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THE GENETIC-ALGORITHM-BASED NORMAL BOUNDARY INTERSECTION
(GANBI) METHOD: AN EFFICIENT APPROACH TO PARETO MULTIOBJECTIVE

OPTIMIZATION FOR ENGINEERING DESIGN

INTRODUCTION

Many complex engineered systems are based on design decisions that involve the resolution

of multiple conflicting objectives. The most basic of these is the age-old tradeoff between cost

and performance. In such cases, it is desirable to lower costs (a mathematical objective of

minimizing the cost function) while also improving performance (a mathematical objective of

maximizing the performance function). When the multiple objectives can be simultaneously

satisfied in a design, there is no complexity to the decision process. However, practical

constraints often create conflict between the simultaneous optimization of these objectives, and

this conflict creates a necessary design tradeoff. The study of the development of this tradeoff

decision space is referred to as "Pareto multiobjective optimization." This term is used to

explicitly note that the optimization goal is to develop an efficient tradeoff set (i.e., set of Pareto

solutions) for the optimization process, rather than the delivery of a specific tradeoff decision.

The process of optimal design has been formalized as a discipline of its own in recent years

(see Papalambros and Wilde' for details). The careful restriction of engineering design problems

to the essential parameters for optimization is no longer a heuristic process; it has developed into

a formal engineering method. When multiple conflicting objectives occur in a problem, Pareto

multiobjective optimization techniques are used to find the efficient tradeoff set, and then

knowledgeable decision-makers use this information to make informed design choices. The

automation of Pareto decisions has been limited to simplistic problems in the process control

industries, where the time scales are relatively slow.2 Other practical applications must be

limited to the presentation of information to the informed decision-makers. A survey of display

techniques for such information can be found in Miettinen. 3 In the design of complex systems

for undersea warfare, Pareto multiobjective optimization techniques offer the potential for

identifying efficient tradeoffs, particularly in new technology areas where there is no vast

experience base to permit such judgments without computational aids. Of particular interest to



undersea warfare are the "systems of systems," where existing subsystems are interfaced to make

larger systems. In these cases, the subsystems are often well-understood, but how their

interaction affects the military benefit is often only understood after exercising complex models

and/or simulations. Since military benefit is often stated in terms of a performance-risk or

performance-cost tradeoff, the necessary optimization is inherently multiobjective, and the shape

of the set of Pareto solutions in the multiobjective tradeoff space is of utmost interest in setting

design criteria for the subsystems.

This report presents the development of a new method for Pareto multiobjective optimization

and shows how it can be used to make difficult design decisions for complex engineered

systems. First, the general framework of Pareto multiobjective optimization is described in

mathematical terms. From this framework, the pros and cons of the two main classes of Pareto

multiobjective optimization methods are described: gradient techniques and evolutionary

techniques. This assessment explains the rationale for using Pareto genetic algorithms for

providing design tradeoffs in complex engineered systems. The new algorithm-the

Genetic-Algorithm-Based Normal Boundary Intersection (GANBt) method-is then described.

The GANBI method functions as a preprocessor for existing Pareto genetic solvers. The details

of the derivation of the GANBI method are shown, and an illustration is given of its performance

relative to standard Pareto genetic solvers on an academic problem. The report concludes by

showing an example of the use of the GANBI method in an important problem in undersea

warfare-the design of a sensor network of distributed autonomous sensing nodes.
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MULTIOBJECTIVE PARETO-OPTIMAL DESIGN

Multiobjective Pareto-optimal design is the process of determining a design (or set of

designs) that optimizes a set of objectives. The design parameters for all of the available designs

are selected from the same set, and a specific combination of the design parameters defines a

unique design. Related to but different from this is the notion of multidisciplinary design

optimization, in which conflicting engineering disciplines attempt to achieve a common

optimization goal by using differing sets of parameters. In the multiobjective Pareto-optimal

design framework, the notion of multiple objectives is explicit, so that the relationships between

objectives are only available after the optimization is complete. This is in contrast to non-Pareto

approaches to multiobjective optimal design, in which the selection of a unique objective is made

prior to the determination of optimal designs. Since the multiobjective Pareto-optimal design

approach yields tradeoffs between designs, it is also beneficial in areas of decision support. In

such cases, decision-makers are not only faced with conflicts, but the consideration of options

(designs) is complex because the options affect the different objectives in different manners.

The term "design" is thus used loosely here to mean a physical design, an action choice, or a set

of parameters affecting the outcome of some event. All of these possible definitions are covered

by the same optimization methodology.

The development of multiobjective Pareto-optimal design techniques follows two main

branches: one in the computer science community and one in the mathematics community. In

the computer science community, the methods are based largely on evolutionary computation

strategies (see Deb 4 and Coello Coe1lo 5 for summaries). Evolutionary methods are computing

techniques that evolve designs according to rules that mimic evolutionary processes found in

nature. One of the most common of these methods in single-objective design optimization is the

genetic algorithm.6 In general, the evolutionary approaches are based on forming large sets of

designs (each set is called a generation) and comparing the designs within each generation.

Features of the "better" designs in a generation are combined and used to create new designs for

the next generation. This process iterates until convergence is achieved. In a single-objective

setting, the convergence is to a single optimal design point; in a multiobjective setting, the

convergence is to a design tradeoff space. The desirable characteristic of genetic approaches,
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particularly for complex problems, is that they require no numerical evaluation of the specific

relationship between design parameters and resulting objective values. The disadvantages of

these approaches are twofold: (1) an often sporadic approach to convergence and (2) the need to

quantify what constitutes "better" designs. The first problem is a necessary drawback of such

approaches and is compensated for only slightly in the more sophisticated genetic algorithms.

The second problem is one that is often catastrophic in Pareto optimization, since the definition

of better design in a multiobjective setting is not connected directly to the specific values of any

objectives. For instance, a design may not be rated very highly with respect to either of two

objectives but may fill in an important gap in the Pareto tradeoff surface. For engineering design

and decision support, a multiobjective optimization method must address this drawback.

Comparative studies of different evolutionary approaches to multiobjective optimal design are

given by Van Veldhuizen,7 Van Veldhuizen and Lamont,8 and Zitzler and Thiele.

The mathematics community's approach to multiobjective Pareto-optimal design is based on

the functional representation of objectives in terms of design parameters. Methods are based on

the numerical optimization of combinations of those functions, and resulting designs are

presented to the designer or decision-maker for interpretation. Miettinen 3 provides a

comprehensive summary of these methods and also provides a useful classification of the

approaches into four categories: no-preference methods, interactive methods, a priori methods,

and a posteriori methods. In no-preference methods, any solution that is optimal in any of the

objectives is acceptable; however, these methods are inappropriate for developing tradeoffs.

Interactive methods require the constant interaction of a knowledgeable expert to adjudicate

between designs and are thus inappropriate when multiple disciplines are involved. A priori

methods assume prior knowledge of the relative importance of the objectives. Such knowledge

effectively creates a single-objective problem, albeit one with an objective that is some (usually

complicated) combination of other objectives. In a posteriori methods, the optimization problem

is posed as the specific derivation of a tradeoff surface. This is the general design goal here;

thus, a posteriori methods are the methods of interest in complex systems design and decision

support.
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The a posteriori methods generally involve repeatedly forming different combinations of the

objectives in which the optimization of each objective provides a unique point on the tradeoff

surface. The most commonly used of these methods is that of weighted objectives, in which

different linear combinations of the objectives are formed to provide combined objectives.

However, as Das and Dennis'° point out, such methods often perform poorly in providing a

useful spread of points throughout the tradeoff surface. Normal boundary intersection' is an

approach that overcomes this burden, but this comes at the cost of very complicated objective

combinations that are usually poorly numerically conditioned. The reliance on gradient schemes

to find the optimal value of the combined objective is the usual difficulty encountered with these

approaches. The goal here is to build on these a posteriori methods while using the evolutionary

approaches to replace the numerical optimization component and thereby overcome the current

difficulties. The approach developed here is thus a combination of the mathematical approach

(using the a posteriori method of normal boundary intersection) and the computer science

approach (using genetic algorithms).

MATHEMATICAL DESCRIPTION OF PARETO OPTIMIZATION

The development of a design tradeoff surface is represented mathematically by analyzing

conflicting objectives. In particular, suppose a design is dependent on a set of parameters,

represented by the vector X c Rk , so that thej-th design is uniquely described by specifying the

parameter set X = ).. Throughout this development, scalar values are represented by lowercase

letters (such as x), vector values are represented by uppercase letters (such as Y), and matrix

values are represented by uppercase bold letters (such as Z). Also, all vectors are assumed to be

column vectors, by default, with a row vector represented as the transpose of a column vector.

The designer's primary task is to find a design that optimizes a set of n objectives. These

objectives may represent things such as weight, cost, strength, detection performance,

deployability, and combat effectiveness. Each objective is numerically represented by a function

f.: R' -- R' of the parameters X, such thatf(XA) represents the i-th objective evaluated for the

j-th design. Without any loss of generality, the assumed goal of all objectives is to obtain the

minimum off(X). For objectives that are naturally represented as maximizing functions, a

simple mapping of f(X) w-* -(X) converts the goal to one of minimization.
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Consider a class D of achievable designs Xj. Given a set of n minimization objectives,

equation (1) represents the general multiobjective design optimization problem as

A (X)

f 2(x)
min F(X)-- (1)
XeD

With the design space X represented by a set of numerical parameters, the class of achievable

designs D is represented by a set of equality, inequality, and bound constraints as follows:

D={X:H(X)=0, G(X)_O, A<X<_B}. (2)

For some simple problems, the optimal solution of F(X) exists uniquely because the objectives

are not in conflict. That is, the optimization of one objective presupposes the optimization of the

other (n - 1) objectives, and the problem is effectively one of single-objective optimization. In

such cases, the problem is solved by performing careful engineering analyses a priori to

determine the single objective to optimize. While such solutions are desirable, they are usually

not attainable in real, complex systems. The objectives are often in conflict, and the optimization

of one objective implies suboptimal values of the other objectives. A simple example of this

kind of conflict is in performing cost-benefit optimization, where minimizing the cost is in

conflict with maximizing the benefit. These problems require explicit multiobjective

optimization techniques in order to study the set of design tradeoffs that separate the design

solutions X that minimize the individual objectives {f..

To study the design tradeoffs found in combinations of suboptimal solutions, the dominance

of designs (or lack thereof) must be formally determined. In this context, the dominance

relationship between two vectors is defined by the following statement:
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The objective vector F(Xj) dominates the vector F(Xi) if, and only if, f,,(X 1 ) • f, (X)

forall m=1 .... n,and J,,,(Xj)<f,,(X,) forsomem.

The dominance relationship is written as F(Xj) -< F(X1 ). This mathematical notion of

dominance is very intuitive. If a design is better than another design in at least one objective and

no worse in any objective, then it is a better design and hence dominates the other design. Given

that there may be many solutions that dominate (in the context of the multiobjective optimization

vector F), it is impossible to choose between two different dominant designs in the absence of

further information that is beyond the purview of the statement of the optimization problem.

Given the notion of dominance of designs, the concept of Pareto optimality can be defined.

The economist Pareto' 2 was the first to mathematically formalize the notion of multiobjective

tradeoff space exploration. Designs are defined as Pareto-optimal if they meet one of the two

following criteria:

"* Criterion 1: Globally Pareto-Optimal-- If there is not an X c D such that

F(X) -< F(X*) for some X* E D, then X* is a globally Pareto-optimal design.

" Criterion 2: Locally Pareto-Optimal - Let B(X) represent the k-dimensional

c-neighborhood about a design X. If there is not an X E B(X*) such that

F(X) --< F(X*), then X* is a locally Pareto-optimal design.

The set of Pareto-optimal designs is defined as the union of the sets of globally Pareto-optimal

solutions and locally Pareto-optimal designs. Because of these criteria, Pareto-optimal designs

are also referred to in the optimization literature as nondominated designs.

As an example of Pareto dominance, consider a two-dimensional parameter space X = (X1, x2)

with the design space D defined by the constraint

D= {(X 1,X 2 ):-5 <_x _< 10O,-5_<x 2 _ 1O}. (3)
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Within this constraint, the goal is to minimize the objective vector F(X), given by

xr + x2
F(X) - (4)

(xl - 5)2 + (x2 _ 5)2

Figure 1 shows the set of all designs X c D mapped into objective space as the shaded region.

The solid red line represents the Pareto-optimal set of designs. Note that, in the objective space

(fj,fJ), the Pareto-optimal set is on the boundary of the set of achievable designs. This is

generally true for all continuous problems. However, note also that the Pareto-optimal set is not

given by the entire boundary of the achievable set, since other boundary designs are dominated

by designs that are not on the boundary (i.e., designs that are better in both objectives). Thus, a

plausible strategy for Pareto optimization may be to find the boundary and then eliminate points

that are dominated. However, even in this simple example, that proves difficult because of the

complexity of the mapping from parameter space (xI, X2) to objective space (fl,f 2 ). This

becomes even more of a problem when the objective values are only available via expensive

simulations, as is often the case in complex engineered systems. Thus, the goal of Pareto

optimization methods is to provide a reasonable estimate of the set of Pareto solutions (or Pareto

front) in as efficient a manner as possible (i.e., without generating the entire space of achievable

designs and analyzing the boundary).

This problem illustrates an important simplification when it is examined in parameter space

(the space of points X ( D). The first objective, A = xf + x2, is a measure of the Euclidean

distance from the design point X = (X,, x2) to the origin X = (0, 0); the second objective,

12 =(x1 - 5)2 + (x, - 5)2, is a measure of the Euclidean distance from the design point

X= (xI, x2) to the point X= (5, 5). Drawing these two critical points in the parameter space, as

shown in figure 2 by the plus signs, one can interpret the multiobjective Pareto optimization

problem as follows. Consider a sample design point Z, marked by the asterisk (*) in figure 2.

The circle that goes through point Z represents all the designs that have the same value of

objectivefi as Z (i.e., they are all the same distance from X = (0, 0)). Obviously, point Y (marked

with a small circle (0)) represents the point on the larger circle that has the minimum distance to
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point X = (5, 5) and, thus, Y -< Z. In fact, point Y dominates every other point on the circle, thus

providing a Pareto-optimal design. Continuing this analysis for circles of arbitrary size shows

that the set of Pareto-optimal designs are represented by the line segment between points

X= (0, 0) and X= (5, 5), as shown by the red line in figure 2. Note that the same result is

obtained with a similar construction using circles around point X = (5, 5). This Pareto-optimal

set is intuitive: any point that is not on the line segment is dominated by the nearest point to it

that resides on the line segment. The mapping of these points to objective space provides the

same Pareto-optimal set of designs as shown in figure 1. Thus, the concept of Pareto optimality

is consistent with analysis in the objective space or in the parameter space. This example

illustrates that simple derivations of Pareto-optimal sets are found by switching between

objective and parameter space; however, such "gimmicks" are applicable only in the simplest of

analytical cases and are rarely found in complex system designs where parameter spaces are very

large.

EXISTING PARETO OPTIMIZATION APPROACHES

As mentioned above, the methods for numerically determining the approximation to the set

of Pareto-optimal designs fall into two primary categories: optimization of objective functions

via mathematical gradient methods and approximation via evolutionary methods. The former of

these methods is based on knowing the functional relationships between the design parameters X

and the objectives F. lf such relationships are not available analytically, they must be

determined empirically for such methods to work. Often, such things as gradients of the

objective with respect to the design parameters are required, and the empirical evaluations must

therefore be made on a fine enough scale to create the required accuracy in those calculations.

The evolutionary methods have no such requirement to determine the functional relationship

because they are based entirely on the manipulation of sets of points representing designs in the

objective space. This generally makes evolutionary methods much more practical in complex

systems design. In the following sections, the algorithmic approaches to each of the most

popular methods in each category are described. The discussion is limited to a posteriori

methods (in the nomenclature of Miettinen 3 as described previously) in which the optimization
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goal is to develop an approximation of the set of Pareto solutions to allow an infonned

decision-maker to make better design choices.

Gradient Solution Methods

The methods based on functional relationships between design parameters and objectives are

based on gradient searches in the objective space; thus, they are referred to as gradient solution

methods. In a single-objective problem, this is the simple hill-descent problem that is studied in

elementary calculus. Unfortunately, many of the problems encountered in single-objective

problems (convergence to local minima, poor estimates of gradient values, etc.) become even

more troublesome when the size of the parameter space (the dimension of X) increases, as is

often the case in complex systems design. These problems are further exacerbated when the size

of the objective space (the dimension ofF) is increased to include multiple objectives. As a

practical matter, all gradient solution methods must eventually rely on some notion of

dominance, and, thus, in effect reduce to a single objective. However, by considering the

problems as multiobjective design optimizations rather than immediately thrusting them into a

single-objective setting, the important design tradeoff considerations that must be made by a

conscientious decision-maker can be identified. With multiple objectives, the gradient solution

is often performed under a combined objective or by converting an objective to a constraint. The

main techniques based on each of these approaches are briefly described here.

Perhaps the simplest (and, thus, the most commonly applied) method to solve a

multiobjective problem is to convert the multiple objectives to a single objective by performing a

weighted sum of the individual objectives. This technique is very common because of the ease

of implementation. The technique consists of simply forming the net objectivefws(X), given by

.WS (X) = afl (X) + a 2f 2 (X) + + a,,f (X). (5)

The only other requirement for implementation is a choice of weights {a,}¾1 . The user then

solves the single-objective problem as follows:

II



mrinm .,s (X). (6)
.VED

One disadvantage of this method is that it provides only a single point of the set of Pareto

solutions. This complication is usually avoided by running the problem repeatedly for different

sets of weights. However, the a priori choice of many sets of weights does not often lead to

good spreads of solutions along the Pareto set. Thus, many features of the Pareto set, such as

sharp corners or concave sections, are often missed by this approach, as was pointed out by Das

and Dennis.' 0 Furthermore, the convergence properties of the combined objectivefws(X) are

often worse than those of the individual objectives. For these reasons, this method is used only

for the simplest of problems and is therefore inappropriate for generating approximations to the

Pareto set for complex systems.

The other primary gradient solution method is referred to in the literature as the epsilon

constraint method.3 In a manner similar to the weighted sums method, the epsilon constraint

method relies on performing a series of single-objective optimizations, each one leading to a

single point on the approximation to the Pareto set. However, instead of combining objectives,

the epsilon constraint method converts all of the objectives except for one to constraints and then

modifies that constraint value for each of a series of single-objective problems. Mathematically,

the method consists of modifying the constraint space D from equation (2) to De, as

D, ={X:H(X)=O,G(X)O ,A<_X <B,f,(X)<_,,j =2,....n}, (7)

and then solving the single objective optimization problem as

min f1 (X). (8)
.' El),

The choice of constraint values {e}'. changes for each iteration, and each choice leads to a

new point on the approximate Pareto set. This method suffers from some of the same problems

as the weighted sums method: namely, the method does not lead to a good spread of solutions

along the set of Pareto solutions, and concave sections of the Pareto set are often missed. The

method does, however, find sharp comers in the Pareto set, and the convergence is often very
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similar to that of optimizing objectivelf1 (X) under the original constraint. One additional

drawback to this method is that the portion of the approximate Pareto set that is generated is

often highly dependent on the choice of which objective is labeledfi(X) (the one that is left out

of the constraint space). Finally, as with all gradient solution methods, the gradients needed in

the resulting single-objective problem require repeated k-dimensional derivative calculations (for

Xe RA ). This requirement makes these methods impractical for complex design problems that

have large-dimension parameter sets.

Evolutionary Solution Methods

Evolutionary methods of optimization are based on forming large sets of potential designs X,

evaluating the relative performance of the designs within each set, and using some evolutionary

principle to combine traits of members of each set to generate a new set of candidate designs.

This process is repeated until the iterations stabilize, at which time the solution is presumed to

have converged to an (at least local) optimum. These evolutionary methods include techniques

such as genetic algorithms, simulated annealing, particle swarm methods, and ant colony

optimization. Since the methods only use objectives as a means for scoring individuals for
"good" traits, they are more easily applied in a multiobjective setting than in gradient solution

methods. Furthermore, nothing prohibits using evolutionary methods to solve the

single-objective problems formulated when using techniques such as gradient search and epsilon

constraint. However, such an approach loses one of the primary benefits of evolutionary

methods-i.e., since each iteration involves many designs, the end of an iteration can lead to an

approximation of the entire Pareto set, rather than a single point on the Pareto set. The

discussion in this report is restricted to genetic algorithms because, relative to the other

evolutionary approaches, they are easy to implement and can be readily applied to many diverse

design problems.

Genetic algorithms attempt to imitate the process of natural selection by forming new designs

based on random combinations of features from pairs of different good designs. The term

genetic is used to represent this similarity between the optimization strategy and the biological

process. Over many iterations (or generations in a biological context), the best features survive
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in designs that have good (or even optimal) features, without any mathematical description of the

relationships between features (design parameters) and performance (design objectives). The

basics of genetic algorithms are covered in many texts, such as the one by Goldberg; 6 the

interested reader is referred to those texts for the details of implementation. In a standard genetic

algorithm, the iteration process begins with a fixed set of designs (called a population) that is

manipulated to create the next population. The iteration of populations continues until some

state of convergence is reached or, more realistically, for a fixed number of iterations that is

believed to be large enough for convergence. Individual designs in the population are

represented by binary strings (i.e., X, = [0010001 110]). For designs described by multiple

parameters, subsets of the string may represent values of the individual parameters, although this

is not a necessity. The algorithm simply requires that a unique string be used to specify a unique

design. The size of these strings is connected to the amount of design freedom available; thus, a

string length of -f typically relates to a possible set of 2Y unique designs in constraint space D.

The genetic algorithm assigns each design X e D a fitness O(X) based on its objective values.

This fitness relates to the goodness of the design; better designs have larger fitness values. How

these fitness values are assigned is unique to each specific genetic algorithm. For either single-

objective or multiobjective optimization, each design X is assigned a scalar fitness O(X). This

feature makes genetic algorithms particularly attractive for multiobjective problems. Using the

set of fitness values, designs are chosen at random (not uniformly, but weighted by their fitness,

so that high-fitness designs are chosen more often) and formed into pairs for recombination (or

reproduction in the biological context). The two strings representing a pair of recombining

designs are then combined into two new strings, and the new corresponding designs (each new

string corresponds to a new design) are placed into the next population. Once that population is

full, the iteration is repeated until the process converges (if it is possible) in an optimal design or

a Pareto-optimal set of designs. The details of recombination are also specific to each algorithm,

although most use a simple splitting of traits. In that method, for two recombining designs X,

and X? with string length f, one new design takes the first m components of X, and the last (-( -

m) components of X2; the other new design takes the first m components of X2 and the last (-f -

in) components of X1. The parameter m in this method is chosen at random for each

recombination. Processes such as mutation provide further diversity by switching each bit in the

string randomly (from 0 to 1 or from I to 0) with mutation probability ,. In practice, mutation
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probabilities ofp = H/f are usually used. In the following paragraphs, the most common genetic

approaches to multiobjective optimization are discussed to illustrate some of the negative

features that the new method strives to eliminate.

The Vector Evaluated Genetic Algorithm (VEGA) may be viewed as the simplest method of

multiobjective optimization. VEGA, developed in a doctoral thesis by Schaffer,' 3 was one of the

first genetic multiobjective optimization algorithms. Within each iteration of VEGA, the

algorithm randomly divides the population of designs into the same number of groups as there

are objectives, and each group is assigned an objective that all of its individual designs are

evaluated against. For instance, for a four-objective problem, one quarter of the designs use

objectivefi(X); one quarter usefJ(X); one quarter usefi(X); and the remaining quarter usefJ(X).

The fitness for recombination O(X) is now given by O(X) = I -f(X), wheref is the appropriate

objective. By this method, the designs that best comply with their assigned objective are given a

greater chance of being used in the recombination process to create new designs. A disadvantage

of VEGA is that solutions often cluster and migrate toward a single objective-converging to a

single solution on the Pareto set instead of providing a sampling across the entire Pareto set.

Random mutation of individual designs is often used to maintain the diversity needed to provide

a spread of points across the Pareto set in this method. VEGA also tends to be sensitive to

scaling issues between individual objectives. The method will often force the approximate

Pareto set to a particular objective if the objectives are not weighted appropriately. Although

these issues are independent of the size of the parameter set used in the individual designs, the

performance of VEGA relies on the a priori scaling of objectives to make the algorithm practical

in complex systems design optimization.

The Niched Pareto Genetic Algorithm (NPGA) was developed by Horn et a].1 4 to eliminate

the problem of convergence to a single point on the Pareto surface that often occurred with

implementation of methods like VEGA. NPGA avoids the problem by limiting the connection

between the numerical values of the objective values F(X) and the numerical value of the fitness

for recombination O(X). At each iteration, the NPGA method takes two individual designs

(labeled X, and X2) from the population of designs and compares them to a subpopulation of

designs (DsuB) to test for domination. If F(Y) -< F(X,) for some Y z DsuB, and there is
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no Z E DSUB such that F(Z) -< F(X 2), then A'2 is selected as a survivor (since X, is dominated by

DsuB and X 2 is not). Similarly, X, is selected as a survivor if X 2 is dominated and X, is not. If

they are both dominated (i.e., F(Y) -< F(X,) for some Y • DsuB, and F(Z) -< F(X 2 ) for

some Z c DsuB) or if neither are dominated (i.e., there is no Y c DsuB such that F(Y) -< F(X,),

and there is no Z e DSUB such that F(Z) -< F(X,)), then a niching computation is used to choose

the survivor. The niching algorithm examines the number of designs in the population whose

Euclidean distance to each design point is less than a fixed number o-. The design with the lower

value of ur(and hence the more unique of the two) is chosen as the survivor. This process is

repeated with every pair of designs in the population. All surviving designs are then assigned

equivalent fitness (i.e., O(X) = I for survivors and O(X) = 0 for nonsurvivors) in the

recombination process. The convergence properties of NPGA are much more sporadic than for

other multiobjective genetic algorithms. Also, mutation often needs to occur more frequently

than in other techniques; without large mutations, the algorithm tends to converge to small

clusters of designs that lie on the set of Pareto solutions. The use of niching tends to make this

method very dependent on the scaling between objectives (since the niching distance is

computed as a Euclidean distance in the n-dimensional objective space). However, when the

objective scaling and mutation parameters are carefully chosen, the method provides accurate

representations of Pareto sets. The scaling problems make this method particularly unsuitable

for complex systems design applications.

The Nondominated Sorting Genetic Algorithm (NSGA) by Srinivas and Deb15 and its

derivative methods16, 4 are currently the most successful of the available multiobjective genetic

techniques. NSGA sorts the individual designs in a population into fronts based on their degree

of dominance. Then, each front is assigned a fitness value, and the entire population is sampled

for recombination. The sorting of designs into fronts is accomplished as follows. Given a

populations of designs Dpop, the subset of designs DI that make up the first front is obtained by

taking all nondominated designs, i.e., A',i ID if and only if there is no Y c D 0po such that

F(Y) -< F(Xj). All of the designs in this front are assigned fitness values of

,;(XJ : X D, = A The second front D2 is formed by considering those individuals that are
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nondominated after the first front has been removed. That is, X. e D, if and only if there is no

Y c DPOP \ D, such that F(Y) --< F(X,). All of the designs in the second front are assigned a

slightly lower fitness value of O(X X (= D,) = 0,,,, - e. This process is repeated until all of

the designs in the population have been assigned fitness values. Then, the population of designs

is sampled for recombination. NSGA overcomes many of the problems of methods like VEGA

and NPGA; in particular, it is the only popular method that does not rely on careful scaling

between objectives and is thus well-suited for problems of complex systems design optimization.

Suggested improvements to NSGA (such as NSGA-ll,16 which applies a niching process similar

to NPGA) throw away this benefit to provide slight improvements in spread along the Pareto set.

For that reason, those suggested improvements are not considered in this discussion of the

application of NSGA to complex systems design.

The existing approaches to multiobjective Pareto-optimal design described above all have

complications that make them unsuitable for use in complex systems design applications. In

particular, the complexity of the relationship between parameters and objectives, the inability to

handle large parameter spaces, the poor numerical scaling between the competing objectives, and

the poor spread of points on the Pareto set that often occurs are all problems that must be

overcome to have a good tool for complex systems design. The gradient solution methods have

no way of overcoming the complexity of the relationships between parameters and objectives

that are inherent in these applications, and they do not scale well with large parameter spaces.

Therefore, the gradient solution methods are removed from further consideration. Although

genetic algorithms avoid the numerical difficulties with complex objectives and work with

reasonably large parameter spaces, they still have problems providing a good spread of design

points along the Pareto set, especially when the multiple objectives are poorly scaled relative to

one another. For example, cost, the time required to achieve success, endurance, power, and

probability of mission success-factors that are often present in military systems design-all

occur in very dissimilar units. To handle these problems, a new preprocessor for genetic

multiobjective optimization solvers has been developed. This preprocessor provides good spread

along the Pareto set in poorly-scaled multiobjective settings, while maintaining the desirable

features of the existing genetic algorithm. The standard NSGA is used here as the baseline of the
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current state-of-the-art for application in complex systems design, and examples are provided in

which the new preprocessor improves the performance of both the VEGA and NSGA methods.

GANBI METHOD

The use of normal boundary intersection techniques as a method to obtain an estimate of the

Pareto front was first developed in a doctoral dissertation by Das17 and later documented in a

journal article by Das and Dennis.' However, the approach of Das and Dennis was limited to

situations where the objective vector F(A) has differentiability properties that allow the use of

gradient search and other nonlinear programming techniques. Complex engineered systems

often have objective functions that are not readily represented by closed-form mathematical

expressions. In these cases, the computed numerical gradients that are required by the nonlinear

programming techniques are not readily available; when they are available, the computations are

of questionable accuracy. The work of Das and Dennis is extended in this report to extract

essential features of the normal boundary intersection technique that make it appropriate for use

as a preprocessor for general-purpose multiobjective solvers. The result is the development of a

new method to be applied as a preprocessor for multiobjective genetic algorithm solvers. The

new method is referred to as the Genetic-Algorithm-Based Normal Boundary Intersection

(GANBI) method.

MATHEMATICAL DERIVATION OF GANBI

Throughout the development of GANBI, the problem under consideration is the n-objective

multiobjective optimization problem (MOP), for which the goal is to minimize the vector

objective F(X) subject to the constrained design space D. MOP is defined by equation (9):

rfl (X)
min F(X)= n/ (_2

MOP: ,X•D : ,n (9)

L(X)

subjectto D={X:H(X)=O,G(X)<O, A<_X•B}
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The individual minimum of the i-th objective, f * is defined as

f* = f, (Xi*), (10)

where

XA* = {X e D:/f(X)•<_ f(Y), V Y e D}.

Simply put, this is the minimum value that the i-th objective takes over the entire span of designs

in the constrained design space D, with no regard given to the existence or value of the other

objectives.

Given the set of all n individual minima If* I"}, the convex hull of individual minima

(CHIM) is defined by equations (11) through (13).'' Let F* be the vector of individual minima

given by

F* = [ *, . .]T,( )

and let F * = F(X,*). Define D as the n x n matrix whose i-th column is given by F, *F*,

i.e.,

0 fo (x,*-1 f,(x,* ... L *)f, (x,*I

fý= (X'*)-f(X-*) 0 ... f2(x"*)-(X 2*) (12)
(P;17(12)*

L-X,*) f,,(X 2*)-f,,(X,*)... 0

Then, CHIM is the set of all the points that are convex combinations of the columns in

equation ( 12); specifically,

CHIM={DB+F*:B=[bI,b2 ,.... ,] T , Yb.=1 b=>0}. (13)

This set of points represents all of the possible convex combinations of the various individual

minima. CHIM provides a very coarse approximation to the Pareto surface. In a bi-objective
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optimization problem, CHIMis simply the line segment that connects the two individual minima.

In a tri-objective problem, CHIM is the triangular planar region that connects the three individual

minima. The region defined by CHIM changes with the number of objectives in the problem.

The GANBI method is based on the concept of building up an approximate Pareto surface-

beginning with CHIM-and attempts to "push out" this coarse approximation as far as possible

at regularly spaced intervals while staying within the constraints of the design space D. To

illustrate the Pareto approximation used by GANBI, consider the bi-objective problem from

figure 1, which is referred to as problem MOP1 :

min F(X) + x;
MOP, VD L (x, - 5)2 + (x2 - 5)2 (14)

subject to D={(x,,x 2):-5-<x, -< 10,-5 _< x, _<10}

For MOP1 , CHIMis formed by first defining the points that are individual minima, as given by

f * = min(x2 + x2) = 0,
I ED (15)

f2* = min((x, -5)2 +(x2 - 5)2) =0.
,\cD

The points defined byfl* andf 2 * occur at design parameters X,* =(0, 0) and X,* =(5, 5),

respectively. These specific parameter values are unimportant to the CHIM evaluation. Each

design parameter is used to obtain the value of the corresponding nonoptimized objective, as

given by

fl(X,* (X2 + X2),,•• 50s,
1 =5 5 0 (16)

f (X,*) = ((x, - 5) 2 + (x•, - 5)2)1 50.

Thus, CHIM is given by all points defined by equation (17):

I 5o1 + [], (17)L50 0 Lb]L L 5Obh]
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where b, takes values in the range [0, 1]. This yields the simple line segment in figure 3 (black

line), where the asterisks (*) represent the individual minima. This is obviously a very coarse

approximation to the Pareto surface (red line). However, if CHIM is imagined as represented by

a "rubber band," the approximation is improved by "pushing" the band out from its center point

as far as possible (within the constraints of maintaining objective values F that are achievable

using parameters X, contained in the design space D). This level of approximation is represented

in figure 4. The process improves if, instead of using only the center point, k evenly-spaced

points are used along CHIM, as shown in figure 5 for the case of k = 4.

50 * Individual Minima

-- Pareto Set

40 - CHIM

30

'4-11

20

10

0

0 10 20 30 40 50
fl

Figure 3. Individual Minima, Pareto Set, and CHIM for the Example in Figure 1

This process of pushing CHIM toward the Pareto surface is based on the geometrical idea that

underlies all normal boundary intersection methods. The geometrical construction is identical

for a general n-objective problem and can be imagined by replacing the rubber band with an

(n - 1)-dimensional surface (e.g., a "rubber sheet" for a tri-objective problem).
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50 * Individual Minima

""� Pareto Set

40" ...... CHIM

4 'Approxim ate
30 "Pareto Set

20

10

0
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f~l

Figure 4. Approximate Pareto Set Found by Pushing Away from the Midpoint
of CHIM from Figure 2

50 * Individual Minima

"�- Pareto Set

40 . ...... CHIM

Approximate
Pareto Set

30 __________

20

10

0

0 10 20 30 40 50
f I

Figure 5. Approximate Pareto Set Found by Pushing Away from Four Points

Along CHIM from Figure 2
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The mathematical details of modifying CHIM to approximate the Pareto surface are required

to write the details of the GANBI method. The development begins by considering the problem

of describing k evenly-spaced points along CHIM, which are given by F1 = DB + F *, where

(k + I - i)/1k (k + 1) ' 18

for the bi-objective case. For the general n-objective case, the formulation is less intuitive, but it

can be shown that Bi can be created from a simple process. Assume that a set of values for b, is

desired, given by b, = {0, _,' 2 P-7 -,1} where p is an integer (and p > 1). Now, the accepted

values for the other bj are given by

b = 0, , .... ( - Ybi , for j=2,...,(n-l). (19)
p p i=I

Once the combination of values for each different bi is formed for i = 1, ... , (n - 1), each

combination yields the final value of

n I

S= l-Zb,. (20)
1=1

Finally, all of the points are removed that contain any of the individual minima, which are points

where b, = I for some i. This construction is consistent with the simple two-dimensional

formula in equation (18). Also, the number of evenly-spaced points generated in this manner for

an n-dimensional CHIM is given by k, where

Ip~n-II(p+n-l)!
k = -n - n, (21)

p p! (n-)2
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which then reduces to k = p - 1 for the bi-objective (n = 2) case. From the set of values {!B}i=1,

F, = (DBi + F * is formed again. The set of points {F, }1'= represent k evenly-spaced points along

CHIM.

The GANBI method relies on pushing the approximate Pareto surface (given by CHIM) in

the direction normal to CHIM at each of these k points. The vector normal to CHIM that goes

through a given point F, on CHIM is parametrized by z > 0; the vector is given by

N, (z) = F• - z (rU, (22)

where U represents the vector of all ones, i.e., U = [1, 1, ... , If. The value ofz = 0 represents the

location of the normal at the point of intersection with CHIM, and values of larger z represent

values pushing CHIMin the direction of the Pareto set. The goal in GANBI (as illustrated in

figure 4) is to stay as close to possible to each of these k lines {N,(z)}>1 while increasing z as

much as possible. These objectives are obviously in conflict, and the multiobjective solution of

this optimization problem provides an estimate of the Pareto surface that tends to lead to a much

better spread of points along the Pareto set than solutions that do not employ the GANBI

preprocessor.

The individual objective of moving as far along the line Nj(z) as possible is, in itself, a

multiple objective. One goal is to stay close to the line, and a second is to move far along it.

Rather than consider these goals as further dimensions of the objective space, a simple joint

objective is considered. Given a design point F = F(X) for parameters X, the objective hi(F) is

formed by

hi (F) = d(N, (zLs), F) - 2zLs, (23)

where F is the given design point (in objective space), d(A, B) is an appropriate measure of

distance between points A and B (in objective space), and ZLS is an estimate of the value of z for

the point on Ni(z) that is closest to F. The factor of 2 before the ZLS term was included because,
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after experimentation with many test problems, it has been determined to facilitate convergence.

The value of ZLS that minimizes the least-square (L2) norm is used; the value is given by

ZIS = (A T A) 'A T Gq(F), (24)

where

A = D T U, (25)

and

G,(F) = F * _F _ (D B,. (26)

Note that Bi is the same vector used in the definition of the i-th point along CHIM. The distance

measure used is the L2 norm, which is given by

d(N (z,.s),F) = JG,(F)- zLs.( TU112

= II(I - A(A T A)' T) G(F)112 , (27)

which leads to the final objective of

h (F) = 1(I- A(AT A) 'AT)G (F)]I2- 2(A mA)-'A T G (F). (28)

The objective hi(F) is evaluated for each i = 1, ... , k for each given design point F, and the

resulting vector-valued objectives, H(F) = [h, (F), h2(F),..., hk (F)]T, are the result of the GANBI

preprocessor that is used in a standard genetic multiobjective solver.
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The GANBI preprocessing method is summarized in the following six steps:

1. Find the vector of individual minima F*.

2. Form the matrix D as in the CHIM definition, and form the corresponding vector A.

3. Form k vectors Bi according to equations (19) and (20).

4. For each given design point F, perform steps 5 and 6.

5. Form Gi(F) for each vector Bi.

6. Evaluate hi(F) according to equation (28).

The method is easily implemented.* Steps 1 through 3 are performed once at the beginning of a

multiobjective design optimization; steps 4 through 6 are the only ones that need to be repeated

at each iteration. Thus, the added computational complexity over that of standard multiobjective

solvers is minimal and, in practice, it is usually compensated for by improved convergence.

NUMERICAL EXAMPLE OF GANBI

As an example of the evaluation of the GANBI preprocessor, consider again the problem

MOP, from equation (14). As shown earlier, the vector of individual minima is given by

F* = [0, 0 ]f, and the matrix D is given by

( [ = (29)500

which leads to a value for the vector A of A = [50, 5Of . For an example set of k- 4 GANBI

objectives, as shown in figure 4, B,, B2, B3, and B4 are given by

S [[0.2] =0.6 8]

B, = B. , B4= . (30)
B 0.8 0.6 0.4 L 0.2

Numerical implementation of the GANBI method can be facilitated by contacting the author of this report.
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The values of Gi(F) are now given by

Gi(F) [i, - 50bi1 (31)G,(F = _f2 - 50b,1 f 3l

where bi, is thej-th component of vector Bi. The resulting objective function values are thus

given by

(f, -. f +50bf -50b,,)2 (.', +f +50b,, +50b, 2 )
h,(F)- 2  + 5 (32)S2 50

This formula can now be used to examine the set of three design points that yield the following

objective values:

S=207, F(X,)=[401, F(X3)=['0] (33)
F(X, LO- L20/ 40

The three design points (blue filled circles) are shown in objective space in figure 6, with the

individual minima (*), the Pareto set (red line), CHIM (dotted line), the approximate Pareto set

(black line), and the set of normals {Ni(z)} (dotted arrows). The values of the resulting GANBI

objectives for the three design points are given by

29.9 37.6 2.0__/ 5.7/ 23.4 1 6.1
H(F(XH)) =1.6 , H(F(X2 )) 9.3 H(F(X3)) 0.3 (34)

-15.7 L9.3 i44.41

From these results, it is clear that design X, is best matched to the third objective (and, thus, has

its lowest objective value in the third component) and design X 3 is best matched to the first

objective. Both of these values are very low compared with those for the other objectives

because the designs sit almost directly on the corresponding normal lines to CHIM. It should be

noted that, since X, is closer to the Pareto surface, the lowest objective value for X, (1.6) is lower

than the lowest value for X 3 (2.0). In terms of matching its objectives, design X2 is the worst
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Figure 6. Sample Design Points Shown in Objective Space for Problem MOP1

case. The lowest value for X2 (9.3) is located midway between the third and fourth normals, so

those two objectives are the the ones best matched by that design. However, the lowest value for

X 2 is not nearly as low (i.e., not nearly as good a match with the corresponding objectives) as the

low values for X, and X 3. The poorer match made by X 2 is demonstrated by two characteristics

shown in figure 6: (1) the point is not near the two normal lines, and (2) the point is far from the

direction of improving z values (in fact, it lies in the other direction from CHI"). Thus, the

GANBI preprocessing provides a correct mathematical representation of the process that it is

meant to perform.

Focusing again on problem MOP, from equation (14) allows an assessment of the numerical

improvement obtained by using the GANB1 preprocessor. The assessment uses k = 4 GANBI

objectives on this n = 2 objective problem and shows all of the results in the original objective

space. Recall that the total design space and the Pareto set are as shown in figure 1. First, the

performance of the VEGA solver is compared with that of VEGA preprocessed with the GANBI

method (referred to as GANBI/VEGA). Each design is represented by a 20-bit (T = 20) string,

with the first 10 bits representing x, and the second 10 bits representing X2. This provides a
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design space discretization of 1,024 x 1,024, yielding approximately 1.05 x 106 potential designs

in D. A mutation probability ofp= 0.05 is used to provide 40 designs at each iteration. Only

90% of the available designs are provided to the genetic algorithm at each iteration (the

remaining 10% survive intact), which is a common practice used to speed final convergence.

Figure 7 compares the performance of the GANBI/VEGA solver (blue circles) with that of the

VEGA solver (green plus signs), both after 200 iterations. The true Pareto set is represented by

the red line. Note that for 200 iterations of this problem, only 7,204 individual designs are ever

evaluated, which leads to a sampling of only 0.069% of the design space D. Both approaches

converge to solutions near the Pareto set. However, the VEGA solver used alone (without

GANBI) gets many non-Pareto solutions nearfj = 60 (these solutions are still borders of the

achievable set, but they are dominated), while the GANBI/VEGA solutions tend to fall more

heavily in the region of the Pareto set.

120
- Pareto Set

100 0 + VEGA

0 GANBINEGA

80 +

6 60

40 .++00
o 00 +
0- + ++ 0 0
200

+ + +

0 20 40 60 80 100 120
fl

Figure 7. Comparison of Pareto Set and Approximate Pareto Sets Obtained Using VEGA and
GANBI/VEGA Solutions for Problem MOP,
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Next, using the same problem, MOP1 , with the same basic genetic algorithm parameters, the

NSGA solver is applied both with and without GANBI. The results after 200 iterations are

shown in figure 8, where the green plus signs represent the NSGA sets for MOPI. Once again,

only 0.069% (approximately) of the design space has been sampled, yet both approaches yield

approximations of the Pareto set. Both of the NSGA-based methods shown in figure 8 are closer

to the Pareto set than the VEGA-based methods shown in figure 7. GANBI/NSGA did a better

job than NSGA alone in providing a spread across the Pareto set. In particular, note that there

are no NSGA solutions for the range of 20 <_f _<40, yet there is a sampling of GANBI/NSGA

solutions in that region of the Pareto set. From the examples illustrated in figures 7 and 8, it is

clear that the GANBI method provides more spread along the Pareto set, with no degradation in

closeness to the Pareto set, when used as a preprocessor for both VEGA and NSGA. Also, the

best performance in these examples is obtained with the GANBI/NSGA combination. However,

these results are for a simple analytical problem. The use of GANBI in a realistic complex

systems design application is examined next.

120
- Pareto Set

100 + NSGA

O 0 GANBI/NSGA

80 +
0

S60-

40 + +
0

20 + + +

0-
0 20 40 60 80 100 120

f,

Figure 8. Comparison of Pareto Set and Approximate Pareto Sets Obtained Using NSGA and
GANBI/NSGA Solutions for Problem MOP,
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USING GANBI FOR COMPLEX SENSOR NETWORK DESIGN

The development of sensor networks is a complex engineering challenge that involves the

tradeoffs of many potentially conflicting design objectives. For a simple example, consider a set

of m identical stationary sensors employed over a large spatial area to search for moving targets.

This problem is typical of complex sensor network problems. A design goal of such a system

may be to maximize detection performance, which can be done with the use of many sensors

(i.e., make in very large). Unfortunately, such a system would have good detection performance

but would also generate many false alarms. This leads to a second objective of minimizing the

number of false alarms, which can be done with the use of very few sensors (i.e., make m very

small). Obviously, these two objectives are in conflict. One solution to this conflict that is often

heuristically stated is to increase the detection range rd of the individual sensors. Although this

solution theoretically leads to reducing the number of false alarms for a fixed level of detection

performance (the false alarm rate per sensor remains constant, but fewer sensors are needed to

cover the same area), it is often not practical because an increase in sensor detection range

without an increase in sensor false alarm rate comes at an increased cost. Thus, there is a third

design objective-constraining system cost-that is often not apparent in the initial statement of

the design problem. The most straightforward method to resolve the conflict between detection

performance and false alarm performance in a cost-effective manner is the use of track-before-

detect strategies, in which multiple sensor detections must occur within the kinematic constraints

of target motion. 18 Thus, the number of such detections y is considered as an additional design

degree of freedom, with y7 1 corresponding to the traditional sensor coverage problem. Also, in

the track-before-detect context, reference is made to the field-level functions of detection and

false alarm as successful search and false search, respectively, because the track-before-detect

process serves as a searching function beyond the performance of individual sensors.

The following specific example problem illustrates the effect of GANBI on complex sensor

network design. Given a fixed search region S ( R2 , determine the Pareto-optimal set of sensor

field designs that maximizes the probability of successful search and minimizes the probability

of false search under a constraint on total field cost. In this context, a sensor field design consists

of a sensor detection range r,, a number of sensors m (assumed to be uniformly distributed over
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the search area), and a number of detections yto be used in a track-before-detect strategy. Thus,

the optimization problem is stated as problem DNS as follows:

mm F(X) = L s(rd, M
DNS L, PFS (r, d m, 7) 1 (35){ subject to D = {(ri, m, /) : c(r,, m) _• co, rd _< rmax, m _• mm, .. • 4}

where the design space X is given by the triple of adjustable design parameters X = (rM, m,I).

The scope of the design space under consideration is based on limits of these values. The

limiting values of r,,ax and m,,ax are chosen to provide coverage over the search area S, and the

upper bound of 7/= 4 is based on available tracking and fusion algorithms.

The functions Pss and Pps represent, respectively, the expected values of search effectiveness

and the expected number of false searches that occur over an interval of time. For convenience,

Pss is expressed over the interval of time to during which ydifferent sensors are required to detect

the target (in track-before-detect) and Prs is the probability of finding a kinematic sequence of

false detections over time to at least once during the period of I day. The use of I day as a PfS

time interval is a convenience to operators; it is readily replaced by any convenient time interval.

The use of to is a specific tactical parameter of interest that is part of the supporting command

and control system for the sensor network. From the analysis of track-before-detect search in

Wettergren,18 the analytical expressions for Pss and PFs (over time to) are found by using

equations (36) and (37), respectively:

Pss =I - exp(- p,, m 0)Z(p(1) Y (36)

and

P3 s = I - exp(- / p 2/ m)[ 
, 

(37)
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where 0 represents the fractional coverage of a single sensor extended by the expected target

motion. This is given by

2rvIt +7fr, (38)

ao

for the case of a uniformly distributed homogeneous set of sensors distributed over a search

region S of area a0. The false search probability is further extended to the I-day time interval

(assuming time interval to is much less than 1 day) as

exp =-a- ) [ (39)L i= () j ! I

Equations (36) and (39) are used to represent the objectives in the multiobjective optimization

problem DNS. The cost function c(r,, m) is derived from combining the generic passive

acoustics cost model from Traweek and Wettergren' 9 with current costs of existing manufactured

sonobuoys. All m sensor nodes are assumed to have the same cost, which leads to the following

cost (in dollars):

c(rd, m) = m (121+0.0061. r). (40)

Both the cost and search performance expressions make the two following critical assumptions

about the sensors: (1) all sensors have "cookie-cutter" detection performance, in which the

target is detected at all ranges in the interval (0, rd] with probability pd and never detected beyond

range r(I; and (2) all sensors have independent and identical probabilities of false alarm, given by

a probability pf,, of reporting a false alarm over the time interval to.

The fixed parameters for any run of optimization problem DNS involve the target speed (v),

the time for multiple detections to occur (to), the search region's area (ao), the fixed maximum

deployment cost (co), and the probabilities of detection (pa) and false alarm (pjp) for individual

sensors. The specific values of these parameters used in the example are given in table 1. Note
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that the pfa value shown in table 1 corresponds to a false alarm occurring over an integration time

of 40 seconds with a probability of 10-3. Limits are placed on the parameter values by using

rmax 104 meters and mmax = 105 sensor nodes for this size of search region in problem DNS.

Table 1. Values of Fixed Parameters Used for Example of Problem DNS

Parameter Value

v 5 knots

to 30 minutes

a0  
100 nmi 2

CO $1,000,000

Pd 0.9

p/N 0.044

To implement problem DNS in GANBI, a sensor network design is represented by a string of

length f = 32, with the first 15 bits corresponding to rd, the next 15 bits corresponding to m, and

the final 2 bits corresponding to y. This provides 2 5 possible values for both rl and m, both of

which are distributed exponentially across their acceptable domains (i.e., uniformly spaced in

loglo(ra) and loglo(m), respectively). The values of ycorrespond to {1, 2, 3, 4}. At each

iteration, 100 individual designs are provided, and 90% of these designs undergo genetic mating

for the next iteration. Each new design is subjected to a mutation probability of p= 1/32, which

corresponds to an expected value of one bit of mutation in each design. In the cases that were

run, k = 4 GANBI objectives were created from the original two objectives of problem DNS.

The cost constraint in the constraint space D is handled by a penalty method, in which each cost

evaluation is checked against the constraint-the penalty threshold c,., in this example. If the

cost constraint is not violated, the objectives are passed to the solver. If the cost constraint is

violated by more than c, = $10,000, the objectives are set to unity (the maximal value) and sent

to the solver. If the cost is violated by less than c,,.,, the objectives are changed via

f(X) ý- I -(1 -(c-c 0 )/c.,)(I -f(X)) and sent to the solver. The value of c,., used in this
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example was chosen by trial and error for the specific application. The specific form of the

penalty function is limited to cases where 0 < f(X) < I , which is appropriate for problem DNS.

Figure 9 shows the results of applying VEGA with and without the GANBI preprocessor to

multiobjective problem DNS through 200 iterations. Green plus signs represent the approximate

Pareto sets obtained with the standard VEGA; the blue circles represent sets obtained with the

GANBI/VEGA combination. The results are shown as PFS versus Pss, with the vertical scale in

logarithmic form. The DNS objective is to move to the lower right corner of this plot; i.e., the

objective is a sensor network that always performs search successfully and never has false

searches. The cost constraint prohibits solutions from achieving this goal. Solutions in the upper

right (near Pps 1 and Pss = 1 ) are plentiful because they are easy to achieve (by employing

many sensors with very small detection ranges and using Y= 1). It is clear from figure 9 that the

GANB1 preprocessor provides a much better spread of solutions along the entire Pareto front.

Also, the GANBI/VEGA solutions generally dominate (are better in both objectives than) the

solutions obtained with VEGA alone.

++

: O0

+ 00.0Q 0~ O + VEGA

---------- ------ Comparison 0f AZroxiOate Paro Ss - -Ud0 GANBI/VEGA

~- 0
00

03

00.2 0.4 0.6 0.8 1
PSS

Figure 9. Comparison of Approximate Pareto Sets Obtained Using VEGA and GANBI/VEGA
Solutions for Problem DNS
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The experience with academic problems such as MOP, shows that there is a potential benefit

in using GANBI with NSGA instead of VEGA. Figure 10 shows the results of applying NSGA

with the GANBI preprocessor (blue circles) and without GANBI (green plus signs) to problem

DNS through 200 generations. The scale is the same as that shown for figure 9. It is clear from

the figure that, once again, using the GANBI preprocessor provides a much better spread of

solutions along the entire Pareto front. Again, the solutions found with GANBI generally

dominate (are better in both objectives than) those obtained with NSGA alone. It is also

interesting to note that GANBI/VEGA and GANBI/NSGA obtain approximations to the Pareto

front that are similar in quality, whereas VEGA and NSGA provide very different solution sets

when run alone. This illustrates some of the robustness of the GANBI preprocessor; given

enough iterations to converge, its performance is qualitatively independent of the specific

underlying solver used. Also, note that each of these runs evaluated a total of 199 * 90 + 100 =

18,010 unique designs from a potential set of 232 designs, which is only a O(10-') sampling of the

design space. This shows that GANB1 provides an effective sampling of complex design spaces

for engineering complex systems.

+ +

*0----. . - ---
0 + NSGA

0 GANBI/NSGA
S- 2 - 2 -" " . .. . . . . . . . . . .

0

.2 -3 ---- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

_ -4 --------------- ---- --------.

0.2 0.4 0.6 0.8 1
Pss

Figure 10. Comparison of Approximate Pareto Sets Obtained Using NSGA and
GAANBI/NSGA Solutions for Problem DNS
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It is important to recall that a result point in the objective space plot corresponds to a system

design (a specific value in the design space ofX= (rd, m, y)). In figure 11, the GANBI/NSGA

result from figure 10 is copied and marked with five sample results, chosen as a reasonable

spread of samples along the approximate Pareto front. In table 2, the resulting values of the

design parameters X are shown for each of these points, with the corresponding objective values.

Note that, after performing the Pareto optimization, there appears to be a "best sensor range"

around ra z 300 meters for this application, and that range spans the Pareto curve. In fact, the

curve seems to be parameterized by the number of sensors m, with the parameter )/adjusted for

each design to guarantee the "best" choice in a Pareto set. This is especially convincing because

the restriction on the sensor detection range in the design space D was less than t04 meters, with

a sampling discretization of 215 values within this range; yet the Pareto-optimal solution set

seems to have converged very near to a single range value. Insights such as this can now be used

to perform a detailed design. Performing the Pareto optimization before the detailed design stage

gives the designer the advantages of fixing the optimum sensor range and knowing how the

number of sensors used affects the tradeoff between search effectiveness and false searches.

0 B

B 0 GANBI/NA

0 5 D

-4€

0 0.2 0.4 0.6 0.8 1
Pss

Figure 1I. Approximate Pareto Sets Obtained Using GA NB/NSGA for Problem DNS with
Sample Results Marked A, B, C, D, E
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Table 2. Parameter and Objective Values for Selected Points in Figure 11

Point rd m i Pss PFS

(meters)

A 313 985 2 0.97 0.52

B 309 585 4 0.76 0.15

C 299 396 1 0.51 0.054

D 281 348 3 0.39 0.033

E 314 131 3 0.07 0.002

CONCLUSIONS

A new algorithm for performing the Pareto optimization of engineering design problems has

been presented. The algorithm functions as a preprocessor for conventional multiobjective

genetic algorithms and uses a small sampling of the design space to provide reasonable estimates

of the Pareto set of designs. By functioning with genetic algorithms, each iteration leads to a

family of designs that approximates the Pareto set (as opposed to a single design at each

iteration). As the iterations progress, the resulting family of designs begins to converge to the

true Pareto set. The algorithm is based on the concept of normal boundary intersection and

provides a robust estimate of the Pareto set with a predefined spread of solution points at each

iteration. The new algorithm has been named the genetic-algorithm-based normal boundary

intersection (GANBI) method.

The GANBI method was shown to provide better performance than traditional multiobjective

optimization solvers on an academic problem. The performance of the GANBI method when

used as a preprocessor for a standard solver (VEGA) and a newer state-of-the-art solver (NSGA)

was compared with the performance of VEGA and NSGA used alone. Application of the

GANBI method as a preprocessor improved the performance of both of these solution

techniques. Furthermore, the GANBI solver required a very small sampling of the overall design

space, which makes it an effective tool for providing design guidance in multiobjective

situations. To demonstrate its effectiveness in practical multiobjective engineering design, the

38



GANBI method was applied to a design problem for distributed sensor networks-an example of

interest. The choice of sensor range, numbers of sensors, and number of multiple sensor

detections required by a system were provided as design parameters. GANBI effectively

mapped the approximate Pareto set of these design parameters for the bi-objective problem of

maximizing search effectiveness while minimizing false searches. More complex problems of

many different types can be tackled with the GANBI method. This report provides only an

overview of the method and an illustration of how it can be used.
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