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Modeling of Power Combining in Microstrips with
Active Devices for THz Applications

Vladimir Yurchenko
Experimental Physics Dept., NUI Maynooth, Ireland

August 29, 2005

Abstract

Self-consistent time-domain simulations of active systems with Gunn diodes connected by sec-
tions of inicrostrip transmission lines (TL) are carried out. Nonlinear power combining of Gunn
diodes mounted in various ways in the TL circuits has been studied. Complex dynamics of the
electromagnetic field radiated into an open end of the TL are observed including single-frequency
oscillations, rnulti-frequency generation, and the dynamical chaos which could be accompanied
by multi-frequency generation. Trains of high-frequency pulses are shown to emerge in such
systems when active devices are separated from compact resonant circuits by extended sections
of the TL providing a time-delayed feedback.

1 Introduction
We perform computer simulations of nonlinear power combining in distributed microstrip trans-

mission line systems with active THz devices specified by negative differential resistance (NDR)
of current-voltage characteristics such as of Gunn diodes and similar structures.

There are two major goals of this research which concern both the theoretical and practical
aspects of the problem:

" Developing mathematical models, numerical techniques and computer codes for the ef-
hiciclnt self-consistent time-domain simulation of high-frequency excitation in distributed
systems with a strong time-delayed coupling between active devices connected by sections
of transmission lines (TL);

" Studying available options of microstrip implementation of nonlinear power combining (su-
perlinear in the number of devices) and non-conventional spectral effects (ultra-wideband
chaotic oscillations etc) for possible practical applications in various high-frequency elec-
tronic systems (ultra-short pulse generation, noise radars, etc).

Microwave power combining has been studied for a long time in a variety of systems. Initially,
there were lumped circuits being considered. Later on, waveguide circuit solutions [J], [2] and
quasi-optical array systems [3], [4] have been proposed.

Despite these efforts and numerous achievements [4], [5], efficient power combining remains
a challenging problem in all aspects including the theoretical analysis, numerical simulations,
engineering design, and practical implementation. There are important physical reasons for this,
such as intrinsically complicated nonlinear nature of the phenomena, distributed character of
the systems whose size is large compared to the wavelength (especially, when considering open
radiating systems), broadband and rnulti-frequency dynamics of oscillations, etc.

Nowadays, the major goal in this area is the efficient power combining in the THz domain
where the output power of individual devices is intrinsically limited by the physical processes
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involved (the main relaxation channels in both the devices and the environment occur pre-
cisely in this domain). In the meantime, the main difficulties of power combining (nonlinearity,
distributed systems, complex broadband dynamics) are the most significant for the THz sys-
tems since the size of a multi-device structure typically exceeds a sub-mmn wavelength and the
inter-device coupling is particularly strong in such cases.

In terms of the design and simulation of active THz systems, there is a lack of appropriate
analysis methods and computation techniques. This restricts both the design of real structures
and the understanding of processes involved. Conventional microwave design and analysis tools
[6], [7] (e.g., the impedance analysis) are insufficient, being only valid in a small-signal approx-
ination for narrow-band systems. On the other hand, advanced numerical methods (e.g., [81)
require huge computational resources and become inefficient.

The active character of the devices specified by intrinsic instability and nonlinearity makes
common simulation tools (e.g., Flomerics Micro-Strips etc) inadequate for the rigorous modeling
of such systems. Other software, such as SPICE, cannot cope with distributed systems where the
wave propagation between the devices is an essential part of the system operation. A promising
approach is the hybrid numerical methods [9] which combine both the frequency-domain and
the time-domain computations, though they also suffer from various limitations (narrow-band
approximation etc).

For these reasons, the design of active structures is usually split in two separate stages dealing
with either linear or nonlinear parts of the system. In this approach, the attention is focused
on passive components whose design is carried out in much detail, though in a conventional
manner. As a price for this simplification, some assumptions are supposed to be met such as
the operation of the system in the narrow band or in a given set of a few narrow bands, etc.

In this work, we choose an alternative approach and focus our attention on the nonlinear
part of the problem, while the linear part is chosen to be relatively simple.

In this approach, the aim is the accurate self-consistent modeling of nonlinear effects through
rigorous solutions of governing equations and, specifically, accurate time-domain simulations
of nonlinear oscillations and non-conventional dynamics (chaos, pulses) emerging in various
conditions. As a practical issue, nonlinear power combining is investigated in a rigorous manner.

By reducing the linear part of the problem to the simplest form, we arrive at the set of
discrete devices connected by sections of one-dimensional transmission lines, e.g., microstrips.
Microstrips excited by solid-state devices are rather practical solutions for various applications.
A study of one-dimensional models provides also a benchmark for testing computational methods
ranging from analytic approximations to advanced numerical tools.

In quasi-optical applications, parallel coupling of active devices in a single array is used for
increasing the power output from the system [4] (in microwaves, similar ideas were implemented
in the waveguides [1]). A one-dimensional analogue of this system is the parallel connection of
transmission line circuits, with the microwave power being radiated into an open infinite section
of the line (the latter models the radiation of the electromagnetic waves from the antennas into
the free space in three-dimensional open systems).

As an alternative system, a series connection of active devices in a long transmission line
(a ladder-type oscillator) represents a simple model of an open active structure with distributed
elements that could be used for the efficient spectrum modification of THz radiation. Recent
simulations of a chain of Gunn diodes [10], revealed an interesting dynamics of the electromag-
netic field in this system, though more detailed analysis of this structure is required.

The interest in the systems of this kind is justified by their potential applications as the
sources of chaotic signals for the emerging field of the noise radar technology [11]. This technol-
ogy provides a number of benefits such as an ultra-wideband spectrum of radiation, simultaneous
detection of the position and the velocity of the target, operation below the noise level of the
environment, and other advantages. For these reasons, THz applications and, especially, MMIC
implementations of these systems are of particular interest.
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2 Time-delay TL circuits of active devices

Time-delay TL circuits with active devices could be of different kind, for example, as those shown
schematically in Fig. 1. Extended sections of the transmission lines (microstrips) of length d,
provide the time-delayed coupling between the lumped circuits of active devices (n. = 1 ... N)
which could also be of different kind (Figs. 2, 3) and could be connected either in parallel (in
a radial connection with an "antenna node" n = 0, Fig. 1, a) or in series (in a ladder-type
oscillator, Fig. 1, b). In both cases, the structure is connected to an infinite section of the TL as
shown in Fig. 1, a and b, at the left side so that the entire system is open and the waves generated
by the devices are radiated towards the infinity x = -oo, thus, simulating the radiation of the
electromagnetic waves by the antennas in three-dimensional space.

d n "sd
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Figure 1: TDransmission line systems with parallel and series connection of active circuits

The active circuits are considered of a simple though generic form. They include the nonlinear
active device G,, (the Cnnn diode), the resistance R•, the bias voltage VB,, the inductance L½
a11( the capacitance C• connected in various manner in the circuit and, via the circuit ports, in
the microstrip line (see Figs. 2 and 3, a and h).

The antenna nodes ii. = 0 in the parallel connection of circuits are also assumed of different
kinds, Fig. 4, a and b. The capacitance 0 A in the case "a" prevents the direct current from
flowing into the infinite section of the TL (this allows a more realistic simulation of three-
dlimenisional radiating systems), while the resista~nce RT (the conductance Sy = 1i/R) is used
f'or the additional dumping of current (Sy = 0 is assumed in most cases). The node circuit "b"
is essentially a lumped resonant LO circuit being precisely of the same kind as the equivalent
LO circuit ini the xvaveguide power combining structures considered in Ref [1].
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Figure 2: Active circuits considered in the case of series connection
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Figure 3: Active circuits considered in the case of parallel connection

Formulation of the problem is provided by the set of equations consisting of

(i) the wave equations for the current i,(T,x) and voltage e,,(T, X) in each section n of the
inicrostrip transmission line (x,-, < x < x,),

(ii) the circuit equations for each circuit n written in terms of the current i,(r) and voltage
e,,(r) defined appropriately for each circuit as shown in Figs. 2 - 4, and

(iii) the boundary conditions for the wave equations at the points of microstrip connections to
the circuits (x' = x,, ± 0) which establish the link between the microstrip currents and
voltages at the points 4T (i'(T) = in(T,x), e±(T) ea(T,x4)) and the circuit currents
i,(T) and voltages e,(T) as shown in Figs. 1 - 4.

The set of equations is completed by the radiation condition at x = -oc (no incoming waves
from the open end of the transmission line) and the short-circuit condition providing the wave
reflection at the ends of the stubs (e.g., eN,+I(T) = 0 at x = XN_+1 in Fig. 1, b).

Notice that all the equations in this work are written in terms of dimensionless normalized
variables such as the relative coordinate x = X/a, time T = ct/a, voltage e,, = VT,/Vo and current
i, = Zo1,!Vo where a is the spatial scale used for normalization, c is the speed of wave in the
transmission line, Z 0 is the intrinsic impedance of the line, V0 is the normalization voltage. In a
similar way, we introduce other dimensionless parameters such as r, = R,/Zo, Tc. = cZoC,/a,

TL,, = cL.,/(Zoa), etc.
The Gunn diodes are simulated in terms of the given current-voltage characteristics with

negative differential resistance (NDR) as shown in Fig. 5. This approximation assumes the
limited space-charge accumulation (LSA) mode of operation of Gunn diodes. This allows a rather
broadband functioning of the devices, with the maximum-to-minimum frequency ratio exceeding
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a decade. The approximation means an instant response of the diodes to the external field
neglecting the modeling of strong-field domains in the diode structures. Instead, characteristic
times of intrinsic processes specific for the diodes are represented by the equivalent capacitance
C,, and the inductance L,, of the devices and their connections to the circuits.

CAI

R0 C 0RT 
C

LO

(a) (b)

Figure 4: Circuits considered as an antenna node (n = 0) or a resonant chain (n = NLC)

The current-voltage characteristic of the diodes is given by the approximation [12] typical

for GaAs and GaN structures:

GCn = G, (c) = Go, f(e) = Go[(e + 0.2e 4 )/(1 + 0.2e 4 ) + 0.05e] (1)

where Go,, = Zo1oo,/Vo is the dimensionless diode current parameter, [o,, and V0 are the char-
acteristic absolute current and voltage specifying the diodes (e.g., for the L-band GaN THz
Gunn diodes described in [13], we have lo,, ; 8A, Vo 30V), and, finally, e ecG is the
dimensionless voltage applied to the diode (Fig. 5).

'G G* O 2 Rb, 0,5 Z0
'G' -G, Rb2  = 5.0 Z,

4
'Rb .Sb , ý lRb 2.0

'Rb2' Sb, -Z,/Rb 2  0.2

.. .............

0 2 3 4 5 6
e=V/V 0

Figure 5: The Gunn diode current-voltage characteristic i = G(e), the differential conductance
y = di/de, and the load lines at the bias resistance rU

The wave equations for the TL currents and voltages take on the form

De,, 9i,• De,, _ Di.)

(9 Dx' 9T rx (2)

The circuit equations are defined by the composition of particular circuits as considered in the
following sections. Finally, the boundary conditions are specified by the type of the circuit and
the way of its connection to the microstrip line.

The electromagnetic self-excitation appears in the system when the Gunn diodes are biased
to the NDR region. The oscillations develop in response to a small fluctuation of the bias voltage,
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once the voltage is in this region, or as a result of switching the bias from the stable to this
unstable domain.

The bias voltage eB(T) is spccihied by the function

C 8(T) = 630 + 6eLCf(-(T/TS) - 6eBfB((-r -- TF)/TS) (3)

where eB,) is the steady-state voltage in the "off" position below the threshold eB,h when no self-
oscillations are excited (the oscillations appear if eC > eB,, Qe3 = CBo + 5eB is the steady-state
voltage in the "on" position when self-oscillations are being developed (eB, > eB,h), fB(T/Ts)
is the bias switch function which describes the switching on and off process beginning at the
moment T = 0 and T = TF, respectively, and developing during the characteristic time TS
(0 < f< 1, fB = 0 at T < 0, fB = 1 at T > Ts).

As a switch function, we choose fB = (tanh(u) + 1)/2 with the substitution u = s/(1 - s2),
s = 2 T/TS - 1, defined in the interval Isl < 1 where 0 < f3 < 1 (fB = 0 at s = -1, fL3 = 1 at

s = 1), while outside of this interval we assign fB = 0 at s < -1 (T < 0) and fB3 = 1 at s > 1

(T > TS5).

This definition of the switch function fB allows us to confine the duration of switching on
and off within the finite time interval 0 < T < TS, with both dfB/dT and d2 f3/dT-2 being zero at
r < 0 and T > Ts. Notice, the condition dfD/dT = d2 fB/dT2 = 0 at T < 0 is necessary for the

consistency of time-delay equations at T < 0 with the trivial initial conditions on the unknown
functions at the time-delayed intervals while assuming no time variations before the switching
on begins.

Despite apparent simplicity of circuits considered, self-consistent time-domain modeling of
these distributed systems is a complicated problem. We approach this problem by utilizing a gen-
eral solution of one-dimensional wave equation following the method of Ref [14] that allows one
to reduce the problem of the field evolution in a one-dimensional cavity to the algebraic equation
with time-delay. In distinction from Ref [14], in this work we deal with more complicated systems
and arrive at a set of differential-difference equations rather than the algebraic-difference one.
Also, once considering open radiating systems, we study the radiation emitted by the system
towards infinity.

3 Parallel connection of microstrip circuits

In this section, we consider the parallel connection of microstrip lines (Fig. 1, a) with active
circuits of Fig. 3, a, when the "antenna circuit" (n = 0) is of the kind of Fig. 4, a.

Of the total number of N microstrip lines, we assume to have ND = N - 2 lines with Gunn
diodes (n, = 1 ... ND), one line with a lumped resonant LC circuit of Fig. 4, b (n = NLC = N- 1),
and another line (n = N) with the bias circuit similar to Fig. 3, a, where the Gunn diode is
replaced by the bias resistor RB (thus, ND > 1, N > 3).

Typically, we assume the resonant line n = NLC to be of zero length (dNLc 0). In this case
the central "antenna node" n = 0 has intrinsic resonant properties due to the lumped LC circuit
7, = NLC that makes the system similar to the waveguide structure considered by Kurokawa [1].
Also, we assume R 0 = oo (so = Zo/Ro = 0) and suppose eB,• = 0 for all active circuits so that
the bias is applied to the devices through the common bias line n = N of nonzero length dN
S= C 8(T) # 0)

3.1 Formulations for the parallel circuits

To derive the equations for the parallel connection of microstrip circuits, we use the general
solutions to the wave equations in the microstrip lines of length d, and in the stubs of length
d',',, in the form of superpositions of waves propagating in opposite directions, e.g., I (T- - X)
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and U,,(T+X), so that the current i, and voltage e, in the line section n are presented as follows:

i, = kIn(T - X) + Un(T + X), e, = I'n(T- .X) -Un(T + X). (4)

By introducing the node coordinates x, = d, xS, = dn + ds, (x0 = 0) and the relative time
variables for different sections of lines defined as

0Sn = T + dn = T + Xn, 1Sý' = On + ds, = 
T + XS,,, (5)

we obtain
Ug,(T- + an) Un(1 9n), ''n(T - Xn) = T'n(On - 2X,) (6)

anld

US,,(T- + Xs,) = Us,(Os,,), VPs, (T - xs.J = Ts, (9 S, - 2xs). (7)

Then, using new variables

P"(79,) = T(On - Xn'), Qn(,Os,) = Us'J(9so), Sn(0S,,)"= Ps,(79s - .Xs,), (8)

we can express the microstrip currents i' and voltages en at the points xa of microstrip con-
nections to circuits, i4(T) = in,(T,X.) and el-(T) = en(TaX•), via the waveforms Un, Pn, Sn, Qn

representing the relevant waves in the lines and stubs (see Fig. 1, a).
Written for the active, resonant, and bias circuits (with account of the stub boundary con-

dition e(T-) = 0 at x = xa,, that allows to exclude Qn), the microstrip currents and voltages at
the circuit connection points are obtained as follows (n = 1 ... N):

in+(T) = (19n - 2ds,) + Sn('td,) (9)

e(T) = - On(,n - 2ds.) + Sn(2n) (10)

i,, (7) = Un(On) + Pn(.9n - dn) (11)

(-r) = U, (79n) + P,(9,n d,/). (12)

Similarly, the currents and voltages at the antenna node (n = 0) are found in the form

i+A (T) =- Un('L• - dn) - Pn (19n) (13)

A ,, (T) = U,(z9n - dn) + Pn(L9n) (14)

iA(T-) = UA(T) (15)
eA(7-) = UA (T) (16)

where UA(T) = UA(T + Xo) is the wave radiated from the system into an infinite section of
microstrip line, when evaluated at the antenna node x = xo. In this presentation, the initial
conditions are supposed to be of the form iA = 0, eA = 0 (UA =0) when 7 < 0, i.e., there is no
bias and no excitation at T < 0. The radiation condition has also been accounted in this form
(there is no incoming wave PA(Tr - xo) incident on the structure).

Now, we formulate the circuit equations in terms of the circuit currents irn and voltages
C,, defined specifically for each circuit n and relate them with the microstrip currents il and
voltages c,, at the connection points x = x-.

Using the definitions of currents and voltages as shown for the circuits of Fig. 3, a, the
connection equations (the boundary conditions at the nodes xn) are obtained as follows

"- " =e - + 17

in = n = +, e. e -+ (17)

where the circuit currents and voltages are

in = iL, = iCG,, + iC,, en = ec,, eL, - eB,,. (18)

7



Here, ic,, = G.,,(ec,) is the Gunn diode current at the diode (capacitance) voltage eGc, = cC,.,
i',-, = TC,,,dec,,/dT is the capacitance current, eL., = TLdiL,,I/dT is the inductance voltage, and

CB,, = CB,, (-r) is the given bias voltage.
Eqs. (17) - (18) are valid for all active, resonant and bias circuits as shown in Fig. 3, a, where

the relevant parameters should be substituted in each particular case: for the bias circuit (n = N)
we use 2GN = SNeCN as the bias resistance current instead of G,(eG,) above (SN = ZO/RN is
the dimensionless bias conductance), while the LC circuit of Fig. 4, b, with open right contacts
(n = NLC) is reduced to Fig. 3, a, with a short-circuited stub of zero length, ds, = 0.

In a similar way, we obtain the antenna node connection and circuit equations (n = 0). For
the antenna circuit of Fig. 4, a, we find the capacitance voltage eCA and the resistance current

1T satisfying the following equations

eCAc.(-A, = =e +it= (19)

where i+ = iCA = T( 4AdeCA/dT and iT = STEa (ST = ZO/RT). With account of relations (15) -

(16), the second equation in (19) yields the circuit equation for the antenna node n = 0

dec4,(T)/IdT = WC.,(I +t ST) UA (7) (20)

where wc,, = 1/wcA, while the current i+ and the voltage e+ are expressed as

i = iA-iT = (1+ST)UA(T), (21)

eA = -CcA (T) - UA((T), (22)

respectively.
The parallel connection of N microstrip lines at the node n = 0 with account of relations

(13) (14) yields the basic set of equations:

N N N

2+~ = = ~,Zr,(23)
n=I n=1 n=1

+= A,, (' P" U1 (nI= 1 N) (24)

where P, = P, ,(O,) and Un = Un(O, - dJ).

Eqs. (23) - (24) yield immediately

P,,() = (-(T) + -U0,, - dr) = -CA(T) - UA(T) + UnQL( - d4) (25)

and[

N N N

i+ EP~,+ >3Ur, =2>1Ur,Q(,, - t,) -NeCA(T) -NIUA(Tr). (26)
nr=I rn= I n=1

By comparing Eqs. (21) and (26), we find UA(T) expressed via Ur,(09, -ddn) and eCA (T) explicitly
as follows:

N

UA(7)(1 + ST + N) = 2 U,(0, - d,) - NecA(T). (27)

At this stage, we choose U,, (n = 1 .. N) and ecA as a set of N + I independent unknown

functions and formulate a closed set of N + 1 equations in explicit form with respect to these
functions.

We re-write each pair of circuit equations (18) as a single equation with respect to ir, and
er,. Presenting ec,, from the second Eq. (18) as

cC,, = eC, + eB,, - TL,, di,/!dr, (28)

8



and substituting this into the first Eq. (18), we obtain N circuit equations with respect to i,
= 1... vN):

Tod-i/-dT- - rc,(defidT + den,,/dT) + i, - G, (cco) 0 (29)

where 7.o,, = T-,C,, (here, T, = 27T0 , is the intrinsic period of oscillations of LC circuit).
In addition to these N equations for active, resonant, and bias circuits (the equations are

of second order, corresponding to the circuit structure), we have also Eq. (20) for the antenna
circuit (n = 0) which is of the first-order with respect to ec,,. Using the relation (27), we get
Eq. (20) closed with respect to functions U, and eCa.

By substituting Eqs. (17), Eqs. (9) - (14) and Eqs. (25) into Eqs. (29), we obtain all circuit
equations closed and written explicitly in terms of unknown functions U, and ecA (functions S,
are expressed via P, and U,, by using (9), (11), and the first of Eqs. (17), see below).

Thus, the final set of N + 1 equations in explicit form with respect to N + 1 unknown
functions U, and Cea (T) consists of

"* MIC first-order Eq. (20) for the antenna circuit (n = 0), with substitution of UA from
Eq. (27), and

"* N second-order equations for active, resonant, and bias circuits (n = 1 ... N), with explicit
form of equations being as follows:

= -P,'((,,. - dn) +JL,.e',,7(T) + 2WL,,[S'n(, 2dsj) - U,,(7),)

WCo, [U,(1) + P.(Dn - d,) - G•,(ec,,)] (30)

where WL,, = 1/7.L,., wJO, = 1/T.0,,,

c.,,, = e1,a + 2[S,(i9O, - 2ds,.,) - Un(19n)] - TL, [U.,,J(9n) + P,±('), - dn)], (31)

P,(D, - d,,) = U,,(19, - 2d,) - eCA (T - d,) - UA(T - d,,), (32)

and
Sr(7tn) U,,(7),,) + P,0 (Qt - d,,) - S(O - 2dS). (33)

An essential feature of Eqs. (30) - (33) is that they are nonlinear differential-difference
equations with time delays. They account for both the nonlinearity of devices and the delay
of coupling between the devices due to the time needed for the wave propagation along the
transmission lines. This property makes the system prone to non-conventional dynamics such
as the dynamical chaos and other nonlinear effects that could be useful for various applications.

3.2 Power combining with parallel circuits

in this section, we consider a possibility of power combining in the systems with parallel con-
nection of microstrip circuits described above.

We obtain numerical solutions of the equations derived in section 3.1 by using the integration
methods presented in Ref [15], particularly, the Dormand-Prince method of the 8(5+3) order
which we extended for the case of time-delay equations specific for our problem.

Being direct time-domain computations, accurate solutions of these nonlinear equations are
rather time-consuming. Time sequences of the field evolution were, typically, found for many
thousands of intrinsic periods T,, as defined by the system parameters, with the accuracy of
solutions specified at the level of E = 10-7 ... 10-12 [15] sufficient for obtaining stable and
reproducible solutions as verified by more accurate test simulations.

Some examples of the field evolution (both the voltage ec,,,(T) at the diode contacts and the
wave form UA(T) radiated from the system into an infinite microstrip line) are shown in Figures
below. The oscillations develop in the system as a result of self-excitation in response to the
initial switching on the bias voltage eBN (T).

9



The bias voltage was applied as a sum of bias functions Eq. (3) with various rise-time and
voltage parameters chosen so as to set the diode voltage ec,, at the desired value cc,, = 2.5 in
the unstable NDR domain (Fig. 5) either in a single step or in a few consecutive steps, e.g., with
under-shoot or over-shoot, as shown in Fig. 6, a. In most cases, under the condition of slow
switching, the switch function does not affect the form of established steady-state oscillations
as shown in Fig. 6, b.

"g2-I t 2 1 ,r2 .. d.r I, dal" u 2

S g 11 i-V, 2'-$ 2 J(,1 e 1 2

/l 'gS.-nh.I t2., 2 e d, d,,,' 2

100 2tf0) 1 ý1 401) 5(10 010) 700 t10 1 1W 110t1 1200 1'C0 400 1500 10(01 )700 1100 1001 2000
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Fi"Ue 6: Self-excitation in the system after switching on the diode voltage cc = 2.5

The space of parameters in this problem is rather large and, therefore, the comprehensive
investigation of all cases is not feasible. Instead, one has to focus on the priority issues which are
the most useful from both physical and practical points of view. The main questions considered
in this work, were those concerning the dependences of the generated power P and the basic
frequency of oscillations T on (i) the number of active devices ND in the system, (ii) the lengths
di,, and d1,, of microstrip sections, arid (iii) the characteristic current Go, of active devices that
deihnes the typical power output of a single-device system.

Concerning the values of the parameters, we assume the active circuit characteristic times
TL, = TOG = 1 (the intrinsic period T,0 = 2ir), the resonant circuit times being the same
as of active circuits, the bias circuit times being small, TL, = TON = 0.1, and the antenna
capacitance time being large, TCA 10. In most cases, we assume stubs of zero length, ds00 = 0,
that significantly simplifies Eqs. (30) - (33), and often assume a zero length of the resonant
circuit line dNvLC = 0 (then, the resonant LC circuit becomes a, part of the antenna node).
Other parameters different from the above or specific for particular cases are provided in Figure
cap~tions.

Using the Gunn diode parameters I0 = SA and V0 = 30V specific for the L-band CaN
diodes [131 anid assuming the transmission line intrinsic impedance Z0 = 50Q, we obtain the
dimensionless current parameter Go.. = ZOID/VO = 13 as defined in Eq. (1). With a more
conventional type of dliodes, e.g., specified by the current 10 = 1A, we may have Go, ý 1.
Therefore, as a typical case, in the following examples we use a moderate value Go., = 2. The
diiode operation point is specified by the diode voltage eG = 2.5 which is obtained by adjusting
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the bias resistance rD as a function of the number of devices ND for the fixed bias voltage eBN

chosen as shown for a single-diode system in Fig. 5 (the blue and pink load lines correspond to
the bias conductance sB = 2 and sB2 = 0-2, respectively).

The radiation power P is evaluated as the mean power flux of the wave iA (T + X) = UA (T + X)

radiated from the antenna node n = 0 into the open section of transmission line. In relative
units, the power of a harmonic wave is evaluated as P = (1/2)U2 that is converted to the
values in Watts as Pw = (V2/Zo)P. In our examples, assuming V0 = 30V and Z0 = 50Q, the
conversion rule is Pw = 18P. As an estimate, for the wave of the amplitude UA = 0.2 nearly
the same as shown in Fig. 6, b, we find P = 0.02 and Pw = 360mnW. The efficiency of the diode
in this case is, however, very low, being estimated as 77 = P/Po = 0.3% where Po = i2eG = 6.25
is the DC power dissipation in the diode.

An example of power combining computed for two nearly identical systems which show quite
different dependences of radiation power P on the number of devices is shown in Fig. 7, a. The
systems differ only by the value of the bias resistance rB adjusted as required for the given
operation point ec = 2.5 at two different bias voltages specified so that, for a single-diode
system, r3 = 0.5 and r3 = 5 (i.e., sB = 2 and SB2 = 0.2) that corresponds to the dashed
(green) and solid (red) curves, respectively.
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Figure 7: The power P and the period of oscillations T as functions the number of devices

In the case of a relatively large bias resistance rB2 = 5 (red curve in Fig. 7 that corresponds
to the pink load line in Fig. 5), the power increases with the number of devices ND for all
tested ND = 1 ... 9, growing from Pw = 23rmW (P = 0.0013) at ND = 1 up to nearly 1 Watt
(Pu- = 0.95W, P = 0.0526) at ND = 9.

If, however, the bias resistance is low, r7-2 = 0.5, the radiation power, after the initial
successful growth with the number of devices up to ND = 4, drops drastically to the level only
slightly exceeding the power of a single-diode system.

The effect is associated with a variation of basic period of oscillations as shown in Fig. 7, b.
"With the drastic drop of radiation power in the second case, the basic period jumps from about
T = 8.27 in relative units (typical for all cases) up to T • 1000 at ND = 5 (a gradual decrease
from this value is observed with increasing ND that may indicate the possibility of resuming
some power growth with a greater number of devices).

It is a known fact that the power combining systems of this kind (including rather successful
Kurokawa systems) could be tedious in tuning and exciting. A rigorous time-domain simulation
of these systems could significantly improve their understanding and overall design.

3.3 Parametric dependences

None of the systems considered above is the optimal one for the power generation, yet the power
grows in some cases is substantial. For the better understanding of the processes involved, we
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analyze some parametric dependences in the systems.
First, we consider the dependence of the radiation power on the length dNLc of the resonant

LC inicrostrip section. The radiation power P and the basic period of oscillations T as functions
of the length dNLC, expressed in the units of intrinsic wavelength A (the latter is defined formally
as A = To = 27rTO) are shown as an example in Fig. 8.
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Figure 8: The power P and the period of oscillations T as functions of dNLC

The dependence is rather mild that could justify the choice of the parameter dNc = 0 made
in most cases as mentioned above, though we did not make a comprehensive investigation of all
the cases. Some examples of the waveforms UA(T) radiated from the system when dNLC = 0,

(IN,(, A/8, and dN,,c A/4, are shown in Fig. 9.
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Figure 9: Waveforms UA(T) radiated from the system when dNc = 0, A/8, and A/4

A more informative and important is the dependence of the power P and the basic period
of oscillation T on the length of stubs ds, and of the main sections d, of microstrip circuits as
shown in Figs. 10 11. The radiation power P as a function of the stub length ds, appears to
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he about a periodic function with the period close to A/2, though this rule is not precise. The
oscillation period T varies accordingly, though the variations are not so significant.
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Figure 10: The power P and the period of oscillations T as functions of the stub length ds,

The relationship between the locations of power maxima (the values ds , where P = P,,,)
and the actual wavelength of radiation (AT = T in relative units) is not straightforward, being
neither precise multiple of AT/2 or A\/2 (except occasional cases like ds. = 5 if comparing
Is ....... with the formal value A/2 rather than the actual AT/2).
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Figure 11: The power and the period of oscillations as functions of the microstrip length dr,

Both the period and the location of maxima of radiation power may depend on the nonlinear

processes in the system and so on other parameters such as the diode characteristic current
CG,,, the numher of devices ND, etc. Therefore, the effect should be investigated specifically
(including other effects such as the stability of oscillations etc) for each kind of the system
around its possible operation domain.

Fig. 11 shows the radiation power P and the basic period of oscillations T as functions of
the microstrip length d,-. This dependence is rather intricate. In the same time, it is rather
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stable and robust, being independent of either the way of switching the bias or the accuracy of
computations (once it becomes sufficient) as illustrated by the wave profiles shown for various
cases in Figs. 12 - 14.
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Figure 12: Robustness of the waveforms with respect to the accuracy and the bias switching

Fig. 12 shows that the waveform excited in the system is insensitive to the accuracy of
computation (a and b) when the relative (E,) and absolute (Es) accuracy of integration are
improved from Er = 10 8 and E, = 10-7 to E, = 10-10 and Ea = 10-9, respectively (Go = 2,
.sB 2, ds,, - A/2, d, = 3)/8).

Fig. 12 shows also a similar robustness of the waveform with respect to the bias switching
in the system with a strong nonlinearity (c and d) when the Gunn diode characteristic current
is Go = 10 (d,, = A).
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Figure 14: Waves in the system with one and two diodes when RB = 5 or RB = 0.5

time, we obtained intricate parametric dependences of the output power on the system
parameters that illustrates nonlinear character of the processes controlling the efficiency
of power combining.

" As an example of non-conventional effects, a drastic drop in the output power with increas-
ing the number of devices has been observed in certain causes as shown in Fig. 7. Because
of nonlinear nature of these effects (see, e.g., Fig. 13), various approximate approaches,
e.g., those based on the Kurokawa method [1], become inadequate in these cases.

" The microstrip structures mounted on substrates should be rather efficient design solutions
in terms of the excess heat dissipation. We, however, simulated only the high-frequency
effects and did not consider various engineering features concerning practical irnplementa-
tion of the systems.

" An essential practical problem could be a large value of current in the bias circuit of a
system with many devices. This problem may be avoided by using an individual bias
circuit for each device, e.g., as shown in Fig. 3, b, though this case has not been simulated
so far.
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4 Series connection of TL circuits (ladder oscillators)

Since the energy flux of the electromagnetic wave is proportional to the square of the field
amplitude, summation of the wave amplitudes from different devices under the condition of
phase locking could, in principle, result in a superlinear growth of the radiated power with the
number of devices. Despite these considerations, simulations of various one-dimensional systems
have shown that, even though such a tendency is observed at a low power level, this does not
happen as a general rule.

Since the wave amplitude in the TL circuits of Fig. 1 is, typically, limited by either the
current or the voltage, despite the phase locking, the power growth is no more than linear, even
though resonant circuits may allow one to increase the amplitude well above the steady-state
bias value. Since the same kind of circuitry is inevitably present in the core of any radiating
system, a superlinear growth of power with the number of devices is not expected to be likely,
except, possibly, the cases of low total power output.

Simulations of a chain of active circuits of Fig. 2, a, mounted in a microstrip line in series as
in Fig. 1, b, have shown a possibility of certain superlinear growth of power with increasing the
numnher of devices [10], though, generally, it is accompanied by a significant drop of the oscillation
frequency which is, typically, inverse-proportional to the total length of the microstrip structure.

Series connection of active circuits offers, however, other opportunities related to the non-
linear spectrum modifications in these systems as we consider below.

4.1 Formulations for a series connection of circuits

In this section, we consider a series connection of N active circuits of Fig. 2, b, mounted in the
mnicrostrip lines as shown in Fig. 1, b [16]. All circuits are supposed to be identical and the initial
conditions are assumed to be steady-state voltage and current distributions corresponding to the
given diode voltage operation point e(°) chosen within the NDR domain of the current-voltage•Cn

characteristic Eq (1).
Unlike the circuits simulated in Ref [10] (Fig. 2, a) that partially shunted the high-frequency

current components, the circuits in Fig. 2, b, stimulate the propagation of high-frequency waves
along the line. In both cases, the character of the effects depends on the TL parameters,
particularly, on the lengths of the TL sections between the diodes and on the values of the bias
resistance R,, in each section (here we express R,, in relative units instead of r , ).

The equations for the voltages and currents in the circuits and in the TL are obtained in
a way similar to the above. With account of the actual type of circuits, the equations for the
chain of N diodes are reduced to the set of 2N ordinary differential equations of the first order
with N time delays 6, = d7, of a general form

dU,,/dT = Fu,(Ua, Pn) (34)
dP , /dT- = Fp,,(U , ,P , ) (35)

where Fu,, and Fp,, are the algebraic functions of Ut, and P., with various time delays 67, and
with no delay at the moment of time T.

Functions U,, and P,7 are the profiles of the voltage waves being specified at the circuit
locations .x = Xn, and propagating to the left and to the right from the circuits along the
respective sections of the TL.

Functions F(j,, and Fp, are specified as follows:

Ft,,(O,&) = Fu,,,+(O ,+l d,+,) -O.5[Fc,,(OV,)+FL,,(O.)] (36)

Fp,,(O, ) = Fp,,_, (0,1 - d,.) - 0.5[Fc,• (9,,) - FL,,(Or)] (37)

where .= I...N, 0= T+X , ,

F(,,,(,,) = wc,{U ,  (0,,i - d ÷) i- P,(07,) + Ca(ecj} + deB,,(T)/dT (38)
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FL,, (0,) = WL,,{Un(On) - P: - I (0On-I - d,) + R, [U,(0,) + P.-(0,- 1 - d,) -

Ur+i(Or,+1 - d,,.) - P,(o0) 1} (39)

FtUNF (ON+1 - dN+l) = FP, (ON - 2dN+l) Fpo = 0 (40)

aInd

ec,(7) = eB1,(T) - U,,+i(0,+ 1 - d,,+) + P,(0,() + Un(O,.)- P,. I(0n 1 --d) (41)

with the same notations as in Sections 2 and 3.
(0)The steady-state initial conditions at the voltage operation point cc, correspond to the

inta ba 'B,=(0) = (0) (()th
( = Cc, (rn = 2... N) and e = ec, + RIG, eC1) that results in the initial values

of U,, and P, defined as follows:

(0)PO = 0.5RiG I(ec,) U1 = -P 0  (n = 1), (42)

P,,-I - 0.5 G,,(e 0() , U,,, = P,,-, (n = 2... N). (43)

The excitation appears as a result of a small bias fluctuation that reduces to zero later on.

4.2 Analytical Treatment

Iu the case of a single diode N = 1 with a stub of length d, we could obtain some analytical
results and compare them with numerical simulations. In this case, we can apply the concept
of zero impedance conditions [1], Z = 0, to find the frequencies of emerging self-oscillations and
to verify this concept against exact numerical solutions. The conditions of Re(Z) and Im(Z)
constitute a pair of equations that can be written in the form

{•O(ZG + R) - W(WLZd + w)ZG}Zr = WIZd(WLZGR + Wc) -- wOZR (44)

a) (WLZcR + wc) )Z -ZZR (45)

where Z,- is the effective impedance of the radiating TL section (the antenna radiation resis-
tance), wo = WLLWC, ZS = iZd(ca) = itan(wd) is the impedance of the stub of length d at the
circular frequency wa and ZG = 1/(dG/dec) is the diode impedance at the voltage operation
point ec7, all being defined in relative units.

In an open system, the effective impedance Zr (a real number that represents an ideal sink
of energy at the infinity) is unknown in advance, unlike the load impedance in a closed non-
radiating circuit. Eqs. (44) and (45) define the same value of the impedance Z, thus providing
the equation for the frequency wj that can be written in the form

Z2(w)wwL(W 2Z2 + W2 ) + Zd(wa){W 4 Z 2 + W2  _ WC) 2 + w2Z 2 2 1)1 + w4R 2 1 +

wca z(w• - waR2 
- w2 ) = 0. (46)

Roots of Eq. (46) with proper treatment of singularities and spurious solutions to satisfy
Eqs. (44) and (45) define the spectrum of oscillations. If there is no stub (d = 0), Eq. (46) has
a single frequency solution independent of ZG,

W = woo 1- R 2WL/WC (47)

with Z, = -ZGWC/(WC- + ZG;RWJL) (here ZG < 0 and Z., > 0 if eco is in the NDR domain).
If, however, a stub is connected (d # 0), Eq. (46) defines a multi-frequency spectrum that
essentially depends on the diode impedance ZG.

Eqs. (34) - (41) yield the dispersion relation for small oscillations u,p f exp(iw-r) around
the steady-state condition of Eqs. (42). If d = 0, the relation is

S2Wi[WLR + wc(YG + 1)] - W2rl + (YG + 1)R] = 0 (48)
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vhere Y(; = 1/ZG is the diode admittance.
Eq. (48) shows that small initial fluctuations grow up if (YG + 1) < -RWL/WC, though they

can turn into oscillations if only I(YG + 1)Wc - RWLz < -2wo (otherwise, switching from the
unstable initial condition, ZG < 0, to one or another stable condition, ZG > 0, occurs in the
system as predicted by Eq. (48) and, indeed, observed in simulations).

Notice that, even though Eq. (48) seems to fully determine the frequency W, in reality, it is

the balance of gain versus losses expressed by Eqs. (44) and (45) that controls the dominant
frequencies in the spectrum of the established self-oscillations in a small-signal mode considered
above.

4.3 Spectrum of oscillations

Conditions for self-excitation of the system and the spectrum of small oscillations could be found
by considering zeros and singularities, as functions of the frequency, of impedance or admittance
of the TL circuits defined with respect to different ports [1]. Time-domain simulations based on
Eqs. (34) - (41) confirm these considerations in basic features, though specific details are more
complicated [16].

First, we consider the case of one active circuit N = 1. In this case, we study the circuits
with the stubs of zero length (d = 0, compact open circuits) and of nonzero lengths (extended
circuits of size d). We adjust the values of the diode current parameter Go (proportional to the
diode admittance) to generate the oscillations of either small or large amplitude. We also vary
other parameters for testing the validity and limitations of the analytical solutions found above.

In a circuit with no stub (d = 0), when Go is just sufficient for self-excitation estimated by
Eq. (48), we obtain small oscillations ('u • 0.1) at a single frequency predicted by Eq. (47) as

shown in Fig. 15, a (R =- 0, 5, 9 at WL = 0.1, WC = 10 for the solid, dashed and dotted lines,
when w = 1, 0.866, and 0.436, respectively).

With increasing the diode admittance in the domain of oscillatory solutions, the basic fre-

quency decreases approaching zero (when the oscillations are replaced by switching) and higher
harmonics appear. The spectrum remains, however, rather simple, with just a few harmonics of
relatively small amplitude being present, Fig. 15, b.
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Figure 15: Spectrum of radiation from a single circuit when (a) d = 0 at small Go = 11... 12,
(b) d = 0 at large Go = 14...16 (R = 0... 5), (c) d = AO/2 at small Go (Go = 2) and (d) the
left-hand part of Eq. (46) in case (c)
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In a circuit with a stub, we observe small oscillations at multiple frequencies as expected from
Eq. (46). Fig. 15, c, shows the spectrum of small-signal radiation from the circuit with the stub
of length do = AO/2 resonant with the frequency wo = 1 (Zd(wO) = 0, do = 7r) when WL = 0.1,
wC7: = 10, GC = 2, and R = 0. The spectrum is consistent with the roots and singularities of the
left-hand part of Eq. (46) as Fig. 15, d, shows. The excitation of circuits with a stub appears
possible at very small Go, e.g., even with Go < 0.2 in this example as compared to Go > 11.2
(Rt = 0) in a similar circuit with no stub in Fig. 15, a (if ZO = 50Q, GaN diode parameters
correspond to Go = 13).

In a nonlinear mode, the spectrum of radiation from a circuit with a stub has little in
common with the spectrum predicted by Eq. (46) at the relevant value of Go (both spectra vary
significantly with Go). With increasing Go, the oscillations remain multi-frequency with rather
narrow spectral lines, though the basic frequency decreases like in the case of a circuit with no
stub.

More interesting effects are observed in the chain of N circuits. With increasing N, we
observe broadening of spectral lines alone with increasing the number of lines as shown in
Fig. 16, a. The effect appears even in a regular chain of identical circuits with TL sections of
the same length d (a stub of the last circuit is of length d/2) if R = 0 (solid curve) while the
liles remain narrow if there is a significant resistance in each circuit (e.g., R = 5, dotted lines).

061j'1: regular chain 2: irregular chain

I, I 2 S 4 6

(a) (b)

R 0. 1 ralated waveform

(C)

0ery sidiatr to b)

1020
(d)

Figure 16: Spectrum of radiation from a chain of circuits similar to those in Fig. 15, c, when (a)
d,= d = 5 and (b) d, = 6.91, d 2 = 3.77, d 3 = 8.17, d4 = 3.14 (in both cases, Go = 13) and the

rad]iationl waveformn in the latter case if (c) Rt = 0.1 (spectrum b) and (d) R = 0.5 (spectrum is
very similar to b)
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If the chain is irregular, e.g., with different lengths of TL sections, the broadening of spectral
lines is more significant, the spectrum could be quasi-continuous, Fig. 16, b, and the radiated
wave rather chaotic, Fig. 16, c). This effect could signify the transition to the dynamical chaos,
though it requires more careful examination. The waveform looks rather chaotic during the
whole long time of computation if R is small (Fig. 16, c, was computed with R = 0 up to
T = 8000) but switches to a regular pattern after an extended period of time T, if R is not too
small (T, = 1400 if R = 0.5, Fig. 16, d). Both spectra, however, are remarkably similar, having
a distinctive quasi-continuous component.

4.4 Non-conventional dynamics: chaos and pulses

Recent simulations of structures with time-delay coupling of active devices indicated a possibility
of non-conventional dynamics in these systems such as the dynamical chaos [17] and the excita-
tion of trains of high-frequency pulses [18]. A series connection of active circuits with significant
time-delay coupling between circuits is one of typical cases that could result in the dynamical
chaos of electromagnetic field, though the effect was simulated using a simplistic model of an
instant response of active circuits to the external field assuming TL = TC = 0.

The results of our research show that, in the case of non-instant circuit response represented
by reactive components in Figs. 2 - 4 (TL 5 0, TC 7# 0), the dynamical chaos remains a possibility
under certain conditions. In order to detect the presence of the dynamical chaos, we perform
some basic tests such as the construction of the Poincare sections (Fig. 17), computation of the
correlation functions (Fig. 18), and the study of divergence of adjacent trajectories [16].

R=0.1, t =2000-3000 1 =1, G10.0 stub==13.14 1

(a) (b)

N=4, G= 13, d=5, R=5 N=4, G= 13, d=5, R=0

(c) (d)

Figure 17: Poincare sections showing the complicated dynamics of the electromagnetic field in
microstrip structures with a series connection of active circuits
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As an example, Fig. 17, a, shows the Poincare section computed with the waveform radiated
from the structure, Fig. 16, c, whose spectrum is shown in Fig. 16, b (irregular chain of N = 4
active circuits with R = 0.1, Go = 13). This is a typical phase portrait of the system with the
dynamical chaos.

For the comparison, Fig. 17, b - d, presents some other cases where one can observe (b)
the period doubling as a canonical route to chaos (one circuit with a stub, N = 1, Go = 10,
d = 3.14, R = 0), (c) complicated multi-frequency generation (regular chain of N = 4 circuits
with Go = 13, d = 5, R = 5), and (d) chaotic Poincare section of the system whose spectrum
is shown in Fig. 16, a (regular chain of N = 4 circuits with Go = 13, d = 5, R = 0) which does
not look as purely chaotic but rather as a combination of multi-frequency generation and some
chaotic component at a low level.

SR = 0.1 auto-correlation uction (red crve)

1% 1,0_4 iK %4Fg ,18 shows the auto-correlation f t of t wavfo, presen in Fg 1, cwi

-•. 'V I P kA

Figure 18: Auto-correlation functions of the radiation field of irregular chain of N = 4 active
circuits (C0 = 13) when R = 0.1 (red solid curve) and R = 0.3 (green dashed curve)

Fig. 18 shows the auto-correlation function of the waveform presented in Fig. 16, c, which

reveals a low level of correlations in the radiation signal (red solid curve). For the comparison,
the green dashed curve presents the auto-correlation function of the waveform shown in Fig. 16,
d. In this case, a regular periodic, yet complicated waveform develops, which is of such a kind
that both the frequency spectrum (which is similar to Fig. 16, b) and the Poincare section look
rather chaotic, yet the auto-correlation function shows a very definite periodicity in the revivals
of auto-correlations.

Another dynamical effect of potential practical interest is the generation of trains of high-
frequency pulses in the systems where an active circuit is separated from a compact (e.g.,
hlmped) high-frequency resonator by a relatively long section of transmission line providing a
time-delayed feedback, while the pulses are radiated from the resonator into an infinite section
of the TL, thus, simulating the electromagnetic wave radiation into the outer space, Fig. 1.9.

These trains of pulses are similar to those simulated earlier in a one-dimensional cavity with
a thin dielectric mirror [181, [19] where the mirror served as a compact resonator. Compared to
those simulations, this TL model with Gunn diodes is more rigorous since the model accounts
for a non-instant response of active circuits to the external field (TL ¢? 0, TC $4 0). On the other
hand, it uses a generic LC-circuit as a compact resonator (which is equivalent to the dielectric
mirror) between an active TL section and an infinite section of transmission line, thus, showing
a generic nature of self-emergence of trains of pulses in the systems with time delay.

4.5 Summary and further research

a Simulations of a chain of TL circuits of Fig. 2, a, have shown a possibility of power
combining [101 which is accompanied by significant decrease of the oscillation frequency,
with more complicated effects emerging in the lines with long inter-device TL sections.
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Figure 19: Trains of high-frequency pulses generated in the microstrip line of Fig. 1, a, with
N = 1 (red solid curve) and N = 2 (blue dotted curve) active circuits as in Fig. 3, a, and a
resonant antenna circuit n = 0 as in Fig. 4, b (d,, = 200, dsý = 0, Co = 2)

Final equations in [10] were, however, not of the most optimal form. Therefore, improved
simulations are needed to clarify various issues related to the nonlinear effects in the long
TL structures.

" Nonlinear time-delay coupling in the chains of TL circuits of Fig. 2, b, simulated in this
work could produce broadband dynamical chaos or self-sustained generation of trains of
high-frequency pulses. The effects of this kind could be of potential interest for novel radar
technologies as presented in Ref [11]. These effects, however, are rather complicated and
require more comprehensive investigations.

" For the efficient power combining at high frequencies, other kinds of circuits (e.g., as those
shown in Fig. 3, b) with parallel connection of TL sections and separate bias of each
device (with account of extended length of the bias lines which should affect the device
operation, and also with or without the common power supply feeding these separate
bias lines) have to be simulated. Therefore, further research is needed to explore these
and other possibilities of high-frequency power combining, including also a possibility of
superlinear growth of power.

" A major drawback of all the models considered is the neglect of intrinsic dynamics of active
devices. This is caused by significant complexity of the internal processes responsible for
the device operation (e.g., the dynamics of strong-field domains in Gunn diodes, etc).
A more realistic modeling of TL circuits with active devices requires an efficient (and so,
reasonably simplified) modeling of internal processes in the devices and their self-consistent
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account in the simulations of the whole TL systems.

e Other kinds of active THz devices such as resonant tunneling diodes, especially, novel
interband-RTD with enhanced frequency and power output [20], or arrays of quantum
dots with suppressed electron scattering [21], [22], have to be considered because of much
higher operation frequencies of these devices. For this, with account of complicated internal
dynamics of the devices [231, [241, reasonably simplified theoretical models of relevant
structures have also to be developed.

5 Conclusions

We carry out time-domain simulations of nonlinear self-excitation of active systems with Gunn
diodes connected by extended sections of microstrip transmission lines (TL) and radiating the
electromagnetic waves into an infinite open line. Various models of distributed circuits of this
kind have been studied, with parallel, series, and mixed coupling of active elements in the TL
network.

One-dimensional transmission line models, in distinction from computationally involved 3D
structures, allow us to develop more rigorous formulations and obtain accurate self-consistent
solutions, with the conclusions that could be generalized to other cases.

Practical issues of interest are the possibility of nonlinear power combining of active devices
in distributed circuits of the open kind and the emergence of non-conventional dynamics in
such systems due to strong nonlinear time-delay coupling between many devices. For the effi-
cient modeling of these systems, we consider simplified one-dimensional TL models representing
the wave guiding properties of microstrip structures, though neglecting small dispersion and
radiation losses of real systems.

Power combining is shown to occur in both parallel and series connections of active devices
in these distributed systems, though, typically, the power growth is no more than linear in the
mnuinber of devices ND despite an efficient phase locking. Power growth shows a tendency to
saturate at large ND and, in the case of series connection of devices in the ladder circuits, is
associated with decreasing the basic frequency of oscillations.

Complex dynamics of the electromagnetic field radiated into an open end of the TL are
observed in special cases in the simulations of series connections of active circuits. A chain
of devices mounted in an open line with irregular spacings between the devices could generate
chaotic electromagnetic signals for ultra-wideband applications such as noise radars and similar
systems. The chaos in many cases could be accompanied by multi-frequency generation.

In special cases, when active devices are separated from compact resonant circuits by ex-
tended sections of the transmission lines, trains of high-frequency pulses are radiated from the
system in a self-sustained manner, with the pulsing period being defined by the length of the
inicrostrip section providing the time-delayed feedback.
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