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Abstract

A new method for the design of tracking filters for maneuvering targets, based on
kinematic models and input signal estimation, is developed. The input signal’s level u 1s
considered a continuous variable and consequently the input estimation problem is posed
as a purely parameter estimation problem. Moreover, the application of the new tracking
filter algorithm is not contingent on distinguishing maneuvering and non-maneuvering
targets, and does not require the detection of maneuver onset. The filter will
automatically detect the onset of a maneuver. Furthermore, an estimate of the target’s
acceleration is also obtained with reasonable precision. This opens the door to the
employment of advanced Augmented Proportional Navigation Missile guidance laws,
which require an estimate of the target’s state acceleration, recognizing the precision is
not as good as that for position and velocity estimates. When the target dynamics and
measurement equation are linear and input u is constant, then an unbiased estimate # of u
and of the target’s state is obtained, provided that an observability condition holds. It is
shown that the critical observability condition holds for kinematic target motion models

of interest.
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NEW TRACKING FILTER ALGORITHM
USING CONTINUOUS INPUT PARAMETER ESTIMATION

1. Introduction

The problem is posed of using a Kalman Filter (KF) to track a maneuvering target, that is,
designing a tracking filter. The standard KF paradigm addresses the estimation of the
state x of a dynamical system in “free fall” (no control) or of a controlled system when

the input signal u is known. The standard KF arrangement is illustrated in Figure 1.

@

F— :: g —'I—>xy(>—>z

-

KF _>

o>

Figure 1: Standard Kalman Filter Arrangement. The state is x, the input
signal is u, the output is y, w is process noise, the measurement noise

is v and the state estimate produced by the KF is x.

Hence, in the context of tracking, the KF paradigm is ideally suitable for tracking

non-maneuvering targets for which the input signalu(¢) = 0. By “non-maneuvering”, we

mean no input/control from the pilot applied to the aircraft. In reality, one is most often

faced with the problem of tracking maneuvering targets. Obviously, the target aircraft’s
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pilot’s inputs u are not communicated to the tracking filter. Thus, the conventional KF
paradigm is not always suitable for estimating the aircraft’s state: in other words, the
conventional KF paradigm is not suitable for designing tracking filters. To overcome this
conceptual difficulty, starting with the pioneering work of Singer [6], the following

tracking filter concepts have been proposed in the literature.

1. Tracking filters based on First-Order Gauss-Markov Acceleration (FOGMA)
dynamics, for which the input signal driving the target’s dynamics is stipulated to
be a random signal, namely process noise [3].

2. Quantization of maneuver level and the use of Multiple Model Adaptive
Estimation (MMAE) methods [4].

Maneuver detection-based schemes [1].

W

4. Multiple Hypotheses Trackers (MHT) [2].
5. Fixed gain Kalman Filters, referred to as & — f3 (i.e., “constant-velocity” modeling
assumption) and « — S - y (i.e., assuming the adequacy of “constant-acceleration”

models of target dynamics) tracking filters [5].

In this thesis, the tracking of maneuvering targets is considered and the KF
paradigm is extended. A novel method for the design of tracking filters for maneuvering
targets based on input signal estimation is advanced. Estimation of u as well as x has
been suggested before in tracking filter design [1]. These similar but not exact

methodologies will be described in Chapter 2.

12



1.1 Problem Statement

We employ a basic concept from calculus for the design of tracking filters for
maneuvering targets. The task is to track maneuvering/non-maneuvering targets
adequately using only one Kalman Filter and attempt to estimate the pilot’s inputs # using
a moving/sliding window estimation algorithm, namely the unknown input signal is taken

to be constant during a short time interval.

1.2 Approach

To address the concept outlined above, we take an approach rooted in calculus.
Assume u(t) is a C' (continuously differentiable) function. According to Taylor’s

theorem, the value of u(t) at 7+ AT is

u(t+AT)= u(t)+% AT+ r(LAT)

t

and, for ¢ fixed,

M0 AT

Indeed, according to Taylor’s Theorem, the next term in the remainder is

2 32
H(6AT) = %%(z +EAT),

where 0 < £ <1and the parameter & is not known.

Hence for this C' function, one goes on to use the approximation

u(t +AT) = ult)+ % AT

t

provided AT is sufficiently small. This is tantamount to assuming

13



du (r) du

—I\7)=— =const V (<7<t +AT
dr dr

T=t

so that the linear/affine approximation holds

u(r) = u(t) + _d_u

(r=t) ¥V t<c<t+AT
dt

‘
The residual (t;AT) is the second derivative of u évaluated at o, where t <o <t+AT
and o =1+ &AT is not known. Obviously, when u is linear/affine the above formula is
exact. Similarly, if u(t) is just continuous, the approximation is used
u(z‘)mu(t) V t<tZt+AT,
for AT sufficiently (very) small.
Consider now a control system on the time interval [0, AT], AT small. The

dynamics are
dx
E:f[x(r),u(t)] , x(0)=x,, 0<t<AT.

In the context of tracking filter design, the dynamics equations describe the target’s
dynamics. The kinematic variables with derivatives that are not featured in the kinematic

equations are designated the control variables.

Assume the control signal u(r) 1s continuous and set

thus, the control signal is essentially constant (i.e., # = 0) during the interval [0,AT].

14



Next, augment the state vector with the control vector, that 1s, treat the control vector as a

x
state variable and use the augmented state X' = ( ] One then obtains the augmented
u

dynamical system

ol

One has now obtained an augmented dynamical system in “free fall”. In other words, the
model of the system is a homogenous differential equation. This, in turn, allows us to use
the standard KF paradigm for (augmented) state estimation. However, since the control

signal components of the augmented state are not known, a tracking filter implementation

requires one to:

1. Keep the estimation interval AT short, so that u = const is a valid approximation
of reality. Thus, we’ll choose the length of the estimation interval commensurate

with the bandwidth of the input signal u(?).

2. A moving/sliding window approach is chosen to allow for a possible change/jump
in the control signal. One could just change =0 to =0+ w (i.e, add
pseudonoise to the model) and just use a conventional Kalman-like filter on the
augmented X with no moving window approach; however, this would mitigate
flexibility in the algorithm to “adapt” to harsh maneuvers.

2. When one moves on to a new estimation window, we restart the estimation
process. Thus, in the new estimation window one is allowed to use prior

information on the continuous x components of the augmented state, but not on

15



the u components of the augmented state — this, according to our stipulation that
the control signal is not known. Thus, the control signal’s estimate # will be
data-driven. We pose a least squares best estimate of a constant u over AT to fit
the data. If u takes on a step change, we recognize the model is invalid and hence,

provide the user the detection of a new maneuver.

In other words,

o

LS ]

The estimation interval length A7 is small. Specifically, it is chosen

commensurate with the known input signal’s bandwidth BW,

A= : ,
2BW

(1)

A moving/sliding window estimation process is used. As one moves from
window to window, prior information on the x state component is used, since x(¢)

is continuous. No prior information on u is used.

We use a smoothing algorithm [4] over each AT to get a good estimate of the
initial x value for the next window in order to take advantage of data collected
from the previous estimation window. Thus, the state estimate and the state
estimation error covariance are smoothed for use in the new estimation window,
whereas the initial uncertain.ty about the control signal u is set high. In the new
estimation window, the control signal’s initial covariance is re-set large to make
the point that in the new estimation window the control signal’s level is NOT

known.
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1.3 Chapter Summary

This research advances the concept of input estimation for designing tracking filters
for maneuvering targets. This section summarizes the layout of the thesis. Chapter II
provides the background of input estimation. Chapter III discusses the methodology of
the moving window with smoothing algorithm. Chapter [V presents the simulation test
results. Chapter V discusses the results and their relevance to the current and future uses
of tracking. Chapter VI summarizes the research presented, and provides

recommendations for the further development of this new tracking algorithm.
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II. Background
2.1 Bar-Shalom’s Input Estimation Method

Bar-Shalom [1] has considered input estimation along with state estimation in
tracking filter design. In both his and our work, the input signal is considered constant
during the estimation interval AT. Most importantly, the input estimates rendered by
both approaches are similar. That’s also where the commonality of the approaches ends.
In our work, the input u is considered a continuous (not discrete) variable. As a result,
Input Estimation (IE) is posed as a purely parameter estimation problem. Of course, the
estimated input could end up being = 0, in which case one refers to a non-maneuvering
target; or, it could transpire that # # 0. The point is that no damage is done by allowing
u to be a continuous parameter, even when the target is not maneuvering and the true
input level u = 0.

Our algorithm, and also Bar-Shalom’s algorithm, yields an unbiased estimate of u,
namely #. Both algorithms yield the same answer in this linear estimation problem. To
summarize our approach: we recognize that IE is a continuous parameter estimation
problem. Hence, our approach is direct and the estimation algorithm is straightforward.
Concerning the alternative Bar-Shalom approach, we argue that it is not necessary to
draw a distinction between a maneuvering and non-maneuvering target and by doing so

to be drawn into discrete decision problems in which one, preliminary to parameter

estimation, must address the detection problem and test the maneuvering/non-
maneuvering hypotheses. There is no need to address a detection problem and decide
whether the tracked target is maneuvering or is not maneuvering, and if it is maneuvering,

then estimate the maneuver level u. Bar-Shalom’s approach and ensuing estimation

18



algorithm is more complex. As previously mentioned, both solutions are the same in this

linear estimation problem.
In summary, our approach treats the input u as a continuous parameter as opposed

to a discrete parameter and we do not require a separate algorithm for maneuver detection.

19



II1. Methodology
To understand the methodology of the algorithm used in this thesis fully, we
explore the concept using a linear estimation example. We then describe the moving
window algorithm and smoothing algorithm used in our tracking filter.
3.1 Linear Estimation Example
The herein discussed estimation concept is now illustrated in the linear world. The linear
control system
i=Ax+Bu  x(0)=x, 0<: )
y=Cx
is considered. The control signal u is not available to the estimator. It is desired to
estimate the control system’s state. To this end, the input « will be estimated.
A piecewise constant approximation of the control signal u is considered.
Specifically, during each estimation interval the control signal u is assumed constant.
Thus, take u = const during the initial short estimation time interval 0 <¢ < AT and

consider the augmented dynamical system

d(x A BHI X
slallo ole] s s v o

The augmented measurement equation now is
X
y=[C 0][ J 0<t<AT.
u

In a deterministic setting, one is thus motivated to pose the observability question: can

one determine the initial state x,and the unknown parameter  (which is now a

20



X
component of the augmented state vector X = [ J), given the observation record y(t),
u

O0<iLAT?
The question is posed of whether this new augmented dynamical system is
observable. Thus, suppose x,x, € R", u € R”, and y € R'. One must calculate the

observability matrix

_ cT ATcT (AT)ZCT (AT)IPH’H*]CT "’

0]
O BTCT BTATCT BT(AT)H-HH—ZCT

4

J (n+m)xl(n+m)

and one is naturally interested in rank(Q). The question is posed:

2

rank(O) =n+m
where 7 is the dimension of x(#) and m is the dimension of u(?).
If the answer is on the affirmative, the augmented system is observable and the state
components, including the constant control signal , can be calculated from the
measurement record y(t) ,0<t<AT. As far as observability is concerned, namely, in the
deterministic case, the estimation interval AT can be arbitrarily small. By moving the
estimation window to [kdt, kdt+ AT ], k=1, 2, .. ., an approximation of the continuous

control signal u(¢), 0 <t, is obtained. In general, we will show the following holds.

THEOREM 1 In a stochastic setting and when a Kalman Filter is used for state
estimation, a data driven complete state estimate can be obtained, including the

control/maneuver level parameter u, without prior state (including «) information, that is,

21



one is then able to initialize the KF with P, =al,,, @ — =, iff the augmented dynamical

system is observable.

[

The observabilty condition is not overly restrictive. Indeed, consider the target kinematics
Xx=u

and the measurement equation
y=x

We set u = const that is, 1 = 0 and obtain the augmented system

4K ) G

This system is observable. The point is that this system is observable also when the state
x € R?, in which case one would be modeling the situation in which an aircraft is flying
at a constant altitude and is being tracked by a two-dimensional radar (results of this
model will be shown in Chapter 4).

Consider the linear control system

a(x) o =) [0 mO=x
@l )"0 o STl x,(0) = x,

The measurement equation is

Y=%
The augmented state vector is
X
X=|x,
u

22



and state space representation of the augmented dynamical system is

p X, 0 1 0]x X
;-i?x2:001x2 ,yz[l()O]x2
u 0 0 Off\u u
We calculate the observability matrix
1 0 0]
O0=/010
0 0 1

and rank(O) = 3. Hence, the system is observable and one can calculate the initial state

and the parameter u from a measurement record y(¢), 0 <¢ < AT . Although this holds

true for arbitrarily small AT > 0, the presence of measurement noise motivates us to use
the “longest” possible estimation interval AT ; the latter is circumscribed by the input’s
dynamics, that is, bandwidth BW [Hz] of the input signal « and is set according to eq. (1)

.

namely

AT £ 1 [sec]
2BW

Thus, a novel tracking filter synthesis method for maneuvering targets based on
input estimation and kinematic modeling is developed. In the kinematic model, the
fastest variable, that is the variable with the highest derivative, is designated the control
variable. For example, consider an aircraft flying at a constant altitude. A good
kinematic model is obtained as follows: the aircraft’s speed and course angle are declared
the control variables, and by setting the latter constant during the short estimation interval
(= setting their derivative equal to 0), a parameter estimation problem ensues. Our

tracking filter synthesis method calls for augmenting the system’s state with the control



variables and, in the process, one obtains a dynamical system “in free fall” which is
amenable to conventional state estimation using Kalman filtering. Indeed, Kalman
filtering is about state estimation. The control variable u, which augments the control
system’s state and quantifies/models the maneuver’s level, is not known. Therefore, in
our input estimation-based tracking filter design methodology, the u estimate does not
rely upon the availability of prior information about it and is exclusively data driven.
That’s why our tracking filter design method is contingent on the augmented dynamical
system being observable.
3.2 Moving Window Algorithm

A moving window algorithm to allow for a time-varying input signal is used. The
algorithm is first demonstrated symbolically. The prepared-ahead-of-time data

(measurements): z,,. .., z,,. v,
Z, =y, +, k=1,...,M+N-I; v, 2 N(0,6?)
where M is the number of data windows and N is the final time. The moving window KF

algorithm will be exercised M times. Consider window # /, / =1, . .., M where the KF

operates on measurements z,,. .., z,,y_.

The continuous-time dynamics are

in@X,X@:L“OQ
dt
where
01 0
i 4 B] ]
X=|x d 4 = |:001
0 0
u OOOJ

24



The discrete-time dynamics are

1 dt dt2—|
X, =0 1 dt|Xx. k=1,..., 1+N-I;
0 0 1

The measurement equation is
z=0 0 0X,+v, ,vz=N00)

The KF is initialized with X[, P

For/=1 use
iy 0
X =X,=|x, |=|0
1 1
ol 0 0]
B=0 o 0
0 O oo |

We used true u(t) = 1 as the initial condition of the input in most of the experiments.

Even though this may give the filter artificial knowledge of truth to get good initial
transient, the input signal’s initial condition is not that important since its covariance is

set high at the beginning of each window. Rather than make [£];, huge, it might be
better to use an inverse covariance form of Kalman filter and let [(57)™'];, be zero instead,
in order to avoid numerical precision problems that can occur with a huge [P ],,; this,

however, was not exercised in this research.

Step through the KF algorithm and obtain

25



Set

u(k)= (X)) Vo k=I-1,...,[4+N-2

o, (k)= P )ss v k=1-1,...,1+N-2

We then implement a smoothing algorithm and obtain X, P**) to provide the initial

conditions for the state values at the next window by setting

0]
R P(S)
=X[(S} and 10[11 - ( { )2x2 0
0 0 oo

~

-

I+1

This is done to take advantage of data already collected from the previous window. We
use a fixed-point smoothing algorithm [4] since there is certain point in time at which the
value of the system state is desired. The initial conditions of the next window are one dt
(on the order of a tenth of a second in most cases) from the initial conditions of the
previous window; therefore, the use of a smoother aids the algorithm in obtaining better
state estimates.
3.3 Fixed-Point Smoothing Algorithm

As mentioned above, a fixed-point smoothing algorithm is used to obtain the

initial conditions for each incremental window. From [4], starting from initial condition
')E(ri | ri)z ;C(Z:)

with x(t: ) obtained from a concurrently running Kalman filter, the relation
5‘(’:‘ 2 ): ﬁ(ts |25 )+ W(tj )[’A‘(zj+ )_ "Ac(t; )]
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is solved for fixed ¢, , letting ¢, =¢,,,,t,,,, ..., t,, with the gain matrix W(t j.) evaluated

i+12 42

recursively as

A
A(rk ):P(tl? ﬁ]T (tk+l ?tk )PWI (rk;l )
The values for x(rj) and x(r;) in this expression are obtained from the Kalman filter

iterating forward in time. In fact,

ey )-2les = &6, ), -, 50 )

The error committed by this smoother is Gaussian and zero mean forj=i,i+1,...,/,

with covariance:
Ple,11,)= Pl 11, )+ wle, NPl )- 2l JW ()

solved forward for ¢, =¢,,,,¢,,,,. .., t, from the initial condition

i+12%i+2 3

P(t,/1,)= Pt} )
3.4 Summary
Summarizing, the moving window and fixed-point algorithms together make up
this new tracking filter paradigm. The moving window algorithm is used to allow for any
sudden maneuvers (step changes) of the aircraft and the smoothing algorithm is used to
take advantage of measurements from the previous window. The initial conditions of the

state estimates (not the control signal) for each subsequent window are provided from the

smoothing algorithm performed on the previous window.
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IV. Simulations and Results

4.1 Moving Window Simulations

Controlled experiments were conducted using the system dynamics and input
control signals from a variety of models. The level of modeling of target kinematics has
been gradually increased, starting out from constant acceleration models, to sinusoidal
functions, to more realistic aircraft/rocket models. Each model will be explained and
results presented. Synthetic measurements were generated by corrupting them with white
Gaussian noise. We show that the estimation algorithm properly produces good
estimates of the control parameter most of the time and, in addition, estimates fall inside
a band of +/- one predicted o, also provided by the algorithm, around the true parameter.
For a well tuned filter based on a good model, 68% of the estimates should fall within +/-
1 o pf true; 95% should fall within +/- 2 o of true. The software used was MATLAB.
Monte Carlo runs were generated of the various simulations. After each test concluded,
the results were analyzed and plotted using MATLAB.

4.1.1 Calibration Experiment

A calibration experiment was conducted first to determine the relationship
between the Signal-to-Noise Ratio (SNR) of the measurements to the non-dimensional

number of sample periods in each estimation window, . We vary the SNR of the data

and the discretization step of the Kalman Filter of one window. We allow the window to

“expand” until certain tolerances are met. The following kinematic model was used:

i=u, x(0)=x, , ¥(0)=x%, , u(t)=1(), 0<¢

28



¥ =%

This yields the augmented third-order kinematics:

X=u x(O) =X, x(O) =X,
u=0 u(O) =, (1544
y=x
The truth signal in this simulation experiment is
1
x{t)=—t
-1
it)=t
u(t) =1
Let the augmented state be
X
X=|x
u
so that
*o
X=4.X Xx(0)=Xx,=|x,| 0<¢
Uy
y=C.X
where
0 1 0]
A =[G 0 1 C.=(@1 0 0)
0 0 0
The discrete-time model of the system is
Xn =A4pX, X=X, k=0,1,
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Vi = Cp Xy

where
X, =X(kdt), y,=ykdt) , k=1,2,...;
and
1 dt %drz|
=0 1 dt CD:(I 0 0)
0 0 1J

The measurement equation for the expanding window Kalman Filter
Z, =Y, v, vk;N(O,of) k=1,2,...,N
and the measurement noise standard deviation o,used in the simulation is quantified by

the Signal-to-Noise Ratio (SNR) parameter

SNR=@=—1— = 0, e
o) o SNR

v v

The expanding window Kalman Filter was initialized using

b 0
X,=|x, |=|0
u, 1
with covariance
00 0]
F=/0 0 0
0 0 10°

The initial covariance of both dynamic states (not the control level u) are set to zero to
simulate that they will be “perfectly known” at the beginning of each window. Since the

initial conditions of each incremental window are the smoothed estimates from the
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previous window, this assumption is adequate for our purpose of testing window length.
Again, the input «’s variance is set large to emphasize it is not known at window onset.
We define the control level error tolerance as the accuracy of the estimated control signal.
For example, a control level error tolerance of 0.01 is

|u - ﬁl <0.01
Results of the calibration simulations are summarized in Tables 1, 2, and 3 for control
level error tolerances 1, 0.1 and 0.01 respectively. Each entry in the table is the number
of sample periods required to achieve the desired tolerance level for the given SNR and
dt. The tables provide the length of the estimation interval for a given df and SNR to
achieve the desired control level error tolerance of one Monte-Carlo run. So, for a df of
0.1 and an SNR of 10, the length of the estimation interval needs to be 9 sample periods
in order to come within 1 unit of the true control signal. The mean error (|u— i)
averaged over all Monte Carlo runs was considered but proved difficult to analyze since
error is “accumulated” over each run. Again, this test was conducted simply to get an
idea of the number of sample periods in each estimation window and could be further

tuned during each simulation.



Table 1: Control Level Error Tolerance =1

dt | 0.3 0.2 0.1 0.04 0.02 0.01 0.005 | 0.002 | 0.001
SNR
1 4 7 10 21 46 84 101 258 471
5 = 6 10 15 36 77 82 195 387
10 = 6 9 12 25 66 93 181 315
20 4 3 5 1 22 35 84 164 265
50 3 4 6 13 18 43 80 115 222
100 3 3 5 13 24 29 45 105 197

Table 2: Control Level Error Tolerance = 0.1

de | 0.3 0.2 0.1 0.04 0.02 0.01 0.005 | 0.002 | 0.001
SNR
1 12 17 22 51 148 241 222 592 989
5 6 10 22 36 74 145 229 515 867
10 8 13 19 31 72 107 187 514 910
20 4 12 20 33 50 103 198 376 512
50 5 9 16 25 38 82 134 315 462
100 5 9 7 38 37 90 150 329 388
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Table 3: Control Level Exror Tolerance = (0.01

dt | 0.3 0.2 0.1 0.04 0.02 0.01 0.005 | 0.002 | 0.001

SNR
1 2 44 84 208 322 538 783 1002 | 1002
5 27 28 52 134 169 265 677 954 1002

10 18 32 56 99 138 323 all 1001 1002

20 14 24 47 48 130 257 452 693 1002

50 13 24 35 61 160 182 441 872 967

100 13 14 30 58 78 226 273 566 782

These tables provide good insight into the number of sample periods required within the
estimation interval. For a given SNR, the smaller the d?, the more sample periods
required in the estimation interval. Likewise, for a given d¥, the higher the SNR, the
fewer sample periods required in the estimation interval. Finally, the higher the control
level error tolerance, the more sample periods required in the estimation interval. The
goal is to keep the estimation interval as short as possible but not at the expense of
estimate accuracy. An estimation interval of 30 was used in the following simulations.
4.1.2 Constant Acceleration Model
The moving/sliding window algorithm (MWA) was tested using the same constant
acceleration model. The purpose of this model was to verify the smoothing algorithm

and use the results as a basis for future simulations. The results are presented in Figure 2.
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Figure 2: Ten Monte Carlo run analysis of the Constant Acceleration kinematic
model using a Moving Window: o, =0.1, #=30, dt=0.1. We

show the True Mean Error +/- One Sigma (Monte Carlo evaluated).

This tested the efficiency of the smoothing algorithm using a constant acceleration
input of 1. RMS errors are relatively small and the input signal, u, the acceleration, is

being tracked with great precision. Consequently, the state components are properly

tracked.
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4.1.3 One Dimensional Sinusoidal Model
The input estimation-based MWA algorithm was tested using a sinusoidal control

signal u(r) = cos(2zzﬁ). The analytic solution is

5(0)= - cosont]

X5 (t) = ﬁ sin(27_zﬁ‘)

Without loss of generality, we chose /=1 Hz. We will also consider /= 0, in which case
a constant unit step input is considered.
Let the estimation interval

AT =—

I,
Thus the length of the estimation interval is quantified by the f, ([Hz]) parameter. One

wishes to find an adequate moving window estimation interval of length AT, from which

the input u is accurately estimated. Thus, set
=a , a¢=2,3,4,5,8,10.

a is set higher than the Nyquist rate of 2 so that the bandwidth constraint is satisfied.
The additional sampling rate f, sets the discretization time step df in the discrete-time
Kalman filter used herein. Since the dimension of the parameter space is 3 (X =
(x,,x,,u)), set f = length of discrete-time estimation interval of the Kalman Filter,

p=3. Thus

ﬂ=ifi’—, B =3,5,9,20, 50.

S5
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Recall the measurement noise standard deviation o used is quantified by the Signal-to-
Noise Ratio (SNR) parameter

Amp 1 1
=3 23 = g
c 4z fo 4z” f~SNR

SNR =

We experimented with SNR =1 (0 dB), 5, 10, 100, 200, 500, 1000 (60 dB).

First, a constant u(¢) =1 calibration experiment was conducted to obtain the
appropriate number of sample periods in a window. Depending on the SNR, the constant
u experiment gave us an idea of how long the moving estimation window should be in
order to obtain good state and input estimates. The truth maneuvering target’s trajectory

18, as before,

5(0)= (i -cos2nt)

The results are presented in Figure 3. We will also compare the performance of our filter

to an MMAE based tracking filter in Chapter 4.
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Figure 3: Ten Monte Carlo run analysis of the Sinusoidal Function simulation:
=63, =30, f=016, f, =1.0027, f =30,d:=0.03,
dTl' =0.997 , o, =0.1. We show the Mean Error +/- One Sigma

(Monte Carlo evaluated).
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Figure 4: Estimated Input (red) and [True Input +/- One Sigma Error](Monte Carlo
evaluated) (blue). The same parameters used in Figure 3 are illustrated.

The estimated input is from one Monte Carlo run.

Figures 3 and 4 illustrate how well the MWA performs against a constant
acceleration of 1. The estimation interval of length 30 is successful in producing
adequate filter performance. The moving window algorithm tracks the sinusoidal control
signal very well; it remains within the band of +/- one sigma (Monte Carlo evaluated)
around true parameter. Even though this plot indicates rather “conservative” tuning, it

provides a starting point (an estimation interval of length 30) for future simulations.
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4.1.4 Aircraft Kinematic Model

We now test the algorithm against a more realistic model of aircraft motion. The
aircraft’s motion is confined to the Euclidean plane. The control variables are target
course angle H and speed V. We observe the targets position (x, y) , as when radar
measurements are taken and x = Rcos(y) , y = Rsin(y), where R and y are the target’s

range and bearing, respectively.

x=V cos(H) x(0)=x,
: ; 0<t
y=Vsin(H) ¥(0)=y,

Thus
X=u, x(())=x0 oy
y=u, y(0)=y0

During a measurement interval window, the control variables u, (=¥ cos(H)) and u,
(=V sin(H )) are taken to be essentially constant. This should provide an adequate
approximation if the estimation interval is small.

Therefore, the augmented dynamics in R* are

X=U X(0)=X0
U=0 U(0)=0

X 5 u, 5
X = eR U= eR”
y U,

In matrix notation, the augmented dynamics in R* are
i X s 02)(2 12—| X
dar\U 0 ()IJ U
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and the measurement

so that the measurement equation is

Y=[1, om]@}

Thus

A -

4x4 T

Cru = [Iz Ozxz]

|i02x2 I, I_I
U Ozx2J

The pair (4,C) is observable
Therefore, according to Theorem 1, one can obtain data-driven estimates of the input U
and there is no need to use prior information. Indeed, observability implies that, from the

measurement record [x(t), y(z‘)], 0 <t < AT, one can obtain data-driven estimates of the
parameter (u;,u,) without the use of prior information on the parameter. We do not want

to use prior information on the parameter which are control variables and at the pilot’s

discretion.

Once the control variables u, and u, have been estimated, one obtains an

estimate of the aircraft’s velocity and the course angle (to first order)

V il +

H~ arctan(@’*—}
U

Finally,
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No smoothing is required when the parameters (1,4, ) is obtained by solving a linear

regression (in batch).

For the aircraft kinematic model simulation, the dynamics model used was

%=V cos(H) x(0)=0
y=Vsin(H) y(0)=0 ogs%’r
H =0 H(0)=0

and therefore for constant Q, the truth model becomes

= [g Jsin(Qr) .
)= 5 Ji-cosen]

Table 4: Parameters for Aircraft Kinematic Model Simulation

V,..=200m/s =125 f=0.016 Hz dT'=0.5 sec
o, =40.7m £ =30 f.=1.95Hz dt=0.017 sec
€ =0.0982 rad/sec =3 S, =58.61Hz x, = 20000 m

This table summarizes the parameters of interest in the aircraft kinematic model. This

simulation presented a more realistic application of the moving/sliding window and also

tested it against considerably high measurement noise intensity levels and strong target

mancuvers.
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The tracking/estimation results for the maneuvering aircraft simulation are presented in

Figures 5-7.
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Figure 5: Mean Error +/- One Sigma (x, Vol ,uz) (Monte Carlo evaluated) (10

Monte Carlo Runs)
The RMS error of the control signal is not as good as in previous simulations. This is

expected due to high measurement noise (low SNR). Good tracking performance is

achieved nonetheless.
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Figure 6: Aircraft Kinematic Model. The trajectory is a circle with radius (V/Q).

True (red) vs. Estimated (blue) trajectory is shown (one Monte Carlo run).

This figure displays the strength of the input estimation-based MWA. The tracking filter

performs very well.
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Figure 7: Aircraft Kinematic Model. Estimated Input Level. u,vs. u, plot (one

Monte Carlo run).

This figure contains one Monte Carlo run and shows the result of high noise intensity

corrupted measurements. Even with such high noise characteristics, the control signal
can be efficiently determined from this graph. The aircraft’s velocity, ¥, is estimated by

obtaining the radius of the circle shown (¥ =~ W+ 1),
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4.1.4.1 Maneuvering Aircraft Simulation
We now wish to see how well the algorithm performs against a maneuvering
aircraft with variable velocity and turn rate. The Maneuvering Aircraft Simulation was
tested using the parameters in Table 5. The parameters are the same as for the previous

aircraft kinematic model with the exception of changing the aircraft maneuver every 1000

time steps.
Table 5: Parameters for Maneuvering Aircraft Simulation
0<t<1000 1000 <¢ <2000 | 2000 <z <3000 | 3000 <t <4000
V. =200 m/s Ve =100 m/s | V., =300 m/s | ¥, =50 m/s

0 =0.098 rad/sec | Q2 =0.2 rad/sec | Q =0.3 rad/sec Q =0.5 rad/sec

The results of the maneuvering aircraft simulation are presented in Figures 8-12.
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Figure 8: Maneuvering Aircraft States. True (red) vs. Estimated (blue). (one

Monte Carlo run)

Figure 8 clearly displays an added benefit of this moving/sliding window algorithm: the
spikes in the control signal’s estimate indicate a discontinuity in the aircraft’s control
signal. Indeed, the filter assumes that the control signal is constant in the window. Since
a jump in u occurs in the window, the estimates of u are bad and spike. A spike is a tell-
tale sign of a maneuver onset. Hence, one can detect maneuvers using parameter
estimation. Such detection ability allows you to declare points where the “constant u”

model is not adequate. One should not try to use an estimate based on a window that
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includes this point of discontinuity. Better yet, one should process up to that point in
time, but not beyond, and then process separately from that point forward, seeking a
different constant value for » through the estimator.

Figure 9 illustrates the aircraft being tracked despite a complex maneuver. Even
though the aircraft undergoes unrealisticly sharp turns, the input-signal-estimation-based

MWA tracking filter maintains track.
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Figure 9: Maneuvering Aircraft Simulation. True vs. Estimated Complex

Trajectory. (one Monte Carlo run)
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Figures 10-12 further illustrate how well the MWA performed in the maneuvering

aircraft simulation.
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Figure 10: Mean Error +/- One Sigma (Monte Carlo evaluated). Error is more

clearly seen in Figure 11. (10 Monte Carlo runs)

Once again, the figure shows spikes every 1000 time steps at the beginning of each

maneuver. The tracking filter takes roughly 1-2 seconds to regain track after the onset of

a new manecuver.
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Figure 11: Zoomed in Mean Error +/- One Sigma (Monte Carlo evaluated). (10

Monte Carlo runs)

Position errors are small and the control signal’s estimates are reasonable despite such

high measurement noise injected into the simulation.
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Figure 12: Estimated Control Signal. As before, the aircraft’s velocity of each
change in maneuver is indicated by the radius of each circle. (one

Monte Carlo run)

Figure 12 is the estimated control signal from one Monte Carlo run of the maneuvering
aircraft simulation. The erratic lines represent the MW A regaining track after each step
maneuver change. Realistically, an aircraft’s velocity will not jump from 200 m/s to 100

m/s in one dt, but even with such a step change in maneuver intensity, the input

50



estimation-based MWA handles it well. Moreover, it only takes about one second to
determine the aircraft’s current velocity of the subsequent maneuver.

4.1.5 Isotropic Rocket Model

The purpose of using the Isotropic Rocket model is to see how well the MWA
estimates a target’s acceleration state. We now consider the isotropic rocket kinematic

model for a maneuvering target

— ux
y=u,
let
V., =X v, =y
The augmented state vector
.
vI
u}(
X = eR°
¥
v}'
My
The dynamics are
Xo
vxu
X =A4X U,
X (O) =X, = e R*
y=CX )
v)’u
u

where
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If Doppler measurements are also available, the measurement matrix is

o OO
S o = O
o O o O

0
0
1
0

0]
0

-_o O O

l

00 00 O]

1
C= |
00010 0]

To check for observability, again calculate the observability matrix O and verify rank(O).

o:[cT ATCh (AT)QCT]

Indeed in each case (Doppler or not), rank(O) = 6 and the system is observable. One can

now solve the ensuing linear regression in the parameter

3:(xo,vx”,ux,yo,vy“,uy)

a

In fact, two decoupled linear regressions in (xo,vxn U )T and (yo,vy” s )T are obtained.

The Isotropic Rocket Model was put to the test using the parameters in Table 6.

Table 6: Parameters for Isotropic Rocket Model Simulation

u, =4154m/s’ v, =200 m/s | x,=0m dT=0.3 sec
u, =41.54 m/s* v, =200 m/s ¥, =0m dt=0.01 sec
o, =0.1m £ =30
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Recall that 47 is the length (sec) of each estimation window and dt is the discretization
time step (sec) of the moving Kalman filter. The results of the simulations are shown in

Figures 13 and 14.
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Figure 13: Isotropic Rocket Model States. True (red) vs. Estimated (blue) for

(x, Vel VsV, u}) (one Monte Carlo run)

Despite the step in the control signal, the algorithm maintains good track. The input

estimate’s spikes result from the step input changes alternating between negative and

positive 41.5m/s*. This simulates a 4 g jinking maneuver performed by the aircraft.
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Figure 14: Isotropic Rocket Model. Mean Error +/- One Sigma (Monte Carlo
evaluated) of Parameter Estimation error (10 Monte Carlo Runs). The

track is recovered after 1.5 seconds.

The aircraft’s position and velocity are tracked with great accuracy. This shows that

periodic high amplitude step maneuvers are handled well by the input-estimation-based

MWA.
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4.1.5.1 Isotropic Rocket Model: Time-Varying Smooth Inputs
The purpose of this model is to extend the Isotropic Rocket model to sinusoidal time-
varying smooth inputs. We consider the smooth Isotropic Rocket inputs

u(t)= Asin(ot)
u, (t) - Acos(a)t)

The truth model used is

x(t)=x, +v, - :47 sin(ar) %) /o
@

Vx“ 0

v (t)=v, —icos(a)r) } ,
@ 0

4 Xo=| " 17| 4
Wt) = yo +v,,t = cos(at) Yo

wl = o | 1o

v, ()=, + ﬁsin(a)r) u, | \4

w

The truth model parameters for this maneuvering target (dt = 0.01) are listed in Table 7:

Table 7: Parameters for Smooth Isotropic Rocket Model Inputs

0<¢t<1000

1000 < ¢ <2000

2000 <t <3000

3000 < <4000

A=41542

A=232

A=5012

A=102

= z rad/sec
4

W= i rad/sec
2

W= 5 rad/sec
12

Fia
= -é- rad/sec

The results for the maneuvering Isotropic Rocket Model are illustrated in the Figures 15-

18.
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Figure 15: Smooth Isotropic Rocket Model True (red) vs. Estimated (blue) for

(x, Vool V5V, ,uy) (one Monte Carlo run)

Spikes in estimated trajectories (blue) indicate when a maneuver has begun. The MWA

“detects” the maneuver no matter how strong it is and quickly regains track and produces

good estimates of the target’s velocity and input level, a.k.a., acceleration.
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Figure 16: Smooth Isotropic Rocket Model Mean Error +/- One Sigma (Monte

Carlo evaluated) (10 Monte Carlo runs)

It takes on the order of one-two seconds to regain track after each maneuver.
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Figure 17: True Control Signal (red) vs. Estimated Control Signal (blue) (one

Monte Carlo run)

Recall, the erratic lines in the figure indicate a step maneuver. The radii of each circle

indicate the amplitude of the control input level for each maneuver. The estimated input

level continues to track despite strong maneuvering of the aircraft.
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Figure 18: True (blue) vs. Estimated (red) Trajectory. Track is maintained. (one Monte

Carlo run)

Figure 18 illustrates that the MWA can handle various turn rates. Another more

challenging simulation was conducted using the truth model parameters in Table 8.
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Table 8: Parameters for Complex Smooth Isotropic Rocket Model Inputs

0<¢<1000

1000 <¢ <2000

2000 <t <3000

3000 < ¢ <4000

A=41542

A=222

A =502

A=102

T
o =— rad/sec

T
W= E rad/sec

w= 2 rad/sec
12

i3
o =— rad/sec

v, =30 m/s

X

Vi =100 m/s

V,, =400 m/s

v,, =—100 m/s

v, = 40 m/s

. =100 m/s

v, = 200 m/s

¥

v, = 20 m/s

The results for the complex aircraft maneuvers are illustrated in Figures 19-22.
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Figure 19: True (red) vs. Estimate (blue) for (x, Vol ViV, ,uy) (one Monte

Carlo run)
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The algorithm still handles well such admittedly unrealistic step changes in maneuvera
level. Despite varying the initial conditions, it still only requires a couple of seconds to
regain track of the parameter. This is more clearly seen in Figure 20 where the mean

error statistics are shown.
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Figure 20: Mean Error +/- One Sigma (Monte Carlo evaluated) (10 Monte Carlo
Runs). Again, RMS errors are favorable and it takes between 1-2

seconds to regain track.
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Figure 21: True Control Signal Level (red) vs. Estimated Control Signal Level

(blue) (one Monte Carlo run).

The erratic lines in the Figure are caused by the MWA regaining track after each step

maneuver change.
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Figure 22: True vs. Estimated Aircraft Trajectory.

The aircraft remains tracked despite loops.

Now that the input-estimation-based MWA has performed considerably well
against a variety of kinematic target models, the next objective is to measure its
performance against a Multiple Model Adaptive Estimator (MMAE). First, the design of
the MMAE is explained and then the seven-filter MMAE based estimator’s performance

1s compared to simulation results obtained in the input estimation-based MWA.

63



4.2 MMAE Comparison

4.2.1 MMAE Fundamentals

The Multiple Model Adaptive Estimator uses a bank of Kalman filters, each based

on a particular value of a parameter vector [4]. The parameter vector is a finite number

of values (a,,a,, . .., a;) as aresult of discretizing a continuous parameter space.

Associated with each parameter value is a different system model. The multiple model

filtering algorithm and its structure is depicted in Figure 23.

Kalman filter
based on g

Kalman filter
based on a,

Y

Katman filter
based on a,

iy

S

r y 9

Hypothesis
conditional probability
computation

Py

Figure 23. Multiple Model Filtering Algorithm [4]

When a measurement becomes available, the MMAE generates residuals for each

Kalman filter, which are then passed on for further processing by a hypothesis
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conditional probability computation. The conditional probabilities of each filter are used

as weighting coefficients to generate the state estimate using the recursive relationship

f a.Z(t, (z;|a,Z, )p(t)

ZfZ(r, Na.Z (b, )(zi | aj’Z:‘—])pj(ri—l)
#u

Given the measurement history, this produces an overall state estimate,

() =2 %,(N)p.(2)

k=1
which is a probabilistically weighted average of the state estimates from each Kalman

Filter in the bank using p,(¢,) as the appropriate weighting factors. The conditional

covariance of x(¢,) is

K
P() =2 ) e + Bt = 2D D - 50]
k=1
Moreover, the estimate of the parameter vector (conditional mean of a at time ¢,) is

K
a(t) =2 a,p,(t)

k=1

with a conditional covariance,
E{a—a(t)|[a=at)] 126) =2 }= 2 [a, - ()]~ )T pu(e)
k=1

The performance of this algorithm depends on the discretization of the parameter space
and the MMAE’s ability to distinguish between “correct” and “mismatched models”. In
other words, it must be able to distinguish between the residual characteristics of each

Kalman filter.
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For the sake of comparison with the MWA, an MMAE that minimizes the RMS
position and velocity error against a benign and/or step-maneuvering target which cannot
exceed 20-g maneuvers is used. The author in the class, EENG 768 at AFIT, Summer
2005, developed the MMAE based tracking filter.

4.2.2 MMAE Design

It must first be mentioned that this MMAE was not designed for this MWA
comparison specifically. The MMAE chosen and the particular tuning used for each
elemental filter were developed for a generic tracking filter and not with our current
MWA simulations in mind. This comparison may not represent a fair comparison to
“the best an MMAE could do with the classes of problems represented in this thesis”.
Nonetheless, the author cautiously attempted to compare the following MMAE to the
MWA developed in this thesis.

A frequency domain (FD) model design procedure was systematically used to
build a seven-model MMAE that could handle various benign and step-maneuvers. Three
First Order Gauss-Markov Acceleration (FOGMA) filters were created to accommodate
1-, 6-, and 20-g benign maneuvers with correlation time coefficients of 4 seconds, 2
seconds, and 1 second, respectively. Step-maneuvers off these benign trajectories are
tracked using three Periodically Correlated Acceleration (PCA) Complement Filters,
which are designed to model the higher frequency content of the dynamics due to a step
change in the target trajectory. These filters are termed “complement filters” because they
work in conjunction with the FOGMA models as depicted in Figure 24. Each of the PCA
Complement Filters has a peak which closely aligns with the cut-off frequency of each

FOGMA filter so that step changes in target dynamics are modeled by the MMAE. The
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seventh model is a Second Order Gauss-Markov Acceleration (SOGMA) filter, which is

intended to handle very fast on-off step maneuvers. It was chosen to capture those

maneuvers performed in the higher frequency ranges and hopefully catch any other

maneuver performed outside the scope of the other six filters used in the MMAE.
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Figure 24: PSD plot of the final design of the MMAE models.

Finally, the design included the ad-hoc modifications of Modal Probability Lower

Bounding (MPLB) and Filter Re-starts (FR) to allow the MMAE to track time-varying

target dynamics. Altering the probability lower bounds prevented elemental filters from

reaching zero allowing better probability flow between the elemental filters. The MPLB

was set to the heuristic value provided in class of 0.1x {# of filters}_] . Altering the
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threshold on “restarting” diverged filters allowed the diverging filters to recover more
rapidly. The FR threshold was set to 10 (or five times the approximate value of
r" A7'r (the residual, residual covariance inverse quadratic product). Divergent filters
(filters which exceeded the FR threshold) were re-initialized with the MMAE state mean
and covariance estimates (less the divergent filters). These two tuning parameters
(MPLB and FR) are important in making the MMAE algorithm perform efficiently.
Moving the probability to the filter with the “most correct” model is essential for a good
MMAE making the “7” 47'7” term important as well. This value equates to the number
of measurements (two for this design) for that filter in the MMAE, which matches the
true trajectory. In other words, we want the probability to flow to the elemental filter in
the MMAE closest to this number.

4.2.3 Design Test Results
The final MMAE design was tested against four scenarios. The following test cases are
used to test the efficiency of the MMAE algorithm. They are only used to design a
“good” MMAE for this generic tracking problem. Test Case 1 evaluated the performance
of the MMAE against a truth model set to the parameters of one of the three FOGMA
models without a step-maneuver. Test Case 2 allowed the truth model to be any FOGMA
model not set to the parameters the MMAE’s FOGMA models (again, without a step
maneuver). Test Cases 3 and 4 are variations of Test Cases 1 and 2, respectively, in that a
step maneuver occurs at some point in the simulation run. The first two test cases set the
FR threshold to 200 while the last two test cases set it to 10 to make the MMAE. The FR

threshold was set lower in Test Cases 3 and 4 to accommodate for the step maneuvers
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performed in the simulation. The first test case used the FOGMA 1 model and provided

good results as shown in Figure 25.

Probability Flow

——FOGMA 1 (1)
09k ——FOGMA2 (2)
——FOGMA3 (3)
——SOGMA 1 (4)

—PCA1 ()
——PCA2[)
PCA3 (7)

o
@
T

Probability
e o o e
= o @ ~
T T T T

=}
w
T

o
ha
T

0.1

Figure 25: Modal probability flow averaged over 10 Monte Carlo simulations
for each of the seven MMAE filters under Test Case 1 conditions

with the truth model parameters set to FOGMA 1 values.

The proper filter (the one matched to truth) assumed most of the probability. Test Case 2

also produced expected results since the closest filter obtained the majority of the modal

probability. The truth parameters and results are shown in Figure 26.
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Figure 26: (a) Modal probability flow averaged over 10 Monte Carlo simulations

In the overall MMAE RMS position and velocity error plots, there are five traces. The
middle three are the MMAE estimate error mean +/- one sigma (standard deviation) as
computed from the Monte Carlo simulations. The top and bottom traces represent how
well the MMAE “believes” it is doing in estimating the states. As long as the Monte

Carlo statistics stay within the MMAE computed lines, this MMAE is performing as it

should.
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Figure 26: (b) Overall MMAE RMS position and velocity error

The third test case allowed a step maneuver, so the FR threshold was lowered to 10. The
results of two sub-cases are depicted in Figure 27. Note that the PCA Complement Filters
appear to model the initial (the step up or onset of maneuver) step change in target

dynamics and not the final step change (the step down or termination of maneuver).
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Figure 27: (a) Modal probability flow for each sub-case over 10 Monte Carlo

Simulations
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Figure 27: (b) Overall MMAE RMS position and velocity error
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Figure 27: (c) Modal probability flow for each sub-case over 10 Monte Carlo

Simulations

74



¥ pos (R)

x vel (fisec)

y vel (Rigec)

MMAE Estimate Error Mean «- Sid Dev Mean = -0.0021537

i \\//\,/\\/./\,
; i0 x T 7 7 % 7 & S )
Mean = 0 45309
[ NNAR NI NN DN TN NN
NS ANA
AR AR NI A S AN AY
0 i 2 Y e % % 7 s‘u S i
Mean = 5 0667
T I 1 \L 1 T ) 1 I
b i0 % £ 7 s'u % 7 % % o
Mean = 2.1146
0 i » = © % @ 7 % % i

(d)

Figure 27: (d) Overall MMAE RMS position and velocity error

The results for Test Case 4 are shown in Figure 28. This case demonstrated that
although the PCA Complement Filters were designed to handle step-maneuvers, these
filters can also model benign maneuvers if their steady-state characteristics match that of
the truth model. Referring to Figure 24, the steady-state mean square acceleration of all
of the filters is given by the area under each filter’s PSD curve (keep in mind that the

PSD plot in Figure 24 does not show the negative frequency portion of the PSD curves,
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so the area under each PSD curve shown in the figure is actually one-half of the steady-

state RMS error).
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Figure 28: (a) Modal probability flow averaged over 10 Monte Carlo

simulations

We designed the PCA filters for step maneuvers; however, the probability flow never

fully transitioned to the other filters after the maneuver. This shows the “coarseness” of
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our discretization of parameter space meaning there is no one filter which takes all the

probability flow from the other filters during a maneuver.
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Figure 28. (b) Overall MMAE RMS position and velocity error

4.2.4 MMAE Design Conclusions
The FOGMA with PCA Complement Filters and SOGMA filter design appears to

work well (1.e., produces low position error) under the test conditions of the four test

(7



cases. Incorporation of the SOGMA filter seemed to improve RMS position error results
but never obtained the majority of the MMAE modal probability for any significant
amount of time. Again, the previous section simply justifies this MMAE being a decent
or reasonable MMAE design to use as a basis of comparison.
4.3 MMAE Results

The performance of the MWA has been tested against a sinusoidal function, an
aircraft kinematic model (benign and harsh maneuvering), and an isotropic rocket model
(benign and maneuvering). The above seven-filter MMAE was put to the test against the
MWA for comparison keeping in mind that the MMAE cannot estimate the unknown
control signal. Therefore, the ability to track the position and velocity was used as a basis

of comparison between the MMAE and MWA.
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4.3.1 One Dimensional Sinusoid Tracking
The first test case was the sinusoidal function which simulates an aircraft performing a

“jinking” maneuver.

MMAE Estimate Error Mean +/- Std Dev
12 T o T T S i T — T T

x pos (ft)
(N}
|

8L i L | | ! L I I L 1 |
0 20 40 60 80 100 120 140 160 180 200

Figure 29: MMAE Estimate Error Mean +/- One Sigma (Monte Carlo evaluated)

(10 Monte Carlo runs) (dz = 0.1)

RMS errors are satisfactorily small. Notice it takes on the order of 20 time steps or 2

seconds for best tracking performance.

79



MMAE Estimato Error Mean +/- Std Dev

T T T T T | T
0.8 ,
0.6} 4
i F;\/_\
04 TJ"‘/\‘\/\ }'\I /f/\j\'\/ ‘I\/ / v \\ 7
/ ‘ | \ " \
/\\ /\..P\ .'\’/ \/\‘/\/\ ‘j Tt I\.‘
0.2 ™ L‘w.\ v,‘l\ f‘/ /\ /\\/\/\/\4\\ ) Sk \I‘ 4
! \\_ \ f/ / | W\ W VYA NPRN
5 ok \ “\\ - jf / ‘\ \ / s \ ;
; W\ A Wy 7 RN A
Y ‘\/’ [ \ V\ \ /\ \ v v \\ \\ ||
02} ‘\\‘\ / f \4 V \/‘/\/ \.\‘ \J\ \ u\/\’ /jx
\ .’f U\/JVJI / \ \ \/\‘I‘i ‘
Sk '\_,.A\ A A V‘J \/\ \/ N\ e
— oy Y, W\
-/
06 B
08 7
| | | 1 | =l | L |
K 40 80 80 100 120 140 160 180 200

Figure 30: Zoomed in MMAE Estimate Error Mean +/- One Sigma (Monte Carlo

evaluated) (10 Monte Carlo Runs)

Figure 30 presents a zoomed version of Figure 29 to resolve best tracking performance. The

MMAE based filter tracks very well.
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Figure 31: Sinusoidal Tracking. Probability Flow of MMAE

The PCA 1 filter assumes most of the probability and never “lets go”. This is probably

the result of the frequency of the sinusoid function (1/27z). Note the alternating

probability flow between all three FOGMA models. This unfortunately implies that this

MMAE is not necessarily the “right” MMAE to use for portraying the best that an

MMAE can provide in performance for this particular problem.
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4.3.2 Aircraft Kinematic Model

The MMAE filter is tested against the aircraft motion model using the same truth

model parameters used for the MWA in Section 4.1.4.

Table 9: Parameters for MMAE Aircraft Kinematic Model Simulation

7

frue
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o, =40.7m

Q =0.0982 rad/sec
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Figure 32: MMAE Estimate Error Mean +/- One Sigma (Monte Carlo

evaluated) (10 Monte Carlo Runs) (df = 0.1)
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Figure 33: Zoomed in MMAE Estimate Error Mean +/- One Sigma (Monte

Carlo evaluated)

The MMAE performs reasonably considering the intensity of measurement noise. RMS

errors are not as good as those from the MWA. The MWA performed an order of

magnitude better in precision.
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Figure 34: MMAE Aircraft Kinematic Model. Probability Flow of MMAE

The alternating probability flow between the three FOGMA models appears again. The

PCA 1 filter is silent until towards the end of the simulation. The cycling between the

FOGMA models may be indicative of the sinusoidal nature of the maneuver.
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4.3.2.1 Maneuvering Aircraft Model

The MMAE is now tested against a maneuvering aircraft model.

Table 10. MMAE Parameters for Maneuvering Aircraft Simulation

0<t<40 40<1<80 80 <7 <120 120 <7 <160
V,. =200 m/s Ve =100m/s | ¥, =-300m/s | ¥, =50 m/s

Q =0.098 rad/sec

Q=0.2 rad/sec

Q =0.3 rad/sec

Q =0.5 rad/sec

MMAE Estimate Error Mean +/- Std Dev
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Figure 35: MMAE Estimate Error Mean +/- One Sigma (Monte Carlo

evaluated) (10 Monte Carlo runs) (dt =0.001)
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Figure 36: MMAE Maneuvering Aircraft Kinematic Model. Probability Flow of

MMAE.

The MMAE based tracking filter had the most difficulty during the third maneuver. A
major problem must exist in the MMAE and was regrettably unresolved. It tracked quite
well during the other maneuvers and primarily equaled the error characteristics of the
MWA. In addition, without the considerably small d¢ = 0.001, all filters in the MMAE
diverged. Nonetheless, the MMAE produced good tracking performance for the

maneuvering aircraft kinematic model.
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4.3.3 Smooth Sinusoidal Isotropic Rocket Model
MMAE is now tested against the Smooth Sinusoidal Isotropic Rocket Model. The truth

model parameters for the maneuvering target (d¢ = 0.7) are listed in Table 11.

Table 11: MMAE Parameters for Smooth Isotropic Rocket Model Inputs

0<t<100 100<£<200 | 200<£<300 | 300<¢<400

A=52 A=%D A=42 A=102

o= ol rad/sec | @ = Erad/sec o= =, rad/sec | @ = z rad/sec
4 2 12 6

It should be mentioned that the MMAE-based tracking filter could not maintain track
utilizing the exact parameters from the MWA simulation. The amplitudes of the
sinusoidal truth model were reduced an order of magnitude to prevent divergence of all
filters. This further illustrates that despite the intention of a fair comparison between
MWA and MMAE, there is strong reason to believe that this MMAE is flawed, so that a

meaningful comparison has unfortunately not been provided.
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Figure 37: Mean MMAE Estimate Error +/- One Sigma (Monte Carlo evaluated)

(10 Monte Carlo runs) (d¢ = 0.1)
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Figure 38: Probability Flow of MMAE

The SOGMA and PCA 1 filters took the majority of the probability flow.

4.4 Summary

In summary, comparing the MMAE-based filter was quite difficult. This
comparison showed that tuning an MMAE-based filter is more complex than tuning our
moving window algorithm. These results do not imply that an MMAE-based filter is
incapable of providing excellent position and velocity tracks but that this author achieved
better success using the moving window algorithm. We obtained good estimates of

position and velocity as well as an estimate of the input.
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V. Discussion
This chapter discusses the experimental results of this research. It will discuss
insight from the calibration experiment, the MWA, the smoother used in the algorithm,
and the MMAE comparison.
5.1. Calibration Experiment
The calibration experiment using the constant acceleration model provided great
insight into estimation window length setting. An estimation window on the order of a
second long and using thirty sample periods within each window produced good

estimates. We recognize a longer  would improve KF performance, e.g., when

increasing window length to 50 or 100 sample periods. The RMS estimation error

reduction did not improve enough to warrant such an increase in computation time.

5.2 Moving Window Algorithm

The input-estimation-based Moving Window Algorithm (MWA) performed
exceptionally well, independent of the complexity of the trajectory it was designed to
track. Small estimation window lengths between 0.5 and 1 second worked very
efficiently. These small intervals allowed estimation of the various trajectories with
minimal RMS errors. In addition, the MWA has the additional attribute of being able to
detect maneuver onset. When sliding over a sudden change in input level, it spikes.
Indeed, the discontinuity in the control signal causes the spike, because the control
parameter is supposed to be constant in the window. This destroys the window’s
approximation of the control as it “slides” over it. We designate the highest derivative,

the control variable and since the derivative does not exist at sharp turns (corners) or at
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the moment of a step discontinuity, a spike forms. This makes this tracking filter a good
maneuver detector. Such detection ability allows you to detect points where the constant
u model is not adequate. One should not try and use estimates based on a window with a
Jump discontinuity. Instead, one should process up to the discontinuity, but not beyond,
and process separately from that point forward seeking a different constant value for  in
the next window. Nonetheless, it took about 2 seconds to regain track.

Most importantly, the MWA successfully estimated the control signal. Keeping the
control signal almost constant during the small estimation window interval contributed to
this result. The fact that the control level’s variance is set very large at the beginning of
each window is instrumental in achieving successful results with minimal RMS errors
when the control signal changes rapidly. It allowed the tracking filter to maintain track,
despite the most complex of trajectories.

5.3 Smoothing Algorithm

The moving window estimator would not be as effective without the smoothed
estimates of the dynamic states (excluding the control signal «) at window onset. One
important issue concerning moving estimation intervals is determining the initial
conditions for of each estimation window. Smoothing the state estimates for the next
estimation interval’s initial conditions while the Kalman Filter ran concurrently achieved
the best results. In all cases, the smoothing algorithm provided excellent tracking
performance and helped to estimate the control signal u.
5.4 MMAE vs. MWA

A comparison was attempted between the use of one sliding window Kalman

Filter and a seven-filter MMAE filter bank. This task proved quite difficult for a fair
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comparison. MMAE requires much tuning of many Kalman Filters and relies upon
proper discretization of the parameter space. This can seem to be a long and involved
process to achieve minimal RMS errors independent of the complexity of an aircraft’s
maneuver. Indeed, the complexity of MMAE design motivated the objective of this
thesis. The MWA has only two significant parameters of concern: the estimation
interval length and the Kalman Filter’s sampling rate (time step). For very strong
maneuvers, the MMAE had difficulty maintaining track and diverged quite often. This is
strange and alarming for a well-designed MMAE. Basing the MMAE elemental filters
on the augmented model may have alleviated such issues. The MWA RMS errors were
either on par or exceeded the MMAE design. The moving window with smoother
algorithm proved to outperform the MMAE for most of the simulations and estimated the
parameters, that is, provided good target tracking with good precision. Finally, by
construction, the input estimation-based tracking filter provides an estimate of the target’s
acceleration, recognizing the precision is not as good as position and velocity estimates.
This 1s conducive to the employment of advanced Augmented Proportional Navigation
missile guidance laws which require an estimate of the target’s acceleration.

5.5 Summary

This chapter discussed the results of the calibration experiment and explained the benefits
of the moving window and smoothing algorithms. It also discussed how well the

MMAE-based filter performed against the MWA.
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VI. Conclusions and Recommendations

The focus of this study was on tracking maneuvering targets using input
estimation and utilizing one Kalman Filter. An attempt to compare the results with a
seven-filter MMAE was made. The input signal’s level u is considered a continuous
variable and consequently the input estimation problem is posed purely as a parameter
estimation problem. This application of the new tracking filter algorithm is not
contingent on distinguishing maneuvering and non-maneuvering targets, and does not
require the detection of maneuver onset. The filter automatically detects the onset of a
maneuver. Furthermore, an estimate of the target’s acceleration is also obtained (just as
FOGMA, SOGMA, and PCA filters can all provide). This opens the door to the
employment of advanced Augmented Proportional Navigation missile guidance laws,
which require an estimate of the target’s acceleration state. When the target dynamics
and measurement equation are linear and input « is constant, then an unbiased estimate
u of u and of the target’s state is obtained, provided that an observability condition holds.
It is shown that the critical observability condition holds for kinematic target motion
models of interest.

The MWA provides a source of maneuver detection and subsequently takes at most
2 seconds to regain track independent of maneuver initiated. These discontinuities can be
used to make the algorithm run more efficiently. The spikes demonstrate where our
constant # model 1s not adequate and can be used to halt estimates based on a window

that includes this point of discontinuity. One could process up to that point in time using
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some metric (residual monitoring), but not beyond, then process separately from the point
in time forward seeking a different constant value through the estimator.

As with all tracking algorithms, computation time and numeric stability are very
important. Parameter estimation traditionally requires much computation. A
recommendation that would provide better numeric stability is using U-D Factorization.
Moreover, in the smoothing algorithm, using Fraser’s form of the fixed-point smoother
may speed up computation. It eliminates the need for covariance matrix inversion and,
instead, uses the measurement noise matrix inversion. If the number of measurements is
substantially less than the number of states, this may reap big benefits in computational

loading.
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