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1. Summary

Explosions are often conducted in complexes with chambers, tunnels, and shafts

used for access and instrumentation. These structures and sharp topographic features can

act as strong scatterers of seismic waves and complicate the radiation patterns from

explosions. In extreme cases they could affect discrimination between earthquakes and

explosions. The objectives of this research are (1) to study the effects of these near-

source scatterers on seismic waves radiated from explosions, and (2) to use a wavelet

domain based moment-tensor inversion scheme to determine "explosive" and "multi-

couple" components of the source.

To calculate seismograms from an explosion near strong scatterers we use a new

finite difference algorithm that accomplishes variable griding by coordinate

transformation or "stretching." This method provides excellent numerical stability while

increasing computational efficiency. It is capable of 3-D calculations for sources near

strong scatterers in heterogeneous media. Seismograms are calculated to determine

effects of various scatterers on seismic radiation patterns. The code is developed for

realistic earth models including (1) free surface, (2) layered structure, (3) surface

topography, and (4) seismic attenuation. In addition, a perfectly matched layer (PML)

was incorporated into the finite-difference code to improve the absorption at the

boundaries and for saving memory. Forward modelings using the 3-D finite-difference

code are conducted with an explosive source and tunnel in a full space and a layered half-

space. Calculations are carried out for each case: (1) a reference model without a tunnel,

and (2) a finite length horizontal tunnel included. The calculations show P to P and P to

S scattering and a complicated radiation pattern of the wave field. P to S scattering is

strong and the tunnel acts as a virtual shear wave source. For the half-space model,

surface waves dominate the seismograms and significant SH waves are generated by the

presence of the tunnel because of shallow depth. We show the capacity of our code in

modeling wave scattering due to various topographical features. The sharp corners of a

mesa act as strong scatters of seismic waves, and a smooth hill scatters the waves much

less.
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We use synthetic seismograms to test the performance of moment tensor

inversion and its ability to separate the volumetric and shear components of the source.

With good azimuthal coverage, the moment tensor shows significant shear components in

the presence of a scatterer when surface waves dominate the seismogram. The use of

wavelets for moment-tensor inversion has advantages because it can use all or part of a

seismogram, and has effective de-noising capability. The method can be used to analyze

data from earthquakes and explosions for determining isotropic (explosion) and multi-

couple (earthquake) components of the source. This is valuable for seismic

discrimination.

We test the applicability of Time Reversed Acoustics (TRA) approach for

detecting the presence of a tunnel near the source. In this approach, the recorded

seismograms are time-reversed and sent back into the earth at each station. The back-

propagating wavefields focus at the source. The P wave focuses strongly at the explosion

while the S wave at the tunnel. TRA has great potential for determining the seismic

source properties.
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2. Mechanisms on Scattering due to an Explosive Source

2.1 Observation on Transverse wave generations

An explosive source in a laterally homogeneous layered half-space generates P,

SV, and Rayleigh waves, but not SH or Love waves. However, seismograms from a

large number of explosions show nonisotropic radiation patterns for P and Rayleigh

waves, and prominent SH and Love waves. Various mechanisms have been proposed to

explain the generation of these transverse waves.

2.2 Objectives of This Research

In this project, we will study the role of scattering from near source structures

such as tunnels, shafts, adits, and surface topography for contributing to the generation of

complicated radiation patterns and SH waves from explosions. In addition, we will

utilize a wavelet domain moment tensor inversion to separate the isotropic (i.e.,

explosion) and multi-couple components of the source as an aid to seismic

discrimination.

Medium properties near the source, heterogeneities along the propagation paths,

and scattering near the receivers (Johnson, 1995) all contribute to complexities of seismic

waves recorded from explosions. Path and near receiver effects are unique to each

receiver. The near-source complexities, however, affect all seismograms and lead to

complicated source functions that affect the important task of discriminating between

earthquakes and explosions.

The near-source contribution to nonisotropic radiation of P, Rayleigh waves and

SH wave generation by an explosion can be attributed to three mechanisms. First, is the

tectonic strain energy released by the explosion, resulting in a composite source

consisting of an explosion and a double couple (e.g., Archambeau and Wqmmiw, 1970;

Toks6z et al., 1965; Toks6z and Kehrer, 1972; Wallace et al., 1983, 1985; Priestley et al.,

1990; Schlittenhardt, 1991; Stump et al., 1994; Patton and Taylor, 1995). Tectonic strain

release, widely observed for explosions in competent rock, has a greater contribution at

low frequencies than at high frequencies.
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The second factor that contributes to nonisotropic seismic radiation pattern from

explosive sources is the shape of the explosion cavity, and the location of explosive

source in that cavity (Rial, and Moran, 1986; Stevens et al., 1991; Zhao and Harkrider,

1992; Ben-Menahem and Mikhailov, 1995; Gibson et al., 1996; Ben-Menahem, 1997;

lrnhof and Toks6z, 2002;). The contribution of this mechanism to nonisotropic radiation

depends on the aspect ratio of the cavity (i.e., ratio of length to diameter), and placement

of the source within the cavity (Gibson et al., 1996). To have a significant effect, a very

large aspect ratio or a source placed in one end of a long cylindrical cavity was required.

Stevens et al. (1991) examined the effects of an ellipsoidal cavity. Their conclusion was

that at frequencies of 1 Hz or less, the P-wave radiation pattern was nearly isotropic and

the S-wave amplitudes were small.

The third mechanism contributing to complex seismic radiation from an explosion

is the near source scattering (Gupta et al., 1990; Johnson, 1997; Ben-Menahem, 1997;

Imhof and Toks6z, 2002, 002). This mechanism, not studied as extensively, could be

significant when strong scatterers are present near the source. The first task of the

proposed research is this near source scattering mechanism.

2.3. Effect of Near Source Scattering on Seismic Waves from Explosions

Explosions often take place in complexes with chambers, shafts, and tunnels used

for access and instrumentation (Denny and Stull, 1994; Murphy et al., 1994). Cavities

and tunnels can act as strong scatterers and efficiently convert different wave-types into

each other (Tadeu et al., 1996). The scatterers act as secondary sources with difference

radiation patterns and different distance dependencies than the primary waves. A large

amount of S wave energy can be generated by this mechanism by an explosion (Leavy,

1993; Ben-Menahem, 1997; Inhof and Toks6z, 2000, 2002).

Imhof and Toks6z (2000, 2002) modeled the effects of scattering from

cylindrical cavities near a shot using a multiple-multipole approximation. Their results

showed scattering affected the P-wave radiation pattern and generated significant S

waves. Because of the limitation of the method, these studies were limited to 2D

geometry, with infinitely long cylinders for sources and scatterers.
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To evaluate the effects of scattering realistically, one needs to solve the 3D

problem consisting of explosive sources, finite dimension scatterers of various shapes

(e.g., cylinders), and a free surface. This is a formidable numerical problem, but can be

done with an appropriate numerical approach. For this we will use a new finite

difference algorithm described below.

3. Application of Finite Difference Modeling in Studying Wave

Propagation

3.1 Finite Difference with Coordinate Stretching

The finite difference time domain method (FDTD) is one of the most widely used

tools to simulate wave propagations in 2-D and 3-D elastic media with general spatial

variations of elastic properties. While efficiency can be achieved by sampling the

physical space adaptively with a variable grid, this benefit may be offset by problems

introduced by change in grid size. Wave distortion or numerical reflections may occur

due to phase change at the interface of two grids (Browning et al., 1973). Numerical

reflections can be eliminated by taking extra averages of solutions at the grid interface,

however wave distortion cannot always be avoided. It is also hard to match and

implement finite difference approximations at the interface of different grids (Lilla, 1997;

Hayashi, 1999). Introducing a change in grid spacing may adversely affect the formal

truncation error and the stability of the system (Crowder and Dalton, 1971). By counting

phase shift on a nonuniform spacing grid, a 3D elastic FDTD approach was developed to

avoid numerical reflections and reduce wave distortions (Pitarka, 1999).

Pitarka's approach requires solving a linear system before conducting the FDTD

calculation. The linear system must be solved again when changing the difference

operator (e.g., from 4th to 8th order). To avoid doing this, we apply a coordinate

transformation, or stretching, to achieve effective variable griding in the physical domain

and uniform griding in the transformed domain. Because the computation is carried out

on a uniform grid, the formal truncation error and the stability properties of the finite
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difference computation are preserved. In addition, numerical implementation becomes

easier and more flexible.

A further increase in computational efficiency and accuracy is achieved by

employing a wavelet-based difference operator. At the same accuracy, the wavelet-based

FDTD scheme allows eight times more coarse sampling for 3-D models than the popular

4th order method, and is comparable to higher order (6th/8th) schemes. At

discontinuities, the wavelet-based approach outperforms the 2nd, 4th, 6th and 8th order

Taylor's expansion-based schemes, especially when combined with variable griding in

the neighborhood of a discontinuity.

3.2 Test of Scattering Due to a Near-Source Cavity in 2-Dimension

As a test and also the first step of this research, strong scattering from the near

source cavity is simulated with the FDTD algorithm described above. The model is 2400

m X 2400 m in the x and y direction, and infinite in the z direction. An explosion source

with center frequency of 10 Hz is placed in the center of the model. The cavity is an

infinite cylinder full of air, and has a radius of 10 m. The distance between the source

and the cavity is 100 m. The compressional and shear velocities are 2000 m/s and 1000

m/s, respectively. Grid size for the solid domain is 10 m and I m for the cavity area. A

smooth transition zone of 10 m is applied between the fine and coarse grid area to further

reduce grid-induced reflection. The size of the constructed mesh is 284 x 284. Figures

la and lb show the model setup and griding details close to the cavity.

Two snapshots of the stress component (T,,) are shown in Figures 2a,b. These

show the interaction of the waves with the cylindrical cavity. The cavity acts as a

secondary source (Figure 2b) radiating both P and S waves.

Figures 3a,b and 4a,b show seismograms as a function of azimuth at two

horizontal planes located 100 m and 500 m above the source, respectively. The effect of

the cavity alters the azimuthal isotropy of P-waves radiation. Also, there is a small

azimuth dependent tangential component to P-waves. The SH-wave radiation pattern

(Figures 3b and 4b) is more complicated than that of a double couple.

As part of the work, we upgraded the program from 2.5 dimensions to three

dimensions. With 3D calculations, scatterers with different shapes and orientations,
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velocity variation in the medium, and free surface effects can be modeled. The original

program was only capable for 2.5 dimensions because of limitation of computer

resources. A new computer cluster with 24 CPUs facilitated the 3D computation.
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Figure la. Model setup and station map.
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Figure lb. Griding details close to the cavity.
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Figure 2. Snapshot at (a) an early time when the cavity start interfere the source
radiation pattern and another one at (b) a later time when both the direct and
scattered field are developed. The slice is in the source plane.
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3.3 Scattering Due to a Near-Source Tunnel in 3-Dimension

Strong scattering from a near-source tunnel is simulated with the FDTD algorithm

described above. Figure 5 shows the 3-D geometry of the simulation model in the

presence of a cylindrical tunnel.

S~receive 'r plane

sourct X

0

tunnel

Figure 5. The geometry diagram of the model. The explosion source is set in the

middle of the model, coincident with the origin of the coordinates. A

cylindrical tunnel is set 30 m away from the source, with radius of 15 m and

length of 50 m. Its symmetric axis is parallel to the y axis. The receivers are

set in the plane 200 m above the source. The distance between the neighbor

receivers is 100 m.

Simulation is also conducted when the tunnel is absent. The infinite formation is

modeled by a finite volume of 3000 m by 3000 m by 1100 in the x, y, and z directions.

Absorbing boundaries are placed at all six sides of the model to eliminate wave

reflection. An explosion source with a center frequency of 40 Hz is excited in the center

of the model. The length and radius of the cylindrical tunnel are 50 m and 15 m,
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respectively. The axis of the tunnel is parallel to the y axis of the Cartesian coordinate.

The distance between the source and the tunnel is 30 m. The formation is a perfect

Poisson medium with compressional and shear wave velocities and density of 4000 m/s,

2300 m/s, and 2500 kg/m3 , respectively. Inside the tunnel, we assume a velocity of 340

m/s and a compressed air density of 200 kg/m3 . Grid size increases from 1 m near the

source and cylinder tunnel to 10 m away from the source region. Examples of calculated

seismograms are shown in Figure 6. The receiver plane is in the XY plane and 200 m

above the source. The seismograms are along a line parallel to the X axis. Computations

are made for an explosion alone (without a tunnel) and an explosion with a tunnel

present.

The first row of Figure 6 shows the x and z components of the motion (velocity

fields) when the tunnel is absent. As expected, only P waves are generated. When the

tunnel is present near the explosion source, strong scattering occurs. The seismograms in

the second row of Figure 6 show that strong shear waves are scattered from the tunnel.

To demonstrate the effect of scattering, we subtract the seismograms with an explosion

only from those with the explosion plus the tunnel. The third row of Figure 6 shows

strong scattered waves. These are both P and S, and scattered S waves are larger than P

waves. SH waves are also observed, but their amplitudes are much smaller than the x and

z components.

Divergence and curl of the wavefield separate the compressional and shear

components of the wavefield. Figure 7 shows the snapshots of the divergence and curl of

the velocity field at 60 ms on the XZ, YZ and XY planes passing through the origin of

the coordinate system. One can clearly see the complex pattern of the scattering. The

curl is zero inside the tunnel. The snapshots of the XZ plane and XY plane reveal the

vertical and horizontal cross-section of the tunnel. The snapshot along the YZ plane,

parallel to the tunnel, shows the complexity introduced by the finite length of the tunnel.

Understanding the patterns of scattered waves will help us choose appropriate

models for inversion of the source mechanism. In the XZ plane, the shear wave energy is

divided into four quadrants, and they are in-phase in the diagonal quadrants. Shear waves

in the half-space above and below the XY plane arc 180' out of phase. Disturbance of

12



the P wave field due to scattering can also be seen in the divergence field, but the

scattering patterns are not as clear as those of the shear waves.
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Figure 6: Comparison of the x and z components of the velocity fields at the receiver
plane in the absence and the presence of the tunnel. Respective scattered
velocity fields of the x and z components are also shown in the last row of this
figure.
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Figure 7: Snapshots of the divergence and curl of the velocity field from an
explosion in the presence of a near-source tunnel. The snapshots were taken at 60
ms after the explosion.
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The presence of several tunnels creates very complicated scattered waves. Figure

8 shows one example of such a model, where there are six intersecting tunnels, 30 meters

below the surface. Two components of the seismic motion are shown.

vx component at time 24.95ms vz component at time 24.95ms
-100 -100

-50 -50

U U
C:

50 50

100 100 _

-100 -50 0 50 100 -100 -50 0 50 100
x distance x distance

Figure 8: Snapshots of the Vx and Vz components of the velocity field from

an explosion in the presence of multiple near-source tunnels. The snapshots were

taken at 24.95 ms after the explosion.
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3.4 Scattering Modeling Considering Free Surface and Attenuation

We enhanced our modeling ability to realistic earth models that include (1) planar

free surface, (2) layered structure, and (3) seismic attenuation. We also incorporated

perfectly matched layer (PML) into the finite-difference code to improve the absorption

at the boundaries and for memory saving. The program can easily handle arbitrary

topography by using a rotated-staggered grid scheme.

3.4.1 Model Description

Strong scattering from a near-source tunnel is simulated with the FDTD algorithm

described above. Figure 9 shows the 3-D geometry of the two-layer model with a

cylindrical tunnel in the first layer. Simulation is also conducted without the tunnel. The

dimensions of the model in the x, y, and z directions are 6,000 m, 6,000 m, and 400 m,

respectively. The thicknesses of the first and second layers are 300 and 100 meters,

respectively. PML absorbing boundaries are placed at five sides of the model to eliminate

wave reflection. The top of the model is the free surface. An explosion source with a

center frequency of 10 Hz is placed at 100 m depth. The length and radius of the

cylindrical tunnel are 50 m and 15 m, respectively. The axis of the tunnel is parallel to

the y axis of the Cartesian coordinates. The distance between the source and the tunnel

axis is 55 m.

The elastic properties of the formations and tunnel are as follows. In the first

layer, the formation compressional and shear wave velocities and density are 3000 m/s,

1700 m/s, and 2300 kg/m3, respectively. In the second layer, the formation

compressional and shear wave velocities and density are 4000 m/s, 2300 m/s, and 2800

kg/m3, respectively. Inside the tunnel, we assume an acoustic velocity of 340 m/s and a

compressed air density of 200 kg/m3.

3.4.2 Modeling results-Synthetic seismograms

The receiver array with 100 m spacing forms a dense grid on the free surface. The

first row of Figure 10 shows the x and z components of the seismograms along the x axis

(velocity fields) when the tunnel is absent. Strong surface waves are observed in both the
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x and z components. Due to multiple reflections between the free surface and the layer

boundary, P, S, and surface waves are generated and the wavefield becomes extremely

complicated. When the tunnel is present near the explosion source, strong scattering

occurs. The seismograms in the second row of Figure 10 show that strong surface waves

are scattered from the tunnel. To demonstrate the effect of scattering, we subtract the

seismograms with an explosion only from those with the explosion plus the tunnel. The

third row of Figure 10 shows strong scattered waves. These are surface, P, and S wave;

scattered surface and S waves are much larger than P waves. SH waves are also observed

in the transverse components.

Figure I la shows the azimuthal traces when a tunnel is present near the

explosion. Figure lIb shows only the scattered wavefields. The forward and backward

scatterings are much stronger than in the direction parallel to the tunnel. However, SH

components can be observed at all azimuths.
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Figure 9: The geometry diagram of the tunnel model. The explosion source is

located at 100 meter deep. A cylindrical tunnel is set 30 m away from the source,

with radius of 15 m and length of 50 m. Its symmetric axis is parallel to the y axis.

The receivers are set on the free surface. The distance between the adjacent

receivers in x or y axis direction is 100 m.
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Figure 11: Three components of the recorded wavefields at 1km offset of different

azimuths. a) Free surface with tunnel near the explosion. b) Scattered wave only.

3.5 A rotated-staggered grid for finite-difference modeling

We implement a rotated-staggered grid (RSG) for finite-difference modeling.

Now the program can easily handle arbitrary topography by using a rotated-staggered

grid scheme. The program can also be run on the large scale Alliance for Computational

Earth Sciences cluster. It also adopts a perfectly matched layer boundary condition for

improved absorption at boundaries of the simulation domain.
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We show the capacity of the RSG method in modeling wave scattering due to

smooth topography, mesas and canyons. The sharp comers of mesas and canyons act as

strong scatters of seismic waves.

3.5.1. Advantages of modeling wave propagation using a rotated-staggered

grid

The RSG finite difference has a few remarkable features that are advantageous for

modeling an explosion in the vicinity of a high-contrast scatterer, such as tunnels. The

differences between the standard-staggered grid (SSG) and the rotated-staggered grid

(RSG) are shown in Figure 12.

a. Media with high contrasts in elastic properties

In the standard staggered grid (SSG), all model parameters are located at different

positions within a finite difference cell (Figure 12a). In RSG, all components of one

physical property, such as stress or elastic moduli, are located at only one location

(Figure 12b). Therefore, the RSG method does not average elastic properties, but the SSG

method must average the properties. When modeling wave propagation in media with

high contrasts in elastic properties, SSG can become inaccurate and unstable, and the

RSG method can handle this situation easily.

b. Free surface conditions

In a traditional finite difference algorithm, the free surface boundary condition has

to be defined explicitly. When simulating topography at the free surface, one has to use a

curvilinear transform of the grid, which makes programming very complicated. In RSG,

the properties of air (vacuum) and earth and the free surface are naturally incorporated. In

other words, to realize a free surface, we simply set the elastic moduli above the free

surface to zero and the density close to zero.

c. Numerical stability and dispersion

The stability is increased by a factor of F compared to SSG for the velocity-

stress RSG method in 3D isotropic media. The SSG has lower dispersion than the RSG

by a factor of-\r. The RSG allows the larger calculation time-step with the same factor.
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Figure 12. Elementary cells of different staggered grids for a velocity-stress finite

difference method. Locations where stress, velocities, and elastic parameters are

defined. (a) Velocity-stress finite difference technique using a standard staggered

grid. (b) Velocity-stress finite difference technique using the rotated staggered grid.

(Saenger and Bohlen, 2004)

Therefore, the newly implemented RSG finite-difference program is a very useful

tool to study scattered waves due to near-source tunnels and surface wave scattering due

to topography. Applying the RSG technique to a velocity-stress formulation of the wave

equation, we can simulate the propagation of seismic waves in the earth considering

attenuation.

3.5.2. Scattering due to topography

We study the effects of different topographic features on propagation and

scattering of seismic waves from explosion sources at shallow depth. In all the following

studies, we use a pressure Kelly wavelet with center frequency of 10 Hz as an explosion

source, as shown in Figure 13. The formation compressional and shear wave velocities

and density are 3000 m/s, 1700 m/s, and 2300 kg/m3, respectively.
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Figure 13. A pressure Kelly wavelet with center frequency of 10 Hz.

a. Scattering due to a hill

We first study the effect of a hill on wave propagation. The hill is 300 m high and

2000 m wide. A tunnel is placed 100 meters below the free surface, as shown in Figure

14. An explosion source with a center frequency of 10 Hz is also placed at the same

depth. The length and radius of the cylindrical tunnel are 50 m and 15 m, respectively.

The axis of the tunnel is parallel to the y axis of the Cartesian coordinates. The distance

between the source and the tunnel axis is 55 m. Inside the tunnel, we assume an acoustic

3velocity of 340 m/s and a compressed air density of 200 kg/mr.

-500

0.a)1500
-4000 -3000 -2000 -1000 0 1000 2000

Distance (m)

Figure 14. Model for scattering due to a hill.
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Figure 15. Comparison of waveforms for a flat free surface model and a free surface

with a hill.

Figure 15 compares waveforms for a flat free surface model and a free surface

with a hill. We see that the presence of the hill does not affect the direct body waves, but

affects the surface waves.

b. Scattering due to a canyon

To clearly show the effects of topography on wave propagation, we compare the

snapshots of wave fields in earth with a flat free surface (Figure 16a) with those in earth

with a canyon and a mesa (Figure 16b,c).
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Figure 16. Snapshot of the divergence (upper panel) and curl (lower panel) of the

wavefield from an explosion in earth with (a) a flat surface, (b) a canyon, (c) a mesa.

Note the strong scattering due to the corners of the features.
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We show that the RSG method can effectively model the scattering due to a

canyon. The canyon model is 50 m in depth and width. An explosion source with a center

frequency of 10 Hz is also placed at 100 m depth and 200 m away from the center of the

canyon. Snapshots of the divergence and curl of the wavefield (Figure 16b) show the

scattering effects of the sharp corners of the canyon.

c. Scattering due to a mesa

The two-dimensional mesa model is 50 m high and 100 wide. An explosion

source with a center frequency of 10 Hz is also placed 100 m below the free surface and

200 m away from the center of the mesa. Divergence and curl of the displacement field

separate the compressional and shear components of the wavefield. Figure 16c shows the

snapshots of the divergence and curl of the velocity field. Complex patterns of the

scattering can be observed due the existence of the free surface and the sharp comers of

the mesa.

4. Wavelet-Domain Inversion for Source Parameters

4.1 Review of Moment Tensor Inversion Method

Estimation of the seismic moment tensor and source-time function using

waveform inversion has been performed routinely by seismologists to study earthquake

mechanisms and source-time histories. Many methods have been developed since Gilbert

and Dziewonski (1975) used free oscillation data for their inversion (e.g., Langston,

1981; Kikuchi and Kanamori, 1982; Sipkin, 1982; Nabelek, 1984). Different types of

seismic waveforms, such as long-period surface waves (McCowan, 1976; Mendiguern,

1977) and low-frequency body wave data (Stump and Johnson, 1977; Langston, 1981),

were inverted for source mechanisms. However, there has been limited success (e.g.,

Sileny et al., 1992; Sileny and Psencik, 1995; Schurr and Nabelek, 1999) in applying

these waveform inversion techniques to high-frequency seismograms, despite widespread

availability of broadband three-component data. The waveform inversion methods being

used are performed in either the time or frequency domain.
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In earthquake mechanism waveform inversions, the most commonly used method

to reduce the number of parameters to be determined is using boxcar functions (Langston,

1981) or overlapping triangles (Nabelek, 1984). These parameterization bases sometimes

perform poorly in approximating the model (e.g., source-time function, moment tensor

rate function, etc.). If these bases failed to represent the model properly, they would give

poor estimates of source parameter. Therefore, it is preferable to choose a basis that can

construct precise approximations with a linear combination of a small number of vectors

selected inside the basis.

4.2 Wavelet-Domain Inversion Method

In this study, we will use a wavelet-based approach to formulate the waveform

inversion problem. Wavelet analysis is an increasingly popular tool for numerical studies

in signal processing (Mallat, 1989; Wang et al., 1995), biomedical applications (Delaney

and Bresler, 1995; Zhu et al., 1997), and geophysics (Deighan and Watts, 1997; Anant

and Dowla, 1997; Wood, 1999; Kane and Herrmann, 2001; Kane et al., 2002; Kane,

2003). An extensive description of geophysical applications can be found in Foufoula-

Georgiou and Kumar (1995), while a theoretical treatment of wavelet analysis is given

by Daubechies (1992), Strang and Nguyen (1997), and Mallat (1998). However, no

previous attempt to apply wavelet analysis to earthquake source mechanism inversion has

been undertaken. In our proposed method, we adopt a wavelet-based strategy to

parameterize the moment tensor rate functions (MTRFs). The MTRFs allow the time-

dependent source mechanism such that each moment tensor component has its own time

history (Dziewonski and Gilbert, 1974; Stump and Johnson, 1977; Ruff and Tichelaar,

1990; Sileny et al., 1992). By choosing the "best" wavelet as the basis, we can construct

an adaptive, problem-dependent parameterization for the MTRFs, thereby achieving

accurate approximations while significantly reducing the number of parameters that need

to be estimated through inversion. Additionally, we will perform inversion in the wavelet

domain rather than the time or frequency domain. This gives the advantage of solving

the inverse problem in a multi-resolution sparse matrix representation. We can then solve

the problem from coarse to fine levels out to the limit of stability (Sze and Toks6z, 2002).

At each resolution level, a regularized least-squares solution is obtained using the
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conjugate gradient method. By significantly reducing the number of parameters that need

to be estimated, and solving the inverse problem from coarse to fine levels, the wavelet-

based method allows us to obtain stable and geologically sensible solutions more easily.

Another advantage of transforming the inverse problem to the wavelet domain is that

wavelets are powerful tools for denoising data (Donoho, 1993). Transforming data to the

wavelet domain tends to isolate signals into a few large-valued coefficients, while the

background noise tends to spread around equally with less energy. Therefore, we can

incorporate a nonlinear wavelet thresholding operator to remove the small wavelet

coefficients, and thus the noise is attenuated with little effect on the signals.

4.3. Example of Wavelet-Domain Inversion Applied to an Explosion and Double-

Couple Source

We calculate synthetic seismograms for a combination of an explosion and a

double-couple source. Using these we invert for a moment tensor using the wavelet-

based method and the conventional time-domain method using overlapping triangular

parameterization. We perform two inversion experiments: the first with noise-free data,

and the second with correlated white noise. Synthetic data are generated to simulate the

case where an explosive source is accompanied by an earthquake with strike-slip

mechanism. Figures 17 and 18 show the location of the source and station network.

Assuming that the sources of the explosion and the earthquake are at the same place with

depth of 0.5 km and have the same source-time function with duration of 0.5 s. We

generate synthetic seismograms with a sampling rate of 125 Hz for both the explosive

and strike-slip sources using the reflectivity method (Kennett, 1983) and then sum them.

We assume that the duration of the MTRFs is one second (125 samples). Results of the

inversion (Figure 19) show that the wavelet method has no difficulty in resolving the

combined source mechanism. Most importantly, we can obtain a good of MTRFs with

only eight wavelet coefficients. In order to compare our wavelet-based method to the

conventional method, we repeat the inversion with the same dataset in the time-domain

with eight overlapping triangles for parameterization. The results are shown in Figure

20. It can be seen that the conventional method fails to recover a significant amount of

the isotropic components of the MTRFs. It also underestimates the magnitude of all the
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components. To achieve almost the same accuracy, the conventional time domain method

needs 32 overlapping triangles, 4 times that needed by wavelet domain method.

In the second experiment, we evaluate the robustness of the method. We add

correlated noise that is simulated by sampling an autoregressive process of order 2. A

high noise level is set to be high, with amplitude comparable to the amplitude of the

signal. Results obtained from the wavelet-based method and the conventional method are

shown in Figures 21 and 22, respectively. With the convenient implementation of the

wavelet thresholding technique, the wavelet-based method again outperforms the

conventional method and recovers the solution reasonably well. Although the

conventional method is able to recover part of the isotropic components of the MTRFs,

significant artifacts show up in the latter part of the solution from 0.5 to I sec, while

again underestimating the magnitude of the MTRFs.

The results obtained using the wavelet-based method show promise. We believe

this method can be applied to the understanding of the complexity of source mechanisms

associated with a nuclear explosion, and has the ability to resolve the volumetric

components from records that are contaminated by earthquakes or secondary sources,

such as radiation from strong scatterers.

29



100

3 4

90 - A

80

70

E 60

50

40

30 2 1
A A

20
0 20 40 60 80 100

km

Figure 17. Station positions for the synthetic seismograms. All of them are of
regional distances.
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Figure 18. Three-component synthetic seismogram of station 1 generated by
reflectivity method. It is obtained by summing two seismograms, one generated by
an explosive source and the other by a strike-slip source with a moment tensor
component of M 23.
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Figure 19. Inversion results of the wavelet-based method on noise-free data. Each
trace represent a component of the MTRFs (from top to bottom: the diagonal
components MT1l, MT22, MT33, and the off-diagonal components MT12, MT13,
MT23). The pink lines show the original source-time functions as inputs to the
forward modeling. The black lines show the MTRFs recovered by the inversion.
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Figure 20. Inversion results of the conventional time-domain method on noise-free
data. The pink lines show the original source-time functions as inputs to the forward
modeling. The black lines show the MTRFs recovered by the inversion.
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Figure 21. Inversion results of the wavelet-based method on synthetic data
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Figure 22. Inversion results of the conventional time-domain method on synthetic
data contaminated by correlated white noise.

4.4 Application of Wavelet-Domain Inversion for Explosion near a Tunnel

We use synthetic seismograms to test the performance of the wavelet-domain

moment tensor inversion method on seismograms generated by the finite difference
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approach. The schematic diagram of the explosion, tunnel and recording plane is shown

in Figure 5. This will enable us to evaluate how well our method can resolve the isotropic

moment tensor components in the presence of stronger scatter.

Figures 23a and 23b show the results of the wavelet-domain moment tensor

inversion and the fitting of the waveforms for the explosion with a tunnel, respectively.

The wavelet-domain inversion method was able to retrieve the explosive source

mechanism, indicated by the large isotropic components and zero deviatoric components

before 0.05 s. The effect of scattering from the tunnel only introduced an anomalous, late

shear event at around 0.15 s (Figure 23a) and did not affect our ability to resolve the

original explosive mechanism. We obtained good fittings of the synthetic waveforms as

well.
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Figure 23a: The results of wavelet-domain moment tensor inversion for an explosion
with tunnel. Some anomalous components of M11, M22 and M13 showed up at
a later time (-0.15 s) but the inversion was still able to retrieve large isotropic
components (M11, M22, M33) and zero deviatoric components (M12, M13,
M23) in the beginning.
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Figure 23b: Fitting of waveforms (blue) by the wavelet-domain inversion to the
synthetic data (black) of an explosion with tunnel. Data from eight stations
(circles) surrounding the explosion (cross) were used for the inversion. At each
station traces are (top to bottom) vertical, tangential and radial components.

5. Source and Scatter Imaging Using Time Reversed Acoustics

5.1 Introduction of Time Reversed Acoustics

According to the TRA concept, acoustic waves recorded at several stations when

time-reversed and put back into the medium, propagate and focus at the original source

(Fink, 1993, 1999, 2001; Song and Kupperman, 1999; Derode et al., 2000; Lu and

Toksiz, 2004). The concept is illustrated schematically in Figures 24a,b. To

demonstrate the applicability to seismic source characterization, we conducted two

numerical experiments. In each experiment, seismic waves generated by a source in
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heterogeneous medium were calculated using the finite difference code. Then these

seismograms were time reversed and "pumped" back into the medium.

5.2 Explosion in a layered Homogeneous Medium

Figure 25 shows the geometry of the first experiment where an explosion source

is placed in a layered medium and recorded by a circular array of receivers. Note that the

source is off-centered. Figure 26 shows, through a series of snapshots, the convergence

of the waves to the source.

5.3 Explosion near a Tunnel Buried in a Homogeneous Medium

The next example is for an explosion that is located near a tunnel. A subsurface

explosion is modeled by the elastic finite difference code and the seismograms generated

are recorded at multiple surface stations. The TRA methodology is applied to these

recorded seismograms by first reversing them in time and then applying them as sources

at the top of the same 3D elastic modeling algorithm. Figure 27 shows snapshots of the

back propagated wave field at four different times. The left column shows the horizontal

component of motion, the middle column shows the divergence of the wave field or P

wave only energy, and the right column shows the curl of the wave field or the shear

wave energy only. The star indicates the location of the source and the circle shows the

outline of the tunnel.

The record length of the data used for back propagation was 0.4595 s. The top

row of snapshots represent 0.2995 s into the back propagating model which corresponds

to 0.160 s in the original forward model time. In a similar fashion, the bottom row of

snapshots represent 0.4595 s into the back propagating model or 0.0 s in the original

model time. Clearly seen in the bottom row at the original model time is the convergence

of the P wave energy at the source position in the left and middle figures. The shear

wave energy converges to the tunnel, the source of the P to shear wave conversion, at a

back propagation time of 0.4405 s.
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Figure 24a. Schematic showing energy from a seismic source
propagating through a medium with many scatterers, and being
recorded at the stations denoted by red triangles. The yellow traces
represent the recorded seismograms. The recorded traces are
created by a convolution of the source function, s(t), with the
appropriate transfer function, gj(t).
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Figure 24b. Schematic showing the TRA process on the data recorded as
in Figure 4a. First the recorded seismograms (top yellow traces) are
reversed in time (bottom yellow traces) and pumped back into the
medium at the station locations. The energy reverses its path
through the medium and converges upon the original source
position. Due to reciprocity, the Greens function, gj(t) for each
receiver to source path is identical to the source to receiver Greens
function.
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Figure 25. Simple 2D layered earth model with seismic source located at the
yellow star, and a ring of receivers, each indicated by a red triangle.
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Figure 26. Progressive snap-shots of the wave field propagated backward in time, as
originally recorded by the receivers in Figure 25. The fourth column
corresponds to zero time in the original, forward model.
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Figure 27. Snapshots of back propagated records for an explosion (star) located next
to an air filled tunnel (circle). The left column shows the vertical component of
motion, the middle column shows the divergence of the field (P wave energy only),
and the right column shows the curl of the field (shear energy only). The bottom
row represents zero time in the original forward model.

6. Conclusions and Recommendations

1. A tunnel near an explosion acts as a strong scatterer. P to S scattering is much stronger

than P to P scattering. Some energy is scattered into SH waves.

2. Surface topographic features act as scatterers. Overall, scattering from topography is

small compared to that of tunnels. The smooth topography effect on scattering is

relatively small. Sharp topographic features cause strong scattering of the surface waves.

3. For explosion identification, wavelet-based moment tensor inversion recovers the

relative strengths of the explosion and the scatterer source.

38



4. TRA methodology has the potential of determining seismic source properties with

good resolution.
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