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1. Introduction.

Our goal is to develop a unified theory which can be used to establish the
local and g-superlinear convergence of the secant methods from the convex class
studied by Broyden [1967] and Fletcher [1970] that take advantage of the

structure present in the Hessian in constructing approximate Hessians.

The theory we will give can be seen either as a generalization of the result
for the structured DFP secant method given by Dennis and Walker [1981] to any
structured secant method in the convex class or as an extension of the results for
the (unstructured) secant methods from the convex class obtained by Griewank
and Toint [1982] to the structured secant methods in the same class. Indeed, our

approach is similar to the one used in both of these papers.

As a surprising consequence of our careful computation of the constants in
the bounded deterioration principle, we obtain a stronger bounded deterioration

inequality for the BFGS secant method.

1.1. The Secant Method.

By a secant method for the optimization problem
minimize f (z) (1.1)
F4

where f:IR" — IR, we mean the iterative procedure
T, =2 +s
(1.2)
B, =B(z,s,y,B).
Here y is an approximation to V2 (z +)s, s is the quasi-Newton step defined by

Bs = —Vf(z), (1.3)

and B, is required to satisfy the secant equation



B, s=y. (1.4)
One way of defining y, and the most often used, is
y =V/(z4)—Vf(z). (1.5)

A large class of this type of methods has been studied by Broyden [1967],
Fletcher [1970], Greenstadt [1970], Huang [1970], Dennis [1972], Schnabel [1977],

and numerous other authors.

1.1.1. The Broyden Class of Secant Updates.

We will call the set of "exact”, "stable”, and symmetric rank-2 secant
updates suggested by Broyden [1967] the Broyden class of secant updates. In the
literature, this class is also referred to as the Broyden (-class of secant updates
because, initially, it was parametrized by a real scalar 3. Fletcher [1970] shows

that this class of secant updates can be written as
B, =B + A(s,y,B,9) (1.6)

where the parameter ¢ € IR, and the update correction A(s,y,B,9) is given by

T T

A(s,y,B,p) = ny - Bs; B + ¢sTBsuuT (1.7a)
y's s* Bs

w =Y Bs (1.7b)

yTs sTBs '
The following are well-known choices of the parameter ¢:

Convexr Class $€[0,1] (1.8a)
DFP =1 (1.8b)

BFGS $=0 (1.8¢)



SR $ v's (1.84)
1 = ) 1.8
yTs —sTBs

Another important class of secant updates, suggested by Greenstadt [1970] is
the set of all the symmetric secant updates which minimize a weighted Frobenius
norm of B, —B (see Dennis and Walker [1981] for more details). Dennis [1972]
derived a larger class of symmetric secant updates as the limit of an iterative

process and showed that this larger class can be written as
B, =B +A,(s, y, B, v) (1.9)

where the vector v EIR" is called the scale (see Dennis and Walker [1981]), and
the update correction A, (s, y, B, v) is given by

_ T — T — T
Ay (s,y,B,v) = (y =Bs)v -1|‘-v(y Bs) - (y fs)z ST, (1.10)
v's (v's)

The scale v is often a function of s, y, and B, as is the case for the following

well-known members of this class:

PSB v=s (1.11a)

DFP v=y (1.11b)
y's

BFGS v =y +[-%—]/?Bs (1.11c)
sT Bs

SR1 v =y — Bs. (1.11d)

Dennis [1972] also pointed out that a member in his class was a member of
the Broyden class only if the scale v is a linear combination of y and Bs.

Schnabel [1977] proved that there exists an onto mapping from
{A,(s,y,Byw): v =y +0o(y—Bs),0€ER, 0 + yTs/(sTBs —yTs)}(1.12a)

to



T
{&i(s,9,B.:9): 6€R: (1 = §)——- + ¢ > 0}. (1.12b)

Three remarks are important here. First of all, set (1.12b) is the set of
rank-2 matrices that has the form given by (1.7) and can be written as
wwT — 22T for some nonzero vectors w,z €EIR". Secondly, if B is positive
definite and yTs > 0, set (1.12b) contains the convex class of secant updates.
Finally, this mapping will be crucial to extend the bounded deterioration
principle for the (unstructured) secant methods to the corresponding structured

ones (see Theorem 2.5).

1.1.2. The Structured Secant Method.

Often, in practice, a part of V2f(z) is available and we need only to

approximate the remaining part. Suppose that
Vif(z)=C(z)+S(z) (1.13)

where C:IR®™ —IR"*" is the available part of V?f. In several important
applications, e.g. nonlinear least-squares, C(z) is composed of first-order

information and S(z) requires second-order information.

By a structured approximation of V2f () we mean an approximation of the

form
B = A +C(2) (1.14)
where A is an approximation to S(z). Moreover, if B is updated according to
the formula B, = A + C(z,) where
A, =A+A, (s,y%,4,0), (1.15)

v =v(s, y, B), and y* and y are approximations to S(z,)s and V2f(z,)s
respectively, we call B, a structured secant approximation of v2f (z,). Observe

that the structured update (1.15) satisfies the secant equation



A,s =gyt . (1.16)

We obtain a structured secant method for problem (1.1) if we use
B,=A_+C(z,) instead of B, =1B(z,s,y,B) in (1.2), where A, is given by
(1.15).

Historically, a primary example of the use of structure has been the
nonlinear least-squares problem, e.g., Brown and Dennis [1971], Dennis [1973],
Betts [1976], Dennis [1976], Dennis [1977], Bartholomew-Biggs [1977], Dennis
[1978], Dennis and Welsch [1978], Gill and Murray [1978], Dennis, Gay and
Welsch [1978)], Dennis and Walker [1981], Dennis and Schnabel [1983], Al-Baali
and Fletcher [1985], Xu [1986], Fletcher and Xu [1987], and Toint [1987] (see
Martinez [1988], Section 4.1.1.2, for more details about these works).

Initially, the structure was not carried into the calculation of the scale. It
was Al-Baali and Fletcher [1985] who first suggested using structure also in the
scale v. Independently, Tapia [1984] employed a structured scale in his work on

structured updates for constrained optimization problems.

Dennis and Walker [1981] developed a convergence theory that includes the
structured PSB and DFP secant methods. It also includes the
inverse —structured BFGS secant method, i.e., the case when V2f (z)! instead
of V2f(z) is assumed to be of the form given by (1.13). As an application of
this theory, the local and g¢-superlinear convergence for the structured PSB and
DFP secant methods for the nonlinear least-squares problem was established (see

Chapter 10 of Dennis and Schnabel [1983]).

Xu [1986] (see Fletcher and [1987]) showed that the global and local
properties proved by Powell [1976] for the BFGS secant method with an inexact
linesearch carries over for the partial-structured BFGS secant method for

nonlinear least squares problems suggested by Al-Baali and Fletcher [1985].

Another important application of structured secant methods was given by

Tapia [1984]. He used the well-known bounded deterioration of the DFP and the



inverse form of the BFGS secant updates as a basis for establishing bounded
deterioration of the structured DFP and the inverse of the structured BFGS
secant updates. Then he proved local and g-superlinear convergence for the
structured DFP and BFGS secant version of his algorithms for equality
constrained optimization problems. We will give more details about these

algorithms in Section 4.2.1.

1.2 Standard Assumptions.

In our analysis, we will use several different matrix norms. The Frobenius
norm will be denoted by |- ||5, the Frobenius norm weighted by V2f (z«) will
be denoted by |- |+, ie. |- |+ = IV2f (z:)" V% )V2f (2¢)"V/2 |, and the [,
operator norm will be denoted by |- |. The only vector norm that will be used

is the I, or Euclidean norm, and it will be denoted by [ |.
The standard assumptions for problem (1.1) are:
Al: Problem (1.1) has a solution zs.

A2: The function f €C?, and V2f and C (see (1.13)) are locally Lipschitz

continuous at z«, i.e., there exist positive constants L, Ly and €; such that
IVi/ @)=V @)l <Lz —a (1.17)

and

Ic@)-C)l <Le e -2 (1.18)

fort €D, ={z: |z —a. | < ¢}.
A3: The matrix V2f (z.) is positive definite, i.e., there exist positive constants

m and M such that
m 2z |2 <zTV%(2:)2z < M|z |? (1.19)

for all z €IR".



1.3. Local Convergence for Secant Methods.

The technique used for proving local convergence for secant methods for
problem (1.1) is generally based on the bounded deterioration principle
introduced by Dennis [1971] and popularized by Broyden, Dennis and Moré
[1973]. Indeed, Dennis [1971] introduced the bounded deterioration principle as a
majorization technique for analyzing the class of "Newton-like" methods which

includes the secant methods.

Initially this principle was stated in terms of the approximations to the
Hessian and expressed the fact that, while the sequence {B,} of approximations
to the Hessian need not converge to V2f (z.), it should deteriorate only in a
controlled way. In mathematical terms, we can express this principle as follows:
there exist non-negative constants o, a, such that for £ €N; and B €N,, B,

satisfies
1B, —B. . <l+ayo(a,e, ) 1B =B, |u +oy0(a,2,)  (1.20)

where By = V2f(z:), N; and N, are neighborhoods of z. and B, respectively,
and oz, 7o) =max { [z, —z« ||, |z, — 2+ [|}. Here B stands for B, and B for
B,.

Broyden, Dennis and Mor€ [1973] used this principle of bounded
deterioration as a sufficient condition for local convergence of the secant methods.
As an application of their theory, they showed the local convergence of the DFP

secant methods.

Since it was considered to be more convenient to work with approximations
to V2f(zx)"! instead of approximations to V2f(z«), they also stated the
principle of bounded deterioration in terms of the approximations to the inverse
of the Hessian. In mathematical terms it is expressed in the following way. There
exist non-negative constants oy, & such that for xeﬁl and B—1€N2, B!

satisfies



IB;* =B | <[1480(z,2,) | B =B |+ + @0 (2,2,)  (1.21)
where N 1 and N, 5 are neighborhoods of zx and Bs~! respectively.

This inverse form of the bounded deterioration inequality allowed them to

prove that the BFGS secant method was locally convergent.

Based on the Broyden-Dennis-Mor€ theory, Dennis and Walker [1981]
developed a general local convergence theory for structured secant methods which
includes the snverse —structured BFGS and the structured DFP secant methods.
Clearly, while the structured DFP proof uses the direct form of bounded
deterioration inequality (1.20), the inverse-structured BFGS proof uses the

inverse form of bounded deterioration inequality (1.21).

Ritter [1979] extended the Broyden-Dennis-Moré€ result to a subclass of
Broyden’s secant methods, the subclass of positive definite secant updates. His

convergence results use
Y = trace (B#*B~B}2 + B, °B B 7) (1.22)

as the measure of a good approximation to By instead of the weighted Frobenius
norm of B —V2f (z.) used in the bounded deterioration principle (1.20). Indeed,
the local convergence proof follows from a principle of bounded deterioration in

terms of ¥, i.e.,
Y, < Y+ bo(z,z,) 6>0 (1.23)
(see expressions (3.23) and (3.24) in Ritter [1979]).

Independently, Stachurski [1981] also extended the same result to Broyden's
bounded ¢-class of secant methods, which allows the parameter ¢ to change at
each iteration. His approach is a generalization of the Broyden-Dennis-Mor€ proof
for the BFGS secant method. In fact, the inverse bounded deterioration
inequality (1.21) appears implicitly in his proof. He also proved that the Broyden
bounded ¢-class of secant updates includes the subclass considered by Ritter

[1979]. An interesting fact about Stachurski’s results is that his estimate for the



radius of convergence decreases as the absolute value of ¢, the parameter of the

secant update formula (1.7), increases.

It was Griewank and Toint [1982] who first gave a unified direct bounded
deterioration principle for all the members in the convex class (1.7 with 1.8a).
They also showed that the inverse form of these secant updates satisfies the
inverse form of the bounded deterioration inequality (1.21). In the same paper,
they gave sufficient conditions for a member of this subclass of secant methods to
have a g-superlinear rate of convergence. However, mainly due to their non-
restrictive assumptions and their big O notation, it was not obvious how to
extend this result to the structured secant methods described in Section 1.1.2. It
also was not clear how to obtain the direct form of the bounded deterioration
principle for the structured secant methods, except DFP, from other approaches

in the literature.

1.4. Material to Follow.

In this paper we will consider only the structured secant methods from the
convex class. However, all our results are valid for some negative values of the

parameter ¢ and for some values of it greater than one as well.

In Section 2 we prove that the structured secant approximations to the
Hessian defined in Section 1.1.2 satisfy the bounded deterioration inequality
(1.20) for ¢ €[0,1]. Moreover, we prove that a surprising and stronger form of
this bounded deterioration is valid for the structured BFGS secant method.

In Section 3 we establish the local and g-superlinear convergence for all of
the structured secant methods in the convex class using the Broyden, Dennis and

Moré€ [1973] and Griewank and Toint {1982] theories.

Finally, in Section 4 we use this theory to prove the local and ¢-superlinear
convergence of any structured secant method from the convex class for the

constrained optimization problem and the nonlinear least-squares problem.
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Particular cases of these methods are the SQP augmented scale BFGS and DFP
secant methods for constrained optimization problems introduced by Tapia
[1984]. Another particular case, for which local and g-superlinear convergence is
proved for the first time here, is the Al-Baali and Fletcher [1985] modification of
the structured BFGS secant method considered by Dennis, Gay and Welsch

[1981] for the nonlinear least-squares problem and implemented in the current
version of the NL2SOL code.

2. Bounded Deterioration.

Our objective in this section is to demonstrate that the structured secant
approximations to the Hessian from the convex class satisfy the direct form of
the bounded deterioration principle, i.e., for z sufficiently close to zs, these

approximations satisfy
1B, = V21 (2:) |+ < [1+e0(e,3,)] 1B = VS (20) bs + 050 (2,2,) (2.1)

where o and o, are positive constants and oz, z,)=
max { [z, —z. [, Jz,— 2. |}. Moreover, we will show that the structured BFGS
secant approximations satisfy a surprising and stronger form of bounded

deterioration. Specifically they satisfy inequality (2.1) with a; =0.

This bounded deterioration inequality will allow us to use the Broyden-
Dennis-Mor€ theory to establish that under the standard assumptions the
sequence {:ck} generated by a structured secant method from the convex class is
¢-linearly convergent to z.. The ¢-superlinear convergence will then follow from
Proposition 4 of Griewank and Toint [1982]. This proposition is based on the

well-known Dennis-Mor€ characterization (see Proposition 3.1).
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2.1. Important Bounds.

The bounds needed to prove inequality (2.1) when the structure in the
Hessian is not used, follow from Assumption A3 and the fact that y is a "good"

approximation to V2f (z+)s. We formalize this fact in the following proposition.

PROPOSITION 2.1. Suppose that Standard Assumption A3 holds and let D be
a neighborhood of z«. For z,,z,€ED define §=Ty—x, and let y be an

approzimation to V2f (z)s. If there exists K; > 0 such that
fy - V2 ( (z+)s Il < Koo (zy, 2,) ) EN| (2.2)
Jor all x|, z, €D, then the following inequalities hold:

lv | <(M+K,0(zy,2,) Is || (2.32)

y's (M +K0(zy,3,)) s |2 (2.3b)

where M 1is given in Assumption A3 (see (1.19)). Moreover, there exist positive

constants €5, and B such that the following inequalities hold:

yTs > 6 ||s |2 (2.4a)
K

Iy || Ay llls ] - <M T s(a,a,), 540 (2.4b)
s B

forz,20€Dy={z: lz —z. | <e,}CD.

Proof. Let z=y —V?2f(z+)s and 7,,z,€D. Then (2.3) follows directly
from inequality (2.2) and Assumption A3 (see (1.19)). To define D,, choose €, so
that K€, <m and D, CD, where m is given in Assumption A3. If z,,2,€ED,,
(2.4a) follows from Assumption A3 with S=m — K,6,. Finally, notice that for
s #0

Iy Illlsll II | lls II2

so that (2.4b) follows from inequalities (2.3a) and (2.4a). .
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Similarly, when the structure in the Hessian is used, the bounds needed to
establish bounded deterioration (2.1) follow from Assumptions A2 and A3, and
the fact that y* is a "good" approximation to S(z«)s, where S is given in (1.13).

We formulate this fact in the next proposition.

PROPOSITION 2.2. Suppose that Standard Assumption A2 holds and let D be
a neighborhood of x«. For z,,20€D define s =z9—x; and let y* be an
approzimation to S(z«)s. If there exists Ko > 0 such that

ly# —S(a:)s | < Kp0(zy,2,5) s | (2.5)
Jor all zy,2,E€D, then there exists K3 > 0 such that y =y* + C(Z)s for any
T €[z, z,] satisfies

ly —V2f (2:)s | < Kso(zy,29) s | (2.6)
Jorall z,,x, €D, ND where D, is given in Assumption A2.

Proof. Let z,,2,€D;ND. Taking advantage of the structure in y and in

the Hessian, we can write
ly =92/ (@2)s | < ly* —S(2)s |+ [C (@)~ C(a:))s |
< Kyo(zy,29) s [+ Lo 17— [ s |

< (Ky+Lg)o(zy, z,) “3 “ . o

2.2. Basic Lemma

The next lemma is very useful when dealing with weighted Frobenius norms.
Particular cases of it were established by Powell [1978] and by Griewank and
Toint [1982].

LEMMA 2.3. Consider a symmetric matriz EG]R"X", vectors u, z, w EIR"™,
and scalars o, p EIR. Suppose that
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a=ulz, w=au—2z2, uwTBs=3:Ts, (2.7a)
uTu =1 and uT§u=(uTz)2. (2.7b)
If we define
B'=B+uwul —zT +duwwT, (2.8)
then
1B'—1 1% = IB—11% —{p +2¢¢—r4?) (2.9)
where

p=(1—2T22+2[:TB: —(2T2)7]
g =72+ 277 —(c? + 2T Bz) (2.10)
r=(zTw).
Moreover, if B is symmelric and positive definite, u = ' and z = Bv_
TT VoTBy
for some nonzero vector v ER™, then
p,r>0 and p +2¢—r >0 (2.11a)
which tmply
IB=Ilp < IB-=Ilp for ¢€(0,1]. (2.11b)

Proof. To prove (2.9), observe that using definition (2.8) we can write
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B —=DTB~1)=B-TEB-I)+B-Nuwu’ +wl(B -1
~B-NzT —2TB-I)+@lu)w’
+(zT2) 22T —(uT2)uzT —(2Tu) 2uT
+ (B —DNwwT + wwT(B—TI) + (uTw)uw?

+(wle)wuT —(2Tw)awT —(w?2)w:T]
+ ¢wTw)wwT
Therefore, using trace (A +B) = trace (A )+ trace (B), trace (zyT) =zTy, and
lA [ = trace (AT A) we can write
trace (B'—I)T(B"~1) = trace (B —I)T(B —1I) + 2uT(B —I)«
—2:T(B =) a4 (uTu) 4 (2T2)2 —2(uT2)?
+28[wT(B—Nw + (T w)—(zTw)?
+¢2(wTw)2
= trace (B —I)T(B—=1) — {p +2q¢—ro?}

where

p=2:T(B—-1I)z —2uT(E—I)u—-(uTu)Q——(sz)2+2(uTz)2
g = (sz)z—wT(E—I)w — (uTw)2
r=(wlw)
Finally, using (2.7), these expressions can be reduced to the ones given by (2.10).

To demonstrate (2.11a), notice that the given u and z satisfy (2.7) for any
vector v 0. Therefore, notice that from (2.10) » >0 is obviously true, p >0
will be true if zTBz —(272)2 >0, and since

p+2 —r=>1-2P+22(:T2-0?,

p +2¢ —r >0 will be true if 272z —a? > 0.
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Using the definition of «, 2 and a we can write

— )2
vTB% _
vT By

—_ T R3
2TBr — (T2 =2 B _
vT By

vTB% vTBv —[vT By)?
[vT Bv]?

’

and

(272 —a?) = vT B%y _v"Bv _ vTB% vTv—[vTBy]?
vT Bu vTy vIBy vTv '
We will now show that the numerators of these expressions are positive. From

the Cauchy-Schwarz inequality we have
vIB% vTBy = ﬂ§3/2v I HEI/QU I = 1B%/% I llEl/Qv 12
> [(53/2v)T(§1/2v)]2 - [vT§2v]2 :
and
vTB% vTv = [Bo 2o |2 =[]|Bv | | ]]?

> [(Bv)Tv]? =[vTBv]2. e

2.3. Bounded Deterioration for the Secant Approximations.

Now we establish the bounded deterioration inequality for the
(unstructured) secant approximations from the convex class. The proof is based
on the approach used by Griewank and Toint [1982]. However, our result is
stronger than the specialization to the BEGS of their result (we obtain a sharper
bounded deterioration inequality). Moreover, in order to fully expose the ideas
involved, we will not assume that the problem has been transformed so that the

Hessian at z4 is the identity matrix.
THEOREM 2.4. Suppose that Standard Assumption A3 holds. Let B, be an

(unstructured) secant update from the convez class, i.e.

B, =B +A(s,y,B,9) (2.12)
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where s =z, —x, A(s,y,B,) is given by (1.7) with the parameter $ €0,1|, and
y 1s an approzimation to V2f (z.)s. If there exist D, a neighborhood of z+, and

K, a positive constant, such that
ly V2 (@)s | < Kyo(z,2,) bs 1, (2.13)

Jor z,z, €D, then the bounded deterioration inequality (2.1) holds whenever

z,z, €D,y where D, 1s given in Proposition 2.1.
Proof. Let By =V*f(z,) and z, r, €D,, and define
B’ =B 4+ A (s,B+s,B,$) . (2.14)

The idea of the proof is to determine bounds on HB_,_ —B’]|ls and |B"—B. |.
in terms of IIB — B H* and then use the triangle inequality to obtain the

bounded deterioration inequality (2.1).

The bound on |B’—B.|. follows from (2.11) in Lemma 2.3. If
B’=B*-172p'B*~1/2 B = B*~1/2BB*~V/2 and v = B*1/%5 we can write

IB'=B. 1. = |B*~Y2B'=B.)B* 12|y = |B'—I |,
= “B*—lm[ B —B: +A((s,B+s,B,9) | Bz -
= |B""%(B ~B.)B* "2+ B*~V*{ A(s,B.5,B,8) | B*V2 |
= |B=T+wuT —2zT + ¢ww? | 5

where u,z, and w are defined, in terms of B and v given above, by (2.7) in

Lemma 2.3. Therefore, by (2.11)
IB'—B:|. < |B—-B.l+ for ¢€0,1]. (2.15)
To derive a bound on ||B+ — B’ ||+, observe that
B,—B' =E,+¢(Ey+ Ef +E,) (2.16)

where
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E,= —-Y 1478
2 [sTB*s yTs]
ny _B*SSTB*

sTBs.
(yTs)2 (STB*S)Q Js7B

Eg=]

Adding and subtracting the appropriate terms, and using Assumption A3,
lzyT |z =z I lly |, and inequalities (2.3) and (2.4) which follow from
condition (2.13) and Lemma 2.1, the Frobenius norm of these matrices can be
bounded as follows:

y(y —Bss)T 1 1 (y —B«s)sTB,

E = +ysTB - +
|| lllF “ yTS Y *[ yTs STB*S] STB*S “F

ly Iy —B.s | L v l1Bes Ty —Bus | s | L lv-BesllB.s |

<

yTs yTS STB;tS STB*S
<dvllsl Dv=Besh  Jyjdsg BBes sl dy—Bes]
- yTs ﬂs " yTs STB*S Ilsl

ly —Bes | 1Bes | s |
"3 H STB*S

+

M+Ko(z,z M+K,o(z,z
10 ( +)+ 10 ( +) —]\1+M—] Kld(a:,x+)

- g Ié4 m  m
< (e HERO MMy kY ote, e

=y, 0(z,2;),



1E, [

and

li-BoliBs

o My 01Bs Uy —Bes | s ]

- sB*s sB*s yTs
ly —B.s | lls I2 Iy II Hs | ly—Bes ] s |2
<21 + 1B LN 4
1, M+ Koz,z,) 1
<|B “[g"‘ ; W]Kl o(z,z,)
M + Kqe K
SIBII1+—5—"2] -5} ofe,a)

=% IB | o(z,2,),

18
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Y _B*S)T

1Esllr <s7Bs | +ysTB _
3 (yTS)Q *[ (yTs)2 (83*8)2
(?/ _B*S)STB*
(sB*s)? I
<sTBs | lv Wy —Bes | Ny D1Bes Ny —Bes Uls Dlly+Bes | Us |
B (y7s) (yTs)? (sB*s)?
+Iw—&sH&sn
(sB*s)?

IA

s7Bs By =Bos | syl |, , 1Beslls | s |2 Uy +Bus]
yTs s |l yTs sB*s sB*s is |l

o7 l=B.sl 1B 1ls]
sB*s Is | sB*s

| M+ Ko(z,z,)

SHBME 5

M1
1 —(2
2 M+Klo(w,x+))]

1 M
+ gg]fﬁ o(z, )

M + K¢

7

M
m2

< IBI{l 14+ —(2M + K ¢))

+%1 K.} ofz,z,)

=% [|B o(z,2,).

Now, using (2.16), and the bounds on |E, ||f, |E5 I, and [E; |, we have
1By =B lr <[m+ 2%+ 1B 1]ds,2,)
<n+éu(IB=B. | + IB: I) o(z,2,)
<[(m+¢1M) + ¢ |B = B: |5 ] ofz, 2,)

where v, = 27, + 73 hence,
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1B, —5|. < IB-/2? 1B, —B |5

(2.18a)
<[ 1B-B|+ + ] o(z,2,)
where
M + oy M
oy = s and o, = ML. (2.18Db)
m

Finally, the triangle inequality and inequalities (2.15) and (2.18) give us the

bounded deterioration inequality (2.1) as follows:
18, —B. . < 1B, —B'1. + IB'=B. |
<[y |B—=B: |+ + ) o(z,z.)+ |B—B: |+ (2.19)
=[1+ao(z,2,)]|B-Bs | + go(z,2,). o
Notice that the stronger form of bounded deterioration for the BFGS secant

update is a consequence of the fact that the difference between B, and B’ does

not depend on B, i.e., o, =0 if ¢ =0.

2.4. Bounded Deterioration for the Structured Secant Approximations.

Finally, we prove an analogous result for the structured secant

approximations from the convex class defined in Section 1.1.2.

THEOREM 2.5. Suppose that Standard Assumptions A2 and A% hold. Let

B be a structured secant update defined in Section 1.1.2, i.e.,
B, =A,+C(z,) (2.202)
where
A, =A+A, (s,y*, A,v), (2.20Db)

s=x,—x, A, (s,y%,A,v) is given by (1.10), the scale v=v(s,y, B) is chosen
such that Ay (s, y, B, v) can be written as A((s,y,B,$) for some $€[0,1], and y

and y* are approzimations to V2f (z+)s and S(z+)s respectively such that
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y—y¥* = C(z)s for some T €|z,z,]. If there exist D, a neighborhood of z+ and

K,, a positive constant, such that

"y# —S(.’II*)S " _<_K20'(:1,‘,III+) "3 " ’ (221)

Jor z,z, €D, then the bounded deterioration inequality (2.1) holds whenever
t,z2,€D3=D\ND, where D, and D, are given in Assumption A2 and
Proposition 2.1 (and Theorem 2.4) respectively.

Proof. Let B«=V?f(z,), and Bl=A +C(z). Using (2.20) and the

following simple observation
Ay (s,y*,A0) =4, (s,y,B1,v)
we have for z,z, €D,
B, =A,+C(z,)
=A+A4, (s,y#,A,v)+C(x+)
=A+A,(s,y,Bl,v)+C(z,) (2.22)
=B1—-C(z)+A, (s,y,B1,v)+ C(z,)
=B1+A4, (s,y,B1,v)+C(z,)—C(T) .

Since Proposition 2.2 with condition (2.21) allows us to use Theorem 2.4,

and B1 = B 4 C(z)— C(z), we can write
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1B, —B. . < IB1+A, (s,4,B1,0)=B. |, + [C(z,)— @) I+
S+ ooz, 2,)] [B1=Bs ||+ + o (z, z,)
+Vn L 1BV X (Jay —ae |+ 17 =20 ])

S +eo(z,z )] [ 1B =B: |« + (@)= Ce) |4 ] + oo (2, 2,)
N 2Vn Lg

- z,zy)

<[+ a0z, 2, |B =B |+ +po(s,2,)

2Vn Lg
+ (2 + o] ———olz,z,)

=1 + oyo(z, z,)] [B—B:|. +og0(z,7,),

Co . 2Vn Lg
which is (2.1) with ag=ay+——-—"-[2 + €], and oy, are given by
m

(2.18b) in Theorem 2.4.

3. Local Convergence Theory.

In this section we will establish the local and ¢-superlinear convergence of
the structured secant methods from the convex class defined in Section 1.1.2.
Our approach will be to use the results of Section 2 and the Broyden-Dennis-
Moré€ theory to prove the locally g-linear convergence. Then, we will use (2.22)
and Proposition 4 of Griewank and Toint [1982] to obtain the g-superlinear
convergence. For completeness we restate the Griewank-Toint proposition as

follows.
PROPOSITION 3.1 (Griewank and Toint [1982]). Suppose that Standard
Assumptions Al, A2 and A3 hold. Let {z;} be a sequence which converges to

and satisfies
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> Mz~ | < o0 (3.1)
k>0

Also, for an arbitrary sequence of ¢’s in [0,1] let {B,}, the approzimations to the
Hesstan, be generated by

B, =B +A(s,y,B,9) (3.2)

where A(s,y,B,9) is the secant update correction given by (1.7), starting with a
symmetric positive definite matriz By. Then, {z;} converges q-superlinearly to

z+; equivalently, {B,} satisfies the Dennis-Moré€ characterization

(B =V )]s |
: m =0 (5:8)

The next theorem gives sufficient conditions to insure local and g-superlinear

convergence for any structured secant method from the convex class.

THEOREM 3.2. Suppose that Standard Assumptions A1, A2 and A3 hold. If

s =1z, —1, and y¥ is an approzimation to S(z+)s satisfying
v* —S(z¢)s | < Kqyo(zy, zo) s 1 (3.4)

for z,,2,€D and some Ko > 0, then there exist positive constants €, § such that,
for zo€R™ and symmetric A ER"X"  satisfying |lzog—z« | <€ and
Ao —S(z+) | <6, the sequence {x,} generated by any structured secant method

from the convex class for problem (1.1) is q-superlinearly convergent to .

Proof. As was the case in Dennis and Walker [1981], the local g-linear
convergence is a straightforward application of bounded deterioration (Theorem

2.5 in this case) and the standard Broyden-Dennis-Moré€ theory.
Let By =V 2f(z:) and A+ =S(z:). Since B, is positive definite, there exist
neighborhoods N; of z+ and N, of B: which are sufficiently small so that

N;CDj3 (see Theorem 2.5), N, contains only positive definite matrices and
. €Dy for every (z,B)EN; XN, Now, choose a neighborhood N; of A+ and
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restrict /V; as needed so that (z,A)EN =N, X N; implies that A + C(z) € N,.

Theorem 2.5 allows us to use Theorem 3.2 of Broyden, Dennis and Mor€
[1973] to prove that {z; } converges g-linearly to z.. Finally, (2.22) allows us to

use Proposition 3.1 to prove the theorem. o

4. Applications.

In this section we use the results of Sections 2 and 3 to establish the local
and g-superlinear convergence of any structured secant method from the convex
class for the constrained optimization problem and the nonlinear least-squares
problem. Particular cases of these methods are the SQP augmented scale BFGS
and DFP secant methods for constrained optimization problems suggested by
Tapia [1984]. Another particular case, for which local and g-superlinear
convergence is proved for the first time here, is the Al-Baali and Fletcher [1985]
modification of the structured BFGS secant method considered by Dennis, Gay
and Welsch [1981] for the nonlinear least-squares problem and implemented in

the current version of the NL2SOL code.

4.1. Nonlinear Least Squares.

Our presentation of the nonlinear least-squares problem follows Chapter 10
of Dennis and Schnabel [1983]. The nonlinear least-squares problem is
m
minimaze [ (z) = LR(:z:)Tl‘E(:z:) =1 > ri(z)? (4.1)
z 2 23
where m >n, the residual function R:IR® —IR™ is nonlinear and r;(z) denotes
the ¢ component function of R(z). Straightforward calculations show that the

gradient of f is given by
Vf(z) = J(2)"R(z) (4.2)

where J(z) denotes the Jacobian of R at z, and the Hessian of f is given by
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Vif(z)=C(z)+S(z) (4.3)

where

m 4.
S(@) = 3% 1le) Viri(e), 4

t=1

and V2r,(z) is the Hessian of r; at .

4.1.1. The Structured Secant Method.

By a structured secant method for the nonlinear least-squares problem (4.1)

we mean the iterative procedure
x,=z+s
A, =A+A,(s,y%,A4,v) (4.5)
B, =A4,+ C(z,)
where s is the quasi-Newton step defined by
Bs = —-Vf(z). (4.6)

In (4.5), A is an approximation to S(z), A,(s,y*,A,v) is the secant update
correction given by (1.10) with v =w(s,y,B), and y and y* are

approximations to V2f (z4)s and S(z*)s respectively.
The choice for y#
y* =[J(zy)=J(e) ] TR(2y) (4.7)

was suggested independently by Dennis (1976) and Bartholomew-Biggs (1977)
and is currently used in the algorithms given by Dennis, Gay and Welsch (1981)
and Al-Baali and Fletcher (1985). Initially, Dennis, Gay and Welsh (1981) used in
the NL2SOL code
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y =Vf(z,)—Vf(z) (4.8)

to compute the scale v. It was Al-Baali and Fletcher (1985) who first suggested

using

y =y?* + J(z.)T J(z,)s (4.9)

instead of (4.8) to compute v, introducing, in this way, the structure of the

problem into the scale of the update formula. This modification improved the

numerical performance of the NL2SOL code (Dennis [1987)).

4.1.2. Standard Assumptions.

Consider the following standard assumptions for problem (4.1).

Al: Problem (4.1) has a solution z«.

A2:

A3:

The function f € C?, and J and V2f are locally Lipschitz continuous at z,

i.e., there exist L, L,, and € such that
17(@2)=I(z) I S Ly o — s | (4.102)
and
IV2/ (2) =V (@) [ S Ly le =2 | (4.10D)

forz €D ={z: |z —z. | <€}

The matrix V2f (z) is nonsingular.

4.1.3. Local Convergence Theory.

The following lemma will serve as the foundation of our convergence result

for the nonlinear least-squares problem (4.1).

LEMMA 4.1. Suppose that the standard assumptions for problem (4.1) hold.

Then there exists a positive constant K such that
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lv# —S(ze)s | <Ko(z,2,)]s | (4.11)
where y¥ is given by (4.7), z,x, €D, and s =z, —1.

Proof. Observe that by adding and subtracting the appropriate terms we

have
v# = S(z)s = (o) R(2,)—J(2) R (2,) = S(z)s
= V1 (2)=V/ (&) = (@) [R(2,) ~ R (z)— J(a)s] (412)
—[J(z) =T (@) T T(24)s =V 2] (z4)s .

From (4.10) and Lemma 4.1.15 in Dennis and Schnabel [1983] we have

IV/ (@)= V7 ()= V2 (2)s | < Lyo(z,2,) I | (4.13a)
and
IR(z,)—R(z)=J(zs)s | < L,o(z,2,) s |. (4.13b)
Therefore, using (4.12) and (4.13)
lv# —S(z)s | S Loo(z,2y) s |1+ 17 (2) L 10(z, 24) s |
sl LACON 129 ERE | B
S[Lo+(Lie+Le)Ly+LeLy]o(z,a,) s |
where Ly = [[J(z+) |- .

THEOREM 4.2. Suppose that the standard assumptions for problem (4.1) hold.

Then, there exist positive constants €, & such that, for oy €IR" and symmetric
AgER™ satisfying |zg—az+ | <€ and JAy—S(a:) | < 6 the iteration sequence
{z; } generated by any structured secant method from the convez class for problem
(4.1) is q-superlinearly convergent to z..

Proof. The proof of this theorem is a straightforward application of

Theorem 3.2 and Lemma 4.1. ™
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4.2. Constrained Optimization.

We will consider the special case of the nonlinear programming problem

where we only have equality constraints. Namely,
minimize [ (z)
z (4.14)

subject to g(z) =0

where f:R" —IR, and ¢:IR"—IR™ are smooth nonlinear functions (m <n).

Associated with problem (4.14) is the Lagrangian function
l(zN) = f(z)+g(z)T). (4.15)

Straightforward calculations show that the gradient of ! with respect to z is

given by
V. l(z,)) = Vf(z)+ Vg(z)TX, (4.16)
and the Hessian of [ with respect to 2 by
Vi(z,\) = Vif (2) + 3N V() , (4.17)
=1

where g;:IR"® —IR denotes the {** component function of g.

4.2.1. The SQP Augmented Scale Secant Method.

Following Tapia [1984], by the SQP augmented scale secant method for the
constrained optimization problem (4.14 ), we mean the iterative process
x, = 1T +s
A= A+ A\ (4.18)
B, = B+ A,(s,y,B,v)
where s and A\ are respectively the solution and the multiplier associated with

the solution of the quadratic programming problem
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minimize V,I1(z,\)Ts + %s T'Bs

s (4.19)

subject to Vg(z)Ts + g(z) = 0.

In (4.18), B is a symmetric approximation to V2/(z,)\), and A, (s, y, B, vy)

is the secant update correction given by (1.10), where

UL =”(s9yL7BL) ’

Yy =Vzl($+,>\+) - v.'c:l(‘lz"’>\+) ’

(4.20)
y, =y +pVg(z,)Ve(z,)Ts ,
By, =B + pVy(2,)Vg(z,)T
and p is the penalty constant in the augmented Lagrangian function
1
L% p) = 1) + 200(e) o) #20. (4.21)

Observe that By is a structured approximation to the Hessian of the

augmented Lagrangian at the solution, i.e.,
By, & V7L (ze)e; p) = VE (24, Me) + pVg(24)Vg (22)T (4.222)

since the last term of
m
ViL(z, X p) = V(2N + pVg(2)Vg(z)T + 03 0;(2)V 20:(z) (4.22D)
t=1
vanishes at the solution z«. Moreover, Tapia [1984] gave strong arguments to

blame this second-order term for the poor numerical performance of the SQP

augmented Lagrangian secant method for large values of p.

Three issues are important in the derivation of the SQP augmented scale
secant method. First of all, consider the augmented Lagrangian instead of the
standard Lagrangian to compensate the lack of positive definiteness of
V2I(z¢,\¢). Secondly, use the structure of V2L (z«,\+; p) as much as possible.

Finally, observe that the penalty constant cancels out in all parts of the



30

algorithm except in the scale of the secant update.

In fact, the SQP augmented scale secant method is an SQP (standard)
Lagrangian secant method with a modified (or augmented) scale. It is this change
of scale which takes care of the lack of positive definiteness in the Hessian of the
Lagrangian and allows us to use positive definite secant updates, like the ones
from the convex class, for constraint optimization problem (4.14) without

assuming that V2I(z,\) is positive definite.

Clearly, since yTs is not necessarily positive, the augmented scale secant
updates in (4.18) do not have the hereditary positive definiteness property.

However, they do possess this property on N(z,) where
N(z) = {2z €R": Vg(z)Tz =0} (4.23)

(Proposition 4.4 in Tapia [1984]).

4.2.2 Standard Assumptions.

The following are standard assumptions in the theory of quasi-Newton
methods for problem (4.14).

Al: Problem (4.14) has a solution z, with associated multiplier X4.

A2: The functions f and g¢;, ¢ =1, ..., m have second derivatives which are

locally Lipschitz continuous at z, i.e., there exist L, L;, «+ =1,..., m and €

such that

IV (2) =V (@) | SL |z —a |l (4.24a)

and

||V2g,-(x)—\729,~(a;*) " S Li ||1‘ — Tx " 1=1..,m (4'24b)

for s €D ={z: |z —a: | <€}

V2 (zen:) Vg(zs)
A3: The matrix V2 (zs Xs) = is nonsingular.
Vg(z)t 0
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In the next section, we will use the following well-known results:

RESULT 4.3. Suppose Assumption Al holds. Then Assumption A3 1is

equivalent to the following two statements:

A3’a: The matriz Vg(z.) has full rank.

A3'b: The matriz V2I(z+,\¢) is positive definite on the subspace N(z+), where
N(z) is given by (4.23).

RESULT 4.4. Suppose that the standard assumptions for problem (4.14) hold.
Then there exists py such that VZL(z+\s; p) is positive definite for any p>ps.
(See Corollary 12.9 and Theorem 12.10 of Avriel [1976]).

4.2.3. Local Convergence Theory.

Tapia [1984] used the Fontecilla-Steihaug-Tapia [1987] and Broyden-
Dennis-Mor¢€ [1973] theories to prove that, under the standard assumptions, the
SQP augmented scale BFGS and DFP secant methods were locally and g-
superlinearly convergent to z,. In this section, we will use a similar approach to
generalize this result to any SQP augmented scale secant method from the convex
class. The main difference in our approach is the unified way in which we obtain
the bounded deterioration inequality for all the augmented scale secant updates
from the convex class. Indeed, this inequality follows from Theorem 2.5 and the

following lemma.

LEMMA 4.5. Suppose that the standard assumptions for problem (4.14) hold.

Then there exists a positive constant K such that
ly = V2t(z )5 | < Koo,2,) s | (4.25)
where y is given by (4.20), z,2, €D, ands =z —=z.

Proof. Observe that by adding and subtracting the appropriate term we

have
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y —Vi(z:ee)s = V(@A) =V (2,0 ) = V2 (24 M4 )s
= V1 (24) + Vg(e. )\, — V] (2) = Vo (),

—V2f (z4)s — ﬁn:‘,)\i V2g:(z+)s

=1
= Vi(z,)=V/f(z)=-Vif(2:)s +
(4.26)
+ 3 Vi (@4) = Voi(2) = V2;(z2)s | M +

§=1

+ 3 Vai(o4) = Vs (2) = Vg (z0)s | [ N—Ni |+

fa=]

+ SN M ] Vig(z)s

t=1
where \! and \{ are the 1% component of A, and A, respectively.

From (4.24) and Lemma 4.1.15 in Dennis and Schnabel [1983] we have
IV/ ()= VS (2)=V2 (z:)s | < Lo(z,2z,) s | (4.272)

and
IV (z,) = Vi (z) = V3gi(2e)s | < Lio(z,2) s | i=1, .., m (4.27b)

Therefore, using (4.26), (4.27 ) and the Cauchy-Schwarz inequality
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m :
Iy —Vi(zs)e)s | <L oz, z,) s | + S L; [N lo(z,z.) s | +
i=1
m , , m._ . :
+ ZLi I>‘-:—'—>\:* IO'(.Z‘,.’I?_,_) “8 " + ZLi I>\-:-_'>\3’ I IS II
=l =t (4.28)
m :
SIL+ 3L Mo, z) s T +
i=1
m m —
HIE LA e+ (UL Py =2 I s |
i=1 _ t=1
where L; = | V2g,(z+) .
From Proposition (4.2) in Fontecilla, Steihaug and Tapia [1987] we have

that there exists a positive constant « such that
Nl < Lo —a | (4.29)
for all = close enough to z«.

Therefore, using (4.28) and (4.29), we establish (4.25) with
K=L+YLINI+v[(3LA e+ (3 LHY?] . (4.30)
i=1 1=1 i=1
[ ]

THEOREM 4.6. Suppose that the standard assumptions for problem (4.14)
hold and p >0 has been chosen so that V2L (x+)\+; p) is positive definite (see
Result 4.4). Then, there exist positive constants €, § such that, for z,€IR™ and
symmetric Bo€R" satisfying fzo—z: || <€ and |Bo—V2(z:\e) | <8, the
iteration sequence {z;} generated by any SQP augmented scale secant method

from the convex class is q-superlinearly convergent to z«.

Proof. This proof is similar to the one given by Tapia [1984] for the SQP
augmented scale DFP secant method. The following can be seen as a

generalization of that result.
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First of all, let us remember that the quadratic problem (4.18) would have
the same solution if we use B, and V,L(z, ); p) instead of B and V,i(z,)\)
respectively (Proposition 3.1 in Tapia [1984]). Now, the bounded deterioration
inequality for By, the structured secant approximation to VZQL (ze,M ;5 p) follows
from Lemma 4.5 and Theorem 2.5 for any augmented scale secant update from
the convex class. In turn, this bounded deterioration inequality allows us to use
Theorem 3.1 in Fontecilla, Steihaug and Tapia [1987] to establish the existence of
the constants €, 6 and the g-linear convergence of the sequence {; }. Then, using

an argument identical to the one used by Broyden, Dennis and Mor¢ [1973], we

can prove

N [BE=VZL(ze)e;0)] 5 |
lim
k s |
Finally, the ¢-superlinear convergence follows from Corollary 5.4 in Fontecilla,
Steihaug and Tapia [1987].

=0. (4.31)
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