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>" ELECTRON-ION BEAM COUPLING THROUGHa.
o COLLECTIVE INTERACTIONS

0Adrian Wheelock* and David L. Cooket

IS-Air Force Research Laboratory, Space Vehicles Directorate, Hanscom AFB, MA 01731

Nikolaos A. Gatsonist

Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, MA 01609

Neutralization of ion beams in electric propulsion applications is a well-known
phenomenon. The physics behind the robust matching of both ion and electron currents and
densities are not. With electric propulsion devices moving into micro and macro regimes
with colloids, FEEPs, and thruster arrays, thruster-neutralizer interactions are under
increasing scrutiny. It is shown that Coulomb collisions, which can act to match velocities
through strong ion-electron collisions between particles with low relative velocities, are far
too slow to explain the phenomenon. Further examination of the strong beam-plasma, or
Buneman, instability yields a candidate for the neutralization mechanism. Differences in
simulations from analytic theory are discussed.

I. Introduction

on beam neutralization during operation of electric propulsion devices requires both current and charge density
matching of the ion beam using an emitted electron beam. This current coupling is easily accomplished in reality,

yet the exact process has not been adequately described. Currently an "effective collision frequency" that binds
electrons to the ion beam describes the neutralization process'. While this can allow for reasonable accuracy in
models, it does not explain if we can engineer for this effect or if there are conditions where it does not apply. As
electric propulsion becomes more prevalent and new regimes of electric propulsion are explored in space missions,
this matter garners significant importance. Proper modeling of current coupling and neutralization will enable
development of low-current neutralizers and optimization of neutralizers for micropropulsion devices and clusters of
engines. Explanation of the beam coupling mechanism also has bearing on space instrument calibration,
electrodynamic tethers, and ionospheric research.

A dense ion beam requires space charge neutralization to avoid a potential barrier that can divert or reflect
the beam. The vehicle on which the thruster operates needs current neutrality to avoid unwanted charging. In the
context of collisionless plasma theory, achieving both current and charge neutrality with the same source of
electrons appears to be nearly impossible owing mostly to the large difference in mass between electrons and the
ions. For example, define the ion flux, Fi = Niv. , and the net electron flux, F = /Nv,,, , where N is density, v is

velocity, i and e are ion and electron subscripts and eth designates the electron thermal velocity for an idealized

electron source. Equal density and flux requires v,, = 4v,. A I keV Xenon beam has v,=38,000 m/s so a matching

electron velocity requires a source temperature of about 0.05 eV. This is a challenging, but not impossible number.
However, neutralization is achieved by electrons from thermionic and hollow cathode sources, which do not
necessarily provide electrons at such low energies. Of course a higher temperature, lower density electron source
will lead to a positive potential well that does trap electrons, but then the theory must explain by what process the
trapped electrons shed energy so as to actually fill the well. Since real systems quite easily achieve 'beam coupling,'
this suggests that a strong mechanism exists for binding the electrons to the ion beam. Another observation is that
when ion beams and neutralizers are operated in conducting vacuum tanks, the currents are closely coupled even
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though the grounded tank eliminates the charge accumulation that could provide feedback for current balance.2 One
or more plasma mechanisms must be responsible for this collective phenomenon -- charge and current neutrality -
which we hereafter call current coupling.

We examine two possibilities for beam neutralization: collisions resulting from Coulomb interactions and revisit
the two-stream instability. Ion beams involved in electric propulsion have traditionally been considered collisionless
plasma. 3 While standard methods for determining collisionality indicate that the beam should be treated as such, the
suggestion of an "effective collision frequency" and the cold ion beam providing a dense "core" of field particles
moving at an effectively constant velocity make a detailed analysis necessary. The two-stream instability has been
one of the most studied problems in plasma physics. The Buneman Instability4, also known as the strong beam-
plasma instability, is named after a pioneer in the field of plasma simulation that was a leading contributor to early
works on ion beam neutralization. Yet the instability has not been declared the solution to the beam neutralization
problem. It has been suggested that the instability provides turbulent mixing to fill the electron velocity space, but
this creates an electron population traveling at speeds well in excess of the beam velocity. Can either one or some
combination of both effects adequately explain current coupling?

II. Coulomb Collisions

For collisions to effectively neutralize an ion beam, they must quickly adjust the electron distribution function to
match mean velocities. Since we are interested in distribution functions changing over time, we must use a collision
term in the Boltzmann equation. Starting from the Fokker-Plank equation, using the method of Rosenbluth 5, and
assuming no external forces or spatial gradients,

--t co, =- (A) (("v ,Av }) f,
where

(Av) = ZFvVH, (2)

and

(AVrAV,)-- Zr8 V, S.G (3)

The sum is to be performed on all field species s and the gradient is taken over velocity space. The coefficient r
is defined as

e 4Z2ZInA,4 S g2 2 (4)

where Z is the charge number and In A is the Coulomb Logarithm. H and G are the Rosenbluth potentials, defined

H,(V )= f.fs (i) - V, I d-, = J f -(V) d (5)
Mrs Mrsn U

and

Gs(V f fs( 1V - V, I A ff,(V,)ud. (6)

In the above, f. is the distribution function of the field species s, velocities vs are the velocity coordinates for the

field species, rn, is the reduced mass with the field species, and u is the relative velocity between the field species
and the test particle. The Rosenbluth potentials behave as velocity-space potentials, similar to electrostatic

potentials. It can also be shown that G is the relative number flux distribution between the test particle and the field

particles. Rosenbluth potentials give the corrected Coulomb field experienced by the test particle moving through a
thermal distribution of field particles. (5) and (6) can be solved for spherical distribution functions (see Appendix)
to give

H, = ,nerf (7)

and

2
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Table 1: Default parameter values.

n m, = Vxd Tý T, vd

le15 2.18017e-25 kg I eV 0.1 eV 38337.2 m/s

nvu,(.Ir-exp(-x,)+O.54- (2x, + 1) erf (,f-))(8G• = (8)

The variable x, is defined x, = v 2V2 . It is interesting to note that (8) is similar in form to d 2D+ dx 2 where

D+ is Dawson's Integral, which is related to the Voigt spectral profile: a spectral line broadening due to collisional
and thermal motion of the gas being studied.

The relative rate collisions act on the distribution can be described through a collision time, or its inverse, the
collision rate. The average momentum collision time for a non-thermal background is well known to be6

v
3

"n" F,- . (9)

This can be extended to thermal species by applying the potential function H to the field particle velocity to get

FSVVHm (10)

For multiple species, a total slowing-down time is the sum 1/ITT, " =1/Ta + I/+b +.. , as per Trubnikov7 .
s ,

Since the expressions (7) and (8) are only for spherical distributions, we choose a coordinate system where
all axes are equivalent for a drifting electron distribution and non-drifting ion distribution to effectively reduce the

problem to I-D. This leads us to use a drift velocity of v 2 = /3. Therefore, we have a normalized electron

distribution function
f_ I ((v+v~2
F exp l 2  (ll)

te Vte

Using the above equations, the full form of the Fokker-Plank equation can be written. This will enable us to
see the change in both the electron distribution function as well as the acceleration of the particles by taking the first
moment of the Fokker-Plank equation:

( t f ((A-V )((Avff) + 2 ((AvrAvs)f) dv. (12)

While the integration of (12) is extremely difficult

owing to a pole at v = 0 and the complex form after
derivatives are taken, it can be numerically integrated

over a half-space, from near v = 0 (avoiding the pole)
to a and again on the negative side. We can also look at
the shape of the unintegrated curve to see the change any
particular particle may be undergoing due to collisions.
It is these curves that we are most interested in.

There are only five variables in the expressions for e

(af/lt) and (aý/It) : number density n, ion massmi, / --,

electron temperature T, ion temperature T, and electron

drift velocity vd. Using the values in Table I, equation (1)

demonstrates a rapid depletion of electrons near the ionvelocities, as shown in blue in Figure 1. Sim-ilarly,-oe

-I e.O9L

3 Figure 1. dv/dt (red) and djldt* 1000 (blue) vs. velocity
American Institute of Aeronautics and Astronautics



0=1 equation (12) shows acceleration of the electrons in that region

0• Mtowards the beam velocity, shown in red in Figure 1. The
vertical axis is in units of m/s 2 for acceleration and

,00Mo• particles/second (nf(v)/s) for df/dt. As collisions alone cannot
iOD" produce a net change in velocity, the two lobes of acceleration

are equal and opposite.
____-MM__________ 26 When compared to the electron distribution function, the

depletion is rather small as shown in Figure 2. However, it
"does suggest that the beam draws in and does not release
electrons that are moving at similar velocities. The rate at
which it does this is the question. We next examine the
collision time for this event as a function of relative velocity.

Figure 3 shows the collision time as a function of velocity
for both electron-electron and electron-ion collisions using
equation (10). As can be expected, the electron-electron

Figure 2. Normalized change in electron collisions play a dominant collisional role above approximately
distribution function (dfldt)lf the electron thermal velocity, and the ions are the dominant

collisional term below that. As the velocity narrows close to
the beam velocity, the electron-ion collision time diminishes to
as little as 0.1 ns.

Of the parameters listed in Table I, electron temperature is
the one that most dramatically affects the effectiveness of the

/ collisions. This is obvious, as colder distributions will have
j (r, more electrons with lower relative velocities to ions. The effect\ /can be seen in Figure 4.

N 7 Ion temperature does play a role in defining collision times
for particles with relative velocities within a few multiples of

"- Jthe ion thermal velocity, but this is small compared to the much
./ larger region of velocity space occupied by the electrons. It is

-/ interesting to note, however, that the ions have a maximum
\./ momentum transfer to electrons at a given temperature, as seen

Y - in Figure 0. This can be understood by realizing that collisions
are maximized by reducing the effective collision speed

-1 1M IM 2W=0 260M0 40ý0 M000 ]1 .M between particles to as low a speed as possible for as many
particles as possible. Thus, warmer ions allow the beam to

Figure 3: Relaxation Times vs. velocity: red "see" more electrons as slow, thus trapping electrons much
(ion) green (electron). more weakly as individuals, but trapping more of them out of

., 12 the entire distribution. As ion temperature continues
increasing, the number of electrons that can be collectively

8., 1 viewed as "slow" also decreases, thus leading to a rapid falloff
in the momentum transfer. It will likely be difficult for this

7-12 effect to be seen experimentally, as the fraction of electrons
affected by this is small compared to the overall distribution.

6.,12 Of the other parameters listed, ion mass plays a small role,
with heavier ions containing more momentum to transfer with a

',., given energy. This is also visible in Figure 0. Increasing

density also directly increases the probability of collision, as
would be expected. As beam velocity for electric propulsion is

3.02 small compared to electron thermal velocities, it plays a
... negligible role.

21 04III. 
The Buneman Instability

02 04 0 J 0£1

t The two-stream instability is one of the more commonly
Figure 4: Change in momentum vs. electron studied plasma phenomenon. It is easily modeled via particle-
temperature (eV) for Ti of 0.1 (red), I (blue) in-cell simulations that have excellent agreement with a
and l0 (green) eV.

4
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straightforward analytic solution. The broad instability can
12 be easily broken down into two main subcategories: two-

stream, where the interacting elements are simply
"counterstreaming beams within a neutralizing background;
and beam-plasma, where one species is part of the
neutralizing background and the other is a perturbation
superimposed upon it. It is obvious this can be simply a

1".12 matter of reference frame adjustment in many cases, but the
distinction is significant when one species has a
significantly different plasma frequency.

Again, we can break down the beam-plasma instability
into two regions: one where the perturbing species plays a
\minor role in maintaining the quasineutrality of the
background, the "weak-beam" model as labeled by
Birdsall, 8 and one where the beam is providing a significant

"__ _ _portion, if not all, of the charge neutralization for the
,-2 1.-, 1. 'background - the "strong beam" model. The most extreme

version of this, electrons moving through mobile ions, is the
Figure 5: Average momentum change vs. Ion Buneman instability. 4 It is this model that we are interested
temperature for Radon (green), Xenon (red), in working with.
Krypton ( blue) and protons (magenta). We begin with the dispersion relation for an ion and

electron plasma, with electrons moving at some speed Vd

relative to the ions.

1- a 2 (2
(.Žk- 2*d

The frequency Qk is considered complex but the wavenumber k is real. Introducing the variables W Q klop,

2

K K-Vd/WPand R= = m/mi , we can write (13) as

1 R
51 - 0. (14)

(W-K)
2  W 2

Assuming real K and Xenon/Electron Dispersion Relation

complex W, solutions can be 0.1

found for variable K. Figure 008 • [t
6 shows three of four roots of 0.06 1 Q'°kaI

(14), with the other root not 0.04

interacting. The vertical
portion of roots one and three o.o2
is the electron contribution 0 0

and the horizontal real -0.02 -

portion of the roots is the ion
contribution. The complex .0.06

roots show the strongest -

growth, as expected, at K=1, -0.08 -

with this mode quickly -o.i
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6dominating. Wcan be solved K

at Ký I to give Figure 6: Dispersion Relation for Electron/Xenon Buneman Instability. One

root not shown. W=qi/o$, K=kV,/o9

5
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nk=k_, =0 + ]Yk

{.2m) -2o~p•(15)

S2m 2+ | m

Since yk is small everywhere except Energy vs. Time

in a narrow range about K=1, any 1 5 1.00E-04

change in the electron velocity will
likely produce a significant change 1000 ,,r . 008-00
in both growth rate and the ".5" .0E-0

frequency of the instability.
Ishihara, Hirose, and Langdon have • 9W 1.00-0J7

produced a series of papers9
.10 that 91

illustrate the growth of this 9 'a
instability and provide an analytical 9W - 1.00E8-0

framework to describe its growth
and saturation. 997.5 1.00o-10 .

In reference 9, a prediction for 997 1.00-11

an effective collision frequency 0.QOE. 1.00E- 2.00E- 3.00E- 4.00E- 5.OOE- 6.OOE- 7.00T- 8.00E- 9.OOE- 1.O0E-OD 06 06 06 06 06 06 06 06 06 05
based on the electric field energy Time (a)
density Figure 7: Comparison of ion energy, electric field, total system energy,

OfV 1 =0.53(mimln L, e and electron temperature. Note Te units on right scale. Reproduced
from Figure 13 of Reference 2

is given. This is obviously far
smaller than Vff =_ O)P,, which was found by Parks et al.1 to be approximately the necessary rate to achieve current

coupling. As Parks was looking for coupling to match experiment while Ishihara was examining anomalous
resistivity, the definitions of effective collision frequency may have been different enough to explain the
discrepancy.

Ishihara notes the electric field energy

Energy vs. Time density was shown to grow until
saturation at approximately 12% of the

1.OOE-08 -E02ftFldE.-y initial system energy. This is much
_SY4- Kk,,,6,E,, higher than the weak beam model in

ToW Enw, Birdsall 8 and is likely due to the larger
role the interactions play in maintaining

1.00809 quasineutrality. The first two higher
harmonics were included in both the
"analytical solution and their simulation
with striking agreement. In a previous

i . .paper by the authors, using the 2-D
1.00E-10 - code XOOPICI1, it was noted the

electric field grew to 0.01% of the
system energy, well below the
predictions of saturation level given by
any two-stream instability theory. The

l.00E-l11fgr hi si
.00E.+00 5.00E-09 1,00E-08 1.50E-08 2.00E-08 2.50EM8 3.00E08 3.50E-08 4.005-08 figure illustrating this is reproduced in

"Tnie(s) Figure 7. The discrepancy comes from

Figure 8: Energy vs. time for saturation of Buneman instability, the fact that the ion kinetic energy was
considered the baseline for the system

6
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kinetic energy when in fact it is necessary to only include the electron kinetic energy relative to the ion velocity. If
that change of reference frame is established, the resulting system energy changes by a factor of 240,000 and the
total system energy in the electric field at saturation is an amazing nine times the initial (relative) kinetic energy.

A plot for a simulation run performed with the reversed viewpoint is shown in Figure 8. Here the energy storage
in the electric field grows to 31% of the initial kinetic energy. While more in line with the results suggested above,
it is still significantly higher. This discrepancy may be due to the different ion species and the nonperiodic
conditions of the simulation.

As in the collision discussion, we are interested not just in the end effects, but in the rate at which the instability

grows to saturation. The time to saturation given by Ishihara is approximately 10 growth rate times, or 10rz?, given

'2, = 1/ (16)

with y from (15). Using the parameters listed in Table 1, (16) gives a time constant of 5.1e-8 s. This is obviously
far too long to explain the growth and saturation observed in Figure 8. Assuming the instability growth still follows
the same basic rule of - I0 r, to saturation, an increase in yof at least an order of magnitude is called for. However,

this would provide a growth rate time on the order of cop, which matches much more closely the results of Parks.

Reference 10 develops an analytical framework that takes the Buneman instability beyond the saturation point
and follows it for several ion time periods. In this time, they observe slow oscillations in the field energy at about

ae,. While the first oscillation is visible in Figure 7 just past the initial saturation point, subsequent oscillations are
nonexistent, either damped by thermal particles, or swamped by a growing positive potential well providing electron
heating. In Figure 8 the plot does not extend far enough to see these oscillations, but similarly only one cycle was
observed. Additionally, the two-dimensional simulation may provide additional degrees of freedom or allow more
oscillation modes to coexist, producing "in-the-mean" stability. Finally, ions and electrons were being injected and
deleted from the domain throughout the simulation as it was not periodic like those of Ishihara and Hirose. By not
maintaining the particles with a "memory" of the instability, the effects may have been dramatically diminished.

The extreme energy storage in the electric field and rapid growth of the instability suggests that there are several
differences between the beam simulated for Figure 8 and that simulated by Ishihara et al. The species simulated was
different, and as demonstrated in the Coulomb collision discussion, larger mass ions are more effective in giving
away momentum. There may also be additional effects involved as the original simulation of Figure 7 showed that
more than just the electron kinetic energy was transferred into field energy. Ion heating is a strong possibility for
this. Additionally, the beam simulated above was inherently unstable as the potential well was growing, which, if
left unchecked, eventually would form a virtual anode to reflect the beam. These virtual anodes were noted
previously by the authors.

Net discrepancies between the simulations of this paper and those by Ishihara and Hirose could be due to
different simulation parameters, numerical heating, or it could be the numerical "ion pump" effect of bounded

13simulations as demonstrated by Brieda and Wang . While the "ion pump" instability has been observed in some
simulations, the total effect is believed to be small in comparison with the ballistic electrons that remain within the

simulation but have energies to move them

0.16 outside of the beam itself for a period of time.
[,.,tw-stram 0 Regardless, if the Buneman instability

0.14 two-stenil accurately describes neutralization, the particle

0.12 mass and periodicity of the simulation should
not dramatically impact results.

0.1

",•0.0oa IV. Comparison and Discussion

0.06 In relation to the other dominant mixing

0.04 - agent in the beam, Coulomb collisions still
show a stronger effect over a smaller, but still

"0.02 significant, range. Using the time constant from

0.02 __----__ ----- __- the Buneman instability as given by (16) and z,
0.1 1 10 as the ion collision time given from (10), we

T, (eV/) compare the relative rates of the two.

Figure 9: Percent of electron distribution function where ,, As noted above, T, is approximately 5e-8 s.

> -r2, (blue) and r,-> rzj10 (magenta) The relaxation time for coulomb collisions is

7
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variable with velocity. To determine where Coulomb collisions can still be significant, we integrate the electron

distribution function between the two points where rc=r. Using the parameters given in Table I, this still

encompasses 4.7% of the electrons. Even 10 r,= r., covers 2% of the electrons. Varying the electron temperature to

cold, but not entirely unphysical levels can produce up to a 13% spread where the collision time is smaller than the
growth rate given by (16). This can be seen in Figure 9. Therefore, collisional effects can contribute to a rapid -1 -
10% neutralization of the beam, depending on electron temperature. It should be noted that, as mentioned above,
the ion temperature has little effect on the collision time over such a large swath of the electron distribution unless at
temperatures of several tens of electron volts.

While 10% of the electrons are insufficient to drive neutralization on their own, it still illustrates that collisions
can play a non-negligible role in accurately modeling beam neutralization behavior. It also suggests that by
providing a very cold electron source one can accelerate the neutralization process.

V. Conclusion

Coulomb collisions can and do play a role in ion beam neutralization. The degree of participation varies
dramatically, however, with the thermal energies of the electrons and ions. This is due to the increasing relative
velocity over a larger portion of the electron distribution between the electrons and ions. It has been calculated that
the portion of neutralization by Coulomb collision could be in excess of 10% depending on beam parameters.
Regardless, the small portion of electrons affected and the long timescales needed to collisionally couple electrons
with the ion beam suggest strongly that another mechanism is the driving force behind neutralization. This is
proposed to be the strong beam-plasma or Buneman instability.

The analytical development of the Buneman instability still shows significant variation from simulated current
coupling. Simulations produced a larger electric field energy density and a much quicker growth rate than the
analytic theory given by Ishihara et al. Additionally, the ion oscillations were not observed as strongly as expected.
These damped quickly, within one cycle. Electron thermalization from a potential well developing in the beam and
particle injection and deletion on boundaries are offered as potential reasons.

Appendix: Derivation of Rosenbluth Potential Expressions

To derive the Rosenbluth Potential functions G and H, following Callen 4 , we first begin with a spherical
distribution function

n (A.1)

48 ~~ (vJ v n)72- exp ý_VV2(A.])

where vt• 3kT/mT is the thermal velocity. Repeating equations (5) and (6), we have

H (v)=-TL ffs(v )Iv-v S'dv, =-T- Jfs(vs)dv, (A.2)
mrs mrs u

and G,(,,1= ]'s(,Iv vIv = .l',(v) •v (A.3)
For both of these, we perform a substitution of 6 = V, - V. The reason for this shall become clear later, but

as u has the physical meaning of the relative velocity of the two particles, the direction is irrelevant in the collision
frame and the only quantity of interest is the magnitude. Using

2
Vý= Výv" = V,.(v + U) = v'-v + v,,u = (v + u).v + (v + u).u(A4 (A.4)

= v2 + u 2 + 2uvcos0
we can write (A.2) and (A.3) as

H -n 2 fexp (U2 d 3 u, (A.5)
mr. (7r v2 / u

8
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G (23/2 f exp[-(u2 + v2 + 2uvcosO)/v 2ud3u. (A.6)

It is now necessary to move into spherical coordinates, and using the relation d (cos0) = sinOdO , we can write

H= - n ~ f exp[(U2 + V2uvo9/~u~~oOd 2A7H-m n I/i 2r

M- (7T V /2 f f f v2  + 2uvcosO)/v:Iu•dd(cosO)du (A.7)

oo I 27rG n •2f f~p- (U2o -+ V2+ / 2 U Oad(cosO)d.. (.8

While taking the integral over 0 is trivial, to perform the integration over 0 we use the relation

f uexp[-(u2 + v2 + 2uvcos0)/V2 (cosO)
-1 

(A.9)vt2 (V - U)2 ](V + U)2
texp -2- exp 2

2v vtS v~t
This allows us to write

H m n 7r v2r (v _ u)2 exp (v + u)2lu (A.1)
m,<, (i)7v U 2V,, v P[ v- Ua2

G 3/2 00J exp - -exp- V+U2 kU (All1)

which can then be integrated to get

H= n erf- (A.12)

2( vf 2 t2 - v2, ) (v2V
G Tip +~ 11 21 vf V 1. (A. 13)

We simplify using x = V2/V 2 which matches the results of(7) and (8) with

m ni
H - erf (IxJ) (A. 14)MIrs Vtsrx

G = nvI [x-Texp(-x)+ I---- (2x + 1)erf ('/)" 2(A. 15)

It should be noted that these are only first order terms. For non-spherical distribution functions, higher orders can be
obtained using spherical harmonics as described by Shkarovsky et al 5.
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