b = (1 + D) for simplicity. If

the sample is classified correctly, then T (Eq. 2.12) is smallest and the boundary for wJ is:

Fdd 1 -- D
dK 1+D'

a (2.13)
b

Squaring both sides of Eq. 2.13 yields:

di a 2

dK b2"

For our two-dimensional example, we can rewrite Eq. 2.14 as:

(w•-Xl) 2 + (w2-x 2 )2  a2

(W _ Xl)2 + (W _ )2 b2

After cross multiplying, collecting terms, and completing the square, it is readily apparent

that the update boundary (about wj) is defined by a circle for the two-dimensional example

presented here. The circular boundary is not centered at wJ, rather it has its center located

at

(a 2wWK - b2w J a 2w2K _ b2wJ-

S-b2 -a 2  b2 - a2 J

with a radius defined as

a2wKKb2wJ j
2  (a2wK - b2wJ 2 b2 wJ+w )-2(wK +wK)

b2 -a2 b2 -a 2 - b2_a2
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One can similarly define the circular boundary for the out-of-class prototype vector by equat-

ing VdKdJ to 2 and going through the same process as above.

For the two-class case, with a single prototype vector for each class, we demonstrated

that Eq. 2.12 describes two circular regions, one about each prototype vector. Updates to the

in-class and out-of-class winning prototype vectors occur if the input sample lies outside of

the circular regions and do not occur if the sample falls inside the circular regions. Further,

prototype vectors are not located at the centers of the boundaries, they are eccentrically

located in equal distances but opposite directions (Fig. 2.4). The generalization of the two-

class case defines hyperspherical regions about each prototype vector. For multiple classes

with multiple prototype vectors per class, the results are similar but are further constrained

by their multi-dimensional Voronoi cells.

We rewrite the LVQ2.1 prototype updates to include indicator functions that capture

Kohonen's update rule. That is, gj(.) and gg(') in Eq. 2.14 and Eq. 2.15 evaluate to 1 if the

condition in Eq. 2.12 holds:

j = F(t)gj(xm,w JwK)(xm - Wi), (2.14)

AwK = •E(t)gK(Xm,W J, wK)(xm -_ wK). (2.15)

In general, gj(xm, wi, wK) and gK(Xk, WJ WK) are composed of all the information in

update rules 2.9 - 2.10 except the learn rate and the difference between the prototype and the

input sample. A two-dimensional example of the Kohonen window is presented in Fig. 2.4

for varying window widths. Black regions of Fig. 2.4 equate to gj(-) = gK(-) = 0 while

white regions equate to gj(.) = gK(') = 1. Prototypes are indicated as white dots in the

black regions. Fig. 2.4 clearly shows that updates to wJ and wK not only occur when the

sample falls within a window about their midpoint, they are updated for a wide range of

input samples. It is unclear what effect the Kohonen window has on the development of
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the decision boundary for samples lying outside of the midpoint between wi and wK. We

surmise this contributes to the divergence problem LVQ2.1 exhibits.

Window width D=0.2 Window width D=0.3

40 0

Window width D=0.4 Window width D=0.5

Figure 2.4 : Kohonen's window for two-dimensional data. For inputs in the black regions,
prototype vectors are not updated; white regions are those areas where prototype vectors
are updated. Prototypes are indicated by white dots located in the black regions.

2.3.1.2 The G(R)LVQ Gaussian-like update window

Sato and Yamada state that the update window in GLVQ is no longer needed because it is

replaced by a Gaussian-like window [17]. From Eq. 2.4 and Fig. 2.2 bottom, it is clear the

derivative of the sigmoid finction is Gaussian-like. However, since the remaining pieces of

the update are also a function of the input sample and locations of the prototype vectors,
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it umclear at this time how the rest of the update formulation in Eq. 2.9 and Eq. 2.10 affect

this Gaussian-like window found in G(R)LVQ.

In order to evaluate the effect of the G(R)LVQ update window, we define the two win-

dowing functions gj(.) and gK(-) of Eq. 2.14 and 2.15 as:

4dKf'Iu(xm)A
gj(xm" ,wJ' wK) - + dK (

ggK(x",wJ,wK) --- 4dgf'l,,(,-)A (2.17)
(dJ + dK)2  (

gK~~x~w~w) A d~d) 2  (.7

To provide some illustration, we consider a 2-class problem in one dimension. The in-

class prototype vector (wJ) and the out-of-class prototype vector (wK) are fixed at locations

-5 and 5 (indicated by dots in Fig. 2.5). The values of the windowing functions gj(.) and

gg(') are plotted on the y axis for different values of the input sample xm along the x axis.

Fnmction values evaluated to the left of the line defined by the input sample xmn = 0 are for

a correct classification whereas the function values evaluated to the right are for a wrong

decision. For the one-dimensional case, A = [All] = 1.

For a correct decision, Fig. 2.5 shows that wJ is moved much closer to the sample than

w Kis moved away. For the extreme case when xm = wj, no update occurs to WK. For a

wrong decision, wj is moved slightly closer to the sample whereas wK is moved much further

away. Prototype vectors are updated most when the sample falls in the areas slightly skewed

from their midpoint. The graphical representation of the LVQ2.1 and G(R)LVQ windows

(Fig. 2.4) and G(R)LVQ (Fig. 2.5), show that the latter can be fine-tuned to better promote

the development of the decision boundary.

2.3.1.3 Restricting the G(R)LVQ update - emphasizing the midpoint between
winning prototype vectors

We investigate several windowing strategies based on the assumption that a window aides in

LVQ's decision boundary definition. The windows discussed in the following sections are not
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GRLVQ update window
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Figure 2.5 : Effective update window for GRLVQ for one-dimensional data. The values of
gj(-) and gK(') along the y axis are evaluated for fixed prototype locations at -5 (wJ) and
5 (wK) where the input sample xm varies along the x axis. Solid curves reflect updates
to the in-class prototype vector (wJ) and dashed curves reflect updates to the out-of-class
prototype vector (wK).

to replace the current window defined by G(R)LVQ, rather add additional restriction such

that prototypes are influenced by samples lying in some region about MJK. We consider

the following additional windowing schemes a hypercube window, and a multi-dimensional

Gaussian window.

Hypercube window: In order to restrict the development of the decision boundary to

samples lying in a region about MJK, we define a hypercube window with width D which is

the percentage of the distance between prototype vectors v centered at MJK for which

updates may occur. If the input sample falls entirely within the window, then both the in-

class and out-of-class prototypes are updated, otherwise no update occurs. We can capture
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the function of the hypercube window with the indicator function

1 if (MJK - DVdd/2) •_ x- < (MJW + DVJ/2)

1D(X') = ViE {1, 2,...,n} (2.18)

0 Otherwise.

We can write two new update functions gj(xm, wJ, wK, D) and gK(xm, wJ, wK, D) as:

gj(xm, wJ, wK D) = gj((x•, wJ, wK)ID (Xm) (2.19)

gK(Xm, wJ, wK D) = gK(Xm,WJ,wK)ID(Xm) (2.20)

where gj(x', wJ, wK) and gK(xm, WJ, wK) are defined in Eq. 2.16 and Eq. 2.17 respectively.

Fig. 2.6a and Fig. 2.6b illustrate the GRLVQ window overlaid with the hypercube window

in one-dimension. Fig. 2.6c and Fig. 2.6d graphically illustrate the new update rule which

is influenced only by the samples between the prototypes. The in-class (out-of-class) pro-

totype vector is influenced more by samples slightly off-center when a correct (incorrect)

classification occurs.

Multivariate Gaussian window: The hypercube window was a simple "0-1" window

where either an update occurs or it does not. A different approach is to define a continuous

fumction about MJK. The motivation is that a continuous window makes the transition

between update and no update of the prototype vectors and relevance factors smooth, which

may help reduce the oscillatory effects of the classification accuracy exhibited by GRLVQ.

Based on the belief that we must refine decision boundaries by placing more emphasis on

data points in the vicinity of MJK, we considered a multivariate Gaussian window. The

mean vector of the Gaussian is simply MJK and the variance is related to the percentage

(D) of the distance (vd"JK) between prototypes wJ and wK:

, A D x dJKInxn (2.21)
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Figure 2.6 : This figure shows the application of the hypercube window (dashed) to the

G(R)LVQ update (solid) with window W = 0.4 (40% of the distance between the in-class
and out-of-class prototype vectors located at Mg') for a) G(R)LVQ update overlaid with
hypercube window for the in-class prototype, b) G(R)LVQ update overlaid with hypercube
window for the out-of-class prototype, c) effective in-class prototype update, and d) effective
out-of-class prototype update.

where In,, is the n x n identity matrix. Using a non-scaled multivariate Gaussian (i.e.,

aGaussian without the ((2rn E)-1/2 multiplicative term) is desirable so that the peak at

M'K evaluates to one. We can write two new update functions gj (X,, wJ' WK, D) and

gK(x0, w) , WK, D) as:

X~~rn, ~ _i j(-W K 1_ [x'-MJK1E- I [Xm•-M./KITIn(pu Samwpl D) Inp)(exp ) (2.22)

C) New D) = gK (xoWJ, WK) (exp--2 -- f-cl•asdMaK]t

where gj(xupwJ,wK) and gK(wi, wJW 0%) are defined in Eq. 2.16 and Eq. 2.17 respec-

tively, MJK is the midpoint between wc and WK, and -cl is defined in Eq. 2.21. Fig. 2.7a

and Fig. 2.7b illustrate the GRLVQ windows overlaid with the Gaussian window in one-
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dimension. The continuous Gaussian window "refocuses" the emphasis on the midpoint

between wi and wK as indicated in Fig. 2.7c and Fig. 2.7d. We are essentially morphing

the bi-modal window to a uni-modal window without making the window degenerative (see

Section 2.3.2.1).

Correct Wrong Correct Wrong
-6 O0 Classification Classification Classification Classification

SL _~____0 0

"-40-30-20-10 0 10 20 30 40 -40-30-20-10 0 10 20 30 40

Input Sample (xm) Input Sample (xm)
A) In-class update & Gaussian window B) Out-of-class update & Gaussian window

"Correct "Wrong "Correct "Wrong
SClassification Classification "- Classification Classification

E E
x x

Y I

C I . .. ( .

-40-30-20-10 0 10 20 30 40 -40-30-20-10 0 10 20 30 40
Input Sample (xm) Input Sample (xm)

C) New in-class update D) New out-of-class udpate

Figure 2.7 : This figure shows the application of the Gaussian window (with D - 0.4) to
the GRLVQ update: a) G(R)LVQ update overlaid with Gaussian window for the in-class
prototype, b) G(R)LVQ update overlaid with Gaussian window for the out-of-class prototype,
c) effective in-class prototype update, and d) effective out-of-class prototype update.

2.3.1.4 Discussion of windowing and the effect on boundary definition

The windowing methods described above further restrict the window Currently defined by

G(R)LVQ. However, based on the results of our testing (not presented in the thesis), they do

not offer any further improvement in classification accuracy and the window currently defined

by the GRLVQ update rules performs as well or better. It does not appear necessary, or

even useful, to further restrict the updates to the in-class and out-of-class prototype vectors
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to samples around MJK. We conclude that the strict focus on the midpoint between wJ and

wK is not necessary to promote good class boundary definition. In analyzing the windowing

effects of G(R)LVQ, we find two critical issue emerge, the potential for diverging prototype

vectors and poor prototype utilization, which we discuss in Part II of this section below.

2.3.2 Part II - observations of GRLVQ

Although there does not appear to be a need to focus on updating the prototypes if the

sample falls around their midpoint, we find two issues that can have a grave effect on clas-

sifier performance. First, we discuss the potential for diverging prototype vectors based on

differential shifting. Second, we find that a large percentage of prototype vectors do not

learn during the training process.

2.3.2.1 Potential for prototype divergence

Sections 2.3.1.1 and 2.3.1.2 show that prototype vectors are updated for a wide range of

input samples. Our two windowing functions, gj(.) and gg('), with the addition of a time

decay term (T-) are:

gj(xm, J, wK, T) 4dKf'jI(xm),A)
(dJ + dK)2 (2.24)

gK(X", W wK, 'r) = 4dJf'•u(xm),A (2.25)
(dJ + dK)2

where is defined as:

fe'-,(x•),K
f'(,I,(xm),r) = f(QI(x m ),T) [1 - fx)r]

S+ (2.26)

Increasing values of T- will cause the update window to converge from a bi-modal to a uni-

modal window about MJK (Fig. 2.8). In the limit as T -* oo, gj(-) and gK(') converge
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to degenerative Gaussian functions (i.e., a Gaussian with infinitely small variance or a J

function). In this extreme case, the update window would consist of a single point located

at MJK.

GRLVQ window of varying widths

Correct Wrong
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A - -
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Figure 2.8 : The G(R)LVQ update window converges to a uni-modal window about the
midpoint of wg and wK if a time decay factor T is applied in Eq. 2.26. The filled triangle,
solid square, and solid dot curves are for gg(-) evaluated at T = 1,3, and 20, respectively.
The open triangle, open square, and open circle curves are for g9j() evaluated at T = 1,3,
and 20 respectively.

Sato and Yamada [17] suggest using a constant learn rate, starting with large windows

and shrinking with increased training time. It is unclear how best to employ a time-varying

decay term and careful consideration must be given so as not to hinder classifier development.

Even though Sato and Yamada do not feel a decaying learn rate is necessary, it is still a

good idea in order to control how far a prototype can be adjusted once the boundary is well

defined. An indicator of a "well defined" boundary is the monitoring of the train and test

classification history.

Properly decaying the sigmoid function is critical to ensure that divergence of the pro-
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totype vectors does not occur. If the update window is left too wide for too long, then

divergence can become an issue. To illustrate the possibility of divergence, we consider a

simple two-class problem consisting of classes C1 with a large number of samples and class

C2 with relatively few samples (depicted in Fig. 2.9). In our example, class C2 will pos-

sess the nearest prototype(s) for class C1. Class C1 has more samples than class C2, so

prototype(s) from class C2 will be pushed away from the boundary. Because class C2 has

fewer samples, it will unsuccessfully attempt to reposition its prototype(s) to redefine the

boundary. Given this scenario, it is clear that divergence can occur. At the very least,

the current GRLVQ update strategy can cause increased training time because prototypes

properly positioned may be moved unnecessarily.

Cl in-class Cl out-of-class
prototypes prototypes

Figure 2.9: An illustration of the divergence potential for a two-class problem. Class C1 has
far more training samples than class C2 as indicated by the diameter of the circle. Prototypes
in class C2 are the out-of-class prototype vectors of class Cl causing a disproportionate
number of out-of-class updates for Cls prototype vectors than in-class updates, thus the
divergence of C2s prototype vectors can occur.

2.3.2.2 Prototypes that never learn

During our investigations of GRLVQ, we found that many of the prototype vectors never

learn during the training process. This should come as no surprise since it is a common

problem amongst prototype-based learning algorithms. For example in the case of the 23-

class hyperspectral classification problem discussed in detail in Section 3.2, we find that only
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60 out of 115 (; 52%) of the prototype vectors learn during classifier training (this means

that only 52% of the prototypes were different from their initial random state at the end

of training). For the 35-class hyperspectral classification problem, this issue is much more

severe. Here, only 67 of 175 (; 38%) learn during the training process. As the geometric

relationships between the classes in a given problem becomes more difficult, the more likely

this problem is to have a serious negative effect on the classification results.

2.4 Our contribution - Generalized Relevance Learning Vector

Quantization Improved (GRLVQI)

In our analysis of GRLVQ, we find it suffers from two problems: the potential for diverging

prototype vectors and poor prototype utilization. The divergence problem is addressed by

changing the learning rule discussed in Section 2.4.1. We address the poor prototype utiliza-

tion by incorporating DeSieno's conscience mechanism [19] for in-class prototype selection

discussed in Section 2.4.2. This equiprobabilistic (maximum entropy) solution ensures all

prototypes receive an opportunity to learn during the training process. Our improvements

to GRLVQ (dubbed GRLVQI) result in decreased training time and better classification.

2.4.1 Addressing the problem of prototype divergence

Our in-class conditional update prevents the potential for divergence by changing the up-

date strategy for correctly classified samples. The original GRLVQ update the winning

out-of-class prototype vector unconditionally, which can cause divergence as discussed in

Section 2.3.2.1. We argue that it is only necessary to adjust the out-of-class prototype if a

sample is incorrectly classified. The new update rule is then to move the in-class prototype

towards the sample and the out-of-class prototype away from the sample only if a sample is

misclassified. If the sample is classified correctly, we adjust the in-class prototype towards

the sample and leave the out-of-class prototype umchanged. We can view the effect of our
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update rule in Fig. 2.10 where we see the original GRLVQ update occurs for an incorrect

decision (indicated with the solid curve). When a sample is classified correctly, only the

in-class prototype vector is updated (indicated by the dashed curve of Fig. 2.10).

Our GRLVO-Improved update window
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Figure 2.10: Effective update window for our improved GRLVQI. The values of gj(r) and
gv(') along the y axis are evaluated for fixed prototype locations at -5 (wi) and 5 (wK)
where the input sample xm varies along the w axis. Solid curves reflect updates to the in-class
prototype vector (wJ) and dashed curves reflect updates to the out-of-class prototype vector
(wK).

2.4.2 Improving prototype utilization

Poor prototype utilization is a classic problem with prototype-based learning methods, with

good solutions for unsupervised learning algorithms [19, 20]. However, solutions for super-

vised learning algorithms have not been addressed in the literature. DeSieno 's conscience

mechanism [19] biases the Euclidean distance between the input sample xm and the prototype

vector wp which modifies the chance of the prototype vector wp becoming the winner. The

bias is calculated from the wining history for each prototype wP so as to discourage frequent



31

winners from winning more often and encourage the selection of infrequent winners.

Updates to the frequency FP for the winning prototype vector wP (this prototype is the

in-class winner wJ) is:

F.Pew = Fold + 3/ (1.0 -- FId). (2.27)

For the remaining prototypes, the frequency is adjusted as:

F.new = FoPd + / (0.0 - Fold). (2.28)

The ,3 term in Eq. 2.27 and Eq. 2.28 is a user-defined parameter that controls the amount

of update to the frequencies FP.

For winner selection, one uses the biased Euclidean distance between the input sample

x' and the prototype wP:

dBi = dP - BP, (2.29)

where BP is defined as:

BP F(_-d). (2.30)

The -y term in Eq. 2.30 is a user-defined parameter that controls the amount of bias applied to

the Euclidean distance. Conscience learning is an equiprobabilistic winner selection strategy

which allows for an optimal maximum entropy vector quantization and allows prototype

vectors to contribute quickly [19].

We can take advantage of DeSieno's conscience mechanism for GRLVQI by applying

a separate conscience for each class. That is, during in-class prototype selection, we bias

the Euclidean distance as described by Eq. 2.29 where the bias is defined in Eq. 2.30. We

then update the frequency of the winning in-class prototype vector wg as in Eq. 2.27 and the

frequency of the non-winning in-class prototype vector as in Eq. 2.28. During the out-of-class



32

winner selection, we do not bias the Euclidean distance. Further, the unmodified Euclidean

distance is used in the update rules for wJ, wK, and A.

2.5 Discussion

This chapter promoted and laid out a framework for joint feature extraction and classifica-

tion models as the right choice for ensuring a set of features that maintain the discrimination

capability of the data. We investigate the neural paradigm GRLVQ for joint classification

and feature extraction of remotely sensed hyperspectral data. The GRLVQ gives us a conve-

nient way of reducing the dimensionality of the data based on rank-ordering the relevances

(or importance) placed on each of the input dimensions during learning. Keeping only the

N input dimensions with the corresponding N largest relevances will give us the best combi-

nation of input dimensions which will yield the best possible classification (using GRLVQ as

the classifier). An original analysis of the LVQ2.1 and GRLVQ windowing methods was ac-

complished where we demonstrated that restricting updates of prototype vectors to samples

lying in the mid-region of the in-class and out-of-class winning prototype vectors dispelled

a common belief that this additional restriction is necessary. Further analysis and experi-

mentation with GRLVQ revealed two deficiencies which we addressed as a contribution to

GRLVQ yielding our GRLVQ-Improved (GRLVQI). The first deficiency (unconditional up-

dates to the out-of-class prototype vectors) leads to the potential for prototype divergence.

The second deficiency is poor prototype utilization, which results in an umderdeveloped clas-

sifier that is incapable of realizing its true potential. The end result of our GRLVQI is the

elimination of the potential for prototype divergence by changing the prototype update rules

and an increase in classification accuracy by implementing a maximum entropy solution

for in-class prototype winner selection (Hammer and Villmann also noted that a maximum

entropy solution could bring improvements to GRLVQ [1]).
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In the next three chapters, we demonstrate the improved performance of GRLVQI over

GRLVQ in a principled and systematic fashion. We start by defining three challenging hyper-

spectral classification problems. Using these three problems, we compare the classification

accuracy and feature extraction results achieved by GRLVQ(I). We then expand the analy-

sis of our classification results to show that the improvements of GRLVQI over GRLVQ are

significant.
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Chapter 3

Test and evaluation framework for comparing GRLVQ
and GRLVQI

Comparing the performance difference between two similar classifiers is an involved task.

Consideration must be given as to the type of data one evaluates to meet the intended use of

the classifier. Additional care must be taken to design tests such that they are unbiased and

as "independent as possible". Depending on the type of data one evaluates, repositories such

as the UCI machine learning repository [21], provide a good source of different predefined

problems with well studied labeled training samples. Since our research focuses on the

analysis of hyperspectral data, we are only interested with the performance difference of

GRLVQI over GRLVQ on data sets for which GRLVQI can have an advantage over GRLVQ.

For relatively simple data sets, such as those found in the UCI machine learning repository,

our GRLVQI likely does not offer performance improvements. Unfortunately, repositories

similar to the UCI do not exist for hyperspectral data or other types of data with similar

complexity and dimensionality making it difficult to find a variety of well studied test cases

to evaluate GRLVQ(I).

In the first part of this chapter, we provide background information on hyperspectral

images. Next, we present the Lunar Crater Volcanic Field (LCVF), NV remotely sensed

hyperspectral image, which is a sufficiently complex and high-dimensional data set that will

give a good evaluation of the classification and feature extraction capabilities of GRLVQ(I).

Hyperspectral images also represent a large family of data that are widely pursued for so-

phisticated information in many areas of science, engineering, industry, and decision making

functions. To achieve good classifications, we must take care in designing our GRLVQ(I)
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networks. We present the network configuration and the schedule of time decayed learning

parameters (e.g., learn rates and conscience parameters where appropriate) in light of design

guidance from the literature so we may have the best possible GRLVQ(I) networks for ana-

lyzing the LCVF scene. Finally, we present a challenging baseline classification of the LCVF

data set (from a previous study in [22]) to which we can compare the results of GRLVQ(I).

3.1 Background - hyperspectral images

Hyperspectral images are complex high-dimensional data sets used in many facets of sci-

ence, engineering, and industry, often serving as decision making tools. The users of this

sophisticated imagery require the very best in classification accuracy. We aim to provide

neural solutions to address the needs of the commumity. We do this by demonstrating the

effectiveness of the joint classification and feature extraction capabilities of GRLVQ(I) on

hyperspectral data. We provide a description of hyperspectral data in this section.

Hyperspectral images are a collection of (potentially) hundreds of co-registered images

where each image records the measured light response in a narrow frequency band, at every

pixel. This collection of images is represented conceptually as an image cube (Fig. 3.1 left).

Each pixel in the image cube has associated with it an n,-dimensional vector, called spectrum

(Fig. 3.1 right), the elements of which are the measured light intensities of the respective

wavelengths at that pixel location.

Hyperspectral images provide one with a wealth of information. The spectral resolution

of typical hyperspectral sensors allows one to discriminate nearly any material, which is why

hyperspectral images are used in a wide range of applications, including both terrestrial

and extra-terrestrial studies. See, e.g., Howell et al. [241 for a study on asteroid types.

Hunt and Salisbury [25, 26] and Hunt et al. [27-361 have a series of seminal papers on a

spectroscopic study of rocks and mineral identification based on absorptions in the visible
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Figure 3.1 : A hyperspectral image cube where each pixel is an n-dimensional vector which
is the spectrum of the material in that pixel. Figure from Campbell [23].

(0.3-0.7 /tm) and near-infrared (0.6-2.6 /m) spectral regions. This series of papers provides a

nice discussion on how the electronic and vibrational processes interact to create the spectral

features we rely on for classification. These spectral features are called absorptions and are

based on the repeatable physical process of the interaction of light with materials at different

wavelengths.

Hyperspectral images not only allow us to identify the mineralogical composition of

materials, one can make inferences on other material characteristics. For example, differ-

ences in temperature manifest in spectra makes temperature inference possible (see, e.g.,

Roush and Singer [37]). Further, the size of the particulate matter is also known to affect

the spectral response [38] and therefore grain size inferences are also possible.

3.2 The Lunar Crater Volcanic Field (LCVF) data set

We use training and testing samples from a remotely sensed hyperspectral image of the

Lunar Crater Volcanic Field (LCVF), NV test site acquired by the NASA/JPL AVIRIS
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hyperspectral sensor [39] in 1994. A natural color composite image of the LCVF sub-scene

is shown in Fig. 3.2. It is a 614 x 420 pixel image with 194 spectral bands after deleting

the saturated atmospheric water bands containing irrecoverable data. We normalize each

spectrum (194-dimensional vector) by its 12 norm in order to cancel linear effects [40], such

as shading caused by viewing geometry. This normalization makes spectral classes more

uniform, which in-turn aides the classification process. One undesirable effect of spectral

normalization is that it removes the differences in (geometric) albedo, i.e., erases all of the

real differences between materials that have the same spectral signature and only differ in

their albedo [40]. Although this problem is rarely encountered, one must be aware of the

possibility so that if it does occur, post-classification processing can be done to separate the

affected materials.

Figure 3.2 : Natural color composite image of the Lunar Crater Volcanic Field (LCVF), NV
scene obtained by the NASA/JPL AVIRIS imager in 1994. Locations of 23 surface cover
types are indicated by labels (see Table 3.1 for a description of the material labels shown
here). Additional details and previous analysis of the LCVF image are available in [22].
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We use three classification problems of increasing difficulty to demonstrate the improve-

ments of our GRLVQI over GRLVQ. First, we evaluate a 7-class problem. Second, we

evaluate a 23-class problem for which a description of the classes is listed in Table 3.1 along

with the class labels and the number of training samples. The 7-class problem is a subset

of the 23-class problem consisting of classes A, D, E, H, I, L, and W. Further details and

past analysis on the 23-class data set are available in [22]. Finally, we evaluate a more diffi-

cult 35-class problem, an extension of the original 23-class problem. The additional twelve

classes were discovered via independent Self-Organizing Map (SOM) clustering [22] of the

LCVF scene after careful scrutiny of their statistics and spatial distribution. The 35-class

problem adds the following 12 classes: X-Z, a-e, and g-j. Class labels and corresponding

mean spectra for all 35 classes is provided in Fig. 3.3.

Class Cover description # 11 Class Cover description
A Hematite-rich cinders 72 M Alluvium #3 (iron rich) 14
B Rhyolite of Big Sand 22 N Dry wash #1 15

Spring Valley
C Alluvium #1 50 0 Dry wash #2 54
D Dry playa 160 P Dry wash #3 45
E Wet playa #1 115 Q Wet playa #2 15
F Young basalt 21 R Wet playa #3 14
G Shingle Pass tuff 7 S Wet playa #4 15
H Alluvium #2 (with mixed 50 T Wet playa #5 18

scrub, brush, rocks, and soil)
I Old basalt 36 U Alluvium #4 (also

U iron rich) 36
J Dense scrub brush stands 12 V Wet playa #6 12
K Basalt cobbles on playa 37 W Ejecta blankets #2 33

(primarily unoxidized
cinders with smaller
percentage of hematite-
rich cinders)

L Ejecta blankets #1 (mixed 78
hematite-rich and umoxidized
cinders)

Total # 931

Table 3.1 : Class descriptions, labels, and number of samples for the 23-class problem. The
7-class problem is the following subset of classes: A, D, E, H, I, L, and W.
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Figure 3.3 : Average spectra of the original 23-class problem (classes A-W) and the 12
additional classes (X-Z, a-e, and g-j) for the 35-classes problem.

3.3 A benchmark classification of the LCVF data set

To assess the classification performance of GRLVQ(I), we compare the results against a

baseline classification of the 23-class problem with a hybrid artificial neural network (ANN)

using all 194 spectral features. The hybrid ANN is capable of exploiting the intricacies of

high-dimensional giving us more challenging classification benchmark. Classification accu-

racy achieved by the hybrid ANN is 92.1% averaged over the three independent jack-knife

runs. We believe the classification accuracy of the hybrid ANN on the testing data to rep-
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resentative of its true performance capability. The same hybrid ANN architecture was used

in previous studies to classify the entire LCVF AVIRIS scene where the data presented in

Table 3.1 served as the training spectra for the 23-class problem ([13,41]). The assessment

was evaluated according to rigorous statistical assessment based on sampling theories which

included a large number of "ground truth" pixels. The classification accuracy of the hy-

brid ANN classifier was --• 90%, followed by the MED classifier with 83%, a Spectral Angle

Mapper classifier with ; 80%. The Maximum Likelihood (ML) classifier could not be ap-

plied to the 194-dimensional data for lack of sufficient number of training samples, which is

dimension-dependent for the ML.

The accuracy produced by the hybrid ANN on the entire AVIRIS image [22] is lower than

that produced on the 23-class data set used in this study. This is simply because we are using

clean spectral specimens from the LCVF image for both training and testing, where in the

original study all of the noisy pixels participated in the classification. Further, the previous

studies were conducted during a time when computing power was more limited than what

is available today. As such, it may be possible that with longer training the hybrid ANN

would achieve somewhat higher classification accuracy.

The hybrid ANN used for our benchmark classification of the LCVF data set is described

in several earlier publications (see, e.g., Mer6nyi [221, and references therein). It consists

of a 2-dimensional Self-Organizing Map [2] (SOM) as a hidden layer and a categorizational

output layer that learns using the Widrow-Hoff learning rule. In the first part of the training

process, the SOM is allowed to learn in unsupervised mode where it learns the structure of

the data. After a certain number of training steps have passed, the supervised learning of

the output layer is turned on. This combination of unsupervised and supervised learning is

powerful since the preformed clusters in the SOM help the output layer refuse the learning

of inconsistent class labels resulting in an overall better classification of the data.
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3.4 Design of GRLVQ(I) classification experiments

We consider classification problems with varying degrees of difficulty (described in the pre-

vious section) to demonstrate the effectiveness of GRLVQI over GRLVQ. We will use the

notation GRLVQ(I) to indicate that we are talking about both GRLVQI and GRLVQ. The

purpose of the relatively easy 7-class problem is to demonstrate the effect of the in-class

conditional update on the classifier's rate of convergence. Here, we do not use conscience

learning so we may isolate the effect of our in-class conditional update rule. Next, we ex-

ecute GRLVQ(I) on the 23-class data set to show improved classification accuracy due to

the in-class conditional update and conscience learning together. Evaluation of this 23-class

problem is especially important since there is previous analysis on this exact problem using

neural paradigms which will serve as a performance baseline for evaluating the effectiveness

of GRLVQ(I) for classifying hyperspectral images. Finally, we evaluate the classification

performance of GRLVQ(I) on the 35-class data set to further demonstrate the advantages of

GRLVQI over GRLVQ.

A k-fold cross validation is a commonly accepted practice for classifier evaluation in or-

der to reduce the bias and variance of the estimated prediction error [421. The practice is

to randomly select a fraction (kk-) of the known labeled training samples for training the

classifier and the remaining (1) for evaluating the classifier [42,43]. A total of k tests are

performed, using a different set of testing and training samples for each run. Specific guid-

ance on choosing the value of k is not universal. Haykin [43] suggests a value of k = 5 while

Hastie et al. suggest k = 5 or k = 10 [42]. It is recognized that the value of k often depends

on the problem at hand. Since our classification problems have a large nmber of samples

and a large number of classes and computationally intensive in the current software imple-

mentation, we use a 3-fold cross validation. Two-thirds of the known labeled samples are
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used for training and one-third for testing (Table 3.2). When reporting overall classification

results for a given problem (e.g., 7-class, 23-class, or 35-class), we average the test results

from each of the three independent jack-knife runs.

7-Class 23-Class 35-Class

Training Samples 347 621 976
Test Samples 173 310 488

Total Samples 520 931 1464

Table 3.2 : Number of training and testing samples for the 7-class, 23-class, and 35-class
problems.

3.5 GRLVQ(I) classifier design

Designing an LVQ-type classifier for a particular classification problem can be successfully

accomplished in four steps. First, one must decide on the number of classes. Second, one

must decide on the number of prototype vectors to assign to each class. One may assign

the same number of prototypes for each class, or based on a priori knowledge, assign an

appropriate number of prototype vectors which may be different for each class. Third,

prototype vectors must be initialized. Finally, classifier parameters must be chosen.

3.5.1 Assigning prototypes to classes

The number of prototype vectors assigned to each class can have a significant impact on the

classifier's ability to learn class boundaries [44]. We would like to turn to existing theory for

guidance on how best to approach this design consideration. Generalization bounds based

on Vapnik-Chervonenkis (VC) dimension [14] (see e.g., [45]) and more recent works based on

Bartlett and Mendelson's [46] Gaussian complexity [47], only give us guidance on the total

number of prototype vectors in our classifier, not on the distribution of those prototypes.

Unfortunately, this existing theory for generalization bounds for LVQ-type classifiers are of

little use here. This leaves us to design our networks based on "rules-of-thumb" or heuristics.
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In our problem, we use five prototypes per class for each of the three classification prob-

lems. This number was empirically determined and shows good results for our experiments.

There is no reason to assume that each class should have the same number of prototype

vectors. It is possible that varying the number of prototypes across classes based on class

characteristics could produce improved results, or perhaps reduce computation time by en-

suring a minimal set of prototypes are used. The size of the class, its geometric relationship

with other classes, and modality of the class distribution, can each influence how one should

assign the number of prototypes per class.

Using a self-organizing map (SOM) in a preprocessing phase to derive an ideal distribution

of the number of prototypes for each class may be a more principled approach. We could

apply labeled training samples to prototype vectors in the SOM and observe the number of

prototype vectors assigned to each class label. This observed number can be used directly, or

in proportion, as the number of prototypes to assign to each class in the GRLVQ(I) network.

We do not focus our efforts on solving this issue as our initial objective was to see

improved classification performance. Our results indicate that our simplistic approach of

assigning the number of prototypes vectors for each class shows good results. The above is

a more principled approach to determine the number of prototype vectors to assign to each

class because we can potentially improve classification accuracy, decrease training time, or

both, by using a minimal set of prototype vectors.

3.5.2 Initializing prototype vectors

The initial state of an LVQ's prototype vectors can affect the generalization ability of the

classifier [2]. The literature addresses this problem in several ways. Prototype vectors can

be initialized based on the sample distribution or based on the data extremes as in [48].

They can be moved from some initial random state to a state suitable for refinement [1,2]
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by using some other algorithm. Or, prototypes can be randomly initialized and one can

use methods to ensure prototypes converge to a local optimum [49]. We found that the

addition of conscience learning to address poor prototype utilization allows us to use random

initialization and obtain consistent results. That being the case, we do not employ fancy

initialization schemes as they are not needed for our work. We scale the data on the interval

[0, 1] to correspond to a region on the sigmoid where the slope is large, which has the effect

of speeding up convergence. By initializing the prototypes to the center of that interval

(initial prototype values are drawn randomly from a uniform distribution on [0.4,0.6]) for

which the data are scaled, we further aid the convergence rate of the classifier. We use the

same initialized state for each classification problem when testing both classifiers.

3.5.3 Choosing GRLVQ(I) learning parameters

There are no hard-and-fast rules, or much in the way of theoretical considerations when

choosing learning parameters. One may consider this part of the process as the "art of

classifier design". The parameters we present in this section result from a process of trail

and error. During our trial and error, we found that the quality of the final classification

was not overly sensitive to specific parameter values. An old lesson relearned was that one

should decay parameters as learning progresses. Exactly this point brought more dramatic

improvement on classification accuracy than the process of "parameter tweaking". We nse

a learning schedule instead of implementing a time-decay function for each of the learning

parameters giving us better control over the learning process. This is described by the

schedule employed for GRLVQ(I) learning in Table 3.3.

Table 3.3 lists the learning parameters for GRLVQ(I) and the conscience parameters

for GRLVQI for the 23-class and 35-class problems. The parameters are decayed using a

predetermined schedule based on the number of training steps. Although ideally all learning
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parameters would decay with continued training, we found that a constant -Y for conscience

control worked well in our classification problems.

Schedule of GRLVQ(I) Learning Parameters
GRLVQ(I) Params Consc. Params

Training Steps (TS) 0I 1 (:1J E' [1yj • 3
0 < TS < 400K 0.005 0.025 0.025 2 0.35

400K < TS < 800K 0.0025 0.0125 0.0125 2 0.3
800K < TS < 1.2M 0.001 0.005 0.005 2 0.225
1.2M <TS < 1.6M 0.0005 0.0025 0.0025 2 0.125

Table 3.3 : The GRLVQ(I) learn schedule for the 23-class and 35-class problems. The
first three learn rate parameters are used for both GRLVQ and GRLVQI. The last two
parameters control the conscience aspect of the learning and are for GRLVQI only. The
number of training steps (TS) is rounded to the next thousand.

3.6 Discussion

This chapter laid the groundwork for the rigorous evaluation and comparison of GRLVQ(I).

It introduced a hyperspectral data set that is sufficiently high-dimensional and complex to

require more sophisticated classifiers than most currently used for meaningful high-quality

classification, and will serve to validate the improvements of GRLVQI over GRLVQ (shown

in Chapter 4). We use an independent evaluation of the same data to set a challenging bench-

mark classification for which any less accuracy achieved by GRLVQ(I) would invalidate the

use of the GRLVQ(I) classifiers on high-dimensional complex data such as hyperspectral

data. The design of our classification tests follow accepted standard practices and ensure

a meaningful evaluation of classifier performance. The progressively more difficult classifi-

cation problems we defined will ensure a fair comparison of the classification and feature

extraction performance of GRLVQI and GRLVQ giving one a good indication as to how dif-

ficult the problem must become before GRLVQI is better suited than GRLVQ. Our network

configuration was developed by carefully following four phases of LVQ network design while

at the same time evaluating best-practices from the literature to ensure optimal performance.
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Chapter 4

Application of GRLVQ and GRLVQI on the Lunar
Crater Volcanic Field data set

Before comparing GRLVQ and GRLVQI, we first evaluate their classification and feature

extraction success separately. In this chapter, we discuss important background information

which details methodology for evaluating GRLVQ(I) performance. We present methodology

for determining how many relevance-ranked features to retain and how we independently

assess the discrimination capability of the retained feature set. We conclude with the pre-

sentation of the classification and feature extraction results for GRLVQ(I) processing on the

three classification problems discussed in Chapter 3. Results are presented in light of the ac-

curacy discussion in Section 4.1, feature retention methodology and independent assessment

of GRLVQI features from Section 4.2.

4.1 Measuring classifier success

The current literature suggests that methods other than classification accuracy should be

used to evaluate classifier performance ( [50] and references therein). Demgar in [50] (and oth-

ers) suggest using the area under the receiver operating characteristic (ROC) curve (AUC).

Samples of the ROC generated along the ROC by setting a series of thresholds for the out-

put of the classifier, classifying the data for each threshold, and tabulating the results. The

tabulated results are used in methods such as the trapezoidal integration method [51] to es-

* timate the AUC. The AUC is not without its problems. First, much of the current literature

restricts the AUC method to binary classification problems [51-54]. Some extensions of the

AUC exist for the multi-case (see Fawcett [55] for a nice summary of multi-class ROC and
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AUC). One by Provost and Domingos [56] essentially create a two-class problem with the

class currently under evaluation verses the rest of the classes. The AUC is then a combi-

nation of the weighted AUCs where the weighting is the frequency of the prevalence of the

class under evaluation. In this case, we would require a total 23 (35) AUC estimates for the

23-class (35-class) problems. According to [55], the method described in [56] is sensitive to

the distribution of the classes and error costs. Hand and Till [57] approach the problem dif-

ferently and have a solution which is not sensitive to class distributions or the error cost [55].

Hand and Till's method measures the discrimination between pairs of classes, of which there

are N where N. is the number of classes in the classification problem. For the 23-class2

(35-class) problem, there are 293 (595) pairs of classes. For the number of classes we are

interested in classifying, this method is cost prohibitive.

Second, according to Holte and Drummand [53], there is no agreed upon best-practice

for averaging ROC results for a k-fold cross validation (we use a 3-fold cross validation).

Finally, the interpretation of performance is not cut-and-dry. For example, the estimate of

the AUC can serve as one performance indicator. A second indicator is when the ROC of

classifier 1 dominates the ROC of classifier 2 [54,58]. In cases where ROC-curves cross, the

interpretation is that classifier one performs better than classifier two for different ranges of

operating points [53]. Given the issues discussed above for the multi-class AUC, that there

is no agreed upon method for combining multiple ROCs (used to find the AUCs), and that

the interpretation of the results is not clear, we are unable to use the AUC for performance

evaluation. For these reasons, we use classification accuracy.

Classification accuracy of each of the independent jack-knife tests can be calculated using

one of two methods. The first method is the non-equal weighted accuracy, which is simply

the total number of correctly classified samples divided by the total number of samples. This

accuracy measure favors larger classes and suppresses the contribution of small classes. The
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second method is the equal weighted accuracy, which is the average of the individual class

accuracies. The equal weighted method is used here because it gives each class, regardless of

its size, equal contribution in the evaluation of the classifier.

4.2 Background on feature retention and evaluation

There is an interdependence between the classification aspect of GRLVQI on the retention

of the important input features through the relevance weighting of the input dimensions.

An age-old problem with feature selection is deciding how many to keep. For GRLVQ(I)

computed relevances, one natural thought is to select input dimensions in decreasing order of

relevance, checking classification accuracy with the GRLVQ(I) classifier as each new feature

is added. The number of features one retains is then drawn from the tabulation of results

based on some criterion (e.g., maximum achieved accuracy or a the tradeoff between retained

features and achieved accuracy). However, this method might be considered incestuous since

the same classifier used in calculating the importance of the input dimensions would also

be used to evaluate feature quality. Further, it says nothing about the universality of the

feature set.

A more meaningful method of feature retention and evaluation is to use an independent

classifier to select the number of features for the best tradeoff between the retained features

and achieved classification accuracy. An independent classifier can also serve the purpose

of evaluating the discrimination capability of the extracted (retained) features. We use

the Minimum Euclidean Distance (MED) as our independent classifier in this thesis. To

determine and evaluate the GRLVQ(I) features, we select the features in a cumulative fashion

starting with the input dimension corresponding the largest GRLVQ(I)-computed relevance,

and each additional input dimension is selected in descending order of GRLVQ(I)-computed

relevance. The MED classification is performed with each newly added feature. This process
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is continued umtil all features are used in the MED classification of the data.

We recognize that using the MED for feature retention and evaluation may not be the

best approach. Philosophical differences between an LVQ classifier and the MED make

GRLVQ(I) features suboptimal for the MED. An LVQ classifier uses multiple prototype

vectors per class to define class boundaries. Prototype vectors learn local class structure

(specifically the margins between adjacent classes), thus the computed relevances of features

reflect more localized differences. In contrast, the MED is equivalent to an LVQ with a

single prototype vector where that prototype is exactly the mean of the training data for

each class. A more meaningful set of features for the MED would reflect the difference in

the mean between neighboring classes.

Based on the above discussion, relevances computed by GRLVQ(I) may not identify

a set of globally acceptable features which may be used in any classifier with the same

classification accuracy success as in GRLVQ(I) itself. This in turn affects the reliability

of the determination of the required number of features for peak classification accuracy.

Regardless, the simplicity and speed of the MED make it an attractive method for feature

selection and evaluation. Further, it serves our purposes of providing a coarse look at feature

retention and class discrimination capability of those retained features. For this reason we

chose it for an initial assessment in this thesis. The promising outcome encourages an

investigation of more refined methods in future work.

In using relevance selected features in the MED classifier, one must decide whether or

not to weight the data dimensions with the computed relevances. Although the relevance

weighting could be applied to the data, in light of the philosophical differences between

GRLVQ(I) related features and an MED-type feature, it makes more sense not to apply

the relevance weighting. Further, in Chapter 6 we compare relevance selection of wavelet

coefficients, largest magnitude wavelet coefficient selection, and relevance selection of spectral
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features where it will make for a fair comparison of features if relevance is not applied to the

data.

A less involved method of feature retention is simply to keep those above some threshold.

Thresholding features for retention is a common theme in many signal processing algorithms.

In some applications, thresholding may be rather unprincipled. We, however, carefully set

our threshold so that it has physical meaning in relation to our data. Setting the threshold

to 0.001 will include all input dimensions with at least an importance of one tenth of one

percent (assuming the 11-norm is used when normalizing the computed relevances). Further,

a threshold of 0.001 is considerably smaller than an equal weighting of the input dimensions

which would give a relevance of ; 0.005 to each dimension of our nearly 200-dimensional

data.

4.3 Classification and feature extraction results for GRLVQ(I)

We present the results of GRLVQ(I) on the LCVF data set described in Section 3.2. Clas-

sification results are presented in the first part of this section while results of the computed

relevances as well as an assessment of feature quality using an independent MED classifica-

tion are presented in the second part.

4.3.1 Evaluating GRLVQ(I) as a classifier

In this section, we present the classification result of GRLVQ(I) on a series of classification

problems of increasing difficulty. We start with the 7-class problem to evaluate the in-class

conditional update rule and work our way to the 23-class and 35-class problem to evaluate

the combined effects of our in-class conditional update and our adaptation of conscience

learning for the supervised classification setting.

The 7-class problem of Section 3.2 is a relatively simple classification problem used to
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isolate the effects of our in-class conditional update rule. In evaluating this problem, we

do not use conscience learning. The benefit of our in-class conditional update is illustrated

in Fig. 4.1 where we see an ; 35% faster convergence than GRLVQ, to the maximum

classification accuracy compared to GRLVQ.

Test classification accuracy for the 7-class problem
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Figure 4.1 : Test accuracy of GRLVQI with the in-class conditional update (without con-
science learning) and of GRLVQ for the 7-class data set, on test data. Curves are the average
of the three independent jack-knife runs, in each of which the accuracy is computed as the
average of the individual class accuracies as described in Section 4.1.

Once we incorporate conscience learning, the speedup benefit from our in-class conditional

update is absorbed in the extra processing time required to ensure all prototype vectors learn.

As a result, we do not compare the speedup differences between GRLVQI and GRLVQ.

Table 4.1 tabulates the results for GRLVQ(I) for the three classification problems evaluated.

Adding conscience learning to the in-class winner selection increases classification accuracy

from 95.1% to 97.0% for the 23-class problem. For the 35-class problem, we achieve a

more impressive 5.6% gain in classification accuracy from 91.6% to 97.2%. In both cases,
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the performance is better than that of the hybrid ANN (92.1%) used for a benchmark

classification in Section 3.3.

7-Class Problem
Accmni Accru 2 Acc.u,3 Accm # Features

GRLVQ 99.1% 99.9% 99.9% 99.3% 45
GRLVQI 99.1% 99.7% 99.9% 99.2% 45

23-Class Problem
Accu111  Acc,,2 Accun3  Accm• # Features

GRLVQ 95.7% 94.9% 94.6% 95.1% 83
GRLVQI 97.7% 95.3% 97.8% 97.0% 81

35-Class Problem
Accr 11  Accr., Acc~un3  Accmea # Features

GRLVQ 91.8% 90.6% 92.6% 91.6% 109
GRLVQI 98.1% 97.4% 96.0% 97.2% 107

Table 4.1 Classification accuracy achieved by GRLVQ(I) for each of the three independent
jack-knife runs, their average, and the average number of features with relevances > 0.001
for the 7-class, 23-class, and 35-class problems.

We achieve better classification accuracy with GRLVQI over GRLVQ because we make

better use of the available classification resources. Improved resource utilization results in

better boundary definition which in turn affects the spectral components GRLVQ(I) discov-

ers for classification. Recall from Section 2.3.2.2 that GRLVQ trained 52% (38%) of the

prototype vectors for the 23-class (35-class) problem. We verify that adding conscience to

the in-class winner selection ensures 100% of the prototype vectors learn for both problems.

The number of prototype vectors that learn are the number of prototypes that are different

from their initial random state prior to training than their final converged state after training

has completed. Even if a prototypes is updated during training, it may not participate in

the final solution. That is, not all prototype vectors that learned during training have input

samples assigned to them once the classifier has converged.

In Section 3.3 we provided a benchmark classification for each of the three independent

jack-knife runs of the 23-class problem. The goal here is not to compare the GRLVQ(I)



53

classifier to the hybrid ANN, rather compare our results with a challenging benchmark set

by proven methods. The hybrid ANN classification accuracy of 92.1% are close to that

of both GRLVQ and GRLVQI. It is reasonable to expect GRLVQ(I) would achieve higher

classification accuracy than the hybrid ANN achieves on all available (194) spectral features

since GRLVQ(I) discovers the most important features for classification and suppresses the

superfluous ones.

Based on the classification results, we feel the classification performance of our GRLVQI

over GRLVQ for remotely sensed hyperspectral data with a relatively large number of classes

is significant. Although simply looking at the overall classification accuracy supports this

claim, we recognize it is only fair to make such statements after an in-depth comparison

of GRLVQ and GRLVQI results using acceptable techniques. A brass-tacks comparison of

GRLVQI and GRLVQ is the topic of Chapter 5.

4.3.2 Evaluating GRLVQ(I) as a feature extractor

The second aspect of evaluating the joint classifier and feature extractor is to analyze the

extracted features. Two aspects of feature extraction are important. First is to determine

how many features to retain. Second is to determine how good the features are at either

preserving or enhancing class discrimination capability.

4.3.2.1 Comparison between GRLVQ and GRLVQI computed relevances

We observe from Table 4.1 that as the nunber of classes in our classification problem in-

creases, so does the number of spectral components that GRLVQ(I) requires to distinguish

those classes. This comes at no surprise since the geometric relationship between neighbor-

ing classes is likely more complex. To determine which input dimensions are important for

a given classification, one must view the relevance factors computed by GRLVQ(I) for each

of the (194) input dimensions.
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Relevance factors and mean spectra of representative classes for the 7-class, 23-class, and

35-class problems are plotted in Fig. 4.2, Fig. 4.3, and Fig. 4.4 respectively for GRLVQI

only. Spectral features corresponding to large relevance factors for the 7-class problem fall

entirely below 0.9iim as is shown in Fig. 4.2. The 23-class problem requires considerably more

spectral features than the 7-class problem. Spectral ranges deemed important by GRLVQI

for the 23-class problem include 0.44Mum to 0.681Lm, 0.71tm to 1.11Iim, and 1.42ftm to 1.681Lm

(Fig. 4.3). For the 35-class problem, there are four important spectral regions: 0.44gim to

0.68itm, 0.71Igm to 1.11gim, 1.42/im to 1.681im, and 2.1gm to 2.24gm and additional spurious

relevances in the 1.94gzm to 2.48g•m range (Fig. 4.4).

As the classification problem becomes more difficult, GRLVQI must move its relevance

resources around to capture the information important for accurate classification of the

data. Some general observations can be made based on the placement of GRLVQI-computed

relevances for each increasingly difficult classification problem. To facilitate our discussion,

we will use Al to indicate the area above 0.41Lm but below 1.35gim, which is the lower

boundary of the first data fallout region. The area above 1.4gtm and below 1.8gtm, which

are the upper boundaries of the first data fallout region and lower boundary of the second

data fallout region respectively, will be referred to as A2. Similarly, A3 is the area above

1.94gzm, which is the upper boundary of the second data fallout region. For the easier

7-class problem, GRLVQI places its relevance resources entirely in Al where the spectral

curves appear most different. In the 23-class problem, GRLVQI expands its emphasis in

Al while adding relevances to A2 where the spectral curves appear least different. In the

35-class problem, GRLVQI fuirther expands its emphasis in Al and A2 and fuirther places

relevances in A3 where the difference in the spectral curves is greater than that of A2 and

appears to have similar differences between spectral curves as Al except the order of the

plots are reversed.
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Selected representative spectra with relevances (7-class problem)
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Figure 4.2: Average spectra for classes A (red), D (blue), E (black), H (orange), I (purple),
L (magenta), and W (green). Relevance factors are the averages of three jack-knife rims
obtained by GRLVQI (black stem plot) for the 7-class problem. The dotted vertical lines
indicate data fallout due to saturation of the atmospheric water bands.

Selected representative spectra with relevances (23-class problem)
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Figure 4.3 : Average representative spectra of classes A (red), G (green), H (orange),
L(magenta), 0 (purple), Q (black), and R (blue). Relevance factors are the averages of
three jack-knife runs obtained by GRLVQI (black stem plot) for the 23-class problem. Classes
were selected to show largest diversity for this display. The dotted vertical lines indicate data
fallout due to saturation of the atmospheric water bands.
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We compare relevance factors of GRLVQI (black) to relevance factors of GRLVQ (red)

for the 23-class problem in Fig. 4.5. Here, GRLVQ places emphasis in the ltm to .Llym

range where GRLVQ does not. Other differences are easier to see by plotting the difference

between GRLVQI and GRLVQ relevances as in Fig. 4.7 (top). Additional emphasis by

GRLVQI occurs in two regions: 0.55ym to 0.75[tm and 1.55psm to 1.61tm. Here we clearly

see GRLVQ place greater emphasis in four wavelength regions: 0.4 5Mm to 0.55mm, 0.8um

to 0.951Lm, 1.4p-m to 1.55pm, and 1.61Lm to 1.7ttm. Both GRLVQI and GRLVQ place the

same emphasis in the 1.lpm to 1.35jtm and the 1.71tm to 2.5[tm regions. Several general

observations can be made regarding the differences in relevances for this 23-class problem.

The differences in relevances calculated by GRLVQI and GRLVQ appear in clusters and tend

to be fairly significant in Al. In A2, the differences are more spurious but it is clear that

GRLVQ place more importance in this area than GRLVQI. There is essential no difference

in relevance placement by GRLVQI and GRLVQ in A3.

We similarly compare the relevances for the 35-class problem in Fig. 4.6. We see that GR-

LVQI places emphasis in the 2.ltm to 2.25ijm range where GRLVQ does not. Considerably

more emphasis is placed by GRLVQI in the 0.6Mm to 0.7jtm range and spurious emphasis in

the 1.0ymn to 1.151Lm region. We see that GRLVQ places emphasis in the 0.751Lm to 0.851m

range and the 1.41tm to 1.5JLm range. Other differences exist and are illustrated more clearly

in Fig. 4.7 (bottom). Here we see that GRLVQ has more relevance placed than does GRLVQI

in the following regions: 0.551tm to 0.6tim, 0.7Zim to 0.851Lm, and spurious amounts in the

1.4lm to 1.8ptm region. The difference of relevances between GRLVQI and GRLVQ in Al

appear more spurious than in the 23-class problem and the clustering of the differences are

not as significant (large). The exception is the region from 0.6!tm to 0.7Tjm where GRLVQ

places little of its relevances resources. In A2, we see that GRLVQ consistently places more

of its relevance resources than does GRLVQI. The opposite appears to be true in A3. So
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Selected representative spectra with relevances (35-class problem)
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Figure 4.4 : Average representative spectra of classes A (red), G (green), H (orange),
L(magenta), 0 (purple), Q (black), and R (blue). Relevance factors are the averages of
three jack-knife runs obtained by GRLVQI (black stem plot) for the 35-class problem. Classes
were selected to show largest diversity for this display. The dotted vertical lines indicate data
fallout due to saturation of the atmospheric water bands.

Relevances by GRLVQ (red) and GRLVQI (black) for the 23-class problem
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Figure 4.5 : Relevance factors from GRLVQI (black stem plot) with those obtained by

GRLVQ (red stem plot) for the 23-class problem. The dotted vertical lines indicate data
fallout due to saturation of the water bands.
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far, we have seen that GRLVQ(I) places relevance resources at inflection points (e.g., 0.8ftm

and 0.91tm for Class A (red) in Fig. 4.4) and not at locations related to the overall mean

signatures or their standard deviations. In Fig. 4.8, we see that a dip in the overall mean

(across all training data) near 2.21tm coincides perfectly with the large relevance placed by

GRLVQI near 2.21tm (the first dashed vertical line). The standard deviation peak near

2.2[tm is occurs one band later (the second dashed vertical line near 2.2ftm).

Relevances by GRLVQ (red) and GRLVQI (black) for the 35-class problem
0.035
0.030
0.0254
0.020
0.015-'
0.010-

0)0.005
0
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0.020-

0.015-
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0.0051::--

'4 0.6 0.8 1.0 T2 1.4 1.6 1.8 2.0 2.2 2.4
Wavelength (Jrm)

Figure 4.6: Relevance factors from GRLVQI (black stem plot) and those obtained by GRLVQ
(red stem plot) for the 35-class problem. The dotted vertical lines indicate data fallout.

4.3.2.2 GRLVQ(I) feature retention and discrimination capability with the MED
classifier

In Table 4.2, we list the maximum MED classification accuracy using relevance selected

features as described in Section 4.2. We provide a baseline MED classification using all

available (original) 194 spectral features. We clearly see from these results that features

discovered by GRLVQ(I) are indeed a better set of features for classification than all available

(194) spectral features. This evaluation is only for the 23-class and 35-class problems as these

data sets were used to evaluate the difference between GRLVQ and GRLVQI where the 7-
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A X for the 23-class problem (top) and 35-class problem (bottom)
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Figure 4.7: Top: Plot of AGRLVQI -- AGRLVQ for the 23-class problem. Bottom: Plot of
AGRLVQI - AGRLVQ for the 35-class problem. The dotted vertical lines indicate data fallout
due to saturation of the water bands.

class was to demonstrate the speed-up potential of the in-class conditional update rule.

Relevance selected features used in the MED classifier

23-Class problem 35-Class problem

Accuracy #FeaturesI Accuracy #Features

GRLVQI Features 96.4% 52 91.8% 191

GRLVQ Features 96.2% 45 91.7% 184

Baseline MED 92.8% 194 91.1% 194

Table 4.2 : An independent verification of GRLVQ(I) feature quality using the Minimum
Euclidean Distance (MED) classifier. Classification accuracy is averaged over independent
jack-knife runs. The accuracy in each independent jack-knife run is calculated as the mean
of the individual class accuracies.

The peak performance and corresponding number of features presented in Table 4.2 is

one view of the MED results. In Fig. 4.9, we show MED classification accuracy versus the

number of retained features in descending order of relevance. For the 23-class problem,

the MED classifier is able to make significant improvements in classification accuracy using

relatively few GRLVQ(I)-based relevance selected features. Improvements for the 35-class

problem using GRLVQ(I)-based relevance selected features is not as dramatic. This is not an
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Figure 4.8 : Comparison of the overall mean (blue) and standard deviation (red) of the
training set and the GRLVQI computed relevance (black stem) for the 35-class problem.
The first dashed line indicates the dip in the mean which coincides perfectly with the peak
in the GRLVQI computed relevance. The second dashed line indicates the peak in the
standard deviation which occurs one band later. Other relevances appear to follow inflection
points in the mean spectral and/or the standard deviation of the spectra.

indication that the GRLVQ(I) features are poor, it is a limitation of the MED in evaluating

the GRLVQ(I) features as discussed in Section 4.2.

4.4 Summary and Discussion

FRom the original 194 data dimensions, GRLVQ(I) discovers a significantly reduced set of

features relevant for classification. The feature set is clearly meaningful for GRLVQ(I) as

they both achieve very high classification accuracies. We see that as the classification prob-

lem becomes more complex, GRLVQ(I) requires additional features to distinguish between

increasing number of classes. We surmise that the highly correlated spectral bands limit the

reduction of features GRLVQ(I) requires for classification. This is seen from the spectral

plots with relevance factors in Fig. 4.2, Fig. 4.3, and Fig. 4.4. We further support this claim

based on the observation that relevances next to large (small) relevance values are also large
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Relevance selected features for MED Classification
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Figure 4.9 : Top: Plot of MED classification accuracy versus relevance selected features
for GRLVQ computed relevances (dashed) and GRLVQI computed relevances (solid) for the
23-class problem. Bottom: Plot of MED classification accuracy versus relevance selected
features for GRLVQ computed relevances (dashed) and GRLVQI computed relevances (solid)
for the 35-class problem.

(small).

Deciding how many features to retain is an age-old problem. Many signal processing tools

rely on the N "most important" features. For the Fourier series and Principal Component

Analysis, these are the first N coefficients; for wavelet analysis, these are the N largest

magnitude wavelet coefficients. In GRLVQ(I), we keep features based on the N largest

relevance factors. The thresholding method is a very rudimentary technique (yet commonly

used in many signal processing methods for feature retention) which does not take into

account the trade-off between the classification accuracy and the number of features. A

better method was to use the MED classifier to help us choose how many features to retain.

This aspect of relevance learning (as with many other signal processing methods) is an open

area for future research.

The MED assessment provided us with a first-order confirmation of the class discrim-

ination capability of the GRLVQI feature set. A classifier more similar to the GRLVQ(I)
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would be a better method for the independent evaluation of GRLVQ(I)-selected features.

For example, a K-means classifier where the value number of means K is equal that of

the number of GRLVQI prototype vectors used per class. One may use the K prototypes

from GRLVQ(I) as the initialization point for each of the K-means and use the relevance

weighted Euclidean distance for the distortion measure (instead of the unweighted Euclidean

distance). The independent assessment of the GRLVQ(I) features is an open area for future

research.

The MED classifier is a relatively simple classifier which benefited greatly from the feature

extraction capabilities of GRLVQ(I). Other classifiers could also benefit from the extracted

feature set and may yield improved classification results. For example, the Maximum Likeli-

hood classifier may be unusable for high-dimensional data because it lacks a sufficient mnuber

of training samples, which number is dependent on the number of input features used (see a

case study in Mer~nyi [22]). However, ML could become applicable after GRLVQ(I) feature

extraction with better results than in [22]. We used the MED as independent evaluator

because of its cost effectiveness and because it does not require guesses for additional pa-

rameters (such as prior probabilities, etc). We surmise that more sophisticated classifiers

could benefit similarly, and perhaps produce better classification than that of GRLVQ(I).

In the next chapter, we compare the achievements of GRLVQ and GRLVQI on the

classification results from the present chapter. This is accomplished by providing both a

micro-comparison of individual classes and a macro-comparison of overall classifier perfor-

mance. In the end, we show that, although GRLVQ performs well for hyperspectral data,

our GRLVQI is superior for complex data sets with hundreds of input dimensions.
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Chapter 5

Performance improvement of GRLVQI over GRLVQ

We hypothesize that the performance of GRLVQI is significantly better than that of

GRLVQ for classifying hyperspectral data. In order to show that our hypothesis is correct, we

consider several methods of evaluating the improved classification results. First, we consider

theory on generalization bounds to compare the upper bounds on the generalization error of

GRLVQ(I) to serve as an indicator of the expected performance of each classifier. Second,

we use commission errors and omission errors for a class-by-class performance comparison

between GRLVQI and GRLVQ. Third, we use the widely accepted K statistic to remove

that part of the classification achieved due to pure chance, giving a "normalized" measure of

agreement between each classifier and the labeled test data. The omission and commission

errors as well as the K statistic are commonly used in the remote sensing community to

evaluate a classifiers performance against known data. The fourth method of comparison

is the Wilcoxon Signed Ranks Test (WSRT). The WSRT allows us to directly measure the

statistical significance of GRLVQI's improvement over GRLVQ.

Although the main focus of this chapter is to quantify the classification improvement

of GRLVQI over GRLVQ, the classification results are affected by the learned weighting of

the input dimensions. Consequently, the analysis accomplished in this chapter implicitly

also evaluates the quality of the feature set for classification. See Section 4.3 for details on

the relevances learned by GRLVQ(I) for the Lunar Crater Volcanic Field (LCVF) data set

evaluated in this thesis.
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5.1 Background - classifier performance evaluation methods

5.1.1 Using generalization bounds to compare classifier performance

Recent publications offer results on generalization bounds specifically for LVQ-type classi-

fiers. Crammer et al. derive an upper bound for the generalization error for the LVQ2.1

family of classifiers. The generalization error is the empirical error over the training samples

plus a term that is a fimction of the Vapnik- Chervonenkis (VC) dimension [14], and is

dependent on the dimensionality of the data. The empirical error is based on the maximal

margin principle [14] and penalizes margins which are smaller than some threshold 0. How-

ever, Hammer et al. [47] state that the VC-dimension approach is not valid for LVQ classifiers

with an adaptive diagonal metric such as RLVQ [59] and GRLVQ, and hence GRLVQI.

Using the Radamacher-Gaussian complexity described in Bartlett and Mendelson [46],

Hammer et al. [471 derive upper boumds on the generalization error of LVQ classifiers that

use the winner-takes-all rule and include classifiers with an adaptive diagonal metric. This

formulation is independent of the dimensionality of the data. The derived generalization

error is the sum of three terms. The first term is a function of the empirical error over the

training samples, which penalizes misclassifications and small margins. The second term is

an empirical Gaussian complexity term which can be influenced by the magnitude of the

training samples xm or the converged weights, whichever has the largest 12 norm. The third

term depends on the number of training samples and the confidence in the estimate. These

last two terms are inversely proportional to the margin and hence favor large margins.

Unfortunately, the current theory assumes a two-class problem and is invalid for the

multi-class case. However it may be possible to compare the empirical error of each classifier

in order to gain hints as to which classifier will generalize better [B. Hammer, private com-

munication]. If the difference in the empirical error is large, then the generalization bounds
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can serve as an indicator that the classifier with the lower error is expected to perform bet-

ter than the classifier with the larger error. In Section 5.2.1, we will use a definition of the

empirical error that reflects the margin maximized by GRLVQ(I) to show that GRLVQI is

expected to generalize better than GRLVQ.

5.1.2 The confusion matrix and its error measures

In this section we present an example that illustrates the construction of a confusion matrix

explain how to use the confusion matrix to determine the commission and omission errors

which are used in Section 5.2.2. We further label important row and column values used to

calculate the K statistic in Section 5.1.3.

An entire picture of a classifiers performance can be viewed using a confusion matrix

(see [23,60] for additional details). The confusion matrix provides five quantities: commission

error (CE), omission error (OE), producer's accuracy (PA), consumer's accuracy (CA), for

each class, and overall classification accuracy. These are defined as:

"* CE: The percentage of samples classified as a given class but not belonging to that

class.

"* OE: The percentage of samples belonging to the given class but omitted (misclassified

to other classes).

"* PA: The accuracy of the prediction from the perspective of the classifier. It gives the

percent of the total number of samples that belong to a given class that are actually

classified as that class.

" CA: The accuracy of the prediction based on the user's perspective. It gives the

percent of what is labeled as belonging to a given class is actually a member of that

class.

Consider a hypothetical 3-class problem where Class A has 17 samples, Class B has

13 samples, and Class C has 18 samples. After training our classifier on our hypothetical
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problem, we report the classification in a confusion matrix (Fig. 5.1).

Confusion Matrix for Hypothetical 3-Class Problem
Classified As

A B C #Samples PA OE
Zcol(s)

A 12 3 2 17 L2 = 70.6% 3+2 29.4%17 17

211 0 13 R=84.6% 2+= 15.4%11 13 13 -13

C 1 0 17 .18 1- = 94.4% !+_o 5.6%118 -18

Totals 15 14 19 Diag. Sum n = 40

CA 12/15 11/14 17/19
=80.0% =78.6% =89.5% NEWA= 40 = 83.3%

17+13+18=48
CE (2+1)/17 (3+0)/13 (2+0)/18

=17.6% =23.1% =11.1% EWA= 12/17+11/13+17/18 = 83.2%3

Figure 5.1 : Confusion matrix of a hypothetical three class problem. The matrix presents
the Commission Error (CE), Omission Error (OE), Consumer's Accuracy (CA), Producer's
Accuracy (PA), for each class and both the equal weighted and non-equal weighted classifi-
cation accuracies (EWA and NEWA, respectively) described in Section 4.1. The values xs,,
xroaw(s), and xe(s) are used to label the diagonal and the row and column containing the
totals used in Section 5.1.3 on the r. statistic.

Each row in the confusion matrix is the classification for the class label heading that row.

For Class A, 12 samples were correctly classified as Class A and 5 samples were incorrectly

classified, three of which are assigned to Class B and 2 to Class C. For Class A, 12 of 17

samples were correctly classified, therefore the PA = 1 = 70.6%. The OE for Class A is
17

the number of misclassified samples divided by the total number of samples. For Class A,

3 samples were classified as Class B and 2 as Class C which gives an OE = - = 19.4%.

Note that PA+CA=100% and that the PA and OE are based solely on row information.

Each column in the confusion matrix is the number of samples classified as the label

heading that column. For Class A, 12 samples were correctly classified as Class A and 3

samples from other classes were misclassified as Class A (2 from Class B and 1 from Class

C). These values are used to find the CA and the CE. For the CA, we find the ratio between

Class A samples classified correctly to the total number of samples classified as Class A,

which gives a CA = L2 = 80.0%. Here, the CA is based entirely on column information. The
15
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CE is a mixture of row and column information and is the ratio of samples commissioned into

the class to the number of samples in the class. For Class A we have 17 Class A samples plus

2 samples commissioned from Class B and I from Class C. This yields a CE = 2 = 17.6%.

Note that the sum of the column statistics are not 100% unlike the row statistics.

5.1.3 K statistics

Omission and commission errors on a class-by-class basis illustrate where the classifier per-

forms well and where it has problems. Some may feel that classification accuracy alone ade-

quately tells the story of classifier performance. However, relying on classification accuracy

alone disregards the (potentially high) classification accuracy achieved due to chance [23].

Cohen [61] developed a method to compare the agreement between the outcome of two

"judges" (classification results versus truth) on a series of events (samples with known class

labels). This method attempts to remove that part of the evaluation attributed to chance

agreement giving a more precise measure of the agreement between the prediction of the

classifier and the known class labels.

The idea is to compare the observed correct to that of the expected correct (also called

chance agreement)

=E9=1 Pps,8 - Es=I prow(S)pc(s) (5.1)

1- s=l Prow(s)Pco1(s)

where s E {1, ..., S} and S is the mnuber of classes, p•,, is the agreement between the known

and the predicted, and Pra,-,(a)Pcoa() are the marginal probabilities. In the case where the

number of samples M is fixed (and according to Bishop et al. [62], a multinomial sampling

model, which is the case in a multi-class classification problem umder the assumption that

each class is described by a different distribution), one can obtain a maximum likelihood
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estimate of the true n by using the observed values directly from the confusion matrix:

M - (5.2)
Ml

rw) Xow(s) (5.3)
M ' 53

i~•(8 -xld() (5.4)
M

Substituting the values of i5 from above into Eq. 5.1 gives us an estimate of the n statistic,

k [60,62]

- (5.5)
1- S 1 xro(s)XC0((s)

Capturing the essence of Eq. 5.5 in words [23,60,62]

Actual Agreement - Chance Agreement (5.6)

1 - Chance Agreement

The Actual Agreement is as it sounds, and is simply the achieved classification accuracy (term

E 8=1 x- of Eq. 5.5). The Expected Correct is an estimate of chance agreement contributing

to the Observed Correct [23] (term ME, which are the marginal distributions).

The terms xow(,) and XcL(,) are the actual counts appearing in the row and column marked

"Total" and "# Samples", respectively, in Fig. 5.1. The term x8,, is the sth diagonal entry

while the value of M is the total number of samples evaluated.

We use the K statistic to compare the relative performance between two classifiers mea-

sured against pure chance. That is, we interpret the observation of GRLVQI having a larger

r. statistic than GRLVQ as having more confidence in GRLVQI's results over the results

obtained by GRLVQ. This is a reasonable approach since the K statistic is normalized, re-

moving that part of the classification resulting from pure chance [23,60-62]. We use the

estimate k of Eq. 5.5 to estimate the true K statistic for the 23-class and 35-class problems

in Section 5.2.3.
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5.1.4 Wilcoxon Signed Ranks Test

The r statistic provides us with one statistical method of evaluating classification perfor-

mance. It does not, however, provide a comparison between two classifiers. There is a

vast literature for the comparison of two algorithms on (many) different data sets (see, e.g.,

Dem~ar [50] and Salzberg [63] and references therein). One common method for comparing

two classifiers on multiple data sets is the paired t-test. Dernar [50] notes that the paired

t-test is ill-suited for the task for several reasons. First, the outcome of the test only makes

sense if the difference between the classifiers is substantial (although it is not defined what

constitutes substantial). Second, it assumes that for relatively few classification test results

(;30 according to [50]), that the classification accuracy results are normally distributed.

Since one generally has fewer than 30 sets of classification results, and common methods

for determining the normality of small sample sizes are not reliable, we do not consider the

paired t-test. Furthermore, the paired t-test is sensitive to outliers.

There are several tests which make no assumptions on the distribution of the classification

results, one of which is the binomial test described by Salzberg in [63]. The binomial test,

however, is a relatively week test [50,63], as it does not take into account the agreement

between the algorithms (see Section 5.1.3 on Cohen's r, statistic as a measure of agreement)

nor does it take into account the quantitative differences between algorithm results. A second

method is the Sign Test, which is considered a weaker test than the Wilcoxon Signed Ranks

Test [50] because it does not weigh the magnitude of the difference in the results, it only

acknowledges that a difference occurred.

The Wilcoxon Signed Ranks Test (WSRT) [50,64] (for paired tests) is used in this thesis

to test the statistical significance of GRLVQI's improved classification performance over GR-

LVQ. The WSRT ranks and weighs the difference in classification results between GRLVQI
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and GRLVQ. It places greater emphasis on larger differences than on smaller ones making

no assumptions on the distribution of the resulting classification accuracies, and suppresses

the negative effects of outliers. The WSRT defines three quantities. The first quantity is the

number of trials Nt. The second and third quantities are the sums of the rankings assigned

to the absolute differences in classification accuracies. The positive sum of ranks (W+) is

the sum of the ranks assigned to positive differences while the negative sum of ranks (W-) is

the sum of the ranks assigned to negative differences. For example, if the classification accu-

racies of four tests were {70%, 95%, 95%, 88%} for GRLVQI and {90%, 85%, 65%, 98%}

for GRLVQ, then the difference of their outcomes would be {-20%, 10%, 30%, -10%}. In

the WSRT, one would rank the magnitude of the results giving {3, 2, 4, 1} and count the

positive ranks as W+ and the negative ranks as W-, splitting the tied ranks. This would

give W+ = 4 + (2 + 1)/2 = 5.5 and W- = 3 + (2 + 1)/2 - 4.5. The number of tests in this

example is Nt = 4. Should there be a differences of zero (i.e., equal performance), the zero

ranks are split evenly amongst W+ and W-. If there are an odd number of zero differences,

one is simply ignored. The statistical significance of the performance difference is then based

on the number of tests performed (Nt) and the smallest rank (i.e., min (W+, W-)), which

can be found in a table of critical values [65,66] (see Table 5.1 for a portion of the table of

critical values from McCornack [66]).

5.2 Results of the performance comparison between GRLVQ and

GRLVQI

In this section we use the methodology described in Section 5.1 to evaluate the significance

of the improved classification accuracy of GRLVQI reported in Section 4.3 for the LCVF

data set discussed in Section 3.2. The commission and omission errors, although not di-

rectly discussed in Section 4.3, are derived from analyzing the averaged results of the three

independent jack-knife runs for both the 23-class and 35-class problems. The K statistic
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Table of Critical Values of the cumulative one-tail probability
P [T •_ W + INt] for the Wilcoxon Signed Ranks Test

I Ivalues for a
Nt Max 0.075 0.050 0.025 0.020 0.015 0.010 0.005 0.0025 0.0005 0.00005
4 10 0
5 15 1 0
6 21 2 2 0 0
7 28 4 3 2 1 0 0
8 36 7 5 3 3 2 1 0
9 45 9 8 5 5 4 3 1 0
10 55 12 10 8 7 6 5 3 1
11 66 16 13 10 9 8 7 5 3 0
12 78 19 17 13 12 11 9 7 5 1
13 91 24 21 17 16 14 12 9 7 2
14 105 28 25 21 19 18 15 12 9 4
15 120 33 30 25 23 21 19 15 12 6 0
16 136 39 35 29 28 26 23 19 15 8 2

Table 5.1: This table provides a list of critical values for the Wilcoxon Signed Ranks Test
for paired tests. It lists the probability that the sum of positive ranks (W+) is less than the
test statistic (T) given a number of observations (Nt) (i.e., P [T _• W + [Nt]). This table is
an excerpt from a much more complete table found in [66].

results discussed below in Section 5.2.3 are derived using the diagonal entries (individual

classification accuracies) and the row and column totals of the confusion matrix (discussed

in Section 5.1.2 and illustrated in Fig. 5.1 for both the 23-class and 35-class problems. Fi-

nally, in Section 5.2.4, the accuracy results are used directly from each of the six independent

jack-knife runs from Table 4.1. We have a total of six classification results (three from the

23-class problem and three from the 35-class problem) for both GRLVQI and GRLVQ for

use in the Wilcoxon Signed Ranks Test. We feel that the variety of the classifications used in

this analysis are adequate to show that the hypothesis that GRLVQI performs better than

GRLVQ for the classification of hyperspectral data is correct.

5.2.1 Using margin analysis to infer expected generalization

As stated in Section 5.1.1, we are umable to directly calculate the upper bounds on the

generalization error for GRLVQ(I) because these bounds are only valid for the two class
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problem. However, we can compare the empirical cost based solely on the hypothesis margins.

If the difference in empirical cost between GRLVQI and GRLVQ is large enough, then this

provides us an indication that the classifier with the smaller cost is expected to generalize

better than classifier with the larger cost.

Crammer et al. show the generalization error is related to an empirical cost function (a

measure of the achieved hypothesis margin for the training samples) plus a term that is a

fumction of the Vapnik-Chervonenkis (VC) dimension. Ignoring the VC dimension term (it

is the same for both GRLVQ and GRLVQI), we can compare the generalization error by

considering only the empirical cost:

E({W1,S)CGNT = qI{m: XPCGNT ({W}, (x )) <O}j (5.7)

where 0 < 0 < 2, the margin xCGNT - :dK-d (dJ and dK being the squared Euclidean

distance between the input sample xm and the winning in-class and out-of-class prototypes

wa and wK, respectively), S is the training sample set which includes the samples and their

respective class labels, and CGNT is a reference to the authors Crammer, Gilad-Bachrach,

Navot, and Tishby [14].

Hammer et al. define their cost function somewhat differently:

1 if XPHSV < 0

E({W},S)gsv = -E 1 - 1ý if 0 < XPHSV <_ 0 (5.8)

0 Otherwise

where 0 is a constant (here, there is no restriction on 0), the margin 4 Tgsv = dK - dJ, and

HSV is a reference to Hammer, Strickert, and Villmann.

Based on the two definitions of the margin and the definitions of the cost functions, we

see from Fig. 5.2.A and Fig. 5.2.B that GRLVQ is expected to have better generalization. If

one defines generalization as the ability to predict the correct outcome of unseen instances,
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then this prediction is incorrect as our improved GRLVQI shows better generalization for

both the 23-class and 35-class problems.

Cost Functions for GRLVQI (solid) and GRLVQ (dashed)
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Figure 5.2: The error, E, is a measure of the sample margin 1. Large sample margin results
in an E that is small. Small sample margins yield larger E than large sample margins.

This observation can indicate one of three consequences. One is that GRLVQ really

does generalize better which may not be confirmed until a vast number of unseen samples

have been visited. Another is that we cannot assume that the generalization error can be

accurately compared using a cost function based on the empirical margin alone. The last is

that the cost function used to determine the empirical margin for GRLVQ(I) should more

closely follow the work motivated by Crammer et al.

Crammer et al. use their definition of the margin (IF) in a cost function which they

minimize via gradient descent. That is, they directly maximize their margin, xPCGN. Ham-

mer et al. similarly minimize a cost function (Eq. 2.3) which is a function of the misclassifica-
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tion measure of Eq. 2.2. The margin ( 4 'HSV) appears in the numerator of the misclassification

measure. Following more closely the ideas of Crammer et al., it perhaps is more meaningful

to define the margin as the misclassification measure of Eq.2.2 (i.e., we redefine the margin
dK-d

S= ). This definition for the margin (T) gives a direct relationship between the

margin and the cost function minimized by GRLVQ(I) more closely matching the ideas of

Crammer et al.

What indication of generalization does our definition of margin (xF) give? According

to Fig. 5.2.C and Fig 5.2.D, GRLVQI has a larger margin than GRLVQ, and one would

anticipate a better generalization. We recognize that the difference in margins may not be

large enough to make concrete statements regarding the performance difference of GRLVQI

and GRLVQ. However, a more relevant definition of the margin as the misclassification

measure of Eq. 2.2 indicates GRLVQI would generalize better, which supports the hypothesis

that the performance of GRLVQI is significantly better than that of GRLVQ for classifying

hyperspectral data.

5.2.2 Errors of omission and commission

It is common to report the quality of a classifier's performance using a single quantitative

value that is the classification accuracy. What is missing, however, is how misclassified sam-

ples are distributed amongst the remaining classes. We compare the omission and commis-

sion errors for the 23-class (Table 5.2 left) and 35-class (Table 5.2 right) problems described

in Section 3.2. In our analysis, we do not use the Producers Accuracy or the Consumers

Accuracy directly.

From Table 5.2, we can make several observations. First, GRLVQI overall has fewer

(significant) omission and commission errors. This observation is portrayed graphically in

Fig. 5.3, which shows the percentage of classes along the y axis that have either a commission
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23-Class Problem 35-Class Problem
CE (%) OE (%) CE (%) OE (%)

Classl Al B Aj BJill A I Bk AI B1
A 0.00 0.00 0.00 4.17 0.00 0.00 11.25 3.11
B 9.72 4.17 16.39 9.80 19.52 0.00 22.38 0.00
C 13.07 6.40 14.22 0.52 5.56 2.78 24.44 0.00
D 0.52 0.52 0.52 0.64 4.22 0.00 0.53 1.06
E 0.79 0.00 4.69 0.00 0.00 0.85 11.89 0.93
F 0.00 0.00 4.76 16.67 0.00 0.00 50.13 30.18
G 0.00 0.00 0.00 1.96 0.00 0.00 0.00 0.00
H 0.00 0.00 0.00 6.06 2.08 0.00 5.13 0.00
I 4.17 4.17 11.36 8.33 3.33 0.00 12.47 0.00
J 8.33 8.33 0.00 7.41 0.00 0.00 0.00 6.67
K 35.56 7.04 0.00 2.90 39.91 3.33 3.33 0.00
L 3.55 0.00 7.89 2.47 6.08 3.04 20.52 3.46
M 0.00 8.33 3.70 0.00 0.00 0.00 8.33 8.33
N 0.00 0.00 0.00 0.00 28.33 0.00 13.89 0.00
0 0.00 0.00 0.00 0.00 58.72 4.62 6.67 0.00
P 0.00 3.33 25.00 0.00 7.41 0.00 14.63 0.00
Q 43.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00
R 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S 0.00 0.00 0.00 20.00 0.00 0.00 0.00 0.00
T 0.00 20.00 6.67 0.00 0.00 0.00 0.00 0.00
U 25.40 19.44 4.17 2.08 25.74 0.00 5.25 7.47
V 0.00 11.11 0.00 0.00 0.00 0.00 4.76 19.44
W 9.29 6.73 2.08 0.00 4.17 4.17 7.49 0.00
X 35.98 27.65 0.00 0.00
Y 29.72 6.39 8.61 4.31
Z 31.03 1.96 0.00 3.33
a 13.33 3.33 3.33 3.33
b 22.04 4.63 1.85 0.00
c 0.00 0.00 50.87 0.00
d 6.95 1.96 16.35 0.00
e 13.54 2.22 0.00 0.00
g 0.00 0.00 0.00 0.00
h 7.33 4.94 2.78 0.00
i 2.22 0.00 3.03 0.00
i 2.22 2.22 0.00 4.08

mean 6.68 4.33 I 4.41 3.61 ill 10.56 1 2.12 II 8.861 2.73

Table 5.2 Errors of commission and omission for the 23-class and 35-class problems.
Columns marked with A are GRLVQ results and those marked with B are GRLVQI re-
sults.

error (left) or omission error (right) greater than some fixed threshold error (E) along the

x axis. The results for the 23-class problem (top) shows that none of the classes have more
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than 20% commission error for GRLVQI (dotted) where GRLVQ (solid) has commission

errors as high as P 45%. Omission errors (right) for GRLVQI (dotted) and GRLVQ (solid)

show similar performance. This is also indicated in the mean omission error reported in

Table 5.2. For the 35-class problem, GRLVQI has far fewer commission and omission errors

than GRLVQ (Fig. 5.3 bottom). The significant commission errors (left) rapidly decay for

GRLVQI (dotted) and the rate of decay is much slower for GRLVQ (solid). The story is

similar for omission errors (right) where GRLVQI (dotted) shows far fewer omission errors

than GRLVQ (solid). This is further supported by the mean omission and commission errors

for the 35-class problem reported in Table 5.2.
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Figure 5.3 : Left: The percentage of classes with a commission error greater than a fixed
threshold error (E along the x axis) for GRLVQI (dashed) and GRLVQ (solid) for the 23-
class problem (top) and 35-class problem (bottom). Right: The percentage of classes with
an omission error greater than a fixed threshold (E along the x axis) for GRLVQI (dashed)
and GRLVQ (solid) for the 23-class problem (top) and 35-class problem (bottom).
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Second, in many cases where GRLVQ has significant errors, GRLVQI drastically reduces

those errors. There are a few instances when the opposite is true. The extent of the differ-

ences is portrayed in Fig. 5.4. Here we graphically show the difference in error, AE, between

GRLVQ and GRLVQI. AE = [E(GRLVQ) - E(GRLVQI)], where E is either the commis-

sion error CE or the omission error OE is plotted on the y axis and the class label placed on

the x axis. Positive values indicate GRLVQ has a larger error than GRLVQI and negative

values indicate the opposite. For the 23-class problem (Fig. 5.4 top), the difference in the

commission and omission errors indicate more error for GRLVQ than for GRLVQI. For the

35-class problem (Fig. 5.4 top), GRLVQI shows even more significantly reduced commission

errors (left) and omission errors (right) over GRLVQ.

Although the different error plots presented in Fig. 5.3 and Fig. 5.4 provide some indi-

cation as to the significance of the commission error and omission errors, it is difficult to

make stronger statements regarding classifier performance based on these plots alone. Ta-

ble 5.3 presents four numerical values we use to summarize the difference in commission and

omission errors between GRLVQ and GRLVQI. We summarize the four methods below.

"* Mean Error: The average error across all classes. We use this value to compare

overall commission and omission errors against the known labeled samples.

"* Mean AE: Based on the difference in error AE = [E(GRLVQ) - E(GRLVQI)], it

is the mean of the positive differences (W+) for GRLVQ and the mean of the negative

differences (W-) for GRLVQI. Differences of zero are not counted.

"* Signed Ranks: The sum of the signed ranks of AE. This method is discussed in

more detail in Section 5.1.4 for the Wilcoxon Signed Ranks Test (WSRT). The signed

ranks value for GRLVQ is the sum of the positive ranks (W+) and for GRLVQI it is

the sum of the negative ranks (W-). For multiple occurrences of the same differences,

the ranks are averaged and distributed among the positive and negative signed ranks.

For differences of zero, the rank of each zero is divided evenly between the positive

and negative ranks ignoring one outcome if there is an odd number of zeros. We use
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Figure 5.4 : Left: The difference in commission errors between GRLVQ and GRLVQI
for the 23-class problem (top) and 35-class problem (bottom). Right: The difference
in omission errors between GRLVQ and GRLVQI for the 23-class problem (top) and 35-
class problem (bottom). In all plots along the y axis, the difference in error AE =
[E(GRLVQ) - E(GRLVQI)]. Positive differences occur when GRLVQ has a larger error
than GRLVQI. Negative differences occur when GRLVQI has a larger error than GRLVQ.
The x axis in all plots is labeled with the class labels.

the signed ranks to provide a numerical value of the difference in the commission and

omission errors. The values will not be used to determine the statistical significance of

the results.

* Sign Count: The count of positive, negative, and zero AE values. With the sign

count, zero values are split evenly between GRLVQ and GRLVQI (in the case where

there is an odd nmber of zero values, one is discarded). This method is motivated by

the Sign Test described in [50]. We use the sign count to provide a numerical value of

the difference in the commission and omission errors. The values will not be used to

determine the statistical significance of the results.

When comparing the results of the four error measures reported in Table 5.3, one should
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23-Class 35-Class
Commission Omission Commission Omission

Value Scaled Value Scaled Value Scaled Value Scaled

Mean A 6.7% 0.61 4.4% 0.55 10.6% 0.83 8.9% 0.77
Error B 4.3% 0.39 3.6% 0.45 2.1% 0.17 2.7% 0.23
Mean (W+) A 12.1% 0.53 7.3% 0.52 14.8% 0.94 12.9% 0.71

AE (W-) B 10.7% 0.47 6.8% 0.48 0.9% 0.06 5.3% 0.29
Signed (W+) A 242.5 0.88 268 0.97 577.5 0.92 564.5 0.90
Ranks (W-) B 32.5 0.12 7 0.03 52.5 0.08 65.5 0.10

Sign (W+) A 13 0.59 12 0.55 27 0.77 24 0.69
Count (W-) B 9 0.41 10 0.45 8 0.23 11 0.31

Table 5.3: Results of four summary methods for commission and omission errors. The value
column is the actual value of the error method. The scaled column is each reported error
scaled by [Value(GRLVQ) + Value(GRLVQI)]. Rows marked with A are GRLVQ results
and those marked with B axe GRLVQI results.

read larger values to mean larger error. Generally one would use measures such as the

signed ranks and sign count to indicate the significance of classification accuracy where

larger values are interpreted as being better. Because we are dealing with errors, larger

values are interpreted as being worse. Raw numbers are tabulated in the Value column and

the scaled form (scaled by [Value(GRLVQ)+Value(GRLVQI)]) in the Scaled column. The

scaling of the results, although not a common practice in the literature, aides in comparing

the results of the four summary measurements based on the commission and omission errors.

For the 23-class problem, the Mean AE results do not provide sufficient evidence to

support the claim of significant improvement of GRLVQI over GRLVQ for either commission

or omission errors in the case of the 23-class problem. The remaining three measures (Mean

Error, Signed Ranks, and Sign Count), however, are in close agreement that GRLVQI has

fewer omission and commission errors for the 23-class problem. The indication with the

signed ranks is particularly strong. The results of the four measurements further provide

strong evidence that GRLVQ has significantly greater commission and omission errors for

the 35-class problem than does GRLVQI. Therefore, based on the analysis of commission and

omission errors, we can say that GRLVQI performs better than GRLVQ for the classification
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of hyperspectral data.

5.2.3 r. statistic

We use the r. statistic to compare the relative performance between two classifiers measured

against pure chance. That is, we interpret the observation of GRLVQI having a larger K

than GRLVQ, as having more confidence in GRLVQIs results over the results obtained by

GRLVQ. We feel this is a reasonable approach since r. statistic is normalized, removing that

part of the classification resulting from pure chance [23, 60-621. We use the estimate R of

Eq. 5.5 to estimate the true r. statistic for the 23-class and 35-class problems.

23-Class Problem
•.1 k.2 k.n3 kme

GRLVQ 0.9685 0.9430 0.9438 0.9518
GRLVQI 0.9895 0.9453 0.9798 0.9715

35-Class Problem
krunl krun2 krun3 kmean

GRLVQ 0.9076 0.8710 0.9119 0.8968
GRLVQI 0.9828 0.9763 0.9763 0.9785

Table 5.4 : r. statistics for the 23-class problem (Top) and 35-class problem (Bottom).

The results in Table 5.4 indicate that the prediction of GRLVQI agrees better with the

known test samples than does GRLVQ for both the 23-class and 35-class problems. Another

way of stating it is that there is more confidence in the results obtained by GRLVQI than

the results obtained by GRLVQ. This difference appears significant for the 23-class problem

and very significant for the 35-class problem. The results of the r. statistic therefore also

supports our hypothesis.

5.2.4 Wilcoxon Signed Ranks Test

For our evaluation, the number of trials Nt = 6, and in our case GRLVQI outperformed

GRLVQ in all six trials (Table 4.1). Results of the positive and negative sum or ranks yields
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a W+ = 21 and W- = 0. Using a table of critical values (see Table II in Wilcoxon [65] and

detailed treatment of the table of critical values in McCornack [66]), we find that the proba-

bility P, of a rank total T less than W+ = 21, is P = 0.02 (i.e., P [T < 21INt = 6] _< 0.02).

This says that the classification accuracy improvement of GRLVQI over GRLVQ for the

remotely sensed hyperspectral data in this study are significant to 0.02. Hence, the WSRT

too, supports our hypothesis.

5.3 Summary and Discussion

In this chapter we hypothesized that GRLVQI's improvement over GRLVQ for classification

of remotely sensed hyperspectral data was significant. First, we used recent theory on the

generalization bounds for LVQ-type classifiers and redefined the hypothesis margin based

on that which is minimized by GRLVQ(I) similar to previous works on the subject. We

show that GRLVQI is expected to generalize better than GRLVQ based on this large margin

criterion, which is in agreement with our hypothesis.

Second, the analysis of the commission and omission errors gives one a valuable picture

of which classes are difficult to classify and which classes are frequently confused as being

a different class. Our analysis of the commission and omission errors provided an second

indication that our GRLVQI has better performance than GRLVQ, which is in agreement of

our hypothesis.

Third, we calculated the estimate k of the r, statistic for each of the three independent

jack-knife runs for the 23 and 35-class problems. The r. statistic measured the agreement be-

tween the actual and predicted (by the classifier) removing an estimate for chance agreement.

The results of the r. statistic calculations are in agreement with our hypothesis.

Finally, to determine if the improved classification accuracy achieved by GRLVQI is

statistically significant, we used the Wilcoxon Signed Ranks Test (WSRT) for paired tests.
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The results of the WSRT indicate our improved results are significant to a level of a = 0.02.

With the agreement of all four analysis methods, we conclude that our hypothesis is correct;

GRLVQI performs better than GRLVQ for remotely-sensed hyperspectral data.

There are many tests one can use in the evaluation of classifier performance. For the case

of comparing only two classifiers, the WSRT is a reasonable choice. One reason the binomial

test is not used is because it suffers from several weaknesses [63], one weakness being the

binomial test does not take into account the agreement between the two tests. In our review

of the literature, it is unclear to us whether or not this same weakness is exhibited by the

WSRT since it was never explicitly stated. The r. statistic does not measure the agreement

between classifiers but it does give a normalized measure by alleviating the portion due to

chance agreement. The point here is that perhaps one should use something like a K statistic

in place of the classification accuracy (or area umder the receiver operating characteristic

curve) in algorithm comparison tests such as the binomial test, sign test, or the WSRT. One

possible issue with using the r. statistic is that the value of r. can be less than zero. Certainly

one can view this as meaningless and only perform such tests using the r. statistic iff r > 0.

This chapter demonstrated the performance advantage of GRLVQI over GRLVQ for high-

dimensional complex data sets such as hyperspectral data. In the next chapter, we use our

improved GRLVQI for the joint classification and feature extraction on the wavelet repre-

sentation of the hyperspectral data and improve upon our already good feature extraction

and outstanding classification performance.
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Chapter 6

GRLVQI processing in the wavelet domain

In Chapter 4 we showed the superior classification performance of GRLVQI over GRLVQ.

In Chapter 5 we used several analysis techniques from the recent literature to show our

classification improvements are significant. Based on the results of Chapter 4 and Chapter

5, we use our GRLVQI for the relevance-wavelet model we introduce in this chapter.

In Section 4.4, we stated that the highly correlated nature of the spectral bands may be

a limiting factor for further feature reduction using GRLVQI. By applying an appropriate

transform to the data, we can alleviate the correlation issue. The goal is not to extract a set

of features from the transformed spectra prior to GRLVQI processing, rather transform the

spectra into a different feature space and do GRLVQI processing in that feature space.

Since GRLVQI chooses specific coefficients for classification, a sparse transform, in ad-

dition to one with decorrelated coefficients, will likely give us additional gains in feature

reduction. Further, an efficient transform is desired so as not to incur unnecessary processing

costs. The wavelet transform fits the bill given our requirements. It is a data independent

transform that has transform coefficients which are "nearly" decorrelated and are sparse.

Further, it is an efficient transform computable in linear time. What is unclear at this time,

based on the limited success of earlier works [7,9, 10], is the appropriateness of the wavelet

feature space for classification. After reading this chapter, it will become exceedingly clear

that the wavelet feature space is indeed a good environment for GRLVQI processing where

we obtain superior classification accuracy with a minimal set of features.

Given that we are interested in a transform which has decorrelated coefficients, one

might consider Principal Component Analysis (PCA), a data-dependent transform which
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has optimally decorrelated coefficients. However, PCA traditionally does not maintain the

discrimination capability of the original data, which is especially true for hyperspectral

image data. In Section 6.6, we perform a PCA on the 23-class hyperspectral dataset and do

GRLVQI processing on the principal components. We demonstrate we can do better using

the wavelet representation and provide the classification "sanity check" using PCA only as

due diligence, at the end of this chapter.

6.1 The Critically Sampled Discrete Wavelet Transform (CSDWT)

In this section, we provide a cursory look at the Critically Sampled Discrete Wavelet Trans-

form (CSDWT). Interested readers are referred to many quality sources on wavelet theory

for further details of this powerful analysis tool (see e.g., Daubechies [67], Burrus et al. [68],

Resnikoff and Wells [69], and Vetterli and Hurley [70]).

The wavelet transform has many properties which makes it an ideal analysis tool for

a wide variety of problems. First, wavelet coefficients are simultaneously localized in time

and frequency and tend to be sparse [71]. Time and frequency localization means you have

an idea of what occurred and when it occurred, in contrast to Fourier analysis which gives

only perfect frequency localization (you know what occurred, but not when). Wavelet basis

functions at different scales are integer shifts and dilations of a single mother wavelet. That

is, wavelets have the property of multi-resolution [71]. According to [72,73], wavelets posses

the clustering property (i.e., wavelet coefficients adjacent to large (small) wavelet coefficient

tend to be large (small)) and wavelet coefficients persist across wavelet scales (that is, large

or small values propagate across scales).

The Critically Sampled Discrete Wavelet Transform (CSDWT) represents a signal f(t)
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as a sum of its scaling coefficients c(n) and wavelet coefficients dk(n):

00 
00 00

f(t) M = c(n)(t -n) + E dk(n)2 k/ 20 (2kt - n) (6.1)
n=--Oo kýO n=--oo

where 0(t) is the scaling function and 0(2kt - n) the wavelet fumction at scale k.

To perform a k-level CSDWT of the function f(t), one simply takes the inner product of

f(t) with scaling function 0(t) and wavelet function 0(2kt - n):

c(n) = j f(t)0(t - n)dt, (6.2)

dk(n) = f(t)2k/20(2kt - n), (6.3)

where 2 k/2 is a normalizing term.

One can efficiently compute the wavelet and scaling functions using a filter bank (see [74]).

Here, the discrete input signal f[n] is filtered with low-pass scaling filter H(z) and high-pass

wavelet filter G(z), iterating on the low-pass scaling coefficients at each scale. This process

is demonstrated in Fig. 6.1 for a 3-level wavelet transform.

oi~() ) H(z) 2 3(n)

dj() ,, n--

Figure 6.1: Analysis filter bank for the Critically Sampled Discrete Wavelet Transform.
The filters H(z) and G(z) are the z-transforms of the high-pass wavelet filters and low-pass
scaling filters respectively. The symbol 12 denotes a down sampling operation by a factor of
two.

When presenting a vector of data for transformation using wavelets, a vector results of

possibly different length depending on the implementation of the transform and the original

length of the input vector. For a 3-scale CSDWT of our 194-dimensional spectral data using
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Daubechies length four orthogonal (Daub4) filters, the resulting transform vector has 200-

dimensions. We show the relationship between Fig. 6.1 and the vector of wavelet coefficients

at each scale in Fig. 6.2 (this will become important when we analyze our results).

c3(n) d3(n) d2(n) d,(n)

jLLL.I LLHI L.H HI
1 2526 5051 100101 200

Figure 6.2 : The output from the filter bank of Fig. 6.1 (top) as it relates to the application
of the high-pass (H) and low-pass (L) filters (middle) and the range of wavelet coefficients
that apply to the specific filter sequence (bottom).

6.2 Wavelet coefficients are "nearly decorrelated"

Before we present results of GRLVQI processing on the CSDWT of the hyperspectral data,

we first illustrate what it means for wavelet coefficients to be "nearly decorrelated". The

correlation coefficient (p) is calculated as:

COV(i, j)

p COV(i, i)COV(j, ) (6.4)

where 0 < p < 1, COV is the covariance matrix, and the pair (i,j) are the row and column

indices. In Fig. 6.3 we plot the magnitude of the matrix of pair-wise correlations (of the

original spectral features) for LCVF's 931 labeled samples from the 23-class problem. White

pixels correspond to larger p where black pixels correspond to smaller p. The matrix of cor-

relation coefficients is symmetric with ones along the diagonal (i.e., a coefficient is perfectly

correlated with itself).

We see from Fig. 6.4 that the wavelet transform has wavelet coefficients that are nearly

decorrelated. By nearly decorrelated we mean most of the pair-wise correlations are small (as

indicated by the large number of black pixels in the matrix). There are two major regions

that have larger values of p. The first region is that part of the signal that is low-pass
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Figure 6.3 Plot of the correlation coefficient p of the covariance matrix for the labeled
spectral samples. Lighter pixels correspond to larger correlation coefficients where dark
pixels correspond to smaller values. The matrix of correlation coefficients is a symmetric
matrix with ones along the diagonal.

filtered only. Recall the low-pass filtered region are the coefficients in Fig. 6.2 marked as

LLL and are the scaling coefficients at scale 3 (c3 (n)). This satisfies our intuition since the

LLL portion of signal is a rough order (or coarse) approximation of the true one-dimensional

spectral curve. The second set of regions exhibiting correlation are the boundaries between

the wavelet scales (reference Fig. 6.2).

6.3 Experimental setup for GRLVQI processing in the wavelet

feature space

In our experiments, we use Daubechies length four orthogonal (Daub4) filters [67]. We iterate

the wavelet transform three times generating a 3-level wavelet decomposition of the spectral

data. Filter selection and the number of wavelet scales are important considerations which

can effect the quality of the features space for classification, the reduction of features, or

both. We do not consider filter selection or the number of wavelet scales at this time. Our

intent at this point is to investigate the feasibility of the wavelet feature space for GRLVQI
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Figure 6.4 Plot of the correlation coefficients of the covariance matrix for the wavelet
transform (using the Daub4 filters) of the labeled spectral samples. Lighter pixels correspond
to larger correlation coefficients where dark pixels correspond to smaller values. The matrix
of correlation coefficients is a symmetric matrix with ones along the diagonal.

classification and feature extraction.

Our experiments are designed to meet two goals. First, compare the quality of the wavelet

feature space to that of the spectral feature space for classification using GRLVQI and feature

reduction using thresholding (Process E and Process F in Table 6.3). Second, evaluate the

discrimination and feature reduction capability of the GRLVQI extracted wavelet features to

that of the GRLVQI extracted spectral features (Process D and Process B in Table 6.3) using

the Minimum Euclidean Distance (MED) classifier. The MED is of particular importance

since it will allow us to impartially compare more typical largest magnitude wavelet coefficient

selection as a feature set (Process C in Table 6.3) to GRLVQI selected spectral features and

GRLVQI selected wavelet coefficients (Process B and Process D, respectively).

The number of spectral features required to achieve a given classification accuracy for

Process B is described in Section 4.2. We determine the number of wavelet features required

to achieve a given classification for Process D in the same manner as described in Section 4.2
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ProcessI Process description
A Benchmark MED classification with all available spectral features
B MED classification of the GRLVQI extracted spectral features
C MED classification of largest magnitude wavelet coefficients
D MED classification of the GRLVQI extracted wavelet coefficients
E Classification in the wavelet domain using GRLVQI as the classifier
F Classification in the spectral domain using GRLVQI as the classifier

Table 6.1 : List of simulations rim to compare features discovered by GRLVQI from the
spectral data and from the wavelet coefficients.

for spectral features. We add an extra step by taking the inverse wavelet transform on

the retained wavelet features prior to MED classification. In principle, the inverse wavelet

transform is not required prior to classification as the wavelet transform is linear. However,

we perform this extra step for reasons of consistency. As with the MED classification of

relevance selected spectral features, relevance is only used in the selection of the wavelet

features and is not used to scale the data.

As with the relevance selected spectral and wavelet features, the evaluation of the largest

magnitude wavelet coefficients (Process C) is accomplished similar to that described in Sec-

tion 4.2, only we select wavelet features in descending order of their magnitudes. That is,

we start with a single wavelet coefficient that has the largest magnitude, take the inverse

wavelet transform of the test sample set using this single wavelet coefficient, and then clas-

sify the reconstructed spectral signature using the MED classifier and tabulate the result.

Next we add, to the first wavelet coefficient, the wavelet coefficient with the second largest

magnitude. We perform the inverse wavelet transform of the test sample set using these two

wavelet coefficients, classify the reconstructed spectral signatures using the MED classifier

and tabulate the result. This process continues by adding wavelet coefficients one at a time

in descending order of their magnitudes.
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6.4 Results of the wavelet feature space for GRLVQI processing

To facilitate the discussion of our results, we will refer to the relevance factors obtained

by GRLVQI processing in the spectral domain as spectral relevance factors. Similarly, we

will refer to the relevance factors obtained by GRLVQI processing in the wavelet domain as

wavelet relevance factors.

Table 6.2 shows that although GRLVQI in the wavelet feature space (Process E) yields

only slightly better classification accuracy than GRLVQI in the spectral feature space (Pro-

cess F), executing GRLVQI in the wavelet domain yields significantly fewer features than

GRLVQI in the spectral domain. This matches our expectation since wavelet coefficients are

(nearly) decorrelated and sparse.

Summary of Classification Results
A IB C D I E F

Classification Accuracy 92.8% 96.4% 93.1% 95.7% 97.3% 97.0%
Retained Features 194 52 37 17% 17 81

Table 6.2 : Classification accuracy and the corresponding number of significant relevance
factors or wavelet coefficients for the six simulations listed in Table 6.3. Processes are
grouped according to similarity. Process A stands alone, Process B-D evaluate the addition
of each new feature with the Minimum Euclidean Distance Classifier (MED), and Process
E-F are GRLVQI results. Tabulated accuracies are computed as the average of the 3-fold
cross validation runs. In each rim, the overall accuracy is calculated as the average of the
individual class accuracies on the test data.

Our feature retention and validation using the MED classifier shows we can achieve

3.6% improvement in classification accuracy using the 52 relevance selected spectral features

(Process B) discovered with GRLVQI over the benchmark using all (194) spectral features

(Process A) with a 73% savings in the number of retained features. The largest magnitude

wavelet coefficients as features (Process C) may be advantageous over relevance selected

spectral features (Process B) if the given application can tolerate a small degradation in

classification accuracy (less than 3%) as it provides an additional 33% savings in features!

For relevance selected wavelet features, the MED produces better results than largest mag-
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nitude coefficient selection (2.6%) with an addition 54% savings in retained features. The

discrimination capability for the MED is slightly better with relevance selected spectral fea-

tures than with relevance selected wavelet features (0.7%). However, MED classification

with relevance selected wavelet features saves an additional 54% in retained features over

relevance selected spectral features. In this case, a 0.7% increase in classification accuracy

is relatively insignificant compared to the savings in retained features.

Using GRLVQI in the wavelet domain produces the best results (Process E) with accuracy

slightly better (0.3%) than GRLVQI in the spectral domain (Process F) but with nearly 80%

savings in the number of retained features. The results in this section clearly demonstrate

the potential of our relevance wavelet feature extraction and classification model.

6.4.1 Looking at GRLVQI computed wavelet relevance factors

Relevance learning in the wavelet domain selects the same wavelet coefficients from all

wavelet representations of the spectral curves. In Fig. 6.5, we show representative wavelet

curves and the computed wavelet relevance factors. We see GRLVQI determines that coarse

signal information as most important for classifying our 23-class data set. From Fig. 6.5, we

see that coarse signal information is contained in those wavelet coefficients which have been

low-pass filtered only (coefficient indices 1-25). This tells us that, for the 23-class and 35-

class problems evaluated in this thesis, signal information from the continuum of the spectra

provides most of the discriminating information needed by GRLVQI (reference Fig. 3.3). In

addition to the continuum, GRLVQI requires only a few details from the LLH sub-band

(Fig. 6.2, coefficients 26 through 50) to achieve its high-classification accuracy. Although a

group of large magnitude wavelet coefficients exist around indices 90-105, GRLVQI does not

require them for achieving the desired discrimination of the given classes.
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Wavelet transform of selected representative spectra, and wavelet relevances
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Figure 6.5 : Wavelet transform of class means for classes A (red), G (green), H (orange), L
(magenta), 0 (purple), Q (black), and R (blue) with wavelet relevance factors obtained by
GRLVQI (black stem plot) in the wavelet domain. Relevance factors are the averages from
three independent runs. Classes were selected to show largest diversity.

6.4.2 Comparing wavelet and spectral relevances

What spectral information is preserved based on the wavelet relevances? Using the inverse

wavelet transform on the wavelet relevance factors, we can determine which spectral compo-

nents are preserved and compare this to the spectral relevance factors from Section 4.3.2.1.

For viewing ease, we rescale the inverted wavelet relevance factors using the 1l-norm. Three

observations from Fig. 6.6 are worth noting. First, the highly correlated nature of the in-

verted wavelet relevance factors indicate how well the wavelet transform decorrelates the

data for GRLVQI processing. Second, GRLVQI in the wavelet domain places greater em-

phasis in the 1.4p#m to 1.5ftm and the 2.2iym to 2.3ttm regions than GRLVQI does when

processing on the reflectance features. Third, there are some negative values in the inverted

wavelet relevance factors. We discuss this third observation in more detail at the end of this
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chapter (see Section 6.7).
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Figure 6.6 : Relevances obtained by GRLVQI in the spectral domain (red) compared to
the inverse wavelet transform of the relevances obtained by GRLVQI in the wavelet domain
(black). The dotted vertical lines indicate data fallout due to saturation of the water bands.

6.4.3 The energy of retained features

A Parseval's theorem holds for orthonormal wavelets [68], therefore we can compare the

energy of the relevant spectral features, relevant wavelet coefficients, and largest magnitude

wavelet coefficients (Table 6.2). Total energy is calculated as average pixel energy of the

training sample set (to reflect what GRLVQI learns from the data). We define the relevance

weighted energy as:

1Mn
E = M EEAix) 2  (6.5)

m=1 i=1

where i is the dimension index, m the training sample index, M the total number of training

samples, and Ai the relevance factor associated with dimension i. Non relevance-weighted

energy calculations use Ai = 1 for all i.
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We discuss the energy of the retained features to demonstrate there is no consistent rela-

tionship between retained energy and achieved classification accuracy. Table 6.3 shows that

keeping all available spectral channels has the most energy yet has the weakest MED classifi-

cation performance (Process A). Keeping the wavelet features associated with the 17 largest

wavelet relevance factors (Process D) has the smallest energy yet is slightly outperformed by

keeping the spectral features associated with 52 largest spectral relevance factors (Process B)

which retains nearly an order of magnitude more energy. Keeping the 37 largest magnitude

wavelet coefficients (Process C) has the second largest energy yet is outperformed by the 52

SF and 17 WF cases. Interestingly, the 17 retained and scaled wavelet features have ;3.3

times more energy than the 52 retained and scaled spectral features, yet has slightly worse

classification performance.

Average Retained Energy per Pixel for MED Classification
w/o relevance w/relevance Accuracy

52 SF 5.89x 10 1.45x103 96.4%
17 WF 6.91 X105 4.12x103 95.7%
37 WC 9.61x 10' NA 93.1%
194 SF 2.49x10 7  NA 92.8%

Table 6.3 : The retained energy for the 52 spectral features (52 SF) corresponding to the
52 largest spectral relevance factors, the 17 wavelet features (17 WF) corresponding to the
17 largest wavelet relevance factors, the 37 largest magnitude wavelet coefficients (37 WC)
retained using more typical wavelet processing, and for all spectral features (194 SF).

6.4.4 Comparing GRLVQI selected wavelet features to largest average magni-
tude coefficients and their standard deviations

One might anticipate that GRLVQI would "discover" those wavelet indices corresponding

to the largest magnitudes or the largest variances over the entire training set as most im-

portant for classification. In this section, we show that GRLVQI learns something different.

The mean of all wavelet transformed signatures for the 23-class problem is the black curve

in Fig. 6.7 top. The 17 largest magnitude wavelet coefficients are the red stems and the

17 largest wavelet relevance factors are the blue stems. Coefficients corresponding to both
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largest magnitude and largest wavelet relevance factors are indicated by black stems. Simi-

larly, the standard deviation of all wavelet signatures is shown as the black curve of Fig. 6.7

(bottom). The 17 largest standard deviations of the wavelet coefficients are indicated by the

red stems and wavelet coefficients corresponding to the 17 largest wavelet relevance factors

are the blue stems. Wavelet coefficient indices included in both the largest standard devi-

ations and the largest wavelet relevance factors are indicated by the black stems. Clearly,

although there is overlap in both plots, the largest relevances assigned by GRLVQI to wavelet

coefficients are not the same as the wavelets with largest magnitudes or largest variances.

Largest relevance and magnitude (top) Largest relevance and std. dev. (bottom)
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Figure 6.7 Top: Comparison of the 17 largest magnitude wavelet coefficients (red stem
plot) with the 17 wavelet coefficients corresponding to the 17 largest wavelet relevance factors
(blue stem plot.) The black curve is the mean wavelet representation for all training samples.
The black stem plot shows the indices for which the corresponding wavelet belongs to both
red and blue sets. Bottom: Comparison of the 17 largest standard deviations of the wavelet
coefficients (red stem plot) with the 17 wavelet coefficients corresponding to the 17 largest
wavelet relevance factors (blue stem plot.) The black curve is the standard deviation of the
wavelet representation of all training samples. The black stem plot shows the indices for
which the corresponding wavelet belongs to both red and blue sets
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6.4.5 Discussion of discontinuities in spectral data

Deleting image bands associated with irrecoverable spectral data causes discontinuities in

the spectra. The most common example in remote sensing spectral of bad data are the

two wavelength windows (see Fig. 6.8 top) where the atmospheric water vapor saturates the

instrument response. A commonly accepted method for dealing with these two regions is

to simply delete them. This process results in a piecewise signal with discontinuities at the

boundaries (Fig. 6.8 bottom).
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Figure 6.8 Spectral discontinuiities caused by data fallout. Top: Normalized reflectance
spectrum vs. wavelength with "empty" regions where data are deleted due to saturation of
the atmospheric water bands. Bottom: Reflectance vs. feature index illustrating the band
locations of the discontinuities as they appear to the wavelet transform.

Deleting the spectral bands has no ill effect on our ability to process the data using

GRLVQI in the spectral domain. However, these discontinuities can manifest in the wavelet

transform coefficients creating a set of false features. These false features are a concern if

using GRLVQI because it may waste relevance resources by learning artifacts. Although
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we have successfully demonstrated the quality of the wavelet features space for classifying

hyperspectral data with the discontinuities present, we feel we can do better using a different

wavelet transform with special properties which may help mitigate the effects of the discon-

tinuities. In Section 6.5 we consider the Dual-Tree Complex Wavelet Transform (DTCWT).

6.5 The Dual-Tree Complex Wavelet Transform (DTCWT) to rem-

edy data discontinuities

We investigate the application of the Dual-Tree Complex Wavelet Transform (DTCWT) to

decompose the spectral data in an effort to mitigate the effects of the discontinuities resulting

from deleted image bands. The magnitude of the DTCWT has several desirable properties

which we may be able to leverage. First, it has reduced oscillatory effects when a disconti-

nuity is encountered [75]. Other potentially useful properties include near shift invariance

and reduced aliasing effects during reconstruction if wavelet coefficients are modified during

processing [751 (e.g., filtering, quantization, etc).

Section 6.5.1 provides a cursory discussion of the DTCWT. In Section 6.5.2 we demon-

strate the reduced oscillatory effects of the magnitude of the DTCWT compared to the

CSDWT with the Daub4 filters. We do GRLVQI processing on the four components of the

DTCWT (real, imaginary, magnitude, and phase) at two different wavelet scales for the

23-class problem in Section 6.5.3 and conclude that the imaginary part is most useful for

our application due to odd-symmetry of its basis functions, as discussed in Section 6.5.4.

We then use the Odd-Symmetric Discrete Wavelet Transform (OSDWT) (i.e., the imaginary

component of the DTCWT) for the remainder of the evaluation. Based on the increase in

accuracy and feature reduction from the 3-scale to 4-scale OSDWT, we extend the 23-class

problem results to a 3-scale, 4-scale, and 5-scale CSDWT and OSDWT.

Section 6.5.5 evaluates GRLVQI processing on the a 3-scale, 4-scale, and 5-scale CSDWT

and OSDWT for the 35-class problem. Finally, in Section 6.5.6, we use the MED to assess
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the GRLVQI features for the 23-class problem. We do not extend the MED assessment to

the 35-class problem because the results are much the same and do not offer any firther

insights.

6.5.1 Background on the DTCWT

The DTCWT (see Selesnick et al, [75]) defines two trees (or filter banks, see Fig. 6.1): one

filter bank computes the real part while a second filter bank computes the imaginary part.

Each low-pass scaling coefficient and high-pass wavelet coefficient is the sum of its real and

imaginary pieces: cc(n) = cý(n) + jcj(n), dk(n) = dk(n) + ydj(n)), where j = V/--1.

In the case of the real component, the scaling function 0(t) and wavelet function O(t)

are both real and even (symmetric) [75]. Conversely, for the imaginary component, the

scaling and wavelet finctions are both imaginary and odd (anti-symmetric) [75]. We can

similarly write the scaling and wavelet functions as the slim of their real and imaginary parts:

oc(t) = 0r(t) + jo'(t) and O•(t) = Or(t) + jekt(t).

6.5.2 The effects of the CSDWT and DTCWT on discontinuities

To demonstrate the reduced oscillatory effects of the DTCWT over the CSDWT, we define

a flnction to place discontinuities in the vicinity of the locations where spectral bands are

deleted. For the LCVF data set, the missing data lies "between" the band pairs (98,99) and

(139,140) (Fig. 6.8 bottom). We define our function as

f[77] = u[n -97]- u[,n, -101] +u[[n -138]- u[n -142]. (6.6)

where n indicates band index and u[.] is the unit step function. We then take the wavelet

transform of f[n] using the CSDWT with the Daub4 filters (shown in Fig. 6.9 top) and

the DTCWT (shown in Fig. 6.9 bottom). Fig. 6.9 shows that the DTCWT results in less

oscillation of the wavelet coefficients.
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Wavelet decomposition of f[n] = u[n-97]-u[n-101]+u[n-138]-u[n-142]

"" 1 c3(n) d3(n) d2 (n) d1(n)

C 0. i", i It
0

0 20 40 60 80 100 120 140 160 180 200
Decomposing f[n] using Daubechies length-four orthogonal filters

_ .= 1 I

"0

9 c3((n) d (n) d2 (n) d,(n)

o -1

_.,* I I I ____________I _____________________________________

20 20 40 60 80 100 120 140 160 180 200

Decomposing f[n] using the DTCWT

Figure 6.9: Wavelet transform of f[n] in Eq. 6.6 in the vicinity of the spectral discontinuities.
Top: Three scales of the CSDWT of f[n] using the Daub4 filters. Bottom: The magnitude
of 3-scales of the DTCWT of f[n].

6.5.3 Evaluating the DTCWT on the 23-class LCVF problem

Our initial hypothesis was that GRLVQI processing on the magnitude of the DTCWT would

yield best results in the face of discontinuities in the data (and consequently, artifacts in the

wavelet coefficients). However, based on the results presented in Table 6.4, the imaginary

component of the DTCWT (especially for the 4-scale transform) shows superior results. The

imaginary component of the DTCWT has odd basis functions and will be referred to as an

Odd-Symmetric Discrete Wavelet Transform (OSDWT). We provide some discussion on why

the OSDWT yields superior results in the next section (Section 6.5.4).

Table 6.4 shows that the quality of the wavelet feature space for both classification

and feature extraction is dependant on the number of scales used to decompose the signal.
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Real Imaginary Magnitude Phase

3-level Acc M 97.35% 197.44% 95.99% 74.56%
DTCWT # Features 55 16 51 70

4-level Acc (%) 95. 13% 98.28% 183.50% 169.97%
DTCWT # Features 15 11 95 75

Table 6.4: Accuracy and nmber of features from GRLVQI in the DTCWT domain. Features
with relevances > 0.001 were coumted.

To gain further insights, we consider GRLVQI processing on a 3-level, 4-level, and 5-level

decomposition of the spectral data using both the CSDWT and the OSDWT (Table 6.5).

Although the best accuracy is achieved with the 4-level CSDWT, the best feature re-

duction is achieved with the 4-level OSDWT. Given that a 0.2% difference in classification

accuracy for a problem with 310 samples is insignificant, the best tradeoff between retained

features and classification accuracy is clearly with the 4-level OSDWT. Here we achieve

similar classification performance with 15 features (or 7.2%) from the OSDWT while the

CSDWT requires 24 features (or 11.5%). One should observe from Table 6.5 that there is no

consistent relationship between classification accuracy and feature extraction performance

versus the number of scales of the wavelet transform. If any, the 4-level decomposition for

both the CSDWT the OSDWT is best. Although we may hypothesize that a 4-level wavelet

decomposition produces best results, an in-depth study is required before we can show this

hypothesis correct (a topic for continued research).

CSDWT OSDWT
3-level 4-level 5-level 3-level j 4-level I 5-level

Accuracy 97.3% 98.2% 97.0% f97.9% f 98.0% _96.9%
Features 17 24 27 18 15 30

Table 6.5 : 23-Class Problem: Accuracy and number of features for GRLVQI processing
in the wavelet domain. Features with relevances > 0.001 were counted.

What signal information is retained by the OSDWT? Looking at the wavelet relevance

factors in Fig. 6.10, we see that GRLVQI focuses on low-frequency signal information (i.e.,

the continuum of the spectra). Based on the results of the CSDWT, this comes at no surprise.
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The main difference between the GRLVQI computed relevances for the CSDWT (Fig. 6.5)

and the those computed for the OSDWT is an additional very significant relevance factor

outside of the low-pass region. This is important since it indicates that GRLVQI is able to

reduce the amount of low-frequency signal information (i.e., less emphasis on the continuum)

for classification while placing emphasis on more high-frequency signal information. The end

result is fewer wavelet coefficients for the same classification accuracy.

Imaginary part of the DTCWT of selected representative spectra, and wavelet relevances
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Figure 6.10: The Odd-Symmetric Discrete Wavelet Transformation of class means for classes
A (red), G (green), H (orange), L (magenta), 0 (purple), Q (black), and R (blue) with wavelet
relevance factors obtained by GRLVQI (black stem plot) in the wavelet domain. Relevance
factors are the averages from three independent runs from the 23-class problem. Classes
were selected to show largest diversity.

6.5.4 Odd-Symmetric Discrete Wavelet Transform (OSDWT) and its impor-
tance on spectral feature identification

As discussed in Section 6.5.1, the real component of the DTCWT is even and real while the

imaginary component is odd and imaginary. When projecting a function on even wavelet

bases, edge responses (i.e., high-frequency information) result in zero-crossings at edge loca-
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tions making it more difficult to pinpoint the exact location of the edges. When projecting

a function onto odd wavelet bases, edge responses result in a peak in the wavelet domain.

This accentuates the differences at the discontinuities and makes singularity identification

much easier [B. Johnson, private communication].

Discriminating absorption bands in hyperspectral data are often narrow shapes with

sharp boundaries that must be preserved. For even wavelet basis, the important features

result in zero-crossings at their locations making it more difficult for GRLVQI to use these

features for class discrimination. In contrast, odd wavelet basis functions identify the sharp

boundaries with a peak in the wavelet domain. The consequence is better classification

accuracy with the imaginary component than with the real component or with the magnitude

of the complex wavelet and scaling coefficients. We hypothesize that a wavelet system based

on the CSDWT, using odd-symmetric wavelet basis functions, would similarly allow GRLVQI

to achieve improved classification accuracy and feature reduction performance.

6.5.5 GRLVQI processing on the 35-class problem decomposed using the
OSDWT

To further evaluate and compare the OSDWT to the CSDWT with the Daub4 filters, we

extend our study to the more difficult 35-class problem discussed in Section 3.2. The 35-

class problem adds additional sub-class structure to the 23-class problem in the form of

high-frequency dips and bumps in the spectra. If the high-frequency information in the

spectral curve is truly the important distinguishing spectral features, then we should expect

that GRLVQI processing with the OSDWT to have better classification and/or features

extraction capability for the 35-class problem as compared to the CSDWT.

Classification accuracies and the number of retained features are tabulated in Table 6.6

for the CSDWT and the OSDWT. We perform a 3-level, 4-level, and 5-level wavelet decom-

position using the wavelet transform and process the wavelet representation of the 35-class
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data with GRLVQI. Here we see a much clearer advantage of the OSDWT over the CSDWT

for each wavelet representation. Best classification accuracy results are with a 3-level decom-

position using the OSDWT. Once again, however, the feature reduction using the OSDWT

at 4-scales is best. The 0.5% accuracy loss between 3-scales and 4-scales is still relatively

insignificant for a test sample pool of 488 samples and 35-classes considering the gain in

feature reduction is much more significant. With the 4-level OSDWT, only 16 wavelet co-

efficients are required for classification, 24% fewer than for the 3-level transform using the

OSDWT.

CSDWT OSDWT
3-level 4-level 5-level 3-level f 4-level 5-level

Accuracy 95.7% 95.6% 95.4% 97.4% 96.9% 95.9%
Features 26 26 33 21 16 22

Table 6.6: 35-Class Problem: accuracy and number of features for GRLVQI processing
in the wavelet domain. Features with relevances > 0.001 were counted.

6.5.6 MED assessment of the discrimination capability of the GRLVQI selected
features from the OSDWT

We once again visit the Minimum Euclidean Distance (MED) classifier for an independent

assessment of the discrimination capability of the wavelet features GRLVQI deems relevant.

The process for selecting wavelet coefficients is precisely the same as discussed previously in

Section 6.3. The best classification and the number of wavelet coefficients required to obtain

that classification is tabulated in Table 6.7. As a baseline, recall the MED classification

with all available features is 92.8% (see Table 6.2) for the 23-class problem (results are not

duplicated in Table 6.7).

Three general observations can be made from Table 6.7. First, the GRLVQI-selected

features (wavelet coefficients) lead to a better classification than using all available features.

Second, the wavelet representation by the OSDWT yields consistently similar classification

results to the CSDWT with the Daub4 filters. Third, fewer features are required for best
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CSDWT OSDWT

3-level 4-level 5-level 3-level 4-level 5-level

Accuracy 95.7% 96.2% 95.8% 96.2% 95.7% 96.2%

Features 17 14 14 12 10 14

Table 6.7 : Classification accuracy and corresponding number of features for the Minimum
Euclidean Distance Classifier for the 23-class problem.

MED performance with the OSDWT, than with the CSDWT using the Daub4 filters.

6.5.6.1 Discussion on the effects of discontinuities in the wavelet domain

Both the 23-class and 35-class problems benefited from the OSDWT. What is the effect of

the jump discontinuities in the wavelet domain? One interpretation is that the samples in

each class have similar jump discontinuities, which are not exhibited by other classes. Since

odd wavelet basis have heightened edge responses making singularity identification easier,

these discontinuities may in fact be good distinguishing features for classification.

A second interpretation of the effects of the discontinuities is that they contaminate the

same coefficients to some degree. Because the false features are consistent, GRLVQI does

not learn them as differences and hence they are ignored. A third interpretation is that the

contamination is not significant and appears as noise to GRLVQI. Since LVQ-type classifiers

are impervious to noise, the noisy coefficients do not have a negative affect on classification

or feature reduction performance.

6.6 Principal Component Analysis

Principal Component Analysis (PCA) is a popular technique for feature reduction. It has

the important property that principal components are maximally decorrelated. This fits well

with our need for a transformation of the data. One problem with PCA is its dependence on

the training data requiring a minimum of n + 1 samples (n being the number of dimensions of
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the data) to (eventually) create the transformation matrix. For hyperspectral data where the

number of bands may be several hundred, this requirement can be prohibitive, especially in

the case were one is interested in classifying rare materials which have few training samples.

Even in the case where one has an adequate number of training samples, the PCA is not

likely a good option for hyperspectral data.

6.6.1 Principal Component Analysis - A brief explanation

When considering PCA, it would be ideal to have the same number of samples from every

class so that each class may have an equal representation when calculating the principal

components. However, this is often not the case, as with our problem sets. To compute the

Principal Components, one can follow series of simple steps. First, subtract the mean of

each input dimension. Second, compute the covariance matrix of the zero-meaned training

data

COV = E [(X - E [X]) (X - E [X])T] (6.7)

where X is a matrix with each observed spectral signature is a row entry. Since we zero mean

the data, E [XJ = 0. Third, compute the eigenvalues and eigenvectors of the covariance

matrix and order eigenvectors in descending order of their eigenvalues. Fourth, compute

the desired number of principal components by projecting the data onto the corresponding

number of eigenvectors. The projection of the data onto the eigenvector corresponding to the

largest eigenvalue is the first principal component. The second principal component is the

projection of the data onto the eigenvector corresponding to the second largest eigenvalue.

This process of projecting data onto the eigenvectors continues until one has the desired

number of ordered features.
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6.6.2 GRLVQI on the principal components on the LCVF data

Recall we use a 3-fold cross validation to evaluate classifier performance. In PCA, we use

the training data from each fold to compute the matrix of eigenvectors used to compute

the principal components of the entire data set. This gives us three different principal

component representations of the data for which we do GRLVQI processing. Consistent

with results presented thus far, the accuracy for each fold is computed as the equal-weighted

class accuracy (Section 4.1) and we average the results across all three folds.

Although GRLVQI does not deem the first N principal components as most important

for classification (see Fig. 6.11), it does place a significant amoumt of the relevant resources

in this range. For example, the first 6 principal components have a relevance sum of 0.63

and a relevance sum of 0.84 for the first 20 principal components. We see many spurious (yet

significant above a threshold of 0.001) beyond the 1 5 0 th principal component contributing

0.12 of the total relevance. Using a threshold of 0.001, we find 60 significant principal

components. As we expect, using the principal components as our feature space does not

provide the necessary class discrimination capability indicated by the 71.3% classification

accuracy achieved by GRLVQI for the 23-class problem.

6.7 Summary

This chapter introduced a new wavelet coefficient selection paradigm to select those wavelet

coefficients important for classification. It is unique in that the relevance-wavelet model

linearly selects wavelet coefficients for classification. This phase of the research began us-

ing the Critically Sampled Discrete Wavelet Transform (CSDWT) using Daubechies length

four orthogonal (Daub4) filters to provide a sparse representation of the data with coeffi-

cients which are nearly decorrelated. However, due to jump discontinuities introduced into
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Relevances by GRLVQI for the Principal Components of the 23-class problem
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Figure 6.11 : Relevances computed by GRLVQI for the principal components of the LCVF
data.

the spectral signatures from deleting bands with bad data, we believed the CSDWT to be

sub-optimal because the high-frequency false features would contaminate the wavelet co-

efficients having a rippling effect with additional scales of the transform. We surmised a

better wavelet representation would bring about either a reduction in the required number

of wavelet coefficients or an increase in classification accuracy, or both. This lead to the

investigation of the Dual-Tree Complex Wavelet Transform, where we discovered that the

odd wavelet basis functions yield better results than the even basis functions of the real part.

Although we hypothesized that an Odd-Symmetric Discrete Wavelet Transform (OSDWT),

in general, would be better suited for subsequent GRLVQI processing for feature extraction

and classification, the verification of this hypothesis is a topic for future research.

We have successfully leveraged the sparseness and decorrelation properties of the wavelet

transform for classification and feature extraction with resounding success where others have
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fallen short. Furthermore, we evaluated our relevance-wavelet model, not on simple peda-

gogical classification problems, rather on very complex high-dimensional data and produced

exceptional results. We were able to improve our already outstanding classification accura-

cies compared to what GRLVQI can achieve in the spectral domain by selecting a form of

the wavelet transform that has additional desirable properties that better fit anomalies in

our data. While the feature reduction in the spectral domain was quite good, our relevance-

wavelet model dramatically reduces the number of retained features to just a small fraction

of the overall number of available features.
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Chapter 7

Summary and Discussion

7.1 Summary

In this thesis, we investigated the doubly adaptive neural learning paradigm of Generalized

Relevance Learning Vector Quantization (GRLVQ) for joint classification and feature ex-

traction for remotely sensed hyperspectral image data. We presented an original analysis of

the LVQ2.1 and G(R)LVQ windows and came to the important conclusion that restricting

the influence of the decision boundary to samples that lie in the mid-region between the

in-class and out-of-class winning prototype vectors is not necessarily the right choice for

class boundary definition. During our analysis, we found that GRLVQ has the potential for

diverging prototype vectors and suffered from poor prototype utilization. Our contributions

to relevance learning, captured in our GRLVQ-Improved (GRLVQI), solves the divergence

problem, ensures good prototype utilization, and increases classification accuracy.

In the careful design of our evaluation process and the design of the GRLVQ and GR-

LVQI classifiers, we consulted the literature to ensure we adhered to best practices. We

used a 3-fold cross validation to obtain independent classification results and used the equal-

weighted classification accuracy to measure classification success. We further summarized

the literature relating to the design and initialization of LVQ-type classifiers where we looked

into the theory on generalization bounds to guide the number of prototype vectors assigned

to each class. This investigation revealed that the current theory (only valid for binary clas-

sification problems) only gives guidance on the total number of prototypes for the classifier

and, as a result, was of little use for this design consideration. For prototype initialization,

we found that, due to conscience learning, a uniform random initialization worked well for
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our problem. Finally, during the trial-and-error process for setting classifier learning pa-

rameters, we confirmed the general consensus that the classification results were not overly

sensitive to parameter values and that it was imperative one decayed learn parameters with

increased training time.

The additional power of GRLVQI, relative to GRLVQ, is not always warranted. For easier

classification problems, we believe that GRLVQI is not necessarily likely to produce better

classification or feature extraction results than GRLVQ. However, based on GRLVQI's in-

creased classification results for the Lunar Crater Volcanic Field (LCVF) hyperspectral data

set, we hypothesized that GRLVQI performs better than GRLVQ for sufficiently complex

high-dimensional data. This claim was validated using analysis techniques commonly used

in the remote sensing community (commission/omission errors and the r, statistic) as well as

other theoretical and statistical methods presented in the literature (theory on generalization

bounds and the Wilcoxon Signed-Ranks Test). In revisiting generalization bounds, we found

that recent works by Hammer et al. [47] define the empirical margin in a manner which is

inconsistent with earlier works by Crammer et al. [14]. That is, the margin definition in [47]

is not what is rmaximized by GRLVQ in [1] or our GRLVQI. By redefining the margin to that

which is maximized by GRLVQ(I), we find that the definition of the empirical loss based on

the correct definition of the margin shows that GRLVQI is expected to generalize better than

GRLVQ. These results agree with the remaining three methods of performance evaluation

we considered in Chapter 5. From this point onward in our research, we used our improved

GRLVQI.

From the results of GRLVQI processing in the spectral domain, we found it appeared to

be limited in the amount of feature reduction that could be obtained due to the correlated

nature of the hyperspectral data. We proposed a new model for classification-driven feature

extraction that combined the power of our contributions to neural-relevance learning with
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the power of the wavelet transform. Due to wavelet transform properties, specifically that

the wavelet coefficients are sparse and nearly decorrelated, our model results in exceptional

classification performance with a significantly reduced feature set. By doing GRLVQI pro-

cessing on the principal components of the spectral data, we demonstrated that we need

something more in a transform than decorrelated coefficients to obtain best classification

and feature extraction performance.

Although transforming the data to the wavelet domain and doing GRLVQI processing in

that domain showed excellent results, we re-evaluated the data to see if it exhibited prop-

erties that might further influence the chosen transform. One seemingly obvious issue was

that of discontinuities caused by deleting spectral bands with irrecoverable data. Our belief

was that the unnaturally occurring discontinuities would affect the ability of GRLVQI to

gain the best possible classification while extracting a minimal set of features. This lead to

an investigation of the Dual-Tree Complex Wavelet Transform (DTCWT) because it has the

additional desirable property of reduced oscillation (or ringing) of the wavelet coefficients

in the face of data discontinuities. Of the four pieces of information from a complex signal

(real and imaginary parts and the magnitude and phase) we found that processing on the

imaginary component of DTCWT produced best results. We surmised the imaginary com-

ponent of the DTCWT (or more generally, an Odd-Symmetric Discrete Wavelet Transform

(OSDWT)) produces best results because its basis functions better identify the distinguish-

ing spectral characteristics than the even symmetry of the real-component, or the Critically

Sampled Discrete Wavelet Transform (CSDWT) using the neither even nor odd Daubechies

length-four orthogonal (Daub4) filters.

In our investigation of wavelets, we find that low-frequency signal information provides

a majority of the important features GRLVQI requires for generating a given classification.

In contrast, little high-frequency information is used. We believe that these high-frequency
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coefficients are the minor "details" GRLVQI requires to achieve the superior classification

and feature reduction performance demonstrated in this thesis.

7.2 Novelty of the relevance-wavelet model for classification

The novelty of our relevance-wavelet model for feature extraction and classification is not to

be understated. Wavelet-based signal processing, such as compression, takes advantage of the

signal compaction achieved by the wavelet transform. Significant information is contained in

a few sparsely located coefficients with the largest magnitudes. Coupled with this powerful

property, very successful image compression methods make use of the multi-scale aspects of

the transform; significant wavelet coefficients persist across wavelet scales. Jerome Shapiro's

embedded zero-tree wavelet compression algorithm is a well known example [77], which

takes advantage of the multi-scale and sparse aspects of the wavelet transform allowing

for progressively better signal reconstruction as more significant coefficients are retained.

There are a host of wonderful properties which make the wavelet transform a powerful signal

processing tool.

The same success that compression algorithms have with largest magnitude coefficient

selection have not been shared with classification problems [7,9,101. Our relevance-wavelet

model selects wavelet coefficients based on their GRLVQ-determined importance for the

given classification which is a paradigm shift from more typical largest magnitude selection

of coefficients. The significance of the relevance-wavelet model is that wavelet coefficients are

selected linearly, where more typical applications select coefficients non-linearly (i.e., largest

magnitudes). This paradigm shift results in very high classification accuracies with only a

handful of wavelet coefficients.
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7.3 Possibility for future work

We have taken the opportunity to present areas of possible fiture work throughout this thesis

document. We suggested that one may be able to better determine how many prototype

vectors to assign to each class in a GRLVQ(I) classifier by using information from a Self-

Organizing Map (SOM) representation of the same data. The number of prototypes per class

affects the classification which ultimately affects which input dimensions are deemed relevant

for classification. As with many other feature ranking algorithms, determining how many

features to retain is another open research topic for GRLVQ(I) learning. Closely related

to feature selection was the topic of how best to evaluate those features. We suggested

feature evaluation may be more appropriate with a different classifier, such as the K-means

classifier, since the philosophy of a K-means classifier is more closely related to that of

GRLVQ(I) than the Minimum Euclidean Distance (MED) classifier. In our investigation

of wavelets as a feature space for GRLVQI processing, we found that the imaginary part

of the DTCWT allowed GRLVQI to achieve better classification and feature extraction

performance. Although we hypothesized that odd wavelet basis fimctions, in general, are

better suited for subsequent GRLVQI processing for feature extraction and classification,

the verification of this hypothesis is a topic for future research. Each of these topics are

interesting, open topics, for continued research. We take this opportunity to present a few

more interesting ideas which are larger in scope.

We previously discussed LVQ configuration issues with respect to the assignment of pro-

totype vectors per class. In Section 3.5.1 we proposed using a clustering of the data with

the Self-Organizing Map to guide this design consideration. Instead of trying to optimize

the number of prototype vectors for each class ahead of time, one could start classifier train-

ing with a single prototype for each class and add them as they are needed. This idea is
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motivated by Poirier and Ferrieux's Dynamic LVQ [78] and Bauer and Villmann's Growing

Self-Organizing Map [79]. A Dynamic GRLVQI (DGRLVQI) is certainly a reasonable exten-

sion to the GLVQ family of classifiers (i.e., GRLVQI and GRLVQ). It is especially feasible

given that GRLVQI descends a cost function which can be monitored throughout the train-

ing process. The idea is to train the classifier until the prototypes reach some stationary

state and then add a prototype to the class which has the largest (average) contribution

to the cost C of Eq. 2.5. The new prototype vector should be initialized in such a manner

as to reduce the contribution of the given class to the total cost C. The advantage of this

approach is that each class will have precisely the number of prototype vectors it needs to

define its boundaries with its neighbors.

A successful classification of the data gives us an idea of how well the prototype vectors

approximate the true decision boundary. However, it is impossible in its current high-

dimensional form (in the case of the 194-dimensional Lumar Crater Volcanic Field data

set evaluated in this thesis) to visualize the relationship between the converged prototype

vectors and the boundary defined with neighboring classes. There are ways to project the

data and the prototypes to a lower dimensional space so we can view the relationship between

the data and the classification boundaries defined by the prototype vectors. One method

which may be of practical use is a Sammon's mapping [80]. Sammon maps high-dimensional

data to lower dimensions in an iterative fashion while preserving, on the lower dimensional

mapping, the relationship of the data in its original high-dimensional form. A more principled

alternative would map the converged prototype vectors from GRLVQ(I) (likely only those

that have samples assigned to them) to the closest converged prototype [81] vector of a two-

dimensional Self-Organizing Map [2] (SOM) representation of the data. The converged SOM

preserves the topology from the original high-dimensional data to the lower two-dimensional

SOM lattice [82-84]. More importantly, there is a direct relationship between the probability
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distribution of the original data to that which is represented by the SOM (see [81,85,86]).

The placement of the GRLVQ(I) prototype vectors on the SOM lattice would allow one to

evaluate the quality of the classification boundary defined by GRLVQ(I) and may also assist

in a better clustering of the data with the SOM. This interplay between the distribution

of the data represented by the SOM and the class boundary definition by the GRLVQ(I)

prototypes could provide valuable insights and is an open topic for continued research.

One subject that arose in our results was that of negative relevances when inverting the

wavelet relevance factors. This begs the question: why not allow negative relevance factors?

If we follow the ideas of linear spectral mixing proposed by Adams et al. [87-89], then the

idea of negative relevance might be something to consider. In this view of spectral mixing

analysis, negative fractions are allowed and are interpreted to mean that the model is non-

physical, even if the model error is zero. In the case of negative relevance, we do not envision

the same model interpretation. Our belief is that negative relevance would de-emphasize the

contribution of the corresponding input dimensions' influence on the selection and updating

of the prototypes for classification. The end result could be a better classification of the

data, further reduction of retained features, or both. However, it is not clear how best to

approach this problem at this time and is left as an area of continued research.

Although our wavelet-relevance model using the OSDWT produces superior classification

and feature extraction results, it is possible a better wavelet model for hyperspectral images

exists which will do a better job at preserving the important features while minimizing the

effects of the discontinuities. One thought is to find the sparsest set of wavelet coefficients

that, when reconstructed, matches that part of the signal we already know. In this model, we

do not care what the reconstructed signal looks like in the wavelength bands that have corrupt

data [90]. The advantages of such a model may not be realized until very difficult problems,

even more difficult problems than what was presented in this thesis, are encountered.
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