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Abstract: Model independent enhancements and adaptations to the 
Gauss-Marquardt-Levenberg (GML) method of computer-based parame-
ter estimation are described and demonstrated as potential improvements 
to existing HEC-HMS automatic calibration capabilities. In contrast to ex-
isting HEC-HMS automated parameter estimation capabilities, these 
methods support global optimization, the ability to simultaneously cali-
brate multiple subwatershed systems represented within an HEC-HMS 
model, and they also provide information about individual parameter sen-
sitivities and parameter correlation during and at the end of the calibra-
tion process. Moreover, their model independent nature allows one to in-
clude into the calibration process (1) state information other than simply 
stream discharge data, (2) multiple periods, rather than a single time win-
dow, of the calibration dataset(s), and (3) the ability to weight data in or-
der to accommodate a prediction specific calibration effort or to accom-
modate suspect and/or missing observations. The methods are 
demonstrated by calibrating HEC-HMS models to subwatershed systems 
in the Goodwin Creek Experimental Watershed. 

 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 

Conceptual model structures for the continuous simulation of watershed 
hydrology are predefined, prior to modeling, by the hydrologist’s under-
standing of the watershed system. With conceptual model structures, it is 
not possible to independently measure at least some of the model parame-
ters; hence, they must be estimated through a formal model calibration 
exercise. Hence, the efficacy of a conceptual model structure to inform wa-
tershed management is heavily reliant upon observed system response 
data and the information that one can reliably glean from it during the 
calibration process. 

Computer-based calibration of conceptual watershed model structures for 
continuous hydrologic simulation generally involves minimization of an 
objective function – a measure of model-to-measurement misfit. In simple 
cases this is comprised of differences between measured and modeled 
flows at, for example, daily, hourly, or even smaller intervals. In many 
cases, observed and modeled flows are transformed (for example through 
a Box-Cox transformation) before fitting, and/or residuals are fitted to an 
ARMA model prior to formulation of an objective function, in order to 
reduce heteroscedascity and temporal correlation (Box and Tiao 1973, Box 
and Jenkins 1976, Kuczera 1983, Bates and Campbell 2001). In more 
complex cases a multi-criteria objective function is constructed in which 
different measurement types, or the same measurement type processed in 
different ways, comprises separate components of a composite global 
objective function (Madsen 2000, Boyle et al. 2000, Doherty and 
Johnston 2003).  

A unique solution to the inverse problem of model calibration can only be 
guaranteed if the number of parameters requiring estimation is 
commensurate with the information content of the calibration dataset. 
Often this is ensured by adherence to the so-called “principle of 
parsimony” in design of the inverse problem, in which parameters requir-
ing adjustment through the calibration process are reduced to a number 
for which a unique estimate can be obtained for each. If calibration is 
computer-assisted, then prior to initiating execution of the parameter es-
timation software package, the modeler selects those parameters that 
he/she wishes to estimate (normally on the basis of anticipated higher 
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sensitivity of model outputs to these parameters) and holds other parame-
ters fixed at “sensible values.” 

Often this method works well. However, problems associated with this ap-
proach include the following: 

1. It is not always possible to know ahead of the parameter estimation 
process how many parameters can be estimated. If too few are selected 
for estimation it may not be possible to obtain a good fit between 
model outputs and field measurements. If too many are selected, the 
parameter estimation process may suffer from numerical instability 
and/or result in the estimation of a set of parameter values that lack 
credibility. 

2. Individual parameter sensitivities are not the sole determiner of what 
is estimable and what is not. Situations are often encountered where 
model outputs have a low sensitivity to certain parameters collectively, 
but can be very sensitive to the same parameters individually. This is 
the phenomenon of “parameter correlation.” 

3. Traditional approaches to calibration are not well suited to the solution 
of complex inverse problems, such as those involving simultaneous 
calibration of multiple models, where the estimation of useful values 
for otherwise nonuniquely estimable parameters may be assisted 
through the provision of trans-model parameter relationships, from 
which a departure will only be tolerated if supported by the calibration 
dataset.  

These problems can be overcome through the use of parameter estimation 
algorithms that allow mathematical regularization to be implemented as 
part of the parameter estimation process itself. The result is a stable solu-
tion to the inverse problem (regardless of how ill-posed it is), and avoid-
ance of the deleterious effects of numerical instability on both the parame-
ter estimation process itself, and on the outcomes of that process, namely 
the set of estimated parameter values. A well-designed regularization algo-
rithm, like its manual counterpart, achieves numerical stability by re-
formulating the inverse problem in a way that recognizes the level of par-
simony that is necessary to attain a stable solution to that problem. How-
ever, this “parsimonizing” is undertaken in the context of a specific cali-
bration dataset, allowing numerical stability to be achieved without 
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compromising model-to-measurement fit any more than is deemed neces-
sary by the modeler. 

While measures can thus be taken to ensure mathematical tractability of 
an inverse problem posed on the basis of a properly-processed calibration 
dataset, it is rarely possible to avoid the fact that when calibrating 
conceptual watershed model structures the objective function will often 
contain local minima in addition to its global minimum (Wagener, Whea-
ter, and Gupta 2004, and references cited therein). This presents 
challenges to the design of automatic calibration software, for a modeler 
who uses such software has the right to expect that estimated parameter 
sets result in the best possible fit between model outputs and field 
measurements (with due account taken of parameter believability). 

The watershed model calibration concepts noted above will be explored 
while pursuing the objectives for this article which include describing and 
demonstrating the use of parameter estimation methodologies that could 
potentially be employed to improve upon existing HEC-HMS (Hydrologic 
Engineering Center’s Hydrologic Modeling System) automated parameter es-
timation capabilities. In particular, the intent for this article is to describe 
and demonstrate the use of methods that (1) accommodate local minima 
(Skahill and Doherty 2006) and (2) support the inversion of complex (i.e., 
highly parameterized) models (Doherty and Skahill 2006), and through 
this process to also:  

a. Demonstrate that each of these two methods provide information 
about individual parameter sensitivities and parameter correlation. 

b. Demonstrate how state information other than stream discharge data 
alone can be included into the automatic calibration process of a HEC-
HMS model. 

c. Demonstrate how objective function definitions associated with spe-
cific periods of the calibration dataset can be included into the auto-
matic calibration process of a HEC-HMS model. 
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2 HEC-HMS Automatic Parameter 
Estimation 

HEC-HMS is a widely used graphically-based integrated watershed model-
ing environment with a user interface to a collection of potential methods 
for computing excess precipitation, runoff transformation, and hydrologic 
routing, among others, to support event-based or continuous simulation of 
the hydrologic response of a dendritic watershed system subject to mete-
orological forcing. The graphical user interface enables seamless move-
ment between the database, model development, computational engine(s), 
and post-processing capabilities of HEC-HMS. 

Existing HEC-HMS automatic calibration capabilities include the ability to 
specify one of six different objective functions and one of two different 
search algorithms (HEC 2005). Four of the six objective function defini-
tions currently available within HEC-HMS are summarized in Table 1 
(HEC 2000). 

Table 1. Four of the six objective function definitions available within HEC-HMS. 

Description Equation 
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Φ = objective function; n = number of hydrograph ordinates; Qo = observed flows; Qs = simu-
lated flows; Qo(peak) = observed peak; Qs(peak) = simulated peak; and Qo(mean) = mean of 
observed flows. 
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The remaining two objective function definitions currently available 
within HEC-HMS include the percent error in volume objective function 
and the time-weighted objective function (HEC 2005). Within HEC-HMS, 
the chosen objective function is evaluated for a single specified period of 
time. 

The limited practical guidance provided in HEC (2005) for the selection of 
a specific objective function definition is supported by unrelated research. 
Conceptual watershed model structural uncertainty, due to simplifications 
and/or inadequacies in hydrologic process descriptions, often results in a 
model’s inability to fit all response modes of the hydrograph with a unique 
parameter set (Wagener, Wheater, and Gupta 2004, and references cited 
therein). Moreover, the predictive error variance analysis of Moore and 
Doherty (2005) indicated that model calibration and model prediction 
should not be treated as independent processes. 

The two search algorithms within HEC-HMS include the univariate-
gradient search algorithm and the derivative-free minimization algorithm 
of Nelder and Mead (1965). 

The univariate-gradient local search algorithm is implemented within 
HEC-HMS in the following manner  

 kkk xxx Δ+=+1   (1) 

 ( ) ( )kkk xfxfx ′′′−=Δ   (2) 

where x, kxΔ , and f represent the adjustable model parameter, the pa-
rameter upgrade for x, and the objective function, respectively (HEC 
2000). HEC-HMS approximates the derivatives in Equation 2 numerically 
using finite difference methods. If the number of adjustable model pa-
rameters is greater than one, this procedure is applied successively to each 
adjustable parameter while holding all others constant. 

The Nelder and Mead (1965) local search algorithm is a widely used de-
rivative-free minimization algorithm that works in multiple dimensions. It 
is sometimes referred to as an “amoeba” method because it works by set-
ting up rules that allow a cloud of points in parameter space to “crawl” to 
an objective function minimum in a vaguely amoeboid fashion. Rather 
than starting with a single initial guess for the optimized model, as with 
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the univariate-gradient search algorithm, the Nelder and Mead method 
begins by selecting m + 1 parameters which form a simplex – the simplest 
possible shape in an m-dimensional parameter space. With the Nelder and 
Mead simplex algorithm, the m + 1 vertices of a simplex of approximation 
to an optimal point in m-dimensional parameter space are sampled, or-
dered by objective function value, and an attempt made to replace the 
worst vertex by reflection through the convex hull of the remaining verti-
ces using limited sampling along the search direction so defined. 

HEC-HMS supports constrained optimization for both search methods. 
HEC (2000) provides further details regarding the implementation of the 
two search algorithms within HEC-HMS. 

Some limitations associated with the existing HEC-HMS automatic pa-
rameter estimation capabilities include the following: 

1. Existing search methods within HEC-HMS are local; i.e., they suffer 
from the drawback that they may become trapped in local objective 
function minima, and thus report “optimized” parameter values that 
are not, in fact, optimized at all. This can seriously degrade their utility 
in the calibration of watershed models where local optima abound. Lo-
cal search methods depend upon the initial model estimate. While one 
may attempt to rely on a judicious initial guess based on physical rea-
soning wherein adjustable model parameters are derived from water-
shed properties such as soils, this approach suffers from the drawback 
that the lumped conceptual model parameters are estimated based on 
point samples analyzed at the laboratory scale, and it requires further 
corroboration (Wagener, Wheater, and Gupta 2004, and references 
cited therein).  

2. Within HEC-HMS, the calibration of multiple adjacent gauged sub-
watersheds currently requires one to calibrate each subwatershed 
model independently of the others rather than, for example, calibrating 
each model individually, with due recognition of the desirability of in-
ter-subwatershed parameter similarity (i.e., parameter values in adja-
cent areas that are associated with similar physiographic features rele-
vant to hydrologic response be at least broadly similar).  

3. The current methods within HEC-HMS are not able to report useful 
information on parameter uncertainty, correlation, and sensitivity as a 
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by-product of their use during and after the parameter estimation 
process. 

4. Objective functions can only be comprised of differences between 
measured and modeled flows (i.e., inability to construct a multi-criteria 
objective function in which different measurement types (e.g., river 
stages, reservoir storages, evapotranspiration, snow water equivalent), 
or the same measurement type processed in different ways (e.g., flow, 
baseflow, quickflow, volume aggregations), comprise separate 
components of a composite global objective function). 

5. Objective functions can only consist of a single time window for com-
paring differences between measured and modeled flows. In addition, 
there is no way to weight data, say for example, to guide a prediction 
specific calibration effort (Moore and Doherty 2005) or to accommo-
date suspect and/or missing observations. 
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3 Potential Improvements for HEC-HMS 
Automated Parameter Estimation 

Approaches 

Enhancements (Skahill and Doherty 2006) and adaptations (Doherty and 
Skahill 2006) to the Gauss-Marquardt-Levenberg (GML) method of com-
puter-based parameter estimation (Levenburg 1944, Marquardt 1963), 
and a model independent protocol (Skahill 2006) wherein the inversion 
methods communicate with a model through the model’s own input and 
output files, are presented as approaches to address the above noted limi-
tations associated with existing HEC-HMS automatic parameter estima-
tion capabilities.  

Gradient-based methods such as the GML method have been criticized for 
poor performance in the face of local optima (Gupta et al. 2003). Use of 
such methods can lead to the determination of a parameter set that corre-
sponds to a local, rather than global, objective function minimum, leaving 
the user with no idea of whether another location exists within parameter 
space for which the objective function is lower. Nevertheless, the method 
also has advantages, chief among these being its model-run efficiency, and 
its ability to report useful information on parameter sensitivities and co-
variances as a by-product of its use. It is also easily adapted to maintain 
this efficiency in the face of potential numerical problems (that adversely 
affect all parameter estimation methodologies) caused by parameter in-
sensitivity and/or parameter correlation. 

The present article presents two algorithmic enhancements to the GML 
method that retain its strengths, but which overcome its weaknesses in the 
face of local optima. Using the first of these methods, an “intelligent 
search” for better parameter sets is conducted in parameter subspaces of 
decreasing dimensionality when progress of the parameter estimation 
process is slowed either by numerical instability incurred through problem 
ill-posedness, or when a local objective function minimum is encountered. 
The second methodology minimizes the chance of successive GML pa-
rameter estimation runs finding the same objective function minimum by 
starting successive runs at points that are maximally removed from previ-
ous parameter trajectories. As well as enhancing the ability of a GML-
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based method to find the global objective function minimum, the latter 
technique can also be used to find the locations of many non-global optima 
(should they exist) in parameter space. This can provide a useful means of 
inquiring into the well-posedness of a parameter estimation problem, and 
for detecting the presence of bimodal parameter and predictive probability 
distributions.  

Moreover, the present article describes algorithmic adaptations to the 
GML method based on an efficient and stable mathematical regularization 
scheme. This scheme is a variant of so-called “Tikhonov regularization” in 
which the parameter estimation process is formulated as a constrained 
minimization problem. Use of the methodology eliminates the need for a 
modeler to formulate a parsimonious inverse problem in which a handful 
of parameters are designated for estimation prior to initiating the calibra-
tion process. Instead, the level of parameter parsimony required to achieve 
a stable solution to the inverse problem is determined by the inversion al-
gorithm itself. Where parameters, or combinations of parameters, cannot 
be uniquely estimated, they are provided with values, or assigned relation-
ships with other parameters, that are decreed to be realistic by the mod-
eler. Conversely, where the information content of a calibration dataset is 
sufficient to allow estimates to be made of the values of many parameters, 
the making of such estimates is not precluded by “preemptive parsimoniz-
ing” ahead of the calibration process. 

Theory  

Gauss-Marquardt-Levenberg Parameter Estimation 

Let the action of a model under calibration conditions be described by the 
model operator M that maps m-dimensional parameter space to the space 

of the n observations that are available for use in the calibration process. 
Let the m-dimensional vector p represent model parameters and the n-
dimensional vector h represent observations. In many instances of water-
shed hydrologic model calibration these observations will represent 
stream discharges which have been “processed” in some way in order to 
achieve homoscedascity, and statistical independence of measurement 
“noise.” The former is often achieved through a Box-Cox transformation 
(Box and Cox 1964), while the latter is often attempted through fitting re-
siduals to an ARMA model, often as part of the parameter estimation 
process itself (Box and Jenkins 1976, Kuczera 1983).  The observations h 
can be comprised of a single observation type, multiple observation types, 
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and/or a single observation type processed in different ways in order to 
ensure that the information content associated with different aspects of 
the calibration dataset exercise sufficient influence in the estimation of a 
final set of model parameters (Madsen 2000, Boyle et al. 2000, Doherty 
and Johnston 2003).  

Model calibration seeks to minimize some measure of model-to-
measurement misfit encapsulated in a “measurement objective function,” 
herein designated as Φm. In the present instance this is defined as: 

 Φm = [M (p) – h]tQ[M(p)–h] (3) 

where Q is a “weight matrix” which, in the context of watershed model 
calibration where n is large, is mostly comprised of diagonal elements 
only. Ideally, each diagonal element of Q is proportional to the inverse of 
the squared potential error associated with the corresponding processed 
measurement.  

Where p is estimable (i.e., where minimization of Φm results in a unique 
parameter set), it is calculated as: 

 p–p0 = (XtQX)-1XtQ(h-h0)  (4) 

where X is the model Jacobian matrix, each row of which is comprised of 
the derivatives (i.e., sensitivities) of a particular model output (for which 
there is a corresponding field measurement) with respect to all elements of 
p. These sensitivities are calculated at current parameter values, repre-
sented by p0, for which corresponding model outputs are h0. Where the 
model is nonlinear, p calculated through Equation 4 is not optimal (i.e., it 
does not minimize Φm) unless p0 is close to optimal. Hence, after Equation 
4 is used to calculate an improved parameter set, a new set of sensitivities 
(i.e., X) is calculated on the basis of the new parameter set, and the process 
is repeated until convergence to the objective function minimum is 
achieved.  

In practice, the XtQX matrix of Equation 4 is supplemented by addition of 
a diagonal term – the so-called “Marquardt lambda.” Thus, Equation 4 be-
comes: 

 p–p0 = (XtQX + λI)-1XtQ(h-h0) (5) 
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Normally λ is adjusted during each iteration of the parameter estimation 
process such that its current value results in maximum parameter im-
provement during that iteration. When λ is high it is easily shown that the 
direction of parameter improvement is the negative of the gradient of Φm, 
and under these conditions Equation 5 becomes equivalent to the “steep-
est descent” method of parameter estimation. While this method can re-
sult in rapid parameter improvement when parameters are far from opti-
mal, its performance is disappointing in the vicinity of the objective 
function minimum, especially where that minimum occupies a long valley 
in parameter space as a result of excessive parameter correlation or insen-
sitivity. In these circumstances “hemstitching” is likely to occur, where 
successive parameter improvements result in oscillations across the objec-
tive function valley, which is never actually penetrated. Hence, ideally λ 
should commence the parameter estimation process with a moderate 
value, and then be reduced as the process progresses. However, if XtQX is 
ill-conditioned, reducing the value of λ will incur numerical instability as 
XtQX + λI of Equation 5 is inverted. Hence, the Marquardt lambda has a 
secondary role, this being that of a de facto regularization device, with its 
value often being raised in order to prevent instability in the calculation of 
the parameter upgrade vector p–p0. However, while the use of a high 
Marquardt lambda can prevent a relatively ill-posed parameter estimation 
problem from foundering, it achieves this at a cost in efficiency, for pa-
rameter upgrades become smaller at higher values of λ as an inspection of 
Equation 5 suggests. Furthermore, as stated above, the ability of the cali-
bration process to penetrate an elongate valley in parameter space may be 
severely compromised. 

The predisposition of a matrix to stable inversion is often measured by its 
“condition number.” High condition numbers result in amplification of 
numerical noise during the inversion process (Conte and de Boor 1972), 
while low condition numbers indicate that inversion should be possible 
with little numerical difficulty. In general, condition numbers for XtQX 
greater than about 104 are to be avoided, for at this level the numerical 
noise incurred through finite difference-based derivatives calculation for 
filling of the X matrix is amplified to the extent that parameter upgrades 
may lack integrity. While a raised Marquardt lambda can often rescue such 
a damaged process from total failure as described above, efficiency of the 
parameter estimation process is likely to be seriously degraded. 
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Another problem that can be encountered when parameter estimation is 
accomplished by iterative calculation of p-p0, using Equation 5 is that this 
process can converge to a parameter set p that corresponds to a local, 
rather than the global, minimum of the objective function. “Gradient 
methods,” such as the GML method described above, that rely on equa-
tions such as Equation 5 have been criticized for this reason, and so-called 
“global search” methods such as SCE-UA (Duan et al. 1992) are often used 
instead. While a well-designed and robust global search method can in-
deed be guaranteed to minimize the objective function in spite of the exis-
tence of local minima, such robustness comes at a price, this being the 
high number of model runs that is normally required for completion of the 
parameter estimation process. To make matters worse, the number of 
model runs increases dramatically as the number of parameters requiring 
estimation increases. Use of Equation 5, on the other hand, is very run-
efficient. Fortunately, its propensity to find local minima can be mitigated 
through the use of schemes such as that described by Skahill and Doherty 
(2006) which combine the efficiency of gradient methods with the benefits 
of introducing a small degree of randomness to the parameter estimation 
process, together with an ability to “learn from past mistakes.” In addition, 
Equation 5 can be enhanced by the inclusion of a regularization term 
(much more powerful than the Marquardt lambda as will be described 
shortly) that greatly increases the propensity for robust and efficient be-
havior when the dimension m of p is large, and the shape of the objective 
function surface in parameter space becomes a valley (or series of valleys) 
rather than a bowl (or series of bowls).  

Gradient-based methods such as the GML method have been criticized for 
poor performance in the face of local optima (Gupta et al. 2003). Use of 
such methods can lead to the determination of a parameter set that 
corresponds to a local, rather than global, objective function minimum, 
leaving the user with no idea of whether another location exists within 
parameter space for which the objective function is lower. However certain 
features of the GML method make it difficult to reject outright as a serious 
contender for use in watershed model calibration. These features include 
the following: 

1. In calibration contexts where local optima are rare or nonexistent, the 
GML method can normally find the objective function minimum in far 
fewer model runs than any other method. 
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2. Estimates of parameter uncertainty, correlation and (in)sensitivity are 
readily available as a by-product of its use. 

3. In cases of high parameter insensitivity and correlation, the method 
can be readily modified by the inclusion of various regularization 
devices to maintain numerical stability and robustness.  

4. Various enhancements can be made to the GML method that allow it to 
carry out linear or nonlinear post-calibration predictive uncertainty 
analysis, with run efficiencies that far exceed those of MCMC methods 
(Vecchia and Cooley 1987). 

It follows that if a methodology can be found that retains the advantages of 
the GML method, while eradicating its propensity to be trapped in local 
optima, such a method would deserve serious consideration for use in 
watershed model calibration. 

The Trajectory Repulsion Scheme 

The robust performance of the SCE-UA method, as well as that of most 
other global search methods, is based on two principles. These are as 
follows: 

1. The injection of a certain degree of randomness into the parameter 
estimation process allows it to go in directions that may eventually 
prove fruitful, even if the attractiveness of a new direction may be 
shielded by the promise of local, more immediate, rewards. 

2. The benefits of randomness are partly offset by the cost of making 
mistakes. Hence, by incorporating into a global optimization process 
an ability to learn from mistakes, the likelihood of incurring large run-
time penalties through repeatedly making the same (or a similar) 
mistake is minimized. 

Based on these principles, a modified form of the GML method was 
developed in order to increase the capacity of this method to work well in 
contexts where local minima occur. The package takes the form of a driver, 
in which GML parameter estimation is still conducted, but in which 
successive inversion runs are undertaken under intelligent control. The 
package is presently named “PD_MS2” (Skahill and Doherty 2006). 
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PD_MS2 commences execution by running the model that it must 
calibrate N times, where N is set by the user. Experience has shown that 
between the square and the cube of the number of parameters requiring 
estimation is a suitable value for N. PD_MS2 employs random parameter 
values for these runs; these are sampled from a uniform or log-uniform 
distribution defined between user-supplied upper and lower parameter 
bounds. 

PD_MS2 next ranks the outcomes of the N random runs in order of 
increasing objective function value. It then disregards all runs for which 
the objective function is above the median. Next, it initiates an inversion 
run, with initial values for this run being equal to the random parameter 
sample for which the objective function was lowest. PD_MS2 monitors 
this run, recording optimized parameter values, as well as parameter 
values calculated during every iteration of the nonlinear GML method 
which it implements. Normally between 5 and 15 such iterations are 
required to reach an objective function minimum. Each such iteration 
requires that at least as many model runs be undertaken as there are 
parameters requiring estimation, plus a few more.  

After completion of the first inversion run, another inversion run is 
initiated. For this run it is desired that the chances of finding the same 
objective function minimum as that which was encountered on the first 
inversion run be minimized. Hence, from among the N/2 retained pre-
calibration samples of parameter space, a starting point is chosen that is 
maximally distant from any point on the parameter trajectory taken by the 
initial inversion run. Selection of such a starting point is based on the 
rationale that the closer is a point in parameter space to the previous 
parameter trajectory, the more likely it is to lie in the “catchment area” of 
the previously-encountered objective function minimum.  

After the next inversion run is complete, another parameter set is selected 
from the N/2 potential starting points. The parameter set selected is that 
which is maximally distant from all previous points on all previous 
trajectories. The process is then repeated. 

A number of criteria can be used to terminate the PD_MS2 global 
optimization process. Where model run efficiency is an issue, PD_MS2 
can be instructed to cease execution if the objective function has not been 
lowered over the last M1 inversion runs. Alternatively, PD_MS2 can be 
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asked to undertake M2 inversion runs regardless of the outcomes of these 
runs. If M2 is moderate to large, this enables PD_MS2 to find the locations 
of many local optima in parameter space (should these exist), thus 
providing the user with powerful insights into the structure of the 
objective function surface. 

It is worth noting that, as well as providing insights into the “broadscale” 
structure of the objective function response surface, PD_MS2 provides 
insights into the structure of this surface in the vicinity of the global 
objective function minimum as well. As has already been mentioned, the 
GML method can provide parameter sensitivities and can calculate a linear 
approximation to the parameter covariance matrix, as well as statistics 
derived from this matrix including correlation coefficients and 
eigenvectors/eigenvalues of the covariance matrix. Information of this 
type is forthcoming only with difficulty from global search methods, this 
difficulty increasing with the number of parameters being estimated and 
with the degree of correlation between them (which, unfortunately, is the 
very situation in which such information is of most value). 

Temporary Parameter Immobilization 

“Temporary parameter immobilization” can be used as both a regulariza-
tion device and as a device for conducting ordered attempts to break out of 
local pits in parameter space. This scheme is implemented only if the ob-
jective function improvement attained during a particular iteration of the 
GML process is less than a user-supplied threshold (normally 10 percent). 
In implementing this scheme, the most insensitive parameter is selected, 
and temporarily removed from the optimization process. With the dimen-
sionality of estimable parameter space thus reduced (and with the most 
troublesome parameter being temporarily removed from the parameter 
estimation process), the parameter upgrade vector (which now has no 
component in the subspace of parameter space occupied by the temporar-
ily frozen parameter) is recalculated using Equation 5. A model run is then 
conducted on the basis of the trial parameter set thus calculated in order 
to compute the objective function associated with this parameter set. 
Unless the objective function has fallen by a significant amount, the next 
most troublesome parameter is temporarily frozen (in addition to the 
first), and the parameter upgrade calculation procedure is repeated. After 
a number of parameters have been successively frozen in this manner 
(with already frozen parameters maintained in their frozen state), the 
process is abandoned, and then recommenced using a different value of 
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the Marquardt lambda. For a parameter estimation problem involving m 
parameters, up to half of these parameters may be progressively frozen for 
up to three Marquardt lambdas, this requiring 3m/2 model runs for that 
iteration for the testing of parameter upgrade vectors in addition to the 
(depending on whether forward differences or central differences are em-
ployed) m or 2m model runs required for filling of the Jacobian matrix. 
(Note, however, that the process is immediately abandoned if a suitable 
objective function improvement is obtained.) Thus, implementation of the 
TPI process may lead to the requirement that between twice and three 
times (at the very most) the number of model runs be carried out com-
pared to normal GML operations. However, experience has demonstrated 
that on most occasions in which the TPI method is employed about 50 per-
cent extra model runs need to be carried out, and that this is generally a 
small price to pay for the benefits that it brings in terms of increased nu-
merical stability in situations of parameter nonuniqueness, and for a dra-
matic reduction in the risk of becoming trapped in local objective function 
pits. 

The decreased probability of ensnarement in local optima that attends use 
of the TPI scheme has its roots in a number of properties of this scheme. 
One obvious reason for a heightened probability of success in finding its 
way out of small regions of attraction of limited extent in parameter space 
is the sheer number of parameter upgrades that are attempted by this 
scheme, together with the fact that the directions pertaining to these up-
grade attempts tend to be maximally different with respect to each other. 
This maximality of difference is a result of two factors. The first is the fact 
that the upgrade direction tends to be dominated by insensitive parame-
ters where all parameters are involved in the computation of this direc-
tion; this is a direct result of the fact that, because of their insensitivity, the 
GML parameter estimation algorithm calculates that these parameters re-
quire larger movement than other parameters to affect the objective func-
tion.  As dimensions of parameter space are progressively closed to the pa-
rameter upgrade vector through the temporary immobilization of 
insensitive parameters, and new upgrade directions are accordingly com-
puted in spaces of lower dimensions, these new directions will tend to be 
orthogonal to the original upgrade vector which was dominated by the 
now-omitted dimensions. The penchant for orthogonality is further in-
creased as a result of the fact that the entire dimensionality reduction 
process is repeated for widely different Marquardt lambda values. As 
documented in works such as Bard (1974), computed upgrade directions 
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can vary between that of steepest descent down the objective function sur-
face when the Marquardt lambda is high, to a direction that can be almost 
orthogonal to this when the Marquardt lambda is low. 

Another important factor behind the success of the TPI scheme is that it 
lowers the chances of upgraded parameters finding local optima in the 
first place. Unless objective function improvement during a particular it-
eration is acceptably large without the help of the TPI scheme (which often 
occurs in the early stages of the parameter estimation process), use of the 
TPI scheme requires that model runs be carried out specifically to test the 
ability of different upgrade vectors (often with very different directions as 
discussed above) to lower the objective function. The upgrade vector that 
results in the largest objective function decline is that which is selected as 
the basis for the next linearization of the inverse problem. Of all the up-
grade vectors tested, this is the one least likely to lead to a local objective 
function minimum, for the encroachment of global or local optimality (for 
which derivatives of the objective function with respect to all model pa-
rameters is zero) is normally marked by smaller and smaller declines in 
the objective function per iteration as the GML method ensures that a pa-
rameter set is found from which all directions lead uphill. In fact, the more 
nonlinear is the problem, the less likely it is that a parameter upgrade vec-
tor resulting in a large objective function decline will lead directly to the 
bottom of an objective function minimum (due to the fact that the equa-
tions upon which this upgrade vector are calculated are based on an as-
sumption whose inapplicability grows with increasing parameter move-
ment, and/or increasing changes in model outputs on account of this 
movement). 

An additional factor that contributes to the success of the TPI scheme in 
both avoidance of local minima of small lateral extent, and in extricating 
itself from such minima, is use of finite differences for parameter deriva-
tives calculation. As was mentioned above, parameter increments of one 
percent are often employed for forward difference derivatives calculation 
and two percent for central difference derivatives calculation. These in-
crements are large enough to “see” outside of a small pit in which it may be 
currently trapped. Alternatively, if current parameter values lie just out-
side of a small pit, these increments are large enough for the effect of the 
pit to exert a smaller influence on calculated derivatives than would be the 
case if derivatives were exact. Thus, the use of finite-difference-based pa-
rameter derivatives provides a kind of filtering mechanism through which 
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finer details of the objective function surface are prevented from conceal-
ing the broader features of that surface. 

So, through a combination of the fact that many upgrade vectors are 
tested, that a parameter upgrade selection procedure is adopted that 
minimizes the chances of being trapped in a local minimum in the first 
place, and maximizes the chances of escaping from that minimum if en-
snarement does indeed occur, and because parameter upgrades possess 
some immunity to the effects of pits because their calculation is based on 
finite-difference derivatives rather than point derivatives, use of the TPI 
method in calibration of surface water models has consistently resulted in 
good performance in estimating parameters for those models. 

(Note that selection of a TPI activation threshold of 10 percent improve-
ment in the objective function is somewhat arbitrary. However, experience 
has demonstrated that this normally results in efficient implementation of 
the method. If the threshold is set too high, TPI-based parameter upgrade 
recomputation will be undertaken on most GML optimization iterations, 
irrespective of proximity, or otherwise, to an objective function minimum. 
This can result in wasted model runs if rapid objective function improve-
ment is taking place without the need for TPI upgrade repetitions. On the 
other hand, if the improvement threshold is set too low, then needless 
“struggling” of the GML method in the face of difficulties incurred through 
problem ill-posedness or proximity to a local minimum, resulting in only 
small improvements in the objective function in successive iterations, can 
be avoided.) 

Regularized Inversion 

Conceptually, singularity or near-singularity of XtQX (as occurs when 
large numbers of parameters require estimation and/or when the informa-
tion content of the calibration dataset with respect to estimated parame-
ters is poor) can be remedied through the addition of extra “observations” 
to the parameter estimation process which pertain directly to the parame-
ters requiring estimation. For example, it may be “observed” that each pa-
rameter is equal to a certain, user-supplied value; presumably this value 
will have been chosen to be realistic in terms of the system property which 
the parameter represents. Alternatively (or as well), it may be “observed” 
that certain pairs of parameters are equal, or have values which observe a 
certain ratio or difference.  
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Let these “regularization relationships” be represented by the operator Z 
acting on the parameter set p, and let the “observed” values of these rela-
tionships be represented by j. Then the regularization relationships (also 
referred to as “regularization constraints” herein) can be represented by 
the equation: 

 Z (p) = j (6a) 

the linearized form of which is: 

 Zp = j (6b) 

where Z is the Jacobian of the Z operator. Note that, as is discussed below, 

it is not essential that Equations 6a and 6b be exactly observed, only that 
they be observed to the maximum extent possible in calibrating the model. 

If the regularization constraints are given sufficient weight in comparison 
with the observation weights encapsulated in Q, a well-posed inverse prob-
lem will have been formulated. Mathematically, this problem is then itera-
tively solved for the parameters p using the equation: 

 p-p0 = (XtQX+ β2ZtSZ  + λI)-1(XtQ[h-h0]+ β2ZtS[j-j0]) (7) 

In Equation 7, j0 represents the right side of Equation 6a when current pa-
rameter values p0 are substituted for p in this equation. S is a “relative 
weight matrix” assigned to the regularization observations j; it has the 
same role for regularization observations as Q does for field observations. 
All of the relative regularization weights encapsulated in S are multiplied 
by a “regularization weight factor” β2 in Equation 7 prior to calculation of 
p-p0.  

Selection of an appropriate value for β2 is critical. If its value is too high 
the parameter estimation process will ignore the measurement dataset h 
in favor of fitting the regularization observations j. If it is too small, the 
regularization observations will not endow the parameter estimation proc-
ess with the numerical stability which it needs in order to obtain estimates 
for the parameters p.  

Equation 7 can be shown to constitute a constrained minimization prob-
lem in which a “regularization objective function” Φr defined as: 
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 Φr = [Z (p)-j]tS[Z (p)-j]  (8) 

is minimized subject to the constraint that Φm of Equation 3 rises no 
higher than a user-specified value, referred to herein as the “target meas-
urement objective function.” Thus the user informs the regularized inver-
sion process of the level of model-to-measurement misfit required; this 
process then enforces the regularization constraints defined through 
Equation 6a to the maximum extent that it can by minimizing Φr subject to 
the constraint that Φm rises no higher than the target level. If the target 
measurement objective function cannot be achieved, the regularized inver-
sion process simply minimizes Φm; however, where minimization of Φm 
would otherwise be an unstable process due to parameter nonuniqueness, 
stability of this process is maintained by seeking that set of parameters ly-
ing within the elongate Φm valley that also minimizes Φr.  In either case, 
the regularization weight factor β2 can be viewed as a Lagrange multiplier 
associated with the constrained minimization problem, and it is recalcu-
lated during every iteration of the regularized nonlinear parameter estima-
tion process using a bisection algorithm based on local linearization of the 
constrained minimization problem about current parameter values.  

Note the continued inclusion of the Marquardt lambda in Equation 7. Its 
value is adjusted as needed from iteration to iteration as a practical meas-
ure to enhance optimization efficiency and to ensure stability of the pa-
rameter estimation process should XtQX+β2ZtSZ become ill-conditioned 
through use of an inappropriately low value for β2. This can occur where 
regularization constraints are poorly formulated, or where too good a fit is 
sought between model outputs and field measurements, requiring that 
regularization constraints be abandoned in pursuit of this fit. Often it oc-
curs for a combination of these reasons, where weights on some regulari-
zation constraints must be lowered for attainment of a good fit between 
model outputs and field measurements, but where the relaxation of regu-
larization constraints then leads to unestimability of those model parame-
ters whose estimation is not realized through attainment of this fit. 

Formulation of the inverse problem as a constrained minimization prob-
lem through use of Equation 7 allows many more parameters to be esti-
mated than would otherwise be possible, thereby ensuring that maximum 
information is extracted from the calibration dataset. If the relationships 
of Equation 6 are realistic, the fact that estimated parameters are such as 
to ensure minimal deviation from these relationships heightens the prob-
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ability that estimated parameters will themselves be realistic. However, a 
practical problem that is often encountered when using the Tikhonov 
method is that the regularization weight matrix S must be supplied ahead 
of the regularized inversion process; furthermore, it is not adjusted 
through this process except for global multiplication by β2. Ideally, indi-
vidual regularization constraints described by the rows of Equation 6 
should be more strongly enforced where the information content of the 
calibration dataset is insufficient to require their contravention for the 
sake of obtaining an appropriate level of model-to-measurement fit. How-
ever because it is almost impossible to know ahead of the calibration proc-
ess the extent to which this should occur for each of the different relation-
ships encapsulated in Z, it is often very difficult to supply an S matrix that 

is an appropriate complement to the current calibration dataset.  

Adaptive Regularization 

An “adaptive regularization” methodology is now presented which over-
comes this problem in many modeling contexts. The set of regularization 
constraints described by Equation 6 is subdivided into groups; if desired, 
each constraint can be assigned to its own group. The set of model pa-
rameters p is then supplemented by an additional parameter set pr, with 
one new parameter being defined for each new regularization group. Each 
such parameter is, in fact, the inverse of a group-specific regularization 
weight multiplier; this group-specific weight multiplier is applied in addi-
tion to the global weight multiplier β2 depicted in Equation 7, the latter be-
ing adjusted as part of the constrained minimization process as described 
above. Regularization constraints are then provided for the elements of pr -
so that these too can be estimated as part of the regularized inversion 
process. Each such constraint comprises the “observation” that the respec-
tive element of pr is zero.  

The reformulated regularized inversion problem remains a constrained 
minimization process, and thus still seeks to find a parameter set that ei-
ther minimizes the measurement objective function Φm, or reduces it to a 
user-specified target level, while ensuring that the regularization objective 
function Φr is conditionally minimized. Because conditional minimization 
of the regularization objective function now requires maximization of 
weights assigned to individual or groups of regularization constraints, 
these weights are applied as strongly as possible, thereby maximizing the 
extent to which the corresponding regularization relationships encapsu-
lated in Equation 6 are adhered. However, with the calculation of the over-
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all regularization weight factor β2 by the constrained minimization process 
being such as to allow minimization of the target measurement objective 
function, or achievement of a user-specified target for this function, these 
regularization constraints are not so strongly enforced that model-to-
measurement fit is compromised. Thus, the regularized inversion process 
itself ensures that the strength of enforcement of regularization con-
straints on parameter values or relationships complements the informa-
tion content of the calibration dataset in relation to these parameters. As a 
result, regularization constraints are automatically applied more strongly 
where the attainment of a satisfactory level of model-to-measurement fit 
does not require otherwise, thus overcoming a disadvantage of the Tik-
honov method. The outcome is a numerically stable regularized inversion 
process that achieves a desired level of model-to-measurement fit with 
impressive run economy, and that yields sensible values for model pa-
rameters. 

Like all numerical strategies, this adaptive regularization methodology is 
more suitable for use in some contexts than in others. It is certainly not 
the only means by which numerical stability of a regularized inversion 
process can be achieved, for so-called “subspace methods” (Aster et al. 
2005) are very effective in this regard. However, use of the present meth-
odology can be beneficial in those modeling contexts where the means by 
which numerical stability is achieved is just as important as the achieve-
ment of that stability itself. In general, where the necessity for parameters 
to observe key values or relationships to the maximum extent possible 
without compromising fit between model outputs and field measurements 
is a critical part of the calibration process, then the adaptive regularization 
methodology described herein will serve that calibration process well; such 
a case is demonstrated in the following section. However, the need to in-
troduce extra parameters into the calibration process in order to guarantee 
enforcement of desired parameter relationships does place some restric-
tions on the method. Where such relationships fall into a relatively small 
number of distinct groups, and/or where the number of parameters re-
quiring estimation is not such as to introduce vastly different levels of “es-
timability” between them (thus requiring the introduction of many new 
parameters in order to accommodate the differential strengths with which 
regularization constraints must be applied), the above method has proven 
very successful. However, where large numbers of parameters require es-
timation, and where differences in estimability between them are likely to 
cover a broad range, recourse to subspace methods becomes a necessity. 
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Unfortunately, in this case, the guarantee of numerical stability that ac-
companies use of such methods is attained at the cost of loss of ability on 
the part of the modeler to insist on the observance of specified parameter 
relationships in attaining that stability. 
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4 Examples 

Use of the methodologies discussed in the preceding section are now dem-
onstrated by applying them to the calibration of two different HEC-HMS 
models deployed to the Goodwin Creek Experimental Watershed. Good-
win Creek is an 8.26-square-mile experimental watershed (upland erosion, 
instream sediment transport, and watershed hydrology) operated by the 
Agricultural Research Service (ARS) of the United States Department of 
Agriculture (USDA). The Goodwin Creek watershed is located in northern 
Mississippi, approximately 60 miles south of Memphis, TN. Goodwin 
Creek is divided into 14 nested subwatersheds with a flow measuring 
flume constructed at each of the subwatershed outlets. The drainage areas 
above the gauging sites range from 0.63 to 8.26 square miles. Thirty-one 
standard recording rain gauges are uniformly located within and just out-
side of the watershed. For further details about the Goodwin Creek Ex-
perimental Watershed, see Blackmarr (1995). Digital elevation model-
derived subwatershed boundaries and stream network, and rain and 
stream gauge locations are shown in Figure 1.  

The first HEC-HMS model was applied to the 39.8-acre drainage area 
above streamflow gauging station number 9 in Goodwin Creek. Precipita-
tion data from two nearby gauges and evaporation data associated with 
four surrounding locations were supplied as meteorological forcing data to 
support HEC-HMS continuous hydrologic simulation using the deficit 
constant loss method; for details about the deficit constant loss method 
within HEC-HMS, see HEC (2005). 
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Figure 1.  Goodwin Creek Experimental Watershed, delineated subwatersheds, derived 

stream network, rain and numbered streamflow gauge locations. 

Estimation of six HEC-HMS parameters was undertaken by matching ob-
served and simulated flow data over 17 non-contiguous time intervals 
spanning the period 1 Jan 1989 to 29 Feb 1992. The 17 periods were identi-
fied based on a manual inspection of the observed flow data. The calibra-
tion period 1 Jan 1989 to 29 Feb 1992 was selected based on the determi-
nation that there was no land use/land cover alteration within the 
subwatershed for the period 1987 through 1992. Two calibration experi-
ments were performed with the first HEC-HMS model. The first calibra-
tion experiment involved comparing only simulated and observed flows; 
the second calibration experiment involved comparing simulated and ob-
served flows and base flows. Over the 17 non-contiguous time intervals 
spanning the calibration period 1 Jan 1989 to 29 Feb 1992, the first ex-
periment involved matching simulated flows with observed flows above a 
predetermined threshold (which was uniquely determined for each of the 
17 time intervals based on a manual inspection of the data); whereas, the 
second experiment involved matching not only simulated flows with ob-
served flows (above the predetermined threshold), but also matching 
simulated base flows with observed base flows for the same times simu-
lated and observed flows were matched. Hence, the first experiment re-
sulted in a total of 2,053 flow observations for use in the calibration proc-
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ess; whereas, the second experiment resulting in a total of 4,106 observa-
tions for use in the calibration process.  

In each case, the objective function was defined as the sum of weighted 
squared differences between modeled and observed log-transformed flow 
data, with all weights assigned a value of 1.0. Thus h of Equation 3 was 
comprised of the logs of flow data, while the model represented by X in 
these equations calculated the model-generated counterparts to these 
logged flow data. Q was the identity matrix. For both experiments with the 
first HEC-HMS model, the simulation time interval was one hour, which 
equaled the temporal resolution of the input precipitation data.  

Table 2 lists the 17 non-contiguous time intervals and the specified thresh-
olds. Figure 2 is a plot of the observed flow data that were compared with 
simulated flows to calibrate, for both experiments, the first HEC-HMS 
model. The “observed” base flow data for comparing with HEC-HMS 
simulated base flow, for the second experiment with the first model, was 
determined using a quickflow digital filter (Nathan and McMahon 1990), 
with a value of 0.999 specified for the scaling parameter. For purposes of 
illustration, base flow “observations,” together with the “observed” quick-
flow and the total observed flow, for a specific period during the first of the 
17 time intervals, are plotted in Figure 3. Examining Figure 3, clearly the 
perceptual model (Beven 2001) was formulated to be consistent with past 
research (Downer and Ogden 2003) in that the watershed system is domi-
nated by quickflow response. 

Table 2.  Non-contiguous time intervals and thresholds, both which determined model to 
measurement misfit for both experiments with the first model. 

Number Time Interval Threshold (cfs) 

1 01/02/1989 00:00:00 - 02/13/1989 23:00:00 0.1 

2 02/18/1989 06:00:00 - 02/21/1989 12:00:00 0.1 

3 02/27/1989 02:00:00 - 05/17/1989 23:00:00 0.1 

4 05/22/1989 00:00:00 - 08/08/1989 23:00:00 0.1 

5 01/03/1990 18:00:00 - 01/08/1990 08:00:00 0.1 

6 01/28/1990 20:00:00 - 01/29/1990 23:00:00 0.1 

7 02/09/1990 13:00:00 - 03/13/1990 23:00:00 0.1 

8 04/06/1990 00:00:00 - 04/06/1990 23:00:00 0.1 

9 04/21/1990 00:00:00 - 06/04/1990 23:00:00 0.05 
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10 07/22/1990 21:00:00 - 07/23/1990 06:00:00 0.05 

11 07/31/1990 13:00:00 - 07/31/1990 18:00:00 0.05 

12 02/05/1991 03:00:00 - 02/06/1991 23:00:00 0.2 

13 02/18/1991 01:00:00 - 03/22/1991 23:00:00 0.1 

14 03/28/1991 13:00:00 - 05/15/1991 23:00:00 0.1 

15 06/22/1991 07:00:00 - 09/30/1991 00:00:00 0.05 

16 01/08/1992 06:00:00 - 01/16/1992 23:00:00 0.1 

17 02/14/1992 10:00:00 - 02/16/1992 00:00:00 0.1 
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Figure 2.  Plot of observed flow data used to calibrate the first HEC-HMS model. 
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Figure 3.  Observed flow, quickflow, and base flow data at gauge 9 in Goodwin Creek 

Experimental Watershed. 

Table 3 lists the names and functions of the HEC-HMS parameters esti-
mated through the calibration process. Also shown in this table are the 
bounds applied to these parameters; guidance in the setting of these 
bounds was obtained from HEC (2000). In order to ensure estimation of 
physically acceptable values for the initial deficit (ID) and maximum stor-
age (MS) parameters in the deficit constant loss model, the two adjustable 
model parameters LENGTH and A were related to the initial deficit and 
maximum storage in the following manner 

 ID = LENGTH · A  (9) 

 MS = LENGTH · porosity  (10) 

As noted in Table 3, the adjustable model parameter A was specified to be 
less than the porosity of the soil, which was fixed to be 0.36. In order to 
better accommodate scaling issues resulting from the use of different units 
for different parameters, and in an attempt to decrease the degree of 
nonlinearity of the parameter estimation problem, the logs of these pa-
rameters were estimated instead of their native values; past experience has 
demonstrated that greater efficiency and stability of the parameter estima-
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tion process can often be achieved through this means (Doherty and Ska-
hill 2006).  

Table 3.  HEC-HMS parameters, their functions, and constraints imposed during the 
calibration process. 

Parameter Name Parameter Function Bounds Imposed During 
Calibration 

LENGTH     Depth of the active soil layer  0.003 - 54.681 in. 

A          LENGTH · A = initial deficit; A < porosity 0.001 - 0.359998 

CONSTLOSS  Infiltration rate when the soil layer is satu-
rated 

0.001 - 11.810 in./hr 

SNYDERTP   Snyder unit hydrograph standard lag 0.100 - 500 hr 

SNYDERCP   Snyder unit hydrograph peaking coeffi-
cient 

0.100 - 1 

GWSTOCOEFF Groundwater storage coefficient for the 
linear reservoir 

0.100 - 10000 hr 

 

The second HEC-HMS model was applied to the drainage areas above 
streamflow gauging station numbers 8, 9, 11, and 12 in Goodwin Creek. 
The second HEC-HMS model included separate submodels for the drain-
age areas upstream of the four noted streamflow gauging stations (station 
numbers 8, 9, 11, and 12) located within the watershed. Precipitation data 
from seven nearby gauges and evaporation data associated with four sur-
rounding locations were supplied as meteorological forcing data to sup-
port HEC-HMS continuous hydrologic simulation using the deficit con-
stant loss method. 

The names and roles of model parameters selected for adjustment through 
the calibration process are provided in Table 3. Also listed are the bounds 
on these parameters imposed during the parameter estimation process, 
these being set in accordance with available guidance HEC (2000). Four 
instances of all the parameters listed in Table 3 required estimation, one 
instance for each subwatershed model. Thus a total of 24 model parame-
ters required estimation through the calibration process. As with the first 
HEC-HMS model, in order to ensure estimation of physically acceptable 
values for the initial deficit and maximum storage parameters in the deficit 
constant loss model, the adjustable model parameters LENGTH and A, for 
each subwatershed, were related to the initial deficit and maximum stor-
age as specified in Equations 9 and 10, respectively. And as noted in  
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Table 3, the adjustable model parameter A, for each subwatershed, was 
specified to be less than the porosity of the soil, which was fixed to be 0.36. 
Also as with the first HEC-HMS model, in order to better accommodate 
scaling issues resulting from the use of different units for different pa-
rameters, and in an attempt to decrease the degree of nonlinearity of the 
parameter estimation problem, the logs of these parameters were esti-
mated instead of their native values as past experience has demonstrated 
that greater efficiency and stability of the parameter estimation process 
can often be achieved through this means (Doherty and Skahill 2006). 

Simultaneous estimation of the parameters listed in Table 3 for the four 
different subwatersheds allows an important piece of information to be 
included in the parameter estimation process. Namely that, due to their 
geographical proximity and similarity of land use, soil type, and other 
geomorphic and anthropogenic conditions, parameter values employed in 
the different subwatershed models are not expected to be significantly dif-
ferent. To accommodate this condition, a series of regularization con-
straints effecting an assumed similarity condition across the subwater-
sheds was included in the regularized parameter estimation process. That 
is, respective log differences of identical parameter types between sub-
watersheds were ascribed an “observed value” of zero. The advantage of 
supplying such information through regularization constraints rather than 
through “hardwired” parameter equality is that the regularized inversion 
process has the option of introducing parameter differences if this is a re-
quirement for obtaining a good fit between modeled and observed flows at 
each of the streamflow gauging stations. However, the constrained optimi-
zation algorithm which underpins the regularized inversion process guar-
antees that only the minimum amount of inter-parameter variability re-
quired to achieve this level of fit is introduced. Thus, subwatershed 
individuality is recognized at the same time as subwatershed similarity. 

Estimation of the 24 adjustable parameters for the second HEC-HMS 
model was undertaken by matching observed and simulated flows over 23, 
11, 19, and 18 non-contiguous time intervals spanning the period 1 Jan 
1988 to 31 Dec 1990 for stations 8, 9, 11, and 12, respectively. The noted 
periods were identified based on a manual inspection of the observed flow 
data. The calibration period 1 Jan 1988 to 31 Dec 1990 was selected based 
on the determination that there was no land/use land cover alteration 
within the four subwatersheds for the period 1988 through 1990. Over the 
23, 11, 19, and 18 non-contiguous time intervals spanning the calibration 
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period 1 Jan 1988 to 31 Dec 1990 for stations 8, 9, 11, and 12, respectively, 
model calibration involved matching simulated flows with observed flows 
above a predetermined threshold (which was uniquely determined for 
each of the 23, 11, 19, and 18 non-contiguous time intervals for stations 8, 
9, 11, and 12, respectively, based on a manual inspection of the data). This 
resulted in a total of 8,480 flow observations for use in the calibration 
process of the second HEC-HMS model.  

As with the first HEC-HMS model, the objective function for the second 
HEC-HMS model was defined as the sum of weighted squared differences 
between modeled and observed log-transformed flows, with all weights 
assigned a value of 1.0. Thus h of Equation 3 was comprised of the logs of 
flows, while the model represented by X in these equations calculated the 
model-generated counterparts to these logged flows. Q was the identity 
matrix. For the second HEC-HMS model, the simulation time interval was 
one hour, which equaled the temporal resolution of the input precipitation 
data.  

Tables 4 to 7 list the 23, 11, 19, and 18 non-contiguous time intervals for 
stations 8, 9, 11, and 12, respectively, and their respective thresholds. Fig-
ures 4 to 7 are plots of the observed flow data that were compared with 
simulated flows to calibrate the second HEC-HMS model.  

Table 4.  For the second HEC-HMS model, non-contiguous time intervals and thresholds 
associated with station 8. 

Number Time Interval Threshold (cfs) 

1 01/18/1988 20:00:00 - 01/20/1988 00:00:00 0.1 

2 02/02/1988 02:00:00 - 02/05/1988 00:00:00 0.1 

3 02/14/1988 16:00:00 - 03/14/1988 00:00:00 0.2 

4 04/06/1988 00:00:00 - 04/07/1988 00:00:00 0.1 

5 11/19/1988 20:00:00 - 11/27/1988 00:00:00 0.2 

6 12/21/1988 00:00:00 - 01/02/1989 00:00:00 0.2 

7 01/07/1989 16:00:00 - 02/04/1989 10:00:00 0.1 

8 02/12/1989 18:00:00 - 03/08/1989 00:00:00 0.1 

9 03/29/1989 04:00:00 - 04/06/1989 00:00:00 0.1 

10 05/05/1989 02:00:00 - 05/23/1989 00:00:00 0.3 

11 06/08/1989 02:00:00 - 06/17/1989 00:00:00 0.2 

12 07/01/1989 06:00:00 - 07/17/1989 00:00:00 0.2 

13 07/30/1989 20:00:00 - 08/07/1989 16:00:00 0.1 

14 11/06/1989 00:00:00 - 11/09/1989 00:00:00 0.2 
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15 12/30/1989 02:00:00 - 01/08/1990 12:00:00 0.2 

16 01/17/1990 14:00:00 - 01/30/1990 00:00:00 0.3 

17 02/02/1990 00:00:00 - 03/18/1990 00:00:00 0.2 

18 03/28/1990 12:00:00 - 04/08/1990 00:00:00 0.2 

19 04/21/1990 08:00:00 - 05/22/1990 12:00:00 0.3 

20 06/03/1990 00:00:00 - 06/04/1990 00:00:00 0.2 

21 11/28/1990 00:00:00 - 12/04/1990 00:00:00 0.2 

22 12/17/1990 00:00:00 - 12/23/1990 00:00:00 0.2 

23 12/27/1990 04:00:00 - 12/31/1990 23:00:00 0.2 

 

Table 5.  For the second HEC-HMS model, non-contiguous time intervals and thresholds 
associated with station 9. 

Number Time Interval Threshold (cfs) 

1 01/02/1989 00:00:00 - 02/13/1989 23:00:00 0.1 

2 02/18/1989 06:00:00 - 02/21/1989 12:00:00 0.1 

3 02/27/1989 02:00:00 - 05/17/1989 23:00:00 0.1 

4 05/22/1989 00:00:00 - 08/08/1989 23:00:00 0.1 

5 01/03/1990 18:00:00 - 01/08/1990 08:00:00 0.1 

6 01/28/1990 20:00:00 - 01/29/1990 23:00:00 0.1 

7 02/09/1990 13:00:00 - 03/13/1990 23:00:00 0.1 

8 04/06/1990 00:00:00 - 04/06/1990 23:00:00 0.1 

9 04/21/1990 00:00:00 - 06/04/1990 23:00:00 0.05 

10 07/22/1990 21:00:00 - 07/23/1990 06:00:00 0.05 

11 07/31/1990 13:00:00 - 07/31/1990 18:00:00 0.05 

 

Table 6.  For the second HEC-HMS model, non-contiguous time intervals and thresholds 
associated with station 11. 

Number Time Interval Threshold (cfs) 

1 01/18/1988 20:00:00 - 01/21/1988 00:00:00 0.1 

2 02/02/1988 02:00:00 - 03/14/1988 00:00:00 0.1 

3 04/02/1988 00:00:00 - 04/13/1988 00:00:00 0.1 

4 11/26/1988 02:00:00 - 02/04/1989 00:00:00 0.3 

5 02/12/1989 18:00:00 - 03/06/1989 10:00:00 0.2 

6 03/29/1989 04:00:00 - 04/05/1989 12:00:00 0.1 

7 05/05/1989 02:00:00 - 05/11/1989 00:00:00 0.1 

8 06/05/1989 16:00:00 - 06/17/1989 00:00:00 0.1 

9 07/01/1989 04:00:00 - 07/17/1989 00:00:00 0.1 
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10 07/30/1989 20:00:00 - 08/08/1989 00:00:00 0.1 

11 11/06/1989 00:00:00 - 11/09/1989 00:00:00 0.1 

12 12/30/1989 00:00:00 - 01/08/1990 10:00:00 0.2 

13 01/28/1990 18:00:00 - 03/03/1990 10:00:00 0.2 

14 03/07/1990 12:00:00 - 03/17/1990 00:00:00 0.3 

15 03/28/1990 10:00:00 - 04/07/1990 12:00:00 0.2 

16 04/21/1990 06:00:00 - 05/22/1990 10:00:00 0.2 

17 06/03/1990 02:00:00 - 06/04/1990 12:00:00 0.1 

18 11/27/1990 22:00:00 - 12/04/1990 00:00:00 0.1 

19 12/17/1990 00:00:00 - 12/31/1990 23:00:00 0.3 

 

Table 7.  For the second HEC-HMS model, non-contiguous time intervals and thresholds 
associated with station 12. 

Number Time Interval Threshold (cfs) 

1 01/17/1988 00:00:00 – 01/20/1988 12:00:00 0.2 

2 02/02/1988 00:00:00 – 02/05/1988 00:00:00 0.1 

3 02/14/1988 18:00:00 – 04/12/1988 12:00:00 0.1 

4 11/19/1988 20:00:00 – 11/27/1988 12:00:00 0.1 

5 12/21/1988 00:00:00 – 12/31/1988 23:00:00 0.1 

6 01/11/1989 01:00:00 – 02/28/1989 23:00:00 0.1 

7 05/05/1989 01:00:00 – 05/10/1989 12:00:00 0.2 

8 06/04/1989 06:00:00 – 06/17/1989 00:00:00 0.1 

9 07/01/1989 04:00:00 – 07/17/1989 12:00:00 0.1 

10 08/06/1989 16:00:00 – 08/08/1989 00:00:00 0.1 

11 11/06/1989 00:00:00 – 11/09/1989 00:00:00 0.1 

12 12/30/1989 00:00:00 – 01/08/1990 12:00:00 0.2 

13 01/28/1990 18:00:00 – 02/04/1990 00:00:00 0.4 

14 02/09/1990 12:00:00 – 03/17/1990 00:00:00 0.3 

15 03/28/1990 08:00:00 – 04/07/1990 00:00:00 0.3 

16 04/21/1990 08:00:00 – 06/10/1990 00:00:00 0.2 

17 11/27/1990 22:00:00 – 11/28/1990 12:00:00 0.1 

18 12/17/1990 02:00:00 - 12/31/1990 23:00:00 0.2 
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Figure 4.  Plot of station 8 observed flow data used to calibrate the second HMS model. 
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Figure 5.  Plot of station 9 observed flow data used to calibrate the second HMS model. 
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Figure 6.  Plot of station 11 observed flow data used to calibrate the second HMS model. 
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Figure 7.  Plot of station 12 observed flow data used to calibrate the second HMS model. 
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5 Results 
First HEC-HMS Model - Calibration Experiment 1 

In an attempt to locate as many local minima as possible, PD_MS2 was 
asked to run 100 inversion runs from a succession of starting values that 
were maximally distant from all previous parameter trajectories, as dis-
cussed above. These starting values were selected from 1,296 random pa-
rameter samples for which objective functions were calculated prior to the 
undertaking of any inversion runs.  

Figure 8 depicts the outcomes of this exercise. Each of the six graphs ap-
pearing in this figure pertains to one of the six estimated parameters. For 
each graph the objective function is plotted on the x axis, while an opti-
mized parameter value is plotted on the y axis. In each graph, each point 
represents the outcome of one PD_MS2-supervised inversion run; corre-
sponding points from different graphs (representing corresponding values 
for different parameters) can be matched vertically through their common 
objective function. It is readily apparent from this figure that many of the 
outcomes of successive optimization runs are grouped into “parameter 
clumps” of nearly constant objective function value; these clumps define 
regions of attraction in parameter space. “Tight” clumps indicate a well-
defined region of attraction; vertical spreading of clumps indicates diffi-
culties in parameter identification through parameter correlation and/or 
insensitivity. For those minima situated at the bottom of broad objective 
function valleys defining different regions of attraction in parameter space, 
local minima are often in close proximity. Other local minima appear to 
exist in isolation from these more populous clumps.  

For this calibration problem, the objective function has a value of 223.6 at 
its global minimum. Table 8 summarizes computed Nash-Sutcliffe effi-
ciency scores (which are based on a comparison of the flow observations 
used in the calibration process) for each of the individual 17 non-
contiguous time intervals. Figure 9 shows the fit between modeled and ob-
served flows at this minimum for the flows that were compared for the 
seventh non-contiguous time interval listed in Table 2.  
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Figure 8.  End-points in parameter space of 100 inversion runs undertaken under the control 
of PD_MS2. Parameters comprising an optimized set are linked vertically between graphs by 

objective function. TPI functionality was not operative. 

Ninety-five percent confidence intervals for the parameters corresponding 
to the global objective function minimum are provided in Table 9, and 
these could only be calculated after fixing the parameter A, for A could not 
be defined at the global objective function minimum. The insensitivity of 
parameter A is exhibited upon inspection of Figure 8, wherein it is appar-
ent that the global objective function minimum of 223.6 occurs in an elon-
gate valley rather than a bowl (see the dotty plot for the initial deficit pa-
rameter, ID).  
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Figure 9.  Simulated and observed flows at identified global minimum for the flows that were 

compared for the seventh non-contiguous time interval listed in Table 2. 

Table 8.  Nash-Sutcliffe efficiency associated with identified global minimum. 

Number Number of Series Terms in this Interval Nash-Sutcliffe Coefficient 

1 175 0.61 

2 34 0.32 

3 221 0.18 

4 196 0.24 

5 81 0.60 

6 25 0.83 

7 210 0.72 

8 24 0.89 

9 155 0.38 

10 5 0.61 

11 4 0.13 

12 32 0.71 

13 248 0.51 

14 463 0.44 

15 61 0.22 

16 90 0.59 

17 29 -0.23 
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Table 9.  Parameter values corresponding to global optimum; also shown are linear 
parameter confidence limits calculated as a by-product of the GML parameter estimation 

process. 

Parameter name Estimated Value 
Lower 95 Percent 
Confidence Limit 

Upper 95 Percent 
Confidence Limit 

LENGTH     0.816390 0.793602     0.839832 

CONSTLOSS  0.151830 0.143696     0.160425 

SNYDERTP   126.100 123.849     128.392 

SNYDERCP   0.100000 9.711740E-02 0.102968 

GWSTOCOEFF 1.87410 1.79730     1.95418 

 

Further evidence supporting the existence of local optima for the first 
HEC-HMS model was provided through optimization runs performed 
within HEC-HMS using the Nelder and Mead (1965) local search method 
and the sum of squared residuals objective function. Table 10 summarizes 
the results of the optimization runs.  

Table 10.  Initial parameter sets, final parameter sets, and objective function values 
associated with three HEC-HMS optimization runs with the first HEC-HMS model. 

 

Figure 10 is a plot of simulated flows and base flows at the global objective 
function minimum. While we are now able to identify the global objective 
function minimum using automated parameter estimation capabilities 
with a HEC-HMS model, this new capability does not preclude identifica-
tion of a hydrologically unacceptable model at the global minimum. A 
more robust objective function formulation is needed that better reflects 
our perceptual model of the watershed system.  
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Figure 10.  Plot of simulated flows, quickflow, and base flow at the global minimum. 

First HEC-HMS Model - Calibration Experiment 2 

In an attempt to locate as many local minima as possible, PD_MS2 was asked 
to run 100 inversion runs from a succession of starting values that were maxi-
mally distant from all previous parameter trajectories, as discussed above. 
These starting values were selected from 1,296 random parameter samples for 
which objective functions were calculated prior to the undertaking of any in-
version runs. Figure 11 depicts the outcomes of this exercise. 

For this calibration problem, the objective function has a value of 428.6 at 
its global minimum. Table 11 summarizes computed Nash-Sutcliffe effi-
ciency scores (which are based on a comparison of the flow observations 
used in the calibration process) for each of the individual 17 non-
contiguous time intervals. Figure 12 shows the fit between modeled and 
observed flows at this minimum for the flows that were compared for the 
seventh non-contiguous time interval listed in Table 2. 

Figure 13 is a plot of the simulated flows and base flows at the global ob-
jective function minimum. While we have now demonstrated how state 
information other than stream discharge data alone can be included into 
the automatic calibration process of a HEC-HMS model, which results, at 
least for this case, in a much more hydrologically acceptable model than 
calibrating solely against flows, this process still may not remove the prob-
lem of local optima. 



ERDC/CHL TR-06-13 41 

 

 
Figure 11.  End-points in parameter space of 100 inversion runs undertaken under the 

control of PD_MS2. Parameters comprising an optimized set are linked vertically between 
graphs by objective function. TPI functionality was not operative. 
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Table 11.  Nash-Sutcliffe efficiency associated with identified global minimum. 

Number Number of Series Terms in this Interval Nash-Sutcliffe Coefficient 

1 175 0.61 

2 34 0.70 

3 221 0.55 

4 196 0.51 

5 81 0.76 

6 25 0.09 

7 210 0.70 

8 24 0.73 

9 155 0.56 

10 5 -14.18 

11 4 -9.73 

12 32 0.34 

13 248 0.73 

14 463 0.74 

15 61 -0.13 

16 90 0.33 

17 29 -0.20 

 

 
Figure 12.  Simulated and observed flows at identified global minimum for the flows that were 

compared for the seventh non-contiguous time interval listed in Table 2. 
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Figure 13.  Plot of simulated flows, quickflow, and base flow at the global minimum. 

Second HEC-HMS Model 

Table 12 lists parameter values for each subwatershed model, estimated 
using the adaptive regularization scheme described above. In implement-
ing the regularized inversion process, a very low target measurement ob-
jective function was set; hence Φm of Equation 3 was lowered as far as pos-
sible, thus reducing misfit between measured and observed flows to a 
minimum. It is apparent from Table 12 that optimal fitting of model out-
puts to matched flows could only be achieved through the assignment of 
different values to parameters of the same type in different subwatersheds. 
However, the adaptive regularization scheme employed in their estimation 
attempted to ensure that these differences were kept to a minimum. The 
total measurement objective function (pertaining to all streamflow gauges) 
achieved through this calibration exercise was 1,047. 

Table 13 summarizes computed Nash-Sutcliffe efficiency scores (which are 
based on a comparison of the flow observations used in the calibration 
process) for each of the individual non-contiguous time intervals for each 
gauged subwatershed. 

Figure 14 shows the fit between the modeled and observed flows for 
streamflow gauging station 9 for the flows that were compared for the  
seventh non-contiguous time interval listed in Table 2.  
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Table 12. Estimated values for subwatershed model parameters for attainment of best fit at all 
subwatershed streamflow gauging stations, this corresponding to a measurement objective 

function of 135.1. Adaptive regularization was employed in the parameter estimation process. 

Parameter Name Station 8 Station 9 Station 11 Station 12 

MS  1.031548 0.193263 0.169596 0.209377 

ID 0.143271 0.026842 0.023555 0.029080 

CONSTLOSS  0.024030 0.039661 0.080199 0.039745 

SNYDERTP   0.250000 0.250000 0.250000 0.250000 

SNYDERCP   0.560000 0.560000 0.560000 0.560000 

GWSTOCOEFF 12.316100 16.01440 11.648300 9.545690 

 
Table 13. Number of terms and Nash-Sutcliffe efficiency scores, ES, associated with identified 

minimum for each station. 

Station 

8 9 11 12 

Number 
Measure-
ment ES 

Measure-
ment ES 

Measure-
ment ES 

Measure-
ment ES 

1 29 0.76 175 0.79 45 0.85 58 0.74 

2 69 -2.35 34 0.82 306 0.17 306 0.17 

3 237 0.53 221 0.69 84 0.75 84 0.75 

4 18 0.35 196 0.69 215 -0.04 356 0.12 

5 25 -18.92 81 0.69 249 0.86 334 0.86 

6 95 -0.28 25 0.50 104 0.64 104 0.64 

7 288 0.66 210 0.82 63 0.68 58 0.68 

8 393 0.81 24 0.66 123 0.46 123 0.46 

9 124 0.28 155 0.62 94 0.36 94 0.36 

10 115 0.81 5 -20.57 45 -2.66 45 -2.66 

11 101 0.66 4 -12.35 27 -13.11 27 -13.11 

12 26 0.75   132 0.63 132 0.63 

13 69 -2.35   208 0.86 142 0.86 

14 237 0.53   95 0.72 95 0.72 

15 14 0.27   92 -1.52 65 -2.07 

16 24 -19.59   111 -0.30 111 -0.30 

17 95 -0.28   29 -12.04 29 -12.04 

18 248 0.66   20 -4.26 14 -5.09 

19 327 0.81   158 0.52   

20 108 0.26   45    

21 129 0.81   306    

22 101 0.66   84    

23 101 0.66   215    
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Figure 14.  Simulated and observed flows at station 9, at the minimum objective function 

value, for the flows that were compared for the seventh non-contiguous time interval listed 
in Table 2. 

Figure 15 is a plot of the simulated flows and base flows for streamflow 
gauging station 9 at the objective function minimum.  

 
Figure 15.  Plot of simulated flows, quickflow, and base flow, for station 9, at the minimum. 
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6 Discussion 

The objectives for this article were to describe and demonstrate the use of 
parameter estimation methodologies that could potentially be employed to 
improve upon existing HEC-HMS (Hydrologic Engineering Center’s Hydro-
logic Modeling System) automated parameter estimation capabilities. In 
particular, the intent for this article was to describe and demonstrate the 
use of methods that (1) accommodate local minima (Skahill and Doherty 
2006) and (2) support the inversion of complex (i.e., highly parameter-
ized) models (Doherty and Skahill 2006), and through this process to also:  

a. Demonstrate that each of these two methods provide information 
about individual parameter sensitivities and parameter correlation. 

b. Demonstrate how state information other than stream discharge data 
alone can be included into the automatic calibration process of an 
HEC-HMS model. 

c. Demonstrate how objective function definitions associated with spe-
cific periods of the calibration dataset can be included into the auto-
matic calibration process of an HEC-HMS model. 

The principal intent of the first calibration experiment with the first HEC-
HMS model was to illustrate the existence of multiple local optima (and 
this was also demonstrated through the trials using the automatic calibra-
tion capabilities currently available within HEC-HMS), and to also dem-
onstrate that the trajectory repulsion scheme can be used with HEC-HMS 
to accommodate the presence of multiple local optima and find the global 
objective function minimum.  

The initial deficit parameter of the deficit constant loss model (HEC 2005) 
was identified to be completely insensitive at the identified global objective 
function minimum for the first HEC-HMS model. Estimates of parameter 
uncertainty, correlation and (in)sensitivity are readily available as a by-
product of the use, both during and at the end of a model inversion, of the 
parameter estimation methods described in the theory section of this 
article, and such information can be readily employed to reformulate a 
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problem to achieve a more stable inversion and likely also a more optimal 
model estimate.  

Simulated flows from the estimated model at the global objective function 
minimum for the first calibration experiment with the first HEC-HMS 
model fit observed stream discharges fairly well; however, upon further 
inspection it was an unacceptable model in that almost all simulated flow 
was base flow (see Figure 10). This contradicted our perceptual model for 
the watershed system, and past research, wherein system response is 
dominated by direct runoff. This observation underscores the fact that the 
ability to find the global objective function minimum is an insufficient re-
quirement to attain a hydrologically acceptable model.  If at all possible, 
one must process the observation dataset(s) in a manner that best reflects 
our perceptual understanding of a system’s hydrologic response. 

The principal intent of the second calibration experiment with the first 
HEC-HMS model was to demonstrate that state information other than 
stream discharge data alone can be included into the automatic calibration 
process of an HEC-HMS model, and through that process, at least for this 
case, one can attain a more hydrologically acceptable model than calibrat-
ing solely against flows (see Figure 13), and moreover, retain a reasonable 
fit with the actual hard data (see Tables 8 and 11 and Figures 9 and 12). 
However, as evidenced by inspecting Figure 11, this process does not cir-
cumvent the presence of multiple local optima. 

The calibration experiment with the second HEC-HMS model demon-
strated that one can simultaneously calibrate multiple subwatershed mod-
els automatically with an HEC-HMS model. The strength of such an ap-
proach is that it includes into the calibration process explicit recognition of 
the fact that the semi-physical basis of parameters employed by models 
such as HEC-HMS demands that parameter values associated with similar 
land uses and soil types in adjacent areas be at least broadly similar. Man-
ual calibration of the four Goodwin Creek subwatershed models, if care-
fully implemented, would probably follow this strategy (i.e., calibrate each 
model individually, with due recognition of the desirability of inter-
subwatershed parameter similarity), for a modeler would be aware of the 
need for maintaining at least a certain degree of parameter similarity 
across subwatersheds as he/she assigns values to them in successive trial-
and-error model runs. However, it is likely that this would be a difficult 
undertaking from a practical point of view, probably requiring much pa-
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tience on the part of the modeler, while many model runs are undertaken 
to achieve this ideal. Furthermore such an exercise would leave the mod-
eler with no knowledge of whether model-to-measurement fits on the one 
hand, and inter-subwatershed parameter similarity on the other hand, 
could be further improved with an even greater amount of time devoted to 
the manual calibration exercise. Hence, computer assistance in this proc-
ess is obviously desirable. However, the use of automated methods of 
model calibration must not reduce the capacity of the modeler to exercise 
his/her judgment in this and other matters; in fact, it should enhance it. 
Fortunately, regularized inversion does indeed allow a modeler’s judgment 
to become an integral part of the calibration process through implement-
ing that process as a constrained minimization problem, with the con-
straints being the modeler’s idea of what constitutes an ideal parameter 
set. Departures from these constraints are tolerable only to the extent that 
they result in an “adequate” (as defined by the modeler) level of model-to-
measurement fit. 

For the Goodwin Creek Experimental Watershed, inclusion of a modeler’s 
wisdom in the calibration process possibly assumes more importance than 
in many other modeling contexts because of the potential paucity of data 
available for the calibration of each individual subwatershed, and hence 
the high potential for parameter nonuniqueness. Simultaneous calibration 
of four subwatershed models allows the quantity of data employed by the 
parameter estimation process to be increased by a factor of four. In theory, 
this provides some relief from the effects of data paucity in estimating pa-
rameters for four individual subwatershed models through separate cali-
bration exercises. This is because it does this without necessarily introduc-
ing four times the number of parameters to the calibration process, for the 
constrained optimization process implemented through regularized inver-
sion dispenses with the need for parameters in different subwatersheds to 
vary independently of each other unless the information content of the 
calibration dataset makes such parameter differences tenable. Where a 
certain degree of parameter independence is proven to be warranted, extra 
“observations” are introduced to the parameter estimation process 
through the regularization algorithm through which this process is imple-
mented – “observations” whose presence should endow that process with 
extra numerical stability because of the fact that they pertain directly to 
model parameters themselves, and that at least one such “observation” ex-
ists for every estimable parameter. In theory, the result is a stable process 
that allows maximum receptivity of parameters to both “hard information” 
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provided by the measurement dataset and “soft information” embodied in 
a modeler’s understanding of the area, encapsulated in the set of regulari-
zation constraints. The results shown in Table 13 (in comparison to Tables 
8 and 11) and Figures 14 and 15 seem to confirm the above noted com-
ments. 

All three calibration experiments demonstrated how objective function 
definitions associated with specific periods of the calibration dataset can 
be included into the automatic calibration process of an HEC-HMS model, 
and this was achieved due to the model independent nature of the meth-
ods described. 

While the PD_MS2 “multi-start” procedure is smart in that it uses the tra-
jectories from previous local searches to select new initial conditions that 
are maximally distant in parameter space, it is nevertheless inefficient in 
that it explores many parts of parameter space which are dead ends (and 
this is clearly evident upon inspection of Figures 8 and 11). Hence, future 
work will focus on the selection, adaptation, and implementation of a hy-
brid genetic and gradient-based optimization algorithm for identifying 
globally optimal model parameters.     

Further research is also needed to address proper objective function for-
mulation, and weights assignment, to ensure that the model identified at 
the conclusion of an estimation process is reflective of the multiple proc-
esses (which operate at different time scales) encapsulated in the model 
structure, intended uses for the model, and the data available to identify 
the parameters related to those processes and intended predictions. An-
other avenue for investigation will be the use of multi-resolution analysis 
(wavelets) to decompose the observed system response data into different 
time scales to reflect the time scales of differing processes in the watershed 
model. 

Further research will also explore the use of additional regularization 
strategies.  Utilization of the time-scale decomposed objective function will 
allow regularization strategies that reflect the physical time scales present 
in the model and observed response data. 
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