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A GLOBAL CONVERGENCE THEORY
FOR A CLASS OF TRUST REGION ALGORITHMS
FOR CONSTRAINED OPTIMIZATION

MAHMOUD MAHMOUD EL-ALEM

ABSTRACT

In this research we present a trust region algorithm for solving the equality
constrained optimization problem. This algorithm is a variant of the 1984 Celis-
Dennis-Tapia algorithm. The augmented Lagrangian function is used as a merit
function. A scheme for updating the penalty parameter is presented. The

behavior of the penalty parameter is discussed.

We present a global and local convergence analysis for this algorithm. We
also show that under mild assumptions, in a neighborhood of the minimizer, the
algorithm will reduce to the standard SQP algorithm; hence the local rate of con-

vergence of SQP is maintained.

Our global convergence theory is sufficiently general that it holds for any
algorithm that generates steps that give at least a fraction of Cauchy decrease in

the quadratic model of the constraints.
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CHAPTER ONE

INTRODUCTION

This chapter consists of two parts. In the first part we define the general
optimization problem and some special cases of this problem. We also state the
optimality conditions for some of these special cases. The second part is devoted
to presenting from the historical point of view, some methods that attempt to

solve the equality constrained optimization problem.

1.1 CLASSIFICATION OF THE PROBLEMS

By the general optimization problem we mean the problem of finding z. ¢ S
that solves the following problem:
minimize f(z), (GOP)
subject to z € S,
where f is assumed to be a smooth nonlinear function defined from S into R .

A point z+ € S is said to be a local solution of problem (GOP) if there exists a

neighborhood N(z«) such that f(z:) < f(z) for all z € N(z¥) Nns.

The optimization problem can be characterized by the type of set S on
which f is to be minimized. If S is R", then the problem will be referred to

as an unconstrained optimization problem or problem (UCOP). It can be written

as.



minimize f(z), (UCOP)
zeR"

i.e., the unconstrained optimization problem is the problem of minimizing f

without constraints.

If f eC', then a necessary condition for z. ¢ R"® to be a solution of (UCOP) is
v f(a:*) =0 y

where V f denotes the gradient of f. It is also necessary, if f ¢ C?, that the

Hessian of f at z. be positive semidefinite.

Sufficient conditions for z. ¢ R" to be a local solution of (UCOP) are:

Vf(z*) = 0,
I V2 f(z)v > 0,

for all nonzero vectors v e R" .

On the other hand, if S can be defined by a set of equality and inequality
constraints then the problem will be called the general nonlinear programming
problem. So, by the general nonlinear programming problem we mean the con-
strained optimization problem:

minimize f(z),
subject to h; (z) =0 i=l,..,m, (NLP)
where f, h;, and g¢; are assumed to be smooth nonlinear functions defined

from R" into R .

As a special case of this, if we seek to minimize f on a manifold S defined

by equations of the form:

h; (z) =0 i=l,...m <n,



i.e., we are concerned with the case where only equality constraints are involved,
then we refer to this problem as the equality constrained optimization problem or
problem (EQ), and it can be expressed as:
minimize f(z), (EQ)
subject to h; (z) =0 i=1,..m .
On the other hand, we will refer to the problem in which only inequality con-

straints are involved as the inequality constrained optimization problem or prob-

lem (INEQ). It can be expressed as:

minimize f(z), (INEQ)
subject to g;(z ) >0 i=l,..p .

In this research, we consider only the equality constrained optimization or
problem (EQ). We will denote by h(z) the vector whose components are
hi(z) i=1,..m . When f and h € C?, we will say problem (EQ) ¢ C2.

It is convenient to introduce the Lagrangian function [ :R" X R™ — R asso-

ciated with problem (EQ). It is the function:

I(z,\) = f(z) + T h(2), (1.1.1)
where X = (A, ..., ;)T is called the Lagrange multiplier.

Stating necessary optimality conditions in terms of the Lagrangian function
requires a constraint qualification. A satisfactory but somewhat restrictive con-
straint qualification is the regularity assumption: that is, the vectors
Vh;(z) i=l,.,m are linearly independent. Any feasible point at which the regu-

larity assumption is satisfied is called a regular point. We will use the notation

Vh(z) to mean the matrix whose columns are Vk;(z) i=1,..m .

The first order necessary conditions, or Kuhn-Tucker conditions, are that z: be a



feasible point ( i.e. h (z+)=0), and that there exists a Lagrange multiplier .

such that:
Vl(x*,)\,) = 0 .

The second order necessary condition is that the Hessian of the Lagrangian func-
tion is positive semidefinite for all vectors that lie in the null space of Vh(z:)7 .

That is, for all v that satisfies: Vh(z:)T v =0, we have

vT Vi(ze , M) v 2>0.

Sufficient conditions for z:« to be an isolated local minimizer of problem (EQ) are
that z. is a Kuhn-Tucker point (i.e. z. and ). satisfy the first order necessary

conditions), and that
’UT Vfl(x*,)\*)v >0

for every nonzero vector v that satisfies Vh(z:)T v =0.

1.2 HISTORICAL BACKGROUND

In this section we present some methods that attempt to solve problem (EQ).
We start with the sequential unconstrained minimization techniques, or (SUMT),
which were popularized by A. Fiacco and G. McCormick in the late 60’s. Then
we present the multiplier methods which were famous in the early 70’s. After
that we present five different ways to extend Newton’s method from uncon-

strained optimization to constrained optimization.

1.2.1) The Penalty Function Methods



Some of the earliest practical approaches for solving problem (EQ) were the
sequential unconstrained minimization techniques or (SUMT). These techniques
are based on solving a sequence of unconstrained minimization problems whose
solutions approach the solution of problem (EQ). Penalty function methods

belong to this class. [See Fiacco and McCormick (1968)]

Penalty function methods solve a sequence of minimization subproblems in
which a "penalty” term for constrained violation is added to the objective func-

tion. The first penalty function was suggested by Courant (1943) for problem
(EQ). It is the function:

P(z,r)=f(z) + —r h(z)Th(2) r>0.

It can be shown under mild assumptions that if z(r) is a minimizer of P(z,r)

for every r, then:

lim z(r) =z,
r—00

where z. is a solution to problem (EQ) [see for example Poljak(1971)]. The

penalty function methods can be stated as follows:

ALGORITHM (1.2.1): Penalty Function Method

1) Given z, choose ry>0.

2) For k =1,2,... until convergence do

i) Find 2;,, such that:
Ty = argmin P(z,r) .
z

ii) Choose rpyy > 1y .



These methods generate a sequence of infeasible points. In fact, each iterate
is either necessarily infeasible or a solution of problem (EQ). These methods are

not appropriate for problems in which feasibility must be maintained.

The availability of powerful methods for solving unconstrained optimization
problems, the well-developed theoretical background and the comparative simpli-
city of these methods are attractive. However, in practice it is inefficient to
require that the sequence of unconstrained minimization problems be solved
exactly and they suffer from severe numerical difficulties since the unconstrained
problems that must be solved become increasingly more ill-conditioned as the

solution is approached.

1.2.2) The Multiplier Method

It is well known that in order to guarantee convergence of the penalty func-
tion methods the penalty parameter must go to infinity, and so the problem
becomes increasingly ill-conditioned. Therefore, it would be useful to derive

methods for which the parameters need only assume moderate values.

These concerns motivated Hestenes (1969) to introduce his multiplier method.

He suggested the augmented Lagrangian function:
L(zXr)=f(z) + NTh(z) +r h(2)Th(z) . (1.2.1)

The multiplier method consists of updating an estimate of the Lagrange multiplier

X and sometimes the penalty parameter at each iteration. The multiplier

method can be stated as follows:

ALGORITHM (1.2.2): The Multiplier Method



1) Given z5 € R™ and ry>0, determine Ny ¢ R™.

2) For k = 1,2,... until convergence do
i) Find z;,, such that:
Tpy = arg;nin L(z,M,m) -
i) Update r, by some update formula.

ili) Update X\; by some multiplier update formula.

As an update formula for the estimate of the multiplier, Hestenes (1969) and

independently Powell (1969) suggested:
Newr = Np + 1 h(z) . (1.2.2)
Haarhoff and Buys (1970) proposed:
M = = (Vi Vi)'V Vi (1.2.3)

Buys (1972) proposed:

Mev1 = Mo + (VREIVZL VR )y (1.2.4)
Miele (1972) proposed:
Mar = (Vi Vhy) b — VR Vi) - (1.2.5)
The formulas:
Mewn = (VRTVELIIWR) T [ by — VRTVIL Y (Vig4n Vighy) | . (1.2.6)

was suggested by Tapia (1974a), (1974b) in a different context.

A complete analysis of the multiplier methods was presented by Tapia



(1977). Computational experience with the multiplier methods was reported by

Miele et al. (1971a), (1971b), (1972a), and (1972b).

It is shown by Buys (1972) that if we define the dual of problem (EQ) to be

the following problem:

max min L (z,X;r),
A z

where L is the augmented Lagrangian function (1.2.1) and r is a sufficiently
large fixed penalty parameter, then if 2, solves the primal problem (ie. 4
solves problem (EQ)), then its associated Lagrange multiplier A« solves the dual

problem and z: can be obtained from ). as the solution of

min L (2, \s;r1).
z

The multiplier method with multiplier update formula (1.2.2) or (1.2.3) is the gra-
dient method applied to the dual problem; and the multiplier method with multi-
plier update formula (1.2.4) or (1.2.6) is Newton’s method applied to the dual
problem. [Buys (1972)]

Based on these facts, the rate of convergence of the multiplier method with a
sufficiently large fixed penalty parameter using (1.2.2) or (1.2.3) as an update for-
mula for the multiplier can be shown to be g-linear in z and in X\ . Additional
results show that it is g-superlinear in \ if and only if the penalty parameter
goes to infinity [see for example Bertsekas (1976)]. On the other hand, the rate of
convergence of the multiplier methods with a sufficiently large fixed penalty con-

stant using (1.2.4) or (1.2.6) as an update formula for the multiplier can be shown

to be g-quadratic in r and in .



1.2.3) Newton’s Method For Problem (EQ)

Up to this point, from the historical and chronological points of view we have
seen that the price we pay for convergence in the penalty function methods is a
deterioration in numerical conditioning, since the penalty parameter must go to
infinity. The parameterized subproblem that has to be solved at each iteration in
the multiplier method suffers from ill-conditioning since the penalty parameter has
to be set to a sufficiently large value. In the multiplier method using (1.2.2) or
(1.2.3) as an update formula for the estimate of the multiplier, in order to guaran-
tee fast convergence, again the penalty parameter must go to infinity, and the
problem becomes increasingly ill-conditioned. Although the multiplier method
using (1.2.4) or (1.2.6) gives fast local convergence, it still suffers from the fact
that the subproblem requires a complete minimization in z in order to get a
step. To address these problems, an algorithm which would give fast convergence
without a corresponding deterioration in numerical conditioning is needed. Such

an algorithm is presented in this section.

Five different ways to extend Newton’s method from unconstrained optimiza-
tion to constrained optimization have been suggested. These are the extended
problem, the successive quadratic programming, the diagonalized multiplier

method, the structured multiplier substitution method, and Goodman’s method.

This section is devoted to a discussion of each of these ways. We start our
discussion of extending Newton’s method to problem (EQ) by considering the
extended problem. Then we will consider the successive quadratic programming,
the diagonalized multiplier method, the structured multiplier substitution method,

and finally Goodman’s method.
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1.2.3.1) The Extended Problem:

Suppose problem (EQ) ¢ C% Let z« be a local solution which is also a reg-
ular point. The first order necessary conditions and the regularity assumption
imply that there exists a Lagrange multiplier X+ such that (z«,\«) is a solution of

the following nonlinear system:

V. i(z\) =0 (1.2.2)
h(z) = 0.

Following Tapia (1977), (1978), by the extended system we mean the non-
linear system of equations (1.2.2), and by the extended problem corresponding to
problem (EQ) we mean the problem of finding a stationary point of the Lagran-
gian function. ie. solving for a root of the extended system. Now, consider
applying Newton’s method to solve the extended problem. Our assumption will
be the standard assumptions of Newton’s method. Specifically, we assume the fol-
lowing:

(1) fandh € C2

(2) VPI(ze,\+) is invertible

(8) V2I is Lipschitz continuous with respect to z in a neighborhood of the

solution.

Newton’s method on the extended system can be stated as follows:

ALGORITHM (1.2.3) Newton’s Method on the Extended System
1) Given z, ¢ R" and A\, ¢ R™
2) For k =1,2,... until convergence do

i) Solve for (s, A\) the following linear system
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Vflks -+ thA)\ = —V,lk
thTS = _hk .

i) Set: a4 = 2 +s .

i) Set: Apyy = A + AN .

Under the standard assumptions of Newton’s method, this algorithm gives

local g-quadratic convergence in (z,)). [See Tapia (1977))

1.2.3.2) The Successive Quadratic Programming Method (SQP):

The successive quadratic programming method is effective for solving problem
(EQ). Algorithms of this type compute the minimizer of problem (EQ) by solving
a sequence of quadratic programming subproblems. Namely, by the successive

quadratic programming method or (SQP), we mean the iterative procedure:
ALGORITHM (1.2.4): The Successive Quadratic Programming Method

1) Given zy ¢ R" , determine X\, ¢ R™ .
2) For k =1,2,.. until convergence do
i) Find a solution (s% , AN9") to the following quadratic programm-
ing problem:
minimize VIl s + -;—ST Vi, s
subject to by + VAT s = 0.
i) Set 2., = z +s9 .

iii) Set Ny = Ao + ANOP
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1.2.3.3) The Diagonalized Multiplier Method (DMM):

At each iteration, the multiplier method described in Section (1.2.3) goes
through a complete minimization step for 2 and only one update for ) ,
although we are solving for both the minimizer z. and its associated multiplier
X+ . It would then make sense to update the estimate of the multiplier after each
update of the minimizer. This idea motivated Tapia (1977) to introduce the diag-

onalized multiplier method. It can be written as follows:

ALGORITHM (1.2.5): The Diagonalized Multiplier Method

1) Given zy ¢ R" , determine )\, ¢ R™ .
2) For k =1,2,.. until convergence do
i) Update \; by some multiplier update formula.

ii) Calculate:

Ty = BV V(3,0 41) -

1.2.3.4) Structured Multiplier Substitution Method (SMSM):

Consider an estimate of the Lagrange multiplier of the form:
Mz) = (Vh(z)" D Vh(z) ) (h(z)-Vh(z)TDV/f(z)), (1.2.3)

where D is any nXn positive semi-definite matrix that may depend on z. Then
VL(z X)) =0 is equivalent to (2, X)) being a stationary point of the aug-
mented Lagrangian given by (1.2.1). This powerful fact motivated Tapia (1978)
to introduce the multiplier substitution method. The idea is straightforward;

solve for a root of the following problem:
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Il
o

V., L(z,M\z)) (1.2.4)

using any iterative scheme.

By the multiplier substitution Newton’s method, we mean the multiplier sub-

stitution method using Newton’s method as an iterative scheme to solve (1.2.4).

By the structured multiplier substitution method, we mean the multiplier
substitution method taking the advantage of omitting the terms that vanish at

the solution. This method can be stated as an algorithm as follows:
ALGORITHM (1.2.6): Structured Multiplier Substitution Method

1) Given 2, € R", determine A, ¢ R™.
2) For k =1,2,... until convergence do

i) Solve for s the following linear system
(I —A D) [VZLs +Vf, | + Vh, (VRIDVh) Y VhIs +h, ] = 0

where A(z) = Vh(z)(Vh(z)TD Vh(z))"'Vh(z)T .

i) Set 24, = 2 + s

The four methods discussed in this section are equivalent. Specifically, Tapia
(1978) showed that for problem (EQ), the extended problem with the Lagrangian
function given by (1.1.1), the successive quadratic programming method, the diag-
onalized multiplier method, and the structured multiplier substitution method

generate identical (z,)\) iterates.

1.2.3.5) Goodman’s Method (GM):
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Let z« € R™ be a feasible point. If z(az:), ..., 2,_,.(2¢) are a basis for the

null space of Vh(z:)T, then a necessary condition for z, to be a local minimizer

of problem (EQ) is
Vi(ze)T z(ze) =0, i=1,.n—m. (1.2.5)

If we define z(z) in a neighborhood of ., and let Z(z) be the matrix
whose columns are z(z), ¢ =1,..,n—m , then Goodman’s method can be defined
to be the method that uses Newton’s method to solve the following nXn non-
linear system

Z(z)" Vi (z)
h(z) =0

This method can be stated as follows:

ALGORITHM (1.2.7): Goodman’s Method

1) Given z, € R" , determine N\, ¢ R™ .
2) For k =1,2,... until convergence do
i) Form a basis Z(z;) for the null space of Vh(z)T .

ii) Find a solution s to the following linear system:

Z(5)" W(z)s = — Z(z,)" Vf(z)
Vh(z)T s = —h(z,) .

where W(2;) is the Hessian of the Lagrangian function

f(2) + h(z)"Na) -

iii) Set z4,, = =z +s.
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It is easy to see that for problem (EQ), Goodman’s method is equivalent to
the successive quadratic programming method using the projection formula (1.2.3)

to update the estimate of the Lagrange multiplier. [Goodman (1985)]

Of these equivalent formulations, the SQP method is the most visible and
popular. The main reason for its popularity is that it allows inclusion of inequal-
ity constraints in a straightforward manner. To do so, one merely carries them
along as linearized inequalities in the quadratic program. Another reason for its
popularity is that the SQP approach allows use of existing quadratic program-

ming modules in its implementation.

From a theoretical point of view, the extended problem plays a very impor-
tant role and has been in the background of the derivation of many algorithms.

This formulation is widely used for the convergence analysis of its equivalent

methods.
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CHAPTER TWO

‘GLOBALIZATION STRATEGIES

It is known that Newton’s method is locally q-quadratically convergent under
reasonable hypothesis. This means that there exists a neighborhood of the solu-
tion such that if the starting point lies in that neighborhood, the sequence of

iterates generated by the method will converge rapidly to that solution.

This chapter deals with modifications to such methods that attempt to force
convergence to a solution from any starting point without sacrificing fast local

convergernce.

This chapter consists of two parts. In the first part we discuss the globaliza-
tion strategy for Newton’s method by considering the unconstrained optimization
problem. In Sections 2.1.1 and 2.1.2 we discuss in some detail the two main glo-
balization strategies. The second part is devoted to study in detail the globaliza-
tion strategy for problem (EQ). A crucial ingredient is the use of a merit func-
tion. In Section 2.2.1 we discuss some of the existing merit functions. In Section

2.2.2 we present some existing methods for solving problem (EQ).

2.1 GLOBALIZATION STRATEGY FOR PROBLEM (Ucop)

We start our discussion of globalizing Newton’s method by considering the
unconstrained optimization problem or problem (UCOP). In this section we dis-

cuss the two main globalization strategies: namely, the line search strategy and
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the model trust region strategy.

2.1.1) Line Search Globalization Strategy

This is the modern version of the traditional idea of backtracking along

Newton’s direction if a full Newton’s step is unsatisfactory.

The idea of the line search strategy is simple and natural. Let s, be
Newton’s step at z, . We take a step =8, for some v, > 0, that makes

Try1 = T + VS an acceptable next iterate.

An acceptable step at least has to satisfy the so called a-condition

F(ze + 7 s) < Fm) + 1aVi(z) s,

where o €(0,1) is a small fixed constant. An additional condition may also be
required. Different rules may be used to define an acceptable step. Some of these

rules were studied by Armijo (1969), Goldstein (1967) and Wolfe (1969).

The convergence theory of such an algorithm shows that choosing ~, =1
whenever it is acceptable will not affect the fast local convergence [see Dennis and
Moré (1977)]. This fact suggested an algorithm for choosing ~; . The idea is
simple, we start with 4, =1, and then, if z; + s; is not acceptable, backtrack by
decreasing ~; until an acceptable z, + s, is found. This is precisely the back-

tracking algorithm.
ALGORITHM (2.1.1): The Backtracking Algorithm
Given a€(01), 0 <! <u <1 and v, =1

while f(z +79 s¢) > f(m) + e @ Vf(z) 5
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do
Y = p forsome pel, u]
Tpy1 = T +’)’k Sk -

For more details concerning line-search strategies we refer the reader to

Dennis and Schnabel (1983).

2.1.2) Trust Region Globalization Strategy

The idea of the trust region is based on estimating the region in which a local
model of the function f at 2z can be trusted to adequately represent the func-
tion, and then taking the step which minimizes the model in this region.

Specifically, we build a local model of f(ze+s;) at z, say my(s;), which at

least satisfies the properties:

m(0) = f(=), (2.1.1)

Given such a model and a trust region radius Ay , we solve for s; the following
optimization problem:

minimize my (s )

subject to || s || < A .

If the model my(s;) is good enough, i.c., if

Ared,
Pred;,

2> 0, (2.1.3)

where 7, € (0,1) is a small fixed constant,
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Aredy = f( o ) —f(z+s ), (2.1.4)

and
Predy = f(z ) —m(s), (2.1.5)

then we accept the step s, and set ., =z + s -

If the local model my(s;) is convex, we obtain:
Vm(0)7s, < m( s ) —m(0).
This relation, using inequalities (2.1.1) and (2.1.2), can be written as:
Vi(a ) s < my(s)—f(m). (2.1.6)
Using (2.1.4) and (2.1.5), we can rewrite (2.1.3) as:
Sflatse) < (3 ) +m (m(s) — f:(0))

which, because of (2.1.6), can be viewed as a relaxation of the a-condition:

f(nts) < f(mn)+aVi(g) g (2.1.7)

As a criterion used to accept or reject the step s, Moré and Sorensen (1983) use

(2.1.3) and Dennis and Schnabel (1983) use (2.1.7).
If the step s, is rejected, then we set x;,; = 2, and decrease the radius of
the trust region for the next iteration by choosing:
Apyr € (o [ s Lo, 00 [ s H2],
where 0 < oy <ay < 1.

On the other hand, if the step is accepted, we set =, =2, +s, and 4; is

updated according to the following scheme:

If
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Ared;
PTCdk

< ny where my € (ny,1),

then the radius of the trust region is updated by setting:

Bup = min [A, a5l s |ly]  where az>1.
Else, if
Ared;,
Pred, — e

then we update A, by setting:

Agyp = max [Ak,aa ||3k ||2}

2.2 GLOBALIZATION STRATEGY FOR PROBLEM (EQ)

Now, we consider the equality constrained optimization problem. In Section
(1.2.3) we saw that the SQP algorithm is equivalent to Newton’s method on the
extended system. So, it shares the advantages and the disadvantages of Newton’s
method. From the good side of Newton’s method, it is locally gq-quadratically
convergent (if we use exact second-order information). However, from the bad
side of Newton’s method, it is not a globally convergent method. It converges
only if the starting point is close enough to the solution. This means that it may

not converge at all if the starting point is far away from the solution.

Before we start our discussion of the globalization strategy of methods that
attempt to solve problem (EQ), we have to answer the following important ques-
tion:

How do we test the step s, to see if it will make satisfactory progress towards

the solution of problem (EQ) in going from z, to z,+s, ?
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The answer to this question is not easy. It takes us to the following section.

2.2.1) Merit Functions For Constrained Optimization Problem

In the case of unconstrained optimization, it is sufficient to accept the step
sy if f(a+s; ) is smaller than f( 2, ) by an appropriate amount. However,
for constrained optimization, there are two goals, which may not be compatible;

first, to reduce the objective function f( z ), and, second, to go toward feasibility.

Of course, the real problem is to identify an appropriate merit function ® .
This function should connect f and h in such a way that progress in the merit
function means progress in solving the problem. There should be a connection
between the merit function and the way the step is computed in the sense that the
step s generated by the subproblem should give a decrease in the merit function.
This decrease should be sufficient to lead to the solution of problem (EQ). It is
preferred that & be smooth, free of arbitrary parameters, and inexpensive to
evaluate. On the other hand, the merit function @ should not disrupt the rapid

rate of convergence of the basic method in a neighborhood of the solution.

We should accept the fact that no ideal merit function with all desirable pro-

perties yet exists. Some properties may only be obtained at the expense of others.

Although many merit functions have been suggested, they usually suffer from
either the fact that they involve parameters for which there is no clear choice, or

they are not compatible with the subproblem from which the step is computed.

Now, let us consider some merit functions that have been suggested to force

global convergence.

First, consider a class of merit functions that have the following form:
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S(z) = f(z)+ W(h(z)), (2.2.1)
where W( h(z)) is nonnegative for all h ¢ R™ and satisfies W(0)=0. Spe-
cial cases of this function are:

The least squares penalty function,

®(2) = fl@)+r || h(z) |I2 (2.2.2)
is used by Bartholomew-Biggs (1982). Celis, Dennis, and Tapia (1987) used this
function as a relaxed merit function.

Han (1977b) used the following I; penalty function:
®(z) = f(@)+r |l h() ], (2.2.3)

Many algorithms have employed such a function as a merit function [for example,

see Powell (1978), Coleman and Conn (1982) and Byrd, Schnabel, and Shultz
(1985)].

The function:
®(z) = f(z) +r || (=) |l (2.2.4)

is used as a merit function by Byrd, Omojokun, Schnabel, and Shultz (1987).

This class of merit functions has a very useful property that if r is any

number satisfying r > || A+ ||, then & has a local minimum at z. .

The merit function of the form (2.2.2) is differentiable. However, (2.2.3) and
(2.2.4) are not differentiable. A disadvantage of using a nondifferentiable merit
functions is that it needs special methods to deal with the nondifferentiability and

we lose the advantage of widely used, well developed algorithms that require

differentiability.

All merit functions of the form (2.2.1) suffer from the Maratos effect [Maratos
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(1978)] which means that:
S(z+s5) > () (2.2.5)

is possible even when the trial step s makes great progress towards the solution.

The following example by Maratos (1978) explains this.

Example:

Consider the following problem:

minimize f(z) = — 2, +2(zf +2 —1),

subject to 2f +2f —1=0.

The solution is z« = (1,0)T .
The Hessian of the Lagrangian at the solution is the unit matrix.

Now, if z; is the point

— |cost
= [sinﬂ]
for some angle 4, then the SQP method using the unit matrix as an approxima-

tion to the Hessian at 1, , gives the following search direction:

sin20

s = [— siné’cosé’] ’
and we get

[z —2: || = 2(1 —cosb),

[l zg4+s —ze ||, = (1 —cos@)?.
However,

f(o+s) > f(=z)

h(zpg+s ) > k(=)
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So, the trial step s increases all merit functions of the form (2.2.1), even though

it has the quadratic rate of convergence because

1

L lla = 113

I aets — 2 |] =

This example shows that an algorithm that attempts to globalize the SQP method
and employs a merit function of the form (2.2.1) may reject steps similar to the
step s in the last example. Consequently, the fast local rate of convergence will

be disrupted.

Another disadvantage of using a function of the form (2.2.1) as a merit func-

tion is shown in the following example [Byrd, Schnabel, and Shultz (1985)).

Consider

minimize f(z) = 2 z; + —;— zl

subject to zZ +zf = 1.

The only local minimizer is at 2. = (=1, 0)T but there is a Kuhn-Tucker point

at zw =(1,0)7 with Lagrange multiplier Aee = —1 .

The Hessian of the Lagrangian at that point is

Vi) = [¢ 9]

and h(l’**) =0,

Assume that the algorithm is of trust region SQP type (see Section (2.2.2) for the
definition of this algorithm). Let z, = (1,0 )T, then the algorithm will take a
step of the form A s where A is the radius of the trust region and s =(0,1)T
is in the direction of the negative gradient. However, a step of any length along

the direction s will increase both the objective function and the absolute value of
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the constraints. Therefore, any algorithm of that kind that passes by this point

will never leave it even though it is a maximizer.

To avoid the Maratos effect, some techniques have been suggested. The first,
the watchdog technique, is to relax condition (2.2.5) at some iterations [see Cham-
berlain, Lemarechal, Pedersen and Powell (1982)], or to add to the step what is
called the second order correction [see for example Coleman and Conn (1982),

Fletcher (1982), (1984), Mayne and Polak (1982), Byrd, Schnabel, and Shultz
(1985)).

Adding the second order correction also takes care of the disadvantage that
was described in the last example. However, it adds more expense to the trial

step.
Some other useful merit functions have the following general form:
®(zN) = f(z) +2\Th(z) + W(h(z)), (2.2.6)

where W is a continuously differentiable function that satisfies W(h(z)) is

nonnegative for all 2 ¢ R™ and W(0)=0.

One of the advantages of using a merit function of this class is that it avoids

the Maratos effect that might happen if we employed one of the form (2.2.1).

One of the most natural and useful merit functions was suggested by

Hestenes (1969). It is the augmented Lagrangian function:
@ (zNr)=f(2) + M h(z) +r [] h(z) |1} (2.2.7)
where A e R™ .

It is well known that
P (zXe5r) = f(2) + N h(z) +r || h(z) ||}

has a local minimum at =z, when r is sufficiently large, where M. is the
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Lagrange multiplier at the solution. Since M. is not known except at the solu-
tion =z, , an update formula for X must be used to approximate X\, during the
minimization calculation. In Section (1.2.2) we presented some update formulas

that have been suggested. We recall three of them
i) The projection formula:
Meat = — (VA Vi) 'VRE Vi (2.2.8)
ii) Miele’s formulaz:
Neat = (VA Vi) (heyr — VS Ve ) (2.2.9)
iii) Tapia’s update formula:
MNewr = ( VBRIV VR )Y by — VRIVELIVE (2.2.10)
The last formula is equivalent to
Mewr =~ ( ViV YIVRI( VS, + VI, 5 ) .

where s; is the SQP step.

Fletcher in (1973) proposed the differentiable exact penalty function
® (z;r) = f(2) + M=) h(z) +r || b(z) |17,

where Nz) = — (Vh(2)"Vh(2))"'Vh(2)TVf(z). It is also used as a merit func-
tion, with (2.2.8) to estimate the value of the multiplier, by Powell and Yuan
(1986). This function has the advantage that when the second order sufficiency
conditions are assumed and r is sufficiently large, then the minimizer of
Fletcher’s exact penalty function is a solution to problem (EQ). However, this

function is expensive to evaluate.

Another interesting merit function is proposed by Di Pillo and Grippo (1979).
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It has the form:
@ (@ Nr) =1 (2) + XTh(z) +r [ o 1E+ ] M(z)(Vf + VRN |1 (2.2.11)
where M(z) is a full rank matrix of order m X n or n X n .

This function does not belong to the class of functions of the form (2.2.6). How-

ever, it is appropriate to mention it here.

If M(z)Vh(z) isan m X m nonsingular matrix for all z, then, under some
regularity and continuity assumptions, it can be shown that for sufficiently large
r, all local minimizers of (2.2.11) are solutions of the problem (EQ). [See Bertse-

kas (1982)]
If we choose
M(z) = (Vh(z)TVh(z) ) Vh(z)T
then M(z) Vh(z) =I. Thus the local minimizer of (2.2.11) and Fletcher’s exact
penalty function are identical if r is replaced by r——i— . So, we can regard Di

Pillo and Grippo’s merit function as a generalization of Fletcher’s exact penalty

function.
Boggs and Tolle (1984) use the following exact penalty function:
®(2) = f(z) +Nz)Th(z) +r || A%h(z) ||2
where A (z) = (VA(z)TVh(2))™ and Nz) = — (Vh(z)T Vh(2))"'Vh(z)T V/ (z) .

It is quite interesting to notice that Boggs and Tolle’s exact penalty function is

equivalent to the Lagrangian function (1.1.1) when XNz) is given by the following

relaxed Miele’s update:
M (2) = (Vh(z)T Vh(2)) ™ r h(s) = Vh(2)TV/ (2) ]

In that sense we can say that I(z,\.(z)) is an exact penalty function.
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Boggs and Tolle’s function, Fletcher’s exact penalty function, and Di Pillo
and Grippo’s function share the disadvantage that they contain first derivatives,

so their second derivatives will be either impossible or very expensive to evaluate.
Schittkowski (1983), Gill, Murray, Sunders, and Wright (1986), use as a

merit function, the augmented Lagrangian (2.2.7) in which the Lagrange multi-

plier is treated as a separate variable.

Schittkowski (1983), Gill, Murray, Saunders, and Wright (1986) use the following

scheme to update the Lagrange multiplier:

Ay ap+(1—a)X a €(0,1)
where p = X9 and starting with X\, = g, .

Celis, Dennis and Tapia (1984) used the augmented Lagrangian as a merit
function. They fix the multiplier during the process of testing the step and

update it after accepting the step.

Celis, Dennis, and Tapia (1987) used the augmented Lagrangian as a primary

merit function with the function (2.2.2) as an auxiliary merit function.

In this research we will use the augmented Lagrangian as a merit function in
which the Lagrange multiplier is treated as a separate variable. We will use the

following formula to update the estimate of the Lagrange multiplier
MNet1 = — ( VBIVR, )IVRI( VS + By 8, ),
where 8 in the formula is the trial step.

2.2.2) Some Existing Methods

Problem (EQ) is often solved by the Successive Quadratic Programming
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(SQP) algorithm (see Section (1.2.3)). Namely, at the k' iteration the step is

computed by solving the following quadratic programming subproblem:

minimize V,I(z 2\,)Ts + %— sTB s (QP)

subject to  A(z) + Vh(z)Ts = 0,
where By is the Hessian of the Lagrangian or an approximation to it.

The local convergence analysis for the SQP algorithm has been fairly well

established. The area of global convergence is currently receiving much attention.

Many publications have considered globally convergent algorithms, via merit
functions and line searchs. [for example see Han (1977b), Fletcher (1981),
Bartholomew-Biggs (1982), Schittkowski (1983), Powell and Yuan (1984), Burke

and Han (1985), Boggs and Tolle (1986), Gilbert (1986) and Gill, Murray,
Saunders and Wright (1986)].

Schittkowski (1983) and Gill, Murray, Saunders, and Wright (1986) solve the

QP subproblem to get s and \9F . A steplength parameter «;, is obtained

by using a line search globalization strategy with the augmented Lagrangian as a

merit function, then the new iterate is defined to be

Tyl = T +a,, SQP
Ml = N F oy (NP =) ).

The idea behind this approach is that, since the variable z is controlled by the
line search globalization strategy, the variable A has to be controlled by a form
of line search. This idea explains why they use for computing M., a convex

combination of X\, and \97 .

Trust region approaches for unconstrained optimization have proven to be

very successful both theoretically and practically. The most natural way to intro-
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duce the trust region idea to constrained optimization is to add a constraint which
restricts the size of the step in problem (QP). That is, at the k™ iteration we

solve the following trust region quadratic programming subproblem:

minimize V,I(z,\)Ts + -é— sTB, s

subject to  h(z) + Vh(z,)Ts = 0 (TRQP)
s 1l < A

However, this approach may lead to inconsistent constraints because the hyper-
plane h(z) + Vh(z)Ts =0 may not intersect the sphere || s ||, < A, . Even
if they intersect, there is no guarantee that the trial step s will sufficiently
decrease ® and be accepted. So we may need to decrease the radius of the trust
region, and again we may get inconsistent constraints if A; becomes too small.
Consequently, there will be no feasible region that satisfies both constraints, and

the model subproblem will not have a solution in the trust region.

It is easy to overcome this difficulty if the constraints are linear (i.e. for gen-
eral linear equality and inequality constrained optimization problem). To do this
simply maintain feasibility at each iteration by either projecting or restoring the
step to the feasible region. This can be done efficiently for linearly constrained

optimization problems. If we do that at the k ' iteration the step will be com-

puted by solving the following subproblem:

minimize V,[(z; M\;)Ts + % sTB, s

subject to  Vh(z)Ts = 0
Hs il < A,

which has always consistent constraints. [See Gay (1983)]

For nonlinear constraints, to overcome this difficulty, two main approaches

have been introduced. The first approach is to relax the constraints by
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considering the following subproblem:

minimize V,I(zx, )75 + % sTB, s
subject to & h(z;) + Vh(z)Ts = 0
s 1l < &y

where 0 <a <1. This approach has been applied by Vardi (1985) and Byrd,
Schnabel, and Shultz (1985).

Using this approach makes the problem always feasible in the sense that if we set
o =0 then the hyperplane o« h(z)+ Vh(2,)Ts =0 will contain the current
point and consequently it will intersect with a trust region sphere of any radius.
However, this approach suffers from a disadvantage that the step depends on the

unknown parameter a which there is no clear way of choosing.

An interesting way using this approach to compute a trial step that does not
depend on the parameter o was implemented by Byrd, Omojokun, Schnabel, and

Shultz (1987). They calculate s by solving the following subproblem

minimize Vf(z)Ts + —;— sTB s

subject to  Vh(z)Ts = Vh(z)Tv
11s 1ls < A,

where v solves the following problem

minimize || h(z) + Vh(z)Tv ||,
subject to || v |, < €4,

where 0 < € < 1.

The second approach is to add the trust region constraint to a somewhat
different problem. At the k' iteration the step is taken to be the one which

minimizes the quadratic model of the Lagrangian and gives some decrease in
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|| hy + VhIs |],. This idea was first introduced by Celis, Dennis, and Tapia
(1984). At each iteration the step is computed by solving the following subprob-

lem:

minimize V(2,2 ) s + % sTB; s
subject to H oh(z) + Vh(%)Ts ||, < 6 (CDT)
s 1l < &

where 6), is some positive constant that depends on & .

Celis, Dennis and Tapia (1984) chose 6, to be || by + VATs ||, , where
sg? = — oy, Vhy b is the step to the Cauchy point, i.e., the minimizer in the
trust region {s: || s [l <A} of || h(z) + Vh(z)Ts ||, along its negative
gradient. That is, the Célis—Dennis—Tapia step is chosen from the set of steps
from z; that are inside the trust region and give at least as much descent on the

2-norm of the residual of the linearized constraints as the Cauchy step.

In 1986 Powell and Yuan introduced a different way of choosing 6,. They

chose it to be any number that satisfies
O = min [ || h(:tk)+Vh(xk)Ts lo: |ls ||2§UA1;,0_<_0S1]-

For any choice of 6, ,if s solves the CDT subproblem, then

(By +ul+aVh Vi)s = — (Vi +a Vi b ), (2.2.12)
s 1l < A,
p(8—1lslly) =0,

|| &(z) + VR(z)s ||, < 6,

a (0, — || h(z) + Vh(z) s |l3) = 0,
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with g,0 > 0.

The approach of Fletcher (1984) is different. This approach uses an I, exact
penalty function with a trust region constraint. Let the linearized constraints be
I(s) and the quadratic model of the Lagrangian be g¢(s), then the I; exact
penalty function is formed as follows

m .
his,u) = q(s) + 3w &i(s)

i=1

At each iteration the step is computed by minimizing this !, exact penalty func-

tion subject to a trust region constraint.
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CHAPTER THREE

THE TRUST REGION ALGORITHM

This chapter is devoted to presenting in detail a variant of the 1984 Celis-
Dennis-Tapia trust region algorithm for equality constrained optimization prob-
lem. Before we start our discussion about the algorithm, let us introduce some of

the notation that will be used in the rest of this thesis.

Notation

The trial step at the k' iteration is denoted by § and its associated
Lagrange multiplier by A\, . If the step is accepted it will be denoted by s,

and its associated Lagrange multiplier by A\, .
The terms VPh(z) A\ and V?h(z;) h(z,) will appear in Chapter 4 and 5.

They are used to denote Y} VPh(z,) A\; and Y VPhy(z,) h;(z;) respectively.

=1 i=1

The matrix B; denotes V2I(z,\;) or an approximation to it.

3.1 DESCRIPTION OF THE ALGORITHM

The algorithm is iterative. At each iteration a trial step § is obtained by

solving a model problem.

At any iteration indexed k , we try to update the estimate of the solution
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7 to be the improved estimate .., . To do this, the step s2F is computed by
solving the QP subproblem. If it exists and lies inside the trust region, ie. if
[l s2F || <A, then we set § = s@F. Otherwise, the CDT subproblem will be
solved. On the other hand, if 2, is feasible, then we solve the TRQP subprob-

lem. This can be stated as an algorithm as follows

ALGORITHM (3.1.1) Computing the Trial Step

Solve (QP) to get s and ANGP
I 221l < &
then '§k = SkQP

AA>\k = A)\kQP.

Else, if z;, is feasible

then solve (TRQP)

a — oTRQP
Set Sk—sk e

AA)‘k = —( thTth )_IthT[ Vz lk + BkSkTRQP] .

Else, solve (CDT)

4 — JCDT
Set Sy = S .

A\ = —( VhIVh )IVAI[ V, h + BysCPT]

Let 3, be the step computed by the algorithm and A\, be the correspond-
ing Lagrange multiplier step, we test whether the point (248 , Me+AN ) is a

better approximation to the solution ( z+, A\« ). In order to do this, we use, as a
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merit function, the augmented Lagrangian (2.2.7).

Now, we test ( z+8 , \p+A\; ) to determine whether it makes an improve-
ment in the merit function.

We define the actual reduction in the merit function in going from (zx,N;) to

(xk+§k , )\k+AA>\k ) by:

Ared, = L(zg,Ngirp) — L(mp+8,, M+ ;7))

= Uz, \e) — Ump+8e M +AN) + 1 [ 1] B(ae) 13— 1) R(ze+8) 112 ],
Which also can be written as:

Aredy = Uz, Ng) — Um+s,0) — ANT h(zp+5;)
+ g [ A() 113 = 1] h(a+8) 112 ). (3.1.1)

The step 4 calculation is based on a quadratic approximation of the Lagrangian
function and a linear approximation to the constraints. Now by using the same

approximation we can compute the predicted reduction which is defined by
Predy = L(mp,\g;ri) — W(zp,8 M\, Ag;re),
where  W(z;,8;,\;,A\;;r) is an approximation to L(zp+38, M+ ;) and s
defined by:
Wz, 3,0, Are) = 1, Me) + Vol (7, 0) T 3 + %ngBkgk

+ N[ B (2)+ VA ()T 8 |

+ e 1 h(z) + Vh(z)T 5 117
Hence,

Predy = L(zpMe;re) — [ Hag,\) + VI (%:M)T§k+% 5By & |

— & (h(z) + Vh(z,)T8 )
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— ne M h(z) + VR(z)T 8 |13
which can be written as:
Pred, = — V,1(z, )74 — .;_ 5. TBy 8 — T h(2)+Vh(2,)T 5 )
+r [ 1 () 13 = |1 h(m) + Vh(2)T8 113 ] . (3.1.2)

We accept the step and set 24, = z,+s; and My = \+AN; , if

Aredy
Pred;

> m

where 7, €(0,1) is a small fixed constant.
If the step is rejected, then we set z,,; =z, and Mey1 =N and decrease
the radius of the trust region by setting
Appr € (o] & e, en ]l 5 o],
where 0 < a3 <ay <1 . [See Dennis and Schnabel (1983)].

When the step is accepted, the trust region radius is updated by comparing

the value of Ared, with Pred, . Namely, if

Ared,
— Pred,

)1 < 1

where 7, € (n,1) , then the radius of the trust region is updated by the rule:
B = min [ &, ag || s []5]

where a3 > 1.

Ared;

redy,

However, if 2> Ny, then we increase the radius of the trust region by set-

ting:
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Ay =max [ &, a5 || s ||2]

This can be stated as an algorithm as follows:

ALGORITHM (3.1.2) Testing the Step and Updating the Trust Region

Radius

Ared,

Pred, s

If

then set =z, = =z,

>‘k+1 = >‘Ic ’

Apprelag |l 8 o, oo |l 8 (2] (3.1.3)

Ared;
Else, if <
SO R S Prg, <™

then set =z, =1 + 5,
M1 =N + A\,

Agyy =min (&, 03 |] 5 |]o] -

Ared,,
Pred, >ny and |] s ||, > A, and o || sp [l > Ay

then we do only one internal doubling according to algorithm

Else, if

(3.1.3) below.

Else, set 1z, = 7, + s,
Met1 =N + AN,

App = max[ A, a3 || s [ ]-



39

Aredk

th h
In the case when Pred,

>y, s #s9 , and a || s |ls > A, , where

a4 > 1, then we do only one internal doubling by setting A, := a4 || s; ||, and
if |]s9 |, < A, we take it as our trial step. Otherwise, we stay with the old

acceptable step and update the old trust region radius by the rule
Apy = max [ &, a3 ]| 5 [[2].

This can be stated as an algorithm as follows

ALGORITHM (3.1.3) Internal Doubling

Set &y = a4 [| s |]2.
[ R | PV
then, go back to the last acceptable step and the last corresponding

trust region radius and update it by step (4) of algorithm (3.1.2).

Aredk

Else, if <M,
di

re

then go back to the last acceptable step and the last corresponding

trust region radius and update it by step (4) of algorithm (3.1.2).

Else, accept the step and update A, according to step (1) or

(4) of algorithm (3.1.2) above.

3.2 THE ALGORITHM

The outline of the algorithm is given below. It differs from the 1984 Celis-

Dennis-Tapia algorithm in its way of updating the penalty parameter in step (3)
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of the algorithm and in its way of updating of the trust region radius in step (4).

Step (0)

Set 2 ¢ R®™ , By ¢ R"™" | NeR™,
ra=1,p >0,

0 <o S0 <1 < oy < ooy,

0 < < mp < 1,

e >0, A >0,

and £ = 0.

Step (1)
If [PV lle + [l ke |y < €, stop.

Step (2)

Compute 3, and A\ according to algorithm (3.1.1) above.

Step (3)

Update the penalty parameter by the following scheme:
Set, e = Tp_1
If
r
Predy > —2L[ [F e HIE — 1] Re+VRTS |13

go to step (4)



Else, set

VTS + % 57Bys, + Ak, + VRIS,
ok 113 = 1| by +VRES 13

Tk
Step (4)
Test the step and update A, according to algorithm (3.1.2) above.
Step (5)

Set k:=k +1 and go to step (1).

41
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CHAPTER FOUR

GLOBAL CONVERGENCE ANALYSIS

This chapter is devoted to the analysis of the global behavior of our algo-
rithm. Our global convergence theory is sufficiently general that it holds for any
algorithm that generates steps that give at least a fraction of Cauchy decrease in

the quadratic model of the constraints.

In the first part of this chapter we state the standard assumptions under
which the global convergence theory is proven. In the rest of the chapter we
address the global convergence theory of the algorithm. In Section 4.2 we prove
lemmas that deal with the predicted decrease of the function and of the model. In
Section 4.3 we prove lemmas that are needed to study the behavior of the penalty

parameter. Section 4.4 is devoted to studying the global convergence analysis of

the algorithm.

4.1 THE STANDARD ASSUMPTIONS

It is clear that the behavior of our algorithm will depend on the conditions

we impose on the problem and on the matrices. We first state our assumptions

1) There exists an open convex set ¢ R" such that, for all k, z and

Ty +§k € Q.

2) f and h; € CHQ) i=1,..m .
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3) There exists a positive constant A, such that, for all k, A, < A, .
4) Vh(z) has full column rank forall z ¢ Q.

5) f(z), h(z), Vh(z), Vi(z), Vf(z), (Vh(z)T Vh(z))"! and each

V2hi(z) , for i=l,..,m are all uniformly bounded in norm in Q.

6) The matrices { B,, k=1,2,...} have a uniform upper bound.

Remark

Assumption (3) implies that all the trial steps are bounded. This assumption
is not a restrictive assumption. In fact, in our convergence theory we never state
that the radius of the trust region has to be increased. So we can set an upper
bound on the radius of the trust region inside the algorithm and our global con-

vergence theory holds.

4.2 SUFFICIENT DECREASE IN THE MODEL

All results in this section deal with the reduction of the merit function and

the predicted reduction of the model.

In the following lemma we use the fact that the step 5, is chosen to give at
least as much decrease in the linearization of the constraints as the Cauchy step
seP.

Lemma (4.1)

Let 3, be the step generated by the algorithm. Then there exist constants b,
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and b, such that for all &

A g | A 11y

Il ke 112 — |] by + VRIS 11§ > p min [ 4 , by .
1

Proof

From the way of computing the step §, , we have

b 115 — ] B+ VRS TE > 1] b |13 — 62

= |1 ke HE = 11 be+VR{s2 113

= —2hT VaIs — (5T Vh, VAT 5.

From the definition of s , we have

S]fp = — th. hk s
where o is defined by
Ay || Vhy By |13
o = i > A, 4.2.1-a
¢ I Vhy By [, || VAT Vb by 113 = 7 ( )
otherwise,
Vh, h 2
o L et Ak - - (4.2.1-b)
|| Vh Vh by |13
Vh, h
Consider the first case. i.e., the case when 57 = — A k k . In this
I Vhe Ay [o
Vhy | 3
case, using 1 T e e 1l 5 = O, we have
| Vhy Vhy by 113
. || VhI Vhy by |13
ke 113 = 11 b+ VS5 113 > 2 8 1] Yy by [, — AF R

|| Vhy by 113

> 240, || Vag by g —Ap 1] VR by |,
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= 4 || Vhy by ||2 (4-2-2)
Now, consider the second case. We have
|| Vi by |13
A 13— ] Re+VRT8 |15 > 2 || Vhg by |13
|| VAT Vhy by |13
|| Vhy by 113

— 1 1} Vi Vay by |13

|| Vi Vhy by |13
Hence,

|| Vi by |13
|| VhE Vhy by 113

[ Ay 11E = |1 e+ VRIS 113 >

N Vh Il 423
|| Vh, VR |1,
From (4.2.2) and (4.2.3), we can write
b 12 = 1] b Va5, 11 > 11 by by Ll min (&, LB e )
[ VR VRS 1],
Now, using the standard assumptions, since
131
Ve b lle 2 Eron e T

we can write
Wk 13— 1] ke + VRS |15 >

hlla 1L ke Lo e

[ (VAEVR)TIVRE |, [ (VAESR)IVRE 1o || VA VRE L,

Now from the standard assumptions there exist constants b;, and b, where

by = fl:% [ (Vh(x)TVh(x))"IVh(x)T ”2
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and

by = sup [ || (Vh(2)" Vh(x)) V()" |l || Vh(2)Vr(2)" |],]

The rest of the proof follows immediately by substituting b; and b, into (4.2.4).

Corollary (4.2)

Let k be the index of any iteration, then the predicted decrease in the model by

the trial step satisfies

h h
nlly s Il

Pred, >
e 2 5, 5,

where b; and b, are asin Lemma (4.1).
Proof

From the way of updating the penalty parameter r, in step 3 of the algorithm,

we have
Tk N
Pred, > ?[ W ohe 11— | he+VRTS 112

The rest of the proof follows immediately from the last lemma. ™

Lemma (4.1) shows that the way of choosing 6, in the CDT subproblem

implies that we always get a fraction of Cauchy decrease in the constraints.

Corollary (4.2) shows that the way we update the penalty parameter insures
that the predicted reduction at each iteration will be at least as much as a frac-

tion of Cauchy decrease.
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Lemma (4.3)

If s is the solution to the following problem
minimize ¢7s + —é— sTB s
subject to || s || < A

for any g ¢ R® and any nXn symmetric matrix B , then

|l g1l
211 B [l,

T

1 .
g's <—-——é—||g||2m1n[A, J. (4.2.5)

Proof

The proof follows directly from Lemma (3.2) of Powell and Yuan (1986). How-

ever, for the sake of completeness we present a proof for the lemma.

If ||glly=0, then (4.2.5) is trivial. So, let us consider the case when
[1g1l:>0.
If the trust region is not active then the step is computed from B s =—g .

Hence we can write

s = BYg+75,

where B* is the generalized inverse of B and ¥ is a vector in the null space of

B .
Since ¢ 1is in the range space of B , it follows that

gt s = —g" Bty

IN

1

IN

1
s —me—— ) ' NV 4.2.6
AP : (4.2.6)
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If the trust region is active then from Kuhn-Tucker theory there exists a multi-

plier p >0 such that

g+(B+pnl)s =0

Using the same argument as above, we can write

T 1 2
gt s < — I1glls.
B +ulll, ?

But from (4.2.7), we have

or

pllslly=1Bs+glly < IIBlla s+ 1lgll,

Hgll

< B
v < |IB|l+ A

Thus, we have

So,

B +ulll, < [IBll;+n
gl
< 2 B _ -
< 1 [fs + A

2 |[|Bllya+ 1lgll,

A
2
gTSS— ”9”2
B +ulll,
2 A
< g ll3

2 (TBILA+ [Tgll

From the last inequality and (4.2.6), we can write

[l'g Il

STB,

1 .
< —"2‘ ||g||2m1n[A,

(4.2.7)
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Hence we get the desired result. n

Corollary (4.4)

For any step §, generated by the algorithm, let 3/ =P, 5, and 3§!= Q,
where P, =1 — Vh,(VRIVR,) VAT and Q, =I — P, . Then, 3/ solves the fol-

lowing problem:

minimize [Py (Vi + Bg §8)7s + % sTP,B,P s

subject to [1s 1l < 4,

where A, =\/AZ — || 37 ||>. Furthermore, 3§} satisfies:

|| P(Vi + B, 8¢) 11,
2|1 B |12

~ ” 1 ~ . -
(Vlk'*'Bkslg)TSfS_?”Pk(VIk"'Bkslg) [l min [ 4, ]

Proof

The proof follows directly from Powell and Yuan (1986). However, for the sake of

completeness we present a proof for this lemma.
Since § = 8 + §f, 8 solves the following problem:
minimize VII(s + 5§ ) + % (s +38) By (s + 8¢)

subject to VhIs = 0
s +3( 1l < &

The last problem is equivalent to

minimize (Vi + By §¢)Ts + -;— sTB s
subject to Vhis = 0
s 1le < A

Since, 5[ lies in the null space of VAT , then VI3[ is always zero. Hence sf
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solves the last problem even if the constraint VhIs = 0 is deleted. That is, &f

solves the following problem.

minimize [Py(Vl + B, 38)|Ts + % sTP,B,P, s

subject to [1s ]l < 4.

Now using (4.2.5) and || PiByPi |ls < || Bi |12, we get

- P (Vl, + B §¢
(Vi +Be )T < L 11 Py 4B, 52 Nlymin (5, , 12T 2B 8D

).

211 B 115
Hence we get the desired result. u
Lemma (4.5)
There exists a constant ¢; such that || Vi, ||, < ¢;.
Proof
Since N\ = Ny = —( thT_,k Vhg_y, )‘IVh,,T_,k ( Vfe-t, + Bioy, sy, ), Where

Sg—y, 1 the last acceptable step, we have
e e < VRS, Vhe )RSy o [ 1 Ve, Ha+ 1 Becy Ha 1 sy, 1],

The boundedness of |} X, ||, follows immediately from the standard assump-

tions.

Now, because || Vi [l < [I Vfe llo+ I VA |12 |} M\ |15, we can see that
the proof of the lemma follows from the boundedness of || \; ||, and the stan-

dard assumptions. n

Lemma (4.6)
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For any z, , z+$§, ¢ 0, we have:

|Aredk—Predk l < a ||§k ”22+"k[a2 ||§k H§’+a3 ”hk ||2||§k ||22],

where a;, a,, as are constants independent of & .

Proof

From (3.1.1) and (3.1.2) we can write:

Aredk - PTCdk = [ l(xk,)\,,) + Vxl(xk,)\k)Ték + %g‘kTBkgk —_ l(xk+§k 5 >‘k) J

So,

| Ared, — Pred, |

Hence,

| Ared, — Pred, |

+ AA)‘kT [ by + VRIS, — h(z+3;) |

+re [ by + VRIS [1Z— | h(zp+5) 113

< | M) + Vol (mo M) T8 + % S8 B8y — U(zp+8e , M) |
+ | AN [ by + VRES — h(z+8) ] |

+re | 1 ke +VRTS 112 — ] R(ze+s) L2 ]

< 187 [ By — VA(m+6180) ] 8 |

1
2
1, . n A R

+ ?| 55 [ VPh(zp+€08) AN ] 5 |

+ i | &7 Vi VAT — Vh (5 +€38) VA T (2,+638,) | 3 |

+r | §kT V2h(xk+fa§k) h(ze+E€38:) & |,

for some €, ,& ,& € (0,1). So,

I Aredk —_ PTCdk I

1 ) )
< o CH VR 468N Hot 1] Be 1l2) 11 8 HS

1 n & n
+ 7 H V2R (g +€28) A g 11 3 113
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+ 1 || Vh VA — Vh(z+68) VAT (5 +65) |12 |1 8 |13
+ 1 | VPh(z+€58 )k (2 +6:8:) o 1] 3 113
Now by using the standard assumptions, we get
| Ared, — Predy | < ay 118 11§ + agre [1 8 115 + agrp |15 113 1] ke I

Hence we get the desired result. n

The result we obtained in the last lemma does not depend on any property of
the matrices { B, } except that they are bounded, and does not depend on any

property of the step.

Corollary (4.7)

Under the assumption of Lemma (4.6), we have
| Ared, — Pred, | < agre |13 113

where a, is a constant independent of & .
Proof

The proof follows immediately from the last lemma, the fact that r, > 1, and

the standard assumptions. [

Corollary (4.7) shows that our definition of predicted reduction of the merit
function gives an approximation to the merit function that is accurate to within

the square of the steplength.
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Lemma (4.8)

If 5 and & are as in Corollary (4.4), then
(VI +B, )T <o0.

Proof

If § is the step generated from the CDT subproblem, then from (2.2.12) &

satisfies

[By +ul +aVh,VhI] 8 = =V, —aVh hy .
Equivalently,

— (Vi + B 8) = pé, +aVh (h + VRT3, ).
Now

—P, (VI + B, 8;) = u Py é +a P, [ Vi (Be+VhT5)] .
Since P, Vh, = 0, we get
=P, (Vi + By3y) = p sl
So, since P, = Pl and P, §f = 3§,
— (Vi + Be3)T8f = w L8113,
which implies that
(VI +B, 5, )T 8 <o.

Now, assume that the step is generated from the TRQP subproblem. Then 5

must satisfy

(Bk +HI)T S = —(Vlk + Vhy AA>\k)
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Notice that u =0 if the step is generated from the QP subproblem, i.e. if the

trust region constraint is not binding. The last equation can be written as
Vi, + By 6, =— Vh, A\, — ;.
Now, by multiplying by P, , we obtain
Pi(Vl, + B 8) = —P,Vh &\, —u Py 3, .

Again since P,Vh,=0 we have

P (Vi + B, 8 ) = —psdf;

which implies that
(Vi +B, 5 )8 = —u |18ll5 <o0.
Finally, assume that the step § = s = — o, Vh; h; , where «; is defined by
(4.2.1), then
§f = P = —ap P, Vi b, = 0.
So,
(VI +B, 5 )78 <o.

This implies that in all cases the lemma is true. u

Lemma (4.9)

Let 3 be as in Corollary (4.3), then there exists a constant b5 such that:

Hsf 1]z < bsll b 112

Proof

Since



55

||§kq||2= ||Qk§k”2
= || Vh (VA Vi )P VRE 5 |,
Equivalently, we can write
118 e = || VA(VRIVR)™ (hy + V{3, — k) |,
Hence,
1881l < 1 VR(VRIVR) ™ Ho U1 by + VRT3 — ke |1 ]

Now, from the definition of 3, , we can write

IF8E e < 2 | Vh(VRS VR )™ [ 1] B [ (4.2.8)
Set
b = 2 sup [ Vh(z) (Vh()" Vh(z) )™ Il
T €
The result now follows if we substitute b3 in (4.2.8). u

Lemma (4.10)

Let §; be the step generated by the algorithm. Let P, , A, , 5f, 3¢ be as in
Corollary (4.3) and h, = Vh(VhIVh;)h; , then

I P(Vi + Bi3) o

1 . N
Pred, > T [ P.(Vly + Bp5f) ||y min [ 4, , 5 b, ]
= by [l My [T he o= 1 (Vi + Bis) T hy |
+re [ 1A 13— 1 ke + VRT3 |15 ], (4.2.9)

where b, and b, are constants independent of & .

Proof



Since

Predk = — VIkT ‘§k - -;— §kT Bk '§k _— A/}\kT( hk + thTék )

+ o [ A 112 = H e + VRT3 |12,

we can write

Pred, = — (Vi + B,5,)T3, + % 5T B, 8,

+ (Vi + Biée)T Vb (VRIVR) Y by + VRS, )

+ o [ ke 13— 11 Ry + VRTS8, 117
Now, since  Vh, ( VAI Vi, )7 VAT 35, = 57, we can write:
A AT 1 .71 ”
Predk = —(VIk +Bksk') Sk +—2—Sk Bk Sk

+ (Vi + B )T by + 8]

+ e [ HE = 1] b + VRT3, 113 ).

Since § — §f = 3], we get

Predk = — (Vlk + Bkgk)Tglf + —;—- ngBkgk + (Vlk 4+ Bkgk)TEk

+ore [ ke 11E = 1] ke + VRIS 12 ).

But by using Lemma (4.8), we can write

Now

— (Vi + B3,)"8f > —%(Vlk + By5) T4

Pred, > — _;_ (VI, + B,3,)T5f + % 58B,5, + (Vi + By3,) Tk

+r [ | A |12 — I Ay +thT§k ||22]

> % (Vi + B 58 )T 5p — % (D)7 B3 + % 5 By

56

(4.2.10)
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+ (Vi + By3)Thy +rp [ | e 117 — 1] by + VB TS, [13];

which can be written as

_1

Predy, > — (Vi + B, 58)" 3 +%(§f)TBk§,§+ % 57B, 4
+(Vh +Bes) T hy +r [ 1 b 11E— ] By + Vhls 113 .

By using Corollary (4.4), we get

— P.(VI. + B.§!
Pred;, > LHP,,(VI,, + B3 ) ||y min [ 4 |1 Pe(Vi 8¢) 1o
1 211 B; 1,

+ —;‘ (80T Bysf + % 8§ Bysf + (Vi + B3,)Thy

+rg [ e 1= 1 by + VRT3 [17].

But by lemma (4.8), || &f[ls < b3 [1 kMo, 11811 < Il 1l,, and
from the standard assumptions there exists a constant by such that

[l By |le < by. So, we can write

Il Pe(Vl + Bsf) 1], ]

1 . . _
Pred;, > Z”Pk(VIk + B3¢ ) || min [ 4, | 20s

— (bobs I & 1o |1 Ay [1o) = | (Vi + Bis)Thy |
+ore [ b 13 = 1] by + VRT3 112 ]

If we set b, = by b, , we will get the result. ]

The first term and the fourth term in (4.2.9) are positive, and the second and
the third are negative. In order to prove that we will get a positive predicted
reduction each iteration, we have to prove that the positive quantities are greater

than or equal to the negative quantities otherwise we have to increase the penalty



58

parameter to insure that. First we need to get an upper bound on the third quan-
tity: Corollary (4.12) will give us that bound. But first we need the following

lemma,

Lemma (4.11)

Let @, be as in Corollary (4.3), then there exist constants b5 and bg such that
1 Qe(Vl + Bisi) g < b5 || 8 1]+ b6 | Sp—t, |

where s;_, is the last acceptable step and k—t, > 0.

Proof
We have
Q(Vh + By &) = Q Vi + Q@ Vi N + Q4 By 5,

Now, since

Vi = Vh (Vh{ Vi )P VRIVS, = — Vg N}
where X\ = —(VaI Vh, ) VAT Vf, , and since,

Qs Vhy = Vhy ( VoI Vh, )L VAT Vb, = Vh, ,
we have

@ Vhlc )‘k = th >‘k = th )‘k-t,,+1
= — Vi [( VhlcT—t,, Vi, )_IthT—t,, (Vo + By, s, ) |

= Vh | >‘£——t,, — ( vhlcT—t,, th—tk )_lv}’kT—t,‘ By, Sk—t, ]

This implies that
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1 Qu(Vh + By 8) 1o < || Vh, (N — Moy) e
+ by || Vi |y ||Bk—t,,”2 ||3k—t,,”2
+ | By g 118 112 (4.2.11)

Now by using the standard assumptions, there exists a constant by , such that

Ve (N = No) He <1 VR T TN =Nz L,

< by ”zk—xk—-t,; ||2,

and since z; =z, ., , we have
[ Vhe N =N [l < b7 L Te—ty+1 — Ty, |2

< b7 || Sk—i, 5 - (4.2.12)
Substitute (4.2.12) in (4.2.11), and by using the standard assumption, we obtain
Il @(Vie + By &) |z < b5 |8 |1y + b6 | g, |2 -

Hence we get the desired result. n

Corollary (4.12)

Let h; be as in Lemma (4.10), then there exist constants ay and ag such that
[ (Vi +Be3)" k| < [ag 18 [1y+ a5 || se—t, 2] 11 A 115

where s;_, is the last acceptable step and k—t, >0.
Proof

Since @Quhy = h;, we have

| (Vi + Bes))T ke | = | [ Q (Vi + B3, )17 R
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< 11 @ (Vi + Bisy) 1y 1 R 1,

Now, by using Lemma (4.11) and the fact that || &, ||, <bg || ke |],, where

bs = sup | VR(z)(Vh(z)TVh(z))™ ||, the proof follows immediately. .

The following lemma proves that if || & ||, is small enough, then we do

not need to increase the penalty parameter in step (3) of the algorithm.

Lemma (4.13)

Let k indexed an iteration at which the algorithm does not terminate, if

I] Ay |12 < cy &, where ¢, is a small constant that satisfies

V3 € € €
2b3 ! 3A& ’ 3b4A¢ ! 48(d4+b4+05)A*

3 by Ay AR

ce < min | min ( 1, 4.2.13)

where a, and a; are as in Lemma (4.12), b3 is as in Lemma (4.9), b, is as in

Lemma (4.10), and A, is an upper bound on the trust region radius, then

r ~
Predg > —= [ 11 b 115 = 11 b + VR[5 113

Il Pe(Vl + By 88) |ls
2bq

1 " . 1
+t3 || Pe(Vi + B 3¢) ||z min [—2‘Aky

] .
Proof

If k£ is the index of an iteration at which the algorithm does not terminate, then

PV o+ H Al > e

But, since || & ||s < % e, it follows that

2
Il Py Vi [l > 3¢
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Now
1 Pe(Vh + By 38) I, > |1 P Vi |y — || PyBy 8 11,
2 1P Vi [y — 1B s 118,
> |1 Py Vi o — bobs 1]y 11,
= 1PV o — b4l by 1l (4.2.14)
> —€c— =¢
Hence,
|| Py (Vi + By 5f) ”22—;-6- (4.2.15)

Now, from Lemma (4.10), Corollary (4.12) and || b ||, < ¢y A, , we get

. ) | PVl + B3 ) ||
Predy > — || Py (Vi + Bys{) |1y min [ 5, , k( k2b0 i 2|

— cg[ by ||§k ”2"‘(“4 ||§k ||2+‘15 ||3k—tk||2)]Ak

+ g [T he HE = |1 ke + VAT [12] (4.2.16)

So, by using (4.2.15), we can write

— P.(Vi, + B, §f
Pred, > ‘é‘ [l Pe(Vi + By 8¢) ||y min [ 4y, LR k2b 5 ) ”2]
0
+ - (2e)min [ By, ——] — ey [(ay+ by +a5) A | A,
8 "3 "6 by
+ g [ 1E = 11 ke + VRTS8 113 (4.2.17)
Now, since

&, =V A [ 5112,
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by using Lemma (4.9) and || & ||, < % A,
3

Ay >V AE—bF || b |13,

and we obtain

& >V AP - (3/9) &F

1
= 2 A, .
2lc

By substituting the last inequality in (4.2.17), we get

[| Pe(Vi + By 38 ) 1,
25,

Predy > & |1 PVt + By f) 1o min [ L &,

]

1 1 . 1 €
+ g(ge)mln[gé‘k:ﬂ;] — co[(ay+ by + a5) As ] A
+ o [ A 1S = 1 by + VTS 113 .

Since ¢, satisfies inequality (4.2.13), we have

[| P.(Vl, + B, §13)||2}
%,

Pred > & || Pu(Vh + By 8f) [l min [ 24,
r A
+ 7’”[ [1he 113 = e + VRT3 112] . (4.2.18)

Hence we get the desired result. n

If || & |lp <cy A, then half of the first term in (4.2.16) would cancel the
second and the third terms, and the fourth term need never enter the calculation.
This implies that if we set r, =r,_;, inequality (4.2.18) remains correct. So, in

this case, we do not need to increase the penalty parameter.
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Lemma (4.14)

Let k be the index of an iteration at which the algorithm does not terminate. If
[l B |1y < ¢y Ay, where ¢, is as in Lemma (4.13), then there exists a constant

c3 such that
Pred, > c3 A

Proof

From (4.2.15) and (4.2.18), we have

Pred, > %(—;—E)min[—Ak, 6€bo]
1 . €
— € 1 4 .
2 g emin [, =14y
The result now follows if we set ¢; = — emin |1, ¢ ] |
3 by A

4.3 THE BEHAVIOR OF THE PENALTY PARAMETER

This section is devoted to the study of the behavior of the penalty parameter.
The following three lemmas are needed to prove that the penalty parameter is
bounded. In Lemma (4.18) we prove that the penalty parameter will remain

bounded as long as the algorithm does not terminate.

Lemma (4.15)

If %k is the index of an iteration at which the penalty parameter r, increases, we

have
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IEAIP

T min {Ak s b2

] < ag {15 2+ ay ”sk—t,;||2

where ag and a; are constants independent of & |, sg—y, is the last acceptable

step and k—t, > 0.
Proof

Let k be the index of an iteration at which the penalty parameter increases, then

by step 3 of the algorithm r; is updated by the following rule:

VT8 + % 57Bu3, + ATk + VATS,)
[ A 113 = 1] ke +VRTS, ]2

Tk =
This can be written as

Tk N ” N 1 . ”
—2—[ Homg 1S — 1 by + VRTS8 N3] = (Vi + B, 5, )T 85—?3531; 8k
— (Vi + B, 8 )T k

+‘g‘[ [ ke THE— T By + VRT3 |13 .

Using Lemma (4.1), inequality (4.2.10) and 3, = 8} + §¢, we get

ﬂ;_ ||hk||2 . ”hk||2

1 " " 1 . A
5 b, min [ Ay, by ]S?(Vlk‘*'Bkskq)Tsf'*'EszBksf

]_A " N —
Y kTBIc 8 — (Vi + B, § )T hy

+ % [ 1 he 113 = 1] by + VBT 5, 112 .

By using Corollary (4.4), we can write

r h h
e kel o Wl

| P.(Vl + B 3¢) ||2]
26,

1 A .
< iy || P(Vl + By 8) ||y min [ B,
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+ %glgT By §f“—;'§kTBk S = (Vi + By 8 )T Iy

— p[REVRT 5, + % 5T Vh, VT 5, .

Thus,
h h
"2_k ”b/i”z min [ 4, , ”b1;”2] S—“21"'(§)TBk§Ig %ngBkgkq
— (Vi + B, 8 )T Iy
— o VR 5,
and we can write
r ”hk” . ”hk”z N N
—k————imm[Ak, — 1 < By 18 s 118811,
2 bl b2

+o 1V o 118 1o 1] ke 1y

+ (VL +B, 8 ) ke | . (431)
Now by using Corollary (4.12),
e b Iy || Ay | \ ]
5 min (&, —2 1 < B Uy [l 1o 13811,
2 by by

+ (ay || 5 “2+as||3k—t,,||2) H A Lo

+ p || Vi Ha 115 [o 11 A s .

But, by Lemma (4.8) || 3f|] <b3 || h || and from the standard assumptions
Va1, < by where bg=z51€1% [ Vh(z) ]I,

e LA [lg [k || A
o min [ &, ——R ] < (b byt ag+pbe) (18 s [ A [,
1 2

+ ag Hsk—t,c”2 [ ke 1y
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h
The result follows immediately if we divide by —l—l—k”l . [

by

Corollary (4.16)

If k is the index of an iteration at which the algorithm does not terminate and
the penalty parameter r, increases, we have

e &y < oag ] 8 |lg + ag Hsk—t,,”2

where ag and aq are constants independent of & , Sg—y, 1s the last acceptable

step and k—t, >0.
Proof

From Lemma (4.15), if & is index of an iteration at which the penalty parameter

r, increases, then r, must satisfy the following inequality:

[ A [1s

re min [ A ;
2

| < ag || 3 Ils+ ay ||3k—t,;||2

From Lemma (4.13) if || & [|; < ¢y A, then we do not increase r, . So, for

any iteration at which the penalty parameter increases, we must have
[ a1l > cp 8y,
and we get

Co Ak
by

r, min [ A, ]Sds||§k||2+a7“3k—t,,||2-

This can be written as

. ) A
e O mm[l,b—] < ag & la+ar [ siey, 12
2
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Hence,

ne & < oag || 8 |2+ ag Hsk—t,‘HQ;

and we get the desired result. u

By the standard assumptions, at each iteration at which the penalty parame-

. . . ” Sk—t, ||2
ter increases, r, A; is bounded. However, if we can bound — A by a con-
k

stant independent of k , we can get an upper bound on r, itself. In the follow-

ing lemma we get a relation between || k-, |12 and 4A; . In Lemma (4.18) we

prove that the penalty parameter is bounded.

Lemma (4.17)

Let k be the index of any iteration at which the algorithm does not terminate

and the penalty parameter r, increases, then

Ay > ey |l Sk—1, ”2
where sg—y, is the last acceptable step, ¢, is a constant independent of k and
t, ,and k—t, >0.

Proof

Let us consider three cases:
First, if ¢ =1, ie., s_; is the last acceptable step, then from (3.1.3), we have
Ay > o || sp—1 |2

The result in this case follows if we set ¢, = ay
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Second, if s;_; is not the last acceptable step, but || hy_; ||, > ¢y A,_; for all

i €[1, {—1]. In this case, from Corollary (4.7), we have
| Aredy_; — Predy_; | < agre_; |1 8 |13
Now, from Corollary (4.2), we have

re—i || heei 1o min [ A,_, A |]g
2 b, k=i by

Predk_,- 2 } ’

But since all k—i , i=l,.,6—1 satisfy || by [lo > e ey e 1] 86y 1o,

we have

Te—g || hi_; ||2

Pred,_; >
- = by b,

Il 85— |lamin [ by, cq] .

Hence,

Aredy_; — Predy,_; < 2a9by by || 5 |ls

| S = :
Pred,,_; min [ by, co| [| hp_i |1,

But since all k—7 , i=1,...,fy—1 index unacceptable steps, we have

Ared_;
1 - —_— 1 1<: <¢—1
( m) < | Pred,_, |, St 4

So, for all i €[ 1, t,—1 ], we have

(1"’71)

3. > L 7
||sk1||2 = 2 ag b, b,

min [ by, co] || ey 1o

Now, since z,_; = Tp—(ty=1) » Pe—1 = hy_(s,—1) , We have

Ay > o | 81 1

o (1—m) .
> Wmm[bz,w] [ ey 11,
oy (1—m) .

= agbip, TR b, ca] 1] hp—gyn 1o
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ay ey (1 —my)
- 2a0b1b2

min [ by, ¢y | Alc—(t,,—l)

af e (1 —ny)
- 2a0b1b2

min [ by, ¢, | Hsk—t,, [, .

The result in this case follows by setting

af ca(1—my)
200b1b2

Cy = min[b2,02].

Finally, if the step indexed by k—1 is not the last acceptable step and not all
i1, t,—1] satisfy || h_; [|s > co Ay;, then there exists at least one
je[1, 4—1] such that || he_; ||y < ¢y Ap_; . Let I be the smallest integer
€[1,t—1] suchthat || h_; |l < e3¢ . Forall §e[1,I—1], we have

ke 12 > cp A

As in the first two parts, if we set

0‘1202(1_771)
2a0b1b2

Cg = min[al,

min ( by, ¢cq)], (4.3.2)

we get

Ay = s & |2 (4.3.3)
where ¢y is given by (4.3.2). Now, for k—! we have

ke e < cp A4y (4.3.4)
From Lemma (4.6) we have
|Aredy_—Predy_; | <ay || 8¢y 113+ rei ag || 8y HE + ag || ey |l 1] 56 3T
By using inequality (4.3.4), we have

|Aredy_; — Predi | < ay || ey |1+ riey (ag + as co) 1 8-y |15 Ay . (43.5)
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If k£ indexes an iteration at which r, increases, then from Lemma (4.16) and the
standard assumptions we know that r, A, is bounded. By using inequality

(4.3.3), we get

A

ro— | 8ey 1 < — Tkt TAVS

where mg is a uniform bound.

Hence inequality (4.3.5) can be written as

| Aredy_; — Predy_; | < ay || 8y 112+ (ag + caaz) mg || 8-y |y Ay

< lay+(ag+cgaz)mg] || 8- |ls Ay
By using Lemma (4.14), we get
| Ared,_; — Pred;,_, | [ay+(ap+coaz)mg] ] 8- | Ay
Predk_, - C3 Ak—l

ay+(ag+cyaz)mg

= cs [ Sk—1 ||2 .
But since the k—I “ is not an acceptable step, then
Aredk_,
1— i e B
( 771 ) < I Predk_, I
ay+(ag+cya3) mg .
< NP

C3
Hence, by using inequality (4.3.3), we obtain

Ay > es s |2

€3 Cp

[ay+(ap+cpa3) my] (1=m).
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czes (1 —my)
[a1+(ag+coaz) mg] As

H Sk—t, ||2

The result then follows if we set

cges (1 —mnp)

fe = min [ e, [ay+(ag+coaz) mg] As

).

This completes the proof. u

Lemma (4.18)

Under the standard assumptions, if the algorithm does not terminate, the penalty

parameter r, is bounded.
Proof

The proof is by contradiction. Suppose that re is not bounded. This implies

that there exists an infinite subsequence of indices {k;} at which {’k,-} is

unbounded. Now, from Lemma (4.13), we never increase the penalty parameter if

Wk lls < oA So, [k |l > g By -
Let m be any integer € { k; }, then from Corollary (4.16) we can write
T'm Am S ag ” §m ”2 + ag II sm—tm ||2 ’ (4'3'6)

where s,_, is the last acceptable step. On the other hand, from Lemma (4.17)

we have

A, > ey |l Sm—t,, . .

Hence

1
I smey, s < — a4, .
Cyq
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By substituting the last inequality in (4.3.6), we get

ag
"m S. a8+_'
Cy

Set

a
N = (ag+—2).
C4

Since N is independent of m , it is an upper bound of the sequence {rk], } con-

tradicting the assumption that the sequence {rkJ } has no upper bound. This

proves the theorem. u

From the last lemma, we can conclude that for all &, 1< r, < r« Wwhere

r« is a constant independent of & .

Since if r; increases, it will increase by a quantity > p, then the number
of iterations at which the penalty parameter increases is finite. Hence, there exists

a constant k such that r, = r; forall k >F.

4.4 THE GLOBAL CONVERGENCE THEORY

In this part we present our global convergence theory. We start by proving
that the algorithm is well defined in the sense that it always finds an acceptable
step from any point that does not satisfy the termination criteria. Then we prove

that the algorithm will terminate at a point within ¢ of a Kuhn-Tucker point.

We call an iteration a successful iteration if the trial step of that iteration is

ed,,

accepted because > n; . Otherwise, the iteration is said to be unsuccess-

€ay,



73

ful.

We denote by S(k;, ky) the set of indices of successful iterations in the interval

[ k1, kg ] .

The following theorem shows that the algorithm is well defined in the sense
that at any iteration either the point (z; , \;)is within ¢ of a Kuhn-Tucker
point and the termination condition of the algorithm will be met or the algorithm

will always find an acceptable step.

Theorem (4.19)

Under the standard assumptions, either the point (2, ) is within ¢ of a

Kuhn-Tucher point and the termination condition of the algorithm will be met or

Aredy

we always find an acceptable step. i.e. the condition > n will be

PTCd]H_j

satisfied for some j .

Proof

If the termination condition of the algorithm is satisfied, then there is nothing to
prove. Assume that the point (z, , )\, ) does not satisfy the termination condi-

tion in step 1 of the algorithm.

First, we assume that ||k ||, > ¢y A, where ¢, is as in Lemma (4.13).

Since, from Corollary (4.2), we have

h h
Pred, > "2_1c ”bkllz min[Ak, || bk ”2]’
1 9
r h A
> 2 ik B sy,

2 by by
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and since from Corollary (4.7),
| Ared, — Pred, | < agry A, (4.4.1)

then, we have

| Ared,c ——Predk l < 20,0 bl b2 Ak
Predy, = Mk llomin[by, cq]
That is,
Ared, 2 by b
| 225 1] < To 1 A .
Pred ”hk||2mm[b2:62]
. Ared,
Now, as A; gets smaller, the quantity | Fred 1 | approaches 0 and hence
reag
ope Ared, . . .
the condition y > ny  will be met after a finite number of trials.
rea;
Now, assume that || & ||, < ¢y 4, from Lemma (4.14) we have

Pred,, 2 Cs3 Ak

This gives, using (4.4.1), that

Ared;, — Pred, | < ag T+

Pred, ~  c3 k

. Aredk
So, as A, gets smaller, the quantity | Frod 1 | approaches 0, and hence

redg
. Aredy . . . .
the condition Prod 2 m  will be met after a finite number of trials. This

rea;
completes the proof. u

The following theorem proves that under the standard Assumptions, either

the algorithm terminates, or converges to a feasible point.
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Theorem (4.20)

Let the standard assumptions hold. Assume that { ®, } is bounded below on Q.

If the algorithm does not terminate, then

lim || & [[; = 0.
k00
Proof
Suppose liIkn sup || kx|l = ¢ > 0. Then there exists an infinite sequence of
—00

indices { k; } such that || &, ||, > 62—0 for all ke {k; }.

Let k be such that £ e{k; }, £ >k and A; > 0. Since h € C?, we have

for some B > 0 and any z € Q that

[Fh() [l > 11 kg o= 11 h(2) = kg |,

> ”h/; Ilz—ﬂ ||$—$;; ”2

he
This implies that for all z that satisfies ||z — |l < -I—I%I—g— , we have
[l & [l
W h@) 1l 2 —5—.
I R |2 .
Let o= YR and consider the ball
B, = 2 oz ll,<o).

First we will show that eventually the iterate must move outside B, .

If 2 ¢eB, forall k>k,then from lemma (4.2)and r, >1,

1 s
2 b,

1 A 11,

Predk Z b ]
2

min [Ak ’
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If all k >k are not acceptable steps, then we get a contradiction with Theorem
(4.19). Hence, there exists an infinite sequence of indices indexed suceessful steps

inside the ball. For any such k we have

¢k — ¢k+1 = Aredk

> 1y Pred
n kg 1l [ A |12

= o [Ak ’ ] (4'42)
2 2b, 2 by

Since @, is bounded below and || h; ||, > 0, then inequality (4.4.2) implies

that

liminf A, = 0 (4.4.3)

k—+00

Define o, to be a constant that satisfies:

a b A h;
0 < min |1, u , I k”2]
a 1T+ ( 1 - n2) 2
where @ =max [r,,2r2a0] and b =max[b,,b,]. Now, because of (4.4.3),

there exist some sufficiently large k such that

Q) Oy e

A <
b= a b

(1—ny). (4.4.4)
Let m be the first integer greater than & such that (4.4.4) holds. This implies
that m > k41, and using (3.1.3) we get

b A,

oy

b 1l 8 lly <



Now, by Lemma (4.2)

hy,— B
Predm—lz—l‘ ” "11“2 min[llgm—llbx ” m1”2]r
2 b, by

and since m—1 >k , we have

I kg 1
N | P _—;_ 2> 0.
From (4.4.6) and (4.4.8) we have
b Il suoalls < 1 hnoy e

By substituting the last inequality and (4.4.8) into (4.4.7), we obtain

41 N
Predy,_; 2> b || Sm—1 ||2

But, by Corollary (4.7),
I Aredy,_y — Pred,,_, | < agre || Sm—1 ”22 .
So,

Ared,,_y — Pred,,_; | < 2a9b re || 5y ”22

Pred,, - S | Iy |

Now using (4.4.5), we obtain

Ared,,_; — Pred,, _, | 2 ag ri oy . )
Pred,,_; - oy a 2

<(1—mn).
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(4.4.5)

(4.4.6)

(4.4.7)

(4.4.8)

(4.4.9)
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This implies that

Ared,, _;

—_— .
Pred,_, — 2

Hence from the rule of updating the radius of the trust region, we have
Am-—l S Am

The last inequality implies that k¥ = m—1 satisfies (4.4.4). This contradicts the
supposition that m is the smallest such index and means that there is no

m > k such that (4.4.4) holds. Hence, for all k¥ > £ , we have

al 0‘1 T*

A
k ab

(1—mng)

which contradict (4.4.3). Hence, eventually { = } must leave the ball B, for

A

some k > k.

Let 141 be the first integer greater than £ such that 7,4, does not lie inside the
ball B, . Since ., # 2; , there must exist at least one acceptable step in the set

of iterates indexed { £,...,1}, so by Lemma, (4.2),

!
by — By = ZA( S — Ppy1)
k=Fk

> ), nPred,

keS(k0)
h; h;
2 2 ﬂ”kllzmin[Ak,”klh}.
keS(IE,I) 2 2b1 2 b2
[l A 112 -
If A 24, for all k € S(k,l), then
Uj| ” hi ||2
O — Py 2> 2 Toh E A
1 keS(E))
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m 1 s
=2 2%,
Otherwise,
M ”hk||22
P, — P >
k 1+1 5 40, b,
In either case
mo | hg bl [ g 112
q)lé“q)lﬂZ?Tmm[U,—[bz——]
P : [l & 1, IIh,;II2]
T2 2b, 28 ' 26,
2
Uj ”hk”2 1 1
= — —— =, — . 4.4.10
> s, minlg g (4.4.10)

Since { ®, } is bounded below and a decreasing sequence, { ®; } converges to some

limit ®. . Take the limit as I goes to infinity on inequality (4.4.10), we get

h: 2
5 _o, 5 M |1 ll

=]
2 4b, '

min[L —
B by

If we take the limit as £ goes to infinity, we get

1
ﬂ )

€
02% 0 min |

=
8b, by

which contradicts ¢, > 0. The supposition is wrong and hence the theorem is
proven. .
Theorem (4.21)

Let the standard assumptions hold. Assume that { ®; } is bounded below on Q.
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If the algorithm does not terminate, we have

liminf || P, Vi ||, = 0
k—o0

Proof

The proof is by contradiction. Suppose that there exists an ¢ > 0 and an

integer K such that || P, VI, ||, > ¢ forall k > K .

Since, by using (4.2.14),

[Py (Vi +By 58) Ile > P Vi s — b4 |1 B |2,

and since
lim || ke [l; =0,
k—o0
there exist k; sufficiently large such that for all k >k, , we have

ok 1l <

L
2b, O
Thus for & > max [K , k|

3 1 1
WP (Vi + B 80) e 2 6o~ 560 = 560

Now, since from (4.2.9) and Corollary (4.12),

I Po(Vie + B3¢) | o ]

1 N . —
PredkZZIlPk(Vlk+Bkslg)ll2mm[Ak: 5%
0

—(bs 13 o 1A ) — (aq |l 4 ”2+asl|3k—t,,||2)”hk He,

and since ||k ||, converges to zero and || 5 ||, and || sg—t, |12 are

bounded, then there exists an integer k, > max [K ,k;] such that for all
k >k, we have
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| P.(VI + Bsf) 1]y
25,

Predy > & || Pe(Vly + Bisf) || min [ 2 4y | .

Thus, for all &k > k,, we have

1 € . 1 €
Predk 2 g—Q—mln[? k,m].

From Theorem (4.19) there exists an infinite sequence of successful iterations.

Now, for any successful iteration indexed k >k, , we have

Ared, > ny Pred;

m .
— € A -
32 o Min [ k 2b0

If k, > max[ky, k], then the last inequality and the assumption that {®,}is

bounded below imply that

o0 o0
00 > 3 (P —Ppyy) = 3 Ared,
k=F, k=F,

€
> ) ﬂfomin[A/c,—O]-
k=S(F, 00) 32 2bo
This implies that
liminf A, = 0. (4.4.11)
k—+00

This means that there exists an integer k; >k, such that

(1—=mny) (4.4.12)

32ayr
is satisfied for some k > k;, where @ =max |1, ——0—*] and o, is defined to

€

be a constant that satisfies



Aks €
ay(1—mny)’ 2b

Oy < min[l,

J
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Let m be the first integer greater than k; such that (4.4.12) holds. This implies

that m > k;+1. So, from (3.1.3),

ay
@) 09
< 1 -
S o ( n2 )
< op(1—ny)
€0
<o
2 < 3 by
But since,
€0 . R 60
Pred,_, > ymm [ || Sm—-1 ||2,m]:
we obtain
€ R
Pred,_; > 35 [y Py

So, by using (4.4.9), (4.4.13) and the last inequality, we get

| Ared,, _, — Pred,,_,; | 32a9re || Sm—-1 112
Pred,, _; - €
32 ag re 04
L — = (1 -
> € a ( n2)

Sop(l-n) < (1—n).

(4.4.13)
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The last inequality implies that

Ared,, _;

—_— .
Pred,,_, — 2

Hence, from the rule of updating the radius of the trust region in Algorithm
(3.1.2), we obtain
Am—l S Am :

This implies that m—1 satisfies (4.4.12) which contradicts the assumption that
m is the smallest integer > k; such that (4.4.12) holds. Hence, for all & > ks,

we have

Ay (1—mng).

The last inequality contradicts (4.4.11). The supposition is wrong and hence the

theorem is proven. |

Corollary (4.22)
Under the standard assumptions. If { &, } is bounded below, then
lim inf [ || A [l2+ |1 Py Vi |l2) = 0

Proof

The proof follows immediately from Theorem (4.20) and Theorem (4.21).

From the last corollary and the termination condition in step 1 of the algo-
rithm, we can conclude that the algorithm will terminate at a point within ¢ of a

Kuhn-Tucker point.
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CHAPTER FIVE

THE LOCAL ANALYSIS

In this chapter we discuss the local analysis of our algorithm when the
sequence {z;} converges to a solution z.. We will assume that z. satisfies the
second order sufficiency condition.

In Section 5.1 we state the local assumptions. The local analysis of our algo-
rithm is presented in Section 5.2. It consists of three parts. In the first part of
this section we study the behavior of the penalty parameter in a neighborhood of
z« . In the second part we discuss the decrease we get in the model by the trial
step. The third part of this section is devoted to studying the local rate of con-
vergence of our algorithm in a neighborhood of the minimizer z. . We will show
that, in a neighborhood of the minimizer, the algorithm will reduce to the stan-

dard SQP algorithm; hence the local rate of convergence of SQP is maintained.

5.1 THE LOCAL ASSUMPTIONS

We assume the following assumptions:
1) The sequence {z } converges to a Kuhn-Tucker point z .
2) z. satisfies the second order sufficiency condition. i.e. there exists a A«

such that

vl V(2 )X )v >0,
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for all v that satisfies Vh(z:)T v =0.
3) V2 is Lipschitz continuous with respect to z in the neighborhood of the

solution zx .

4) There exists k&, sufficiently large such that for all > ky , we have
I Qr Vi “2 < e |l 5t ”2

where eg is a constant.
Remarks

Assumption (4) is equivalent to assuming that the asymptotic progress in \

is at least of the same order as the asymptotic progress in = .

Numerical experiments have shown that for SQP, s9” and AN?" have not

failed to satisfy

ANl < e 159 ]y, (5.1.1)

in the neighborhood of the solution, where " ¢ " in this remark is used to denote
generic constant independent of k . If the step is the SQP step then inequality
(5.1.1) implies Assumption (4) since || Q, Vi, ||, < ¢ || AN [la4c¢ 18 1ls-
On the other hand, if & is the CDT step and if || s%T ||, ~ || s9F I,
then || AXNPPT ||, will be near || AN9P ||, , since A\ is linear in s , and we
expect the CDT step to have the same behavior. If s°?T and s are different,
we expect AN°PT to give a better progress in X\ than that we get from AN

because numerical experiments show that if s is a bad step then ANY? will

also be a bad step.

Assumption (4) and more is assumed by Gill, Murray, Saunders and Wright
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(1986).

5.2 THE LOCAL ANALYSIS OF THE ALGORITHM

This section is devoted to presenting the local analysis of our algorithm when
it converges to a local minimizer that satisfies the second order sufficiency condi-
tion. In Section 5.2.1 we study the behavior of the penalty parameter. We will
prove that under the local assumptions the penalty parameter is bounded. In
Section 5.2.2 we discuss the predicted reduction that will be obtained locally. The
third part of this section is devoted to studying the local rate of convergence of
our algorithm in the neighborhood of a minimizer that satisfies the second order

sufficiency condition.

5.2.1) The Asymptotic Behavior of The Penalty Parameter

In this section we prove lemmas needed to study the behavior of the penalty
parameter. In Lemma (5.5) we prove under the local assumptions that the
penalty parameter is bounded in a neighborhood of a minimizer that satisfies the

second order sufficiency condition.

Lemma (5.1)

In a neighborhood of a minimizer that satisfies the second order sufficiency condi-

tion, there exists a constant e; such that

[P (Vi + By s8) 1l > eq 118211,



87

where Py, 8} and §{ are as in Corollary (4.3).

Proof

Since, using Lemma (4.8), we have
(DT By s < — [P (Vi + B 58) 73] . (5.2.1)
The last inequality can be written as
DT (Py By P )8f < — [Py (Vi + B, 38) )78 .

Now, since ( Py By P, ) is positive definite in a neighborhood of the minimizer,

then there exists a constant e; such that
ex [18113 < (BDT( Py By Py ) 3L (5.2.2)
So, using (5.2.1) and (5.2.2), we can write

ex 11881y < 1P (VI +B, 38)|1,.

Hence we get the desired result. n

Lemma (5.2)

In a neighborhood of a minimizer that satisfies the second order sufficiency condi-

1

tion, if || & ||, < es |18 ||, where ey < 20
3

and b; is as in Lemma
(4.9), then there exists a constant e; such that
[ Pe (Vi + B 38) [z > es 113 1.

Proof

Since || 8 |l < |18 1ls+ 11 3¢1|l,, by using Lemma (4.9) and Lemma (5.1),
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we get

ey 1181l < |l P (V4 + B ) [la+ep b3 | e |y

< P (Vi +B 38) [lo+ereabs |]3 |15,
Hence,

ex(1—egbz) |18 |lo < Il P (Vi +B, 38) |l,.

So,

e . R
—21— s 1l < 1 Pe (V0 + By 8F)

The result then follows if we set e; = £

Lemma (5.3)

Let & be the step generated by the algorithm. Let P., A, , 3 and 3¢ be as

in Corollary (4.3), then for all k sufficiently large, there exists a constant €4

such that
— P (VI + B, s]
Predy > L Il Pe(Vi + Byéf) |y min [ B, , [l P.(Vi, 3¢) |12
4 2 by
—eg 8 1o b Il + re [ 1] ke |13 - [l B + VAT, 112]. (5.2.3)
Proof

Since, from Lemma (4.10), we have

H Pe(Vi + Bysf) g
7 by

Predy > || PVl + By ) |1y min [ 5, |

— byl 5 g 11 R 1], - | (Vi + Bp3,)Th; |
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+re [ ke 1= TR + VRTS 112

Then, by using Assumption (5.1.4), for all &k >k, , we have:

- P(Vil, + Bs{
Predy > L[| Py(Vly + B,s¢) ||y min | &, , (T *+ Bl |1,
! 2|1 B |l,

— by |l 3 1, ”hk||2—(60+bo)bs TSI IR
+re [ e 11E = 1] ke + VRTS8 112 .

Hence, if weset e, = by + (eg+bg) bg , we get for all & > kg

[ Pe(Vi + Besf) 1o
26,

Predy > < 11 Pk + Bedf ) ||y min [, |

—eg W8 Mg b Hatrm [ | ke [12= 1] & + Vals 112] .

Hence we get the desired result. u

The first term and the third term in (5.2.3) are positive, and the second is
negative. In order to prove that we will get a positive predicted reduction each
iteration, we have to prove that the positive quantities are greater than or equal

to the negative quantity otherwise we have to increase the penalty parameter to

insure that.

Lemma (5.4)

Under the local assumptions, if ||k ||, < e5 || 3% |lo where ez is chosen

such that:

1 €3min(\/§b0,63)
2b3, 161)064

es < min | (5.2.4)
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where b, is a uniform upper bound on || By ||, b5 is as in Lemma (4.9), e,

is as in Lemma (5.2) and e, is as in Lemma (5.3). Then

[l P.(Vi + Bp3¢) |, |
2 by

1 . . V3o, .
Pred, > r I Pe(VI +Bk3kq)”2mm[T [ & 112,
r
+ o U 11E = 1] by + VRTs, 113] (5.2.5)
Proof

From Lemma (5.3), we have

[| Pe(Vi + Bisf) |,

1 R . —_
Pred, ZZ||Pk(VIk+Blcskq)”2mm[Aky ]

2 by
—eg Il 3 U 1A 1y
+re [ ke 1E— 1] b + VRTS8 112].
Now,
& = Vai- |15113.
By using Lemma (4.9) and || &, |], < 2—1()3— s,
B > VAF =65 [k 113,
and we obtain
By > VI —(1/4) || 3 1y
= 2 141, (5.26)
Now, since || & |, < es || 4 ||, and e5 < e, then by using Lemma (5.2) we

have || Py (Vi + By 3¢) s > es || % |l2, and by using (5.2.4) and (5.2.6),
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we get

[l Pe(Vl + Bp3¢) |,

5 1 PVl + Bisf) [y min [ &y , J=eo 1l Il 11 m 1l

2 by
> fea i llEmin | 22,0~ (15113
> 0
The rest of the proof follows immediately. u
In the last lemma, we have proven that if || & ||y <es || 5 ||, then half

of the first term in (5.2.3) would cancel the second term, and the third term need
never enter the calculation. This implies that if we set r, =r,_,, inequality
(5.2.5) remains correct. So, in this case, we do not need to increase the penalty

parameter.

Lemma (5.5)

Under the local assumptions, the penalty parameter is bounded.

Proof

The proof is by contradiction. Suppose that {7 } is not bounded. This implies

that there exists an infinite subsequence of indices {k;} at which {r,} is

unbounded. Now, from Lemma (5.4), we never increase the penalty parameter if

[l & Ils < es |} 4 |l;. So, for any & e{k]-},

I A 1y > es I3 . (5.2.7)
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Let m e {k; }and by using (4.3.1), we can write

2 b, m 12 by

< bo | 3w e 185 12
+ bs( |1 @ Vip llz+bg 1] 5, o) 1l hm 1ls

+ pb9 Ilgm ”2 ”hm”?

If we use (5.2.7) and the local assumptions, we get

r ||§m||2
™9 b,

. e A
min [ 1, —1)—5—] < by ||3m||2

2

+ [bg(eo+bo)+pbg] || 3p |2,

where b, is as in Lemma (4.10). Hence,

T'm

26, by

min [ by, e5] < es+p by,

where e4 is as in Lemma (5.3). Set

N = [eg+pbg]

2 b, by

min [ by, €5]

Since N is independent of m , it is an upper bound of the sequence {rkj } con-

tradicting the assumption that the sequence {rk],} has no upper bound. This

proves the theorem.

From the last lemma, we can conclude that for all &k, 1<r, <r. where

r+« 1S a constant independent of & .

Since if 7, increases, it will increase by a quantity > p, then the number

of iterations at which the penalty parameter increases is finite. Hence, there exists

a constant k such that r, = r¢ forall k >F .



93

The following theorem shows that the algorithm is well defined in the sense
that at any iteration either the point (z; , \;) is a Kuhn-Tucker point or the algo-

rithm will always find an acceptable step.

Theorem (5.6)

Under the local assumptions, either the point ( z; , \; ) is a Kuhn-Tucher point

ATCdk+j

or we always find an acceptable step. i.e. the condition > n;  will be

Predk+j

satisfied for some j .

Proof

If the point (= ,X;) is a Kuhn-Tucker point, then there is nothing to prove.

Hence, consider the case when the point ( z; , \; ) is not a Kuhn-Tucher point.

First, we assume that || 4, ||, > 0. Since, from Corollary (4.2), we have
h h
Predkz-fk— ” k”2min[Ak, || k ”2]
2 b, by

As A, gets smaller, we get

Tk || hy, ||2

Pred, > — A

and since from Corollary (4.7),
| Ared, — Pred;, | < agr; AZ,
then, we have

Ared, — Pred,

l < 2(10 bl Ak '
Pred;

| < 22071 5
NI

That is,



94

Ared 2 b
| Areq 1] < _290%1 b
Predy [T A g
) . Ared,
Now, as A; again gets smaller, the quantity | Frog 1 | approaches O and
red
" Aredy . . .
hence the condition y > n, will be met after a finite number of trials.
redg
Now, assume that || &, ||, = 0. Note that since we are considering the case

when the point (2 ,)\,) is feasible but not a Kuhn-Tucker point, so

Il P, (V4 )|l > 0. From Lemma (4.10) we have

- P(VI, + B, 3§}
Pred, > % || Pe(Vl + B3¢ ) |y min [ &, | [ Py( k2b k k)||2]
0

—ba [l 5 o 11k o= | (Vi + Bpé) iy |

+r [ A 11— || Ay +thT§k ”22]

Because || b ||, =0, || 31l =0, B, =A; and k, = 0. Thus,

P, (VI
Pred, > L 1 Pe( Vi ) 1]y min [ 4, 1P (V8 ) 1T, ]
4 2 b,
As A, gets smaller, we get
1
Pred, > T 1 P( V) He A
This implies, using Corollary (4.7), that
Ared, — Pred, 4 agr«
I | < Ay
Pred, I Pe( Vi) |12
) Ared,
So, as A, gets smaller, the quantity | Prod. 1 | approaches 0, and hence
k

Ared
the condition re%

2> n,  will be met after a finite number of trials. This
Pred,
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completes the proof. =

The last lemma implies that if at some iteration indexed k the algorithm
loops infinitely without finding an acceptable step. Then the point (2, N ) s

necessarily a Kuhn-Tucker point.
5.2.2) Sufficient Decrease in The Model

In this section we prove Lemma (5.7) which stated that locally the predicted
reduction in the model gives at least a proportional of square of the 2-norm of the

step.

Lemma (5.7)
Under the local assumptions, if §, is the step generated by the algorithm, then,
for k large enough, there exists a constant ey such that

Predy > eg || 3 |15

Proof

If |l hll; < es |13 |l,, where e5 is as in Lemma (5.4), then from Lemma

(5.4)

[l Pe(Vi + Bp3¢) |1,
]
2 b

1 R . V3 .
Pred, _>_§ [| Py(Vi +B,,s,§’)||2m1n[T s 1,

But, since Il Pk(Vlk +Bk«§kq) ”2 > €3 ” ‘§k ”2 s then

V3 €3
2 7 2,

Pred, > %e3 || 8 |12 min |

| .
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On the other hand, when || h; |l; > €5 || 5 ||,, we have from Corollary (4.2)

that
h h
Pred, > _1_ || k”z min[Ak, || k||2]'
2 b, b,y
s 2
ZLCSHSI‘”? n“’_‘f_s_].
2 b, b,
Take eg = min { ° min [ V3 by, es] % min [ by, e5] }, we get
6 16b0 0, ¢3 ’2b1b2 23 C5 ’

Pred, > e5 || 8 |12

Hence we get the desired result. =

5.2.3) The Asymptotic Rate of Convergence

In this section we will assume that for each k, B, is the exact Hessian of

the Lagrangian at the point (=, , ;) .

We start this section by proving Theorem (5.8) which is needed to study the
local rate of convergence. In Theorem (5.9) we prove under the local assumptions,
for k sufficiently large, the SQP steps will always be taken. So, the strategy of
taking s°" , if possible, will make our algorithm, for large k , produce the SQP
steps. Hence, for large k , the steps are the SQP steps and consequently the con-

vergence rate of 1z, , M\ ) to (z+, N+ ) is g-quadratic.

Theorem (5.8)

Under the local assumptions, if §, is the steps generated by the algorithm, then
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there exists k; such that for all k¥ >k, , we have

Ared,
Pred;

2 M.
That is, for all & large enough, the trust region radius, A, , will be inactive.
Proof

Since, for some £€¢(0,1),

L2438 , M+ 5 e ) =Lz, M+ 5 e )+ YV, Lz, Me+BN 5 1 )T 3

+ %.s?,,TVfL (p + €8, M+, 1 )T 8

Lz, N )+ AN hy + VRT3 )

+ Vzl(xk,xk)'*";—ﬁTBk 8k
+ o [ ke + VRIS 12— 1] By |12
+ %ng[ VZL( 7 + €8, Me+8N 5 1 ) — V2 L(zp Me+8N 5 1) | T8y

+ ';— §kT Vzhk A"kk §k -+ T §kT V2hk hk ék .
Hence,

Ared,, Z - Vlk §k - % §kTBk§k - &kT(hk + thTgk)
+ore [ A TIE = 1| e + VRS (3]

- 1. N A A A
“O(HS/c ||22)_‘2—l3kTv2hk AN 3k|—“ |3kTv2hIc hy 3k|-

Using Lemma (5.7), for k large enough, we have

Pred, = e TENIE TERIE TENIE

Ared; . 1 o ( 115 11F) |s7V2hy A\, 5 | L |57 VPhy hy 3 |

But, since by the local assumptions || s |l = 0, || Vi ||, = 0, and
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o (118 113) |5 V2hy By 3 |

TEN I 18 112

|| 2 |l = 0, then the quantities , and

re |85 Vhy by 8 |

118 113

exists an integer k&, such that for all k¥ >k, , we have

are arbitrary small for k sufficiently large. Hence, there

o (118 11F) 80V AN 8| 0 |87 VP by 3 |

" " N ] M2 .
1 Il 8 |13 NI

1—|

Consequently, for all k > k; , we have

ATCdk
Pred;

2 Mo . (5.3.1)
The last inequality implies that the trust region radius A, for k >k, is
updated according to the rule

Ak+l = max[Ak , Qg Il Sp ||2] .

Hence, A, > 4, for all k >k and wusing the assumption that

[l st [l = 0 we can conclude that there exists an integer k, > k, such that

the trust region is inactive for all k > k,. Hence we get the desired result.

Theorem (5.9)

Under the local assumptions, for k sufficiently large, the SQP steps will be taken

and consequently ( z; , A\, ) converges to ( z¢, X+ ) g-quadratically.
Proof

From the last lemma, A; > A, forall ¥ > k;. Now suppose there exists an

integer k3 > k; such that s, % s% for all k > ks . This implies that, for all
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k> kg
2P 1]y > & > Ay,

which contradict the fact that || s@F ||, — 0. Therefore, there exists at least
one step s = s,ffp where k; > kj .
Let k, be the smallest integer greater than k; such that s, = s,gp , and such

that SQP method generates steps that satisfies

|| uk+1”2 < my ” Ug ||22,

Ska .
where u, = ANGP and m, is a constant.

But, since the SQP steps { s2F } converge r-quadratically. This implies that, for
all ¥ > k,, we have

1@ 11z < my (@)™
where m,, o are constants and « < 1. This means that if we choose &k,

sufficiently large such that

ky

my (0?7 < 4y, .

Then, || s2" |l < A, andforall k >k, , we have

s 1l < A,
But since, for k >k, , we have Ay < A, then
I Sk?,il ||2 < A,“ < Ak.,+1~

The last inequality and the fact that for all k& >k, all the steps are acceptable

steps imply that
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— QP
Sketl = Skgb1 -

By induction, for all & > k,, we can conclude that

This means that the sequence { =z, , k >k, } generated by the algorithm is the

sequence of the SQP iterates and consequently the local rate of convergence is g-

quadratic. u
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CHAPTER SIX

CONCLUDING REMARKS

We have considered a trust region algorithm for solving the equality con-
strained optimization problem. This algorithm is a variant of the 1984 Celis-
Dennis-Tapia algorithm. We have presented a global and local convergence

analysis for this algorithm.

Our global convergence theory is sufficiently general that it holds for any
algorithm that generates steps that give at least a fraction of Cauchy decrease in

the quadratic model of the constraints.

The subproblem that has to be solved at each iteration is not in general the
successive quadratic programming subproblem. However, we have shown that
under mild assumptions, in the neighborhood of the minimizer, the algorithm will

reduce to the standard SQP algorithm; hence the local rate of convergence of the

SQP in maintained.

The augmented Lagrangian function was used as a merit function. A scheme

for updating the penalty parameter was presented. The behavior of the penalty

parameter was discussed.
For future work, there are many questions that should be answered:

Although intensive numerical experiences with the CDT algorithm were

reported by Celis, Dennis and Tapia (1984), Celis (1985) and Celis, Dennis and
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Tapia (1987), we believe that the implementation of the algorithm must be
refined. In particular, an efficient algorithm for solving the CDT subproblem is
needed. This will require a closer look at the CDT subproblem and the charac-
teristics of its solution. Currently, this is the topic of much research, e.g. Yuan

(1987), but the problem has not been solved.

A related important question that has to be looked at is how to approximate
the Hessian of the Lagrangian in order to be used to produce an efficient algo-

rithm.

Another important research topic that should be considered is how to gen-
eralize this approach to handle the inclusion of nonlinear inequality constraints in

the problem.
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