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The Projected Newton Method Has Order 1 + /2 for the
Symmetric Eigenvalue Problem

R.A. Tapia* David L. Whitley*

Abstract

In their study of the classical inverse iteration algorithm, Peters
and Wilkinson considered the closely related algorithm that consists
of applying Newton’s method, followed by a 2-norm normalization,
to the nonlinear system of equations consisting of the eigenvalue-
eigenvector equation and an equation requiring the eigenvector to have
the square of its 2-norm equal to one. They argue that in practice
the oco-norm is easier to work with, and they therefore replace the
2-norm normalization equation with a linear equation requiring that
a particular component of the eigenvector be equal to one (effectively
an oo-norm normalization). Next, they observe that, because of the
linearity of the normalization equation, the normalization step is au-
tomatically satisfied; the algorithm thus reduces to Newton’s method
and quadratic convergence follows from standard theory. Peters and
Wilkinson choose to dismiss the 2-norm formulation in favor of the co-
norm formulation; one factor in their choice seems to be that quadratic
convergence is not so immediate for the 2-norm formulation. In this
work we establish the surprising result that the 2-norm formulation
gives a convergence rate of 1+ /2, significantly superior to that given
by the Peters and Wilkinson formulation.

*Mathematical Sciences Department, Rice University, Houston, Texas 77251-1892. Re-
search sponsored by DOE DE-FGO05-86ER25017, SDIO/IST managed under ARO DAAG-
03-86-K-0113, and AFOSR. 85-0243.



1 Introduction

In their study of the classical inverse iteration algorithm, Peters and Wilkin-
son (1979) considered two closely related algorithms. They began by ob-
serving that in finding an eigenvector-eigenvalue pair (z., A.) of a given
real symmetric matrix A, if we require that ||z||; = 1, then the pair must
satisfy

(A-A)z = 0,

1 B (1)
E(I—mT:I:) = 0.

They then suggest the following scheme for solving this system: let z¥zo = 1
for the initial iterate (zo, A¢); now given a current iterate (z, A), let

(Az, A)) solve

() -(m) e

and let
e = (z + Az)
Y e+ A (3)
Ay = A+ AN

Without the normalization in (3) this would be Newton’s method applied

to the nonlinear system (1). With the normalization it is the Projected
Newton Method.

Motivated by the fact that in practice it is usually simpler to scale
successive z-iterates so that a particular component is equal to one, Peters
and Wilkinson propose using a different normalization: instead of finding
a solution to (1), find one to

A-A)z = 0,
(1——eT)x = 0; (4)

where it is assumed that the mth component of z, is one of its larger com-
ponents. The analogous iterative scheme for solving this problem requires
that eX 2o = 1, and that (Az, A}X) solve

()= () o



Here, we take
zy = z+ Az,

Because e (Az) = 0, each iterate satisfies the new normalization; there-
fore, Projected Newton coincides with Newton’s method on the system (4).
In Section 4 of Peters and Wilkinson (1979), there is an argument that es-
tablishes that the matrix in Equation (5) is nonsingular at (z.,\.) if A, is
a simple eigenvalue. Thus, when A, is a simple eigenvalue, the convergence
of this scheme is clearly q-quadratic in the pair (z, A), as a consequence of
the standard theory for Newton’s Method.

Wilkinson (1981) considered extensions, refinements or applications of
the scheme (6), as did Dongarra, Moler and Wilkinson (1983). The latter
paper also contains a proof of r-quadratic convergence of the z-iterates for
this scheme, which follows immediately from the q-quadratic convergence
of the pair (z, A) (The definitions of r- and q-order of convergence may be
found in Dennis and Schnabel (1983), pp. 19-21. For further detail, see
Chapter 9 of Ortega and Rheinboldt (1970)). In numerical experiments to
assess the behavior of the two schemes described, we discovered that the
second did indeed seem to be q-quadratically convergent, but no better; the
first, however, was undeniably faster than q-quadratic, yet not q-cubic. In
§2 we prove our main result, that the convergence of each of the sequences
zr and A, generated by the first scheme is actually of q-order 1 + /2. In
83, we add concluding remarks.

Before proceeding to the main result, we note that the two algorithms
presented above are closely related to two other well-known methods for
finding an eigenvalue-eigenvector pair for a symmetric matrix A: inverse
iteration and Rayleigh Quotient Iteration. To see this, note that the first
equation in either (2) or (5) implies that

(A= ADi, = (A= M)(z + Az) = (AN)z. (7)

Given a current eigenvector estimate z and eigenvalue estimate A (for in-
verse iteration the eigenvalue estimate is fixed, for the other three it changes
from iteration to iteration), equation (7) shows that each of the latter three
methods produces a new eigenvector estimate that is a scalar multiple of



the one given by inverse iteration. The new eigenvalue estimates for these
three methods are also related to each other in an interesting way. By pre-
multiplying both sides of (2) by (2%, —)) and rearranging terms, we obtain
the expression
T
zt Az,
A+ = (8)

Tz,

for the Projected Newton formulation. Similarly, we can obtain from (5)
the expression
T
e Ary
A+ = —_T_
EnmT+
for the Peters-Wilkinson formulation. For the Rayleigh Quotient Iteration,
the new eigenvalue estimate is given by
$£A$+
Ay = —H—.
TLT4
Thus each method has the effect of solving (A — AI)#; = z, scaling appro-
priately, and updating A\ using the appropriate formula. This shows that
our result is of a theoretical nature, since it offers few if any real computa-
tional advantages over the Rayleigh Quotient Iteration, the convergence of
which is g-cubic.

2 Main result

The following Lemma gives a sufficient condition for a gq-convergence rate
of 1 +v/2.

Lemma Let {zx} be a sequence that converges to z.. If there exist
positive constants m, M, and k such that

m < ”$k+1 - 'T"‘” <M (9)
T lzk = zulPlze-r — ]l T

for all k > k, then z) converges to z, with g-order 1 ++/2.



Proof. Clearly, we can assume k = 1 without loss of generality. If we
define a; by
_ _lzker — 2]
ap = 5
llex — @a[t+V2

then we can rewrite (9) as
m < akﬂakﬁ‘l < M.
This pair of inequalities can be applied repeatedly to yield
ma;(ﬁ—l) <ay< Mal_(ﬁ_l),
mM—(ﬁ-l)agﬁ-l)’ <as< Mm-(ﬁ-l)agﬁ-l)’,
and so on (as can be shown by induction); in general,

ap < Mm=VaD) P (Va1 ~(V3-10 (VDR g

1
Therefore, limsupay < limgBy = M ( 2(72—1))m’%. Hence for all sufficiently
large k,
lzxs1 — .||

ey g e = o < M m 41
k — L=

Therefore  converges to , with q-order 1+ /2.0

From now on, let us write (z-, A_), (z, A), and (24, A4+), where con-
venient, in place of (Tx_1, Ak-1), (T, Ak), and (Zx41, Ak41). We now state
our main result:

Theorem Let A be a symmetric matriz, o a vector with ||zo|| = 1, and
Ao a scalar that is not an eigenvalue of A. Taking (z, A) = (zo, Ao) nstially,
apply the following steps iteratively to gemerate a sequence (Tx, Ax):

(5)-()- (= 7))
II£:II'

>

T+



If A\x converges to an eigenvalue A\, and Ay # A, for all k, then \; con-
verges with g-order 1 4+ /2, and x; converges with the same g-order to a
corresponding eigenvector ..

Remark. We note that neither the hypothesis requiring convergence of
Ak nor the hypothesis that Ay # A, should be considered restrictive. When
A, is a simple eigenvalue, the Jacobian matrix is nonsingular at (z., A.),
so the standard theory for Newton’s method ensures that the sequence
is locally quadratically convergent (at least) in this case. When A, is not
simple, convergence does not follow from the standard theory, but in view of
this algorithm’s resemblance to inverse iteration, it is reasonable to assume
that z; will converge to an eigenvector, and Equation (8) then implies
that Ar converges to an eigenvalue. The second hypothesis excludes the
possibility that a finite number of iterations might lead to an exact solution.
If z; were an eigenvector, then Ax;; would be the corresponding eigenvalue,
as can be readily seen from (8). If Ay were equal to an eigenvalue, then the
iteration as described above might not be defined, since the matrix might
be singular; in any case, however, (Az, A)X) = (£. — z, 0) would solve the
associated linear system (2) for some eigenvector #. corresponding to the
eigenvalue A\;. Thus an exact solution would be found in one more iteration,
provided that the iteration is defined.

Proof. There are two main parts to the proof of the Theorem: we show
first that

ks — .
L < < 10
TV W P (10)

and then that

el (1)
T [|zr-1 — Ta|

for k sufficiently large, where [y, u;, I3, and u; are positive constants. From
(10) and (11), it is straightforward to show that

I, <
llzx —

“93k+1 - x,ll
< uiu
—zaPflzko — ] T

L, £
|k

and
l%l2 IAk+1 - /\.I U%UQ

R Pl § VD W 1) VD W e




We can then apply the Lemma to conclude that both z; and \; converge
with g-order 1 + v/2 whenever (10) and (11) hold.

For the first part of the proof, we parallel the proof of the linear conver-
gence of the power method given by Parlett (1980). We begin with some
notation: let S be the subspace of eigenvectors of A with eigenvalue A,, and
denote the orthogonal complement of S by S*. Define z. to be the vector
obtained by normalizing the projection of ¢ onto the subspace S. Denote
the angle between = and z. by 6, and the angle between z; and z. by 6.
Note that we can write z as

z = z.cosf + usinb, (12)

where u is a unit vector orthogonal to z.. If we pre-multiply both sides of
(12) by (A — AI)~!, we obtain

1 cos ¥ (A—- XDy o
(A=A)""z =z, ()\* — /\) + (||(A— )\I)‘luH) (JI(A — AI)™ ul| sin6).

By (7), (A — AI)~'z is a scalar multiple of z,; since z. is orthogonal to
(A= AI)"1u, the above expression shows that an orthogonal decomposition
of z, is

24 =z,c0804 +uysinf,,

where

(A—-AD)u
Uy = 1
I(A = AL) " ul]

(13)

and
(A —AI)"'ul|siné

cos /(A — A)

= (A = N)||(4A=AI)""ul| tané.

By the choice of z., up € St; hence, by Equation (13) and induction, we
can conclude that u; € St for all k. Thus we can obtain upper and lower
bounds on ||(A — M)~ u|| by considering the restriction of (A — AI)~! to
St (i.e. the reduced resolvent), which we denote by (A — AI)™*:

tan 9+ =

(A= AD" | = [I(A =AD" u|
< (A=AD7 (14)
1
T Al



where v, is the nearest eigenvalue of A to A other than A.. Similarly,

(4= A0 ) 2 gy (15)

where ¢, is the eigenvalue of A farthest from A. So we now have that

Ae— A
<
¢,\—/\|—

tané,
tan 6

< (16)

Av — A
V,\—A )

It is clear from (16) that if Ay converges to A., then the vector we have
defined to be z, is indeed the eigenvector to which z; converges.
In terms of the error angle 6, the error in z is given by

|z —z.|| = 23ing (17)

= 1/2(1 — cos¥). (18)

From (18), the following relationship can be derived in a straightforward

manner: .
1+ cosf \?
(1 +cos9+) ' (19)

cos @,
cos 6

tanf,
tan 8

los — 2.l _
fe— =l

Combining (16) with (19) and taking limits, we may conclude that

1 L [Zk41 — .|
————— < liminf
[fa. = Al Ak = Adlllzk — ]
. ||~’Ek+1 — $~||
< limsu
= P = Allex — 2]
< 1
lV,\. - )\""

Hence (10) holds with, for instance, |} = m and u; = M—"’_/\‘—I

We now show that there exist positive [z and u, satisfying (11). We first
use (8) to write .
A=A\
A—, = =@ A (20)

T_T



If we substitute the orthogonal decompositions of z_ and = given by (12)
into (20), we obtain

(z.cosf_ +u_sinf_ )T(A — AI)(z.cos 4+ usinf)

Tz

(u-sin8.)T(A — \.I)(usinb)

Lz ’

A=A =

since (z., A.) is an eigenvector-eigenvalue pair for A. Now we use (17) to
relate the sines of the error angles to the sizes of the errors in z_ and «,
and we use (13) to write u in terms of u._ and A_:

A=A b cos?
— —— = Z2T(4 - A Du+ (A — A)uTw)
2= = zulflz — .|| Tz
COS f_—_ COSs 5

: 1
- x?:x (”(A - A_I)_lu_” + (A— A,)u_u) .

Using the bounds for ||[(A — A_I)"'u_|| from (14) and (15), then taking
limits, it follows that

1 A "A*
——— < liminf e |
|62, — Al lzk — zu[[lzk-1 — 2.
Ak — A
< limsup e |
lze = zullllzk-1 — .|
< 1
IV/\. - /\tl

Hence (11) holds with, for example, I; = j and uy = This

1 —2
[Prs—As Vae—As|’

completes the proof. O

3 Conclusion

The motivation for this work was the intriguing and, to us, surprising non-
integral superquadratic convergence rate indicated in our numerical exper-
iments. We were also quite pleased that we were able to establish a q-rate



of convergence of 1 + V2 both for the z-iterate alone and for the \-iterate
alone. The classical Newton’s method theory gives q-quadratic convergence
in the pair (z, A) for the Peters-Wilkinson algorithm, which implies an r-
quadratic rate in each of £ and A. The direct proof given by Dongarra,
Moler and Wilkinson (1983) also only establishes r-quadratic convergence
in z for the same algorithm.

We experimented with several problem formulations that used p-norms
other than the 2-norm and oo-norm; for no values of p except p = 2 did our
estimated convergence rates consistently exceed 2. On the basis of these
experiments, we consider it extremely unlikely that any p-norm formulation
other than the one presented here produces superquadratic convergence.
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