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Abstract

Tii s thiesis contsidlers possilble solutions to sainlple imipoverishmnent, a well-known fail-
tile( iiiode of the Rao-Bla~ckwellized particle filter (RBPF') in simu tlt aneouis localization
and( mapp)Jing (SLAMI) situnations that arises when precise feature measurements 'yield
a Iimi ted p)ercept ual dIistributionm relative to a mnotion-based prop~osal (list ribut ion1.
Onle set of solutions p~rop~agates p~articles according to a inore advanced proposal (lis-
t rjlbutioii thI at includes mneasuremient informiation. Other miethods recover lost saninl!)e
(liver.sitV bY resanlf)[ing particles according to a continuous (list ribution formned b~y
reguilarizat ion kernels.

Several adlvanced pr~op)osals and kernel shiaping regularizat ion methods are -onl-
sidleredi based onl the RBPF and tested in a M omnte Carlo si ninilation involving an

a(lttravelinug inl an entviroinment and ob~serving~ uncertain landmnarks. fINIS error
of' raiige-lbearitlg feat ure imieasurciements was reduced to evaluate j)erformnance (during

proosa-preet ualdistribution muisnmatch. A severe loss imm accuracY due to sampJle
iitpoverishinemit is Seen in the standard RBPF at. a mneasurement range RNIMS error of
0.00[ 1 iilli a 10 m1 x 10 in) envir-olnment. Results reveal a robust andI accurate solution

to Sa~mplle i inlpoverislulment inl an RBPF with anl added fixed-variance regul ariza tion1

a lgoritlmi. This algoritmin piroduced anl average 0.05 mi imnJrovelnent irm agent pose

CEP over standard FastSLAMI 1.0 and a, 0.1 in improvemnict over anl RBPF that
inciieides Feature observations in formutlation of a proposal distribution.

This algoritlun is theii evaluated in an actual SLAMI environnient with data fronm
a Swiss Raniger LIDAR nmeasurement device andl compared alongside an extenided

Ka lmtan hfiler (EKE) based SLAM algorithmn. Pose error is immediately recovered
.Ill Ca'ses1 of a 1.4I in error in initial agent. Urmcertaintv using tile improved FastSLANI
algorithiti. and it (out iniies to maintain an average 0.75 mu imnproveienet over aim EKF
ii pose CEP thirouigh the scenario.

Thesis Supervisor: Don GLnstafson. Ph.D.
Tit-ie: Dist ilmguiishied Memnber of the Technical Staff
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Chapter 1

Introduction

A 1 01 LII )li( ate~l 1)1t ilr( 8I eaingiy relev ant scenar-io iil rob~ot ic navigation l dli I xplo-

1811011iiInvolves a11 aigeilt travelinug withou t the aild of an 81)5)111tie [)ositionii ig s'Ysteili

o1' aii AC i irate mnap of thle enivironmneit. To produtce a gtlobally coiisistent 11181). anl

age-Ynt in iist gat her Iniformiatioin about its suirrouninrligs t hrouglh relative ob~serva t ~ios

of' l ocal [eatutres. Byv (0n11)iniig these ninasurem~eilts with a correct not ion its positionl

ai id 1Iceadi ug) a~t the t tine( of each observation, it can create a proper sp~atital iiiodel of

lie clivi roiii ientf [461. hIa relatfed manuiier, anl agent (-anl use relative olbservat ions of

featuiire" III thle enivi roliiient to infer position and( heading, but oiilY wh en iiieasuire-

Hiiiits' are( correItvH as'sociated With entfities stored in1 anl accurate (i. /A- iap. \'Vlueii

lid tif icr thli agent [pathll or the enlvironnient mnap are provided and imusit inistead he

e'st iniateol joinitly, a uinque correlation dlevelops, and err-ors iii each state are Ii iikcd

[32].

1.1 Joint Estimation

III a coinvent ionial inappi ng situnat ion wvith an accurate posi1tioii estimate at all t inies. a

r()l o xvi l nceasure thbe location of different features as it travels, throuiglh the enlvironl-

"iiii ,sor-i ig the posit ions of these landmarks inl anl estliiiated ma~p of an area. SinceV

ilie true path is kinown. measurements between one( state and( another are statist icallv

ind~ep~end~ent. Making iiiore measuiremnent~s of a state, such as a landmnark p~ositionl,

17



will only provide a better estiinate of the state and will not affect the knowledge of

anv other state- When the true path of the agent is unknown and must be estimated

along with each landinark. all states iii the estimat ion problem become statistically

dependent. Any error ill the robot pose estimate at the tine relative measurement is

processed will have a systematic effect on the accuracv of the landnmark estimate [461.

If pose error is not initigatec[ with the measitremeint of a well-localized landmark or

an absolute position reference. this sYstematic error ini the mnap wiII build over time as

control errors accumulate. making it difficult or impossible for the agent to produce
a consistent map. An illustration of this dilemma is shown in figure 1-1. An ageiut

starts from a well-localized position and measures a feature in the enviromnent. At

this poinlt, all other features are unknown. With an accurate estimate of the agent

pose at the tine of the first relative observation, there is little doubt in the location0

of the landmark. Over time, robot control errors lead to an increased uncertainty

in agent pose. Statistical dependence inherent to the joint estimation problelm leads

to increased uncertainty of future landrnlark positions, denoted by larger red ellipses.

Both the problem and approach involving joint estimation of agent pose and local

map are referred to as Simultaneous Localization and Mapping (SLAM) [11. 32] or

Concurrent Mapping and Localization (CML) [46, 45]. SLAM estimation algorithms

take advantage of this statistical correlation between pose and landmark uncertainty.

When the agent observes and correctly identifies a previously imapped feature, shown

in figure 1-2, the agent position error is corrected. Because of the statistical cor-

relation between agent pose and landmark position, the uncertainties of all other

estimated landmarks are also reduced.

1.2 SLAM Applications

In many navigation sitnations, a full SLAM solution. b)oth agent pose information

and local landmark positions, may not be necessary. Obvious circumstancees include

many aerospace or open-field environments with unobstruicted access to signals from

Global Positioning System (GPS) satellites, views of stars contained ili a star tracker

18



Unobserved
Features

__ True and Estimated

~ Agent Position

and Estimated
Feature Location

True and
Estimated (red)

Feature++ +
Positions

True Agent" 'Esiae

Position Esimae
/ Agent

----- ~ Position

(b)

Figiire 1-1: A typical SLAM\ scenario with accurate initial agent p~osition estimnate
ill (a. evrhn oei nefit nlases, leading to fturt her tuncertaintut featuire

po)i05n & 111,8 t heyv are obseIjV(d (b))

(18 ahase. or. anyv ot her absohite refereuucin- svst eni [11I]. With thec increasing avail-

ýiblly o' igli-resolnt ion satellite imagery, dletailedI iaps, of observablcl feat ures (-all

bc provided as an adlditional abso01lute reference. However, time benefits of SLAM

allgoritlumus extendl beyonld the strict pose- an d-m 1ap estiuuiatiout explained p~revioulsly.

Coin15id( ic roablot . vehicle, or even a humnan t raveling through atm nirlbau eumivmonment.

equui pped withi inertial ineasnirenments front accelerometers and gyroscop)es (INS), anid

19



++

*~ Agent Observes I
Previously

Mapped Feature I

-- - - -----

(a)

eW
Estimated

Position after
Correct /

Association

Figure 1-2: The agent makes one fill loop and returns to a previously lnapped fea-
ture (a). If a correct assocation is mnade betweein a mneasurement alld a previously
observed landmnark, overall ulncertainty in the age ut pose and map are redlced (B).

a suite of other measurelnent devices designed to auggment inertial measurements:

Doppler radar, wheel encoders. GPS, or an illlage-based pseuldo-ilnertial neasurement

sYstvem. Of all the mcasuremenits ini this systeinm only GPS provides an absolulte po-

sition reference. and in anl urban canyon this signal could be intermittent, reflected

20



I1). 1 idi PIiigs" (inn tInpath). or completely b~locked. Duiring C PS out ages froint blockedI

signlIs, a. ye Ilie I inlterested in self-localizat101ion nst conitinue to navigate rising only

rela tiv~e mieasuremien ts of rotat ion. velocityv and acceleatio fhom the other (levices

P 11] Erros in thee nieasireincits will quickly pro[pagate over tinme s1iice paranmeters

mu ist b e in tegrated to determ ine thle agent pose estiniat e. Uilless an additional con-

At taint is 0001I( to (('t ain iiIaraneters of' the niavigat ion filter. error- will grow withbout

b)oundl intilI aiiothIer absoliute 1 )05ihton fix is ltAnkine(1. Ini A s sceiario, a SLAN l-ase(1

approacoh may' hlepI preserve the inmtegrit y of thbe inavigat ion system (hiring long p~eriod s

withu G111 ~PS m easu iremi eints. NMIappinig local feat ires withi accurate C PS-clctermii 1ile

pathI itiiforiiiat mu will create a odat abase of landmarks that c-an he used to iiaiiit am

a i accep)tablel pose estiniate wlieni PS signals are blocked by nat ural or aniaiiade

oh st ri ctions [11]. Indi~oor environments, on thle other hand. coimpjletecly prevent GPS

signal posit iolibii, anid in sonie cases an acci irte floor plain or mnap of thle 1)uil ding

ii ia not be avai la I . N avigathio in infInviliar 1 )ilklngs withI the contelmuporary Inca-

"sireii cu t siuite descrTibled ablove w\ouild be next to iiiosib[05ile unless a a inP of ea uiic

is estfi uiiateol along witlh thle agent pose [1, 32].

Rob)1ot ic plat forims are now seiit to thle frontiers of explora tion as advanicenmeiits iii

striuctui ral t~echiiologies anio odesigin permit robuist opeat ion iii auistere enivironnients.

These areas, where prior mapsJ) are too difificult. costly, or dangerous to p~rocure,

preseint souii e of thle mmost promising areas for the i nilleneiemtat on of SLA NkIbased Al

g()rit liiis [32]. Particular target ciivmiroients for SLAM approaches inclmile undersea

a i itoiinmoi s vehicles, robot ic exo~oration of mines [30]b and anitoiinoiuns navigatmio

oii ext raterrest rial p~laniets. In general. independent localization amid imappinig is a

icces'sar ivprerequisi te to comlpletely autonoimiouis operation of nmobile robotics iii any

situmat ion. Cmmr-remitly, inaiiy advanced estimation algorithmws exploit tlie( flexibility

pro vid ed by an imp lem~entationi of a SLA NI approach [47].
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1.3 Bayesian Estimation

The iliost widespread and success fuli brali~ckI of'SLAN I est iination algori thinns employ

p~rob~abilisti(c tec('llilues. illealling t hat thcYey(st illlat(' a post erior j)Yobahilitv (listli-1

but iof over all possible m1ap s anld all possiblie poses' [39, 46]. Eachi agent control or

enviroinmental ob~serva tion call h~e thought of as a probabilistic conistrainut [321 . This

implies tihat the set of all possible agelitt poses at anly timie is reduced as m~ore illiorlila-

tion is obtained about ci tile the rob)ot' inlot ion or its sui-'o1 ldlings. In the ijini t of ani

inflli te anlloulit of suich iniformlat ioi. the set of all possibIle SLAM post erior's ConIvelruies

to one agent pose an11( one ma p. BaYes' t heoremn is a recuirsive formurla tha-t Inceorpo-

rates sens,-or and 'onltruol information to adj ust thle posterior' [prob~abil ity (list rilItion4,

accountinlg for anyV nleaslrellellts that are available at a giveni t ile [14, 32, 39J. In

thlis respec't, Bayesian estlinlation ill its purest forml is a flexible estinmat ion ar('lite('-

ture that can updcate all estiiuuatc withl any inforlmat ion that ('aln be fflathelllaticallv

related to tile posterior. AdditoionallY, the reclursive natuire of Bayesian estimnators is)

ldceal for' online apphicatijons. Since thle ag'ent pose and( Imalp estilllates evolve froml

the Iposterior at tile pre'vious5 timie step. all other plast est lulates ('all be forgot tfell.

Finally, BaYes' filter calli be used to estimlate a state of aiev size, restricted on~ly by

the 'ompu~ltationlal linmita~tijons of tile navigatioll compulnter. Linfortiunatel~y. tile et

illation integral forming tile basis (If tile Baves' filter c'annlot lbe 'omlpu~ted Ii ll (10e(]

forlll [14, 32]. Mlallv BavesianI algorithius solve this bYrest ric't ing the forii (If the

posterior, Illot iol 1m10(1( 01' measu~remlent mnodel. Othuers ellil~loyN, alternative samp1~ling

techiqiirues to appIroximlate t he BaYesian posterior withLout nmakinlg these liiiitat ~il1.

Two popular SLAMI algorhit 111 thuat tvypify eac'h alpproa~c are tile extend~ed Kalman~

filter (EKE) and tile parti('le filter.

1.4 EKF SLAM

Tile Xailinan filter is at) olptinlal Bayesiani estimuator tilat operates unlder thle strict

assumptions of a Ganssaia Ilosterior probability (list ri but oii and linear mnot ion and~



iieaiieiieitmlodeles [32. 39]. Linearization of nonlinear mnotion and ineasuremieit

miod els resuilts iii the extendced IKalnian filter, anl analytical approximation of Bayes'

hfiler. The reciursilve sohl ton providecd by the extended IKalmian filter is sufficient if the

posterior Jprobaibility dlistribultion for SLAMI states can be adequately characterizedI

1). thle tinii-immodal Gauissiani paramleters of' mean and (ovariallce [39, 47]. Uncertalinty"'

in an ElNT SLAM algorithmn is stored inl a covariance mnatrix, with not only individual

state un1certaintty b~ill also correlations of uncertainties between states. Unfortunately,

In n1alnv s(Veiaios,0" a Slini]le Gaussian (list ribut ion does not adeq ~uately encaTpsi late

time full po~sterior prob~ability li~strilbultion. Indoor navigYation~ cuivironminemits provide

(zoilst ra juts ill ft(e foruml of' physical obstructions or walls. Pure G aussian uncertainty

in lietis a snilal 1 chance that thle agent could be inside thie wall, or outside the biuilding

Ill timli -a i. hIl add it ion, Gaussian uncertainty carries only one mean, or most likely

estiunate, for a part iciular state. In many cases, such as the global localizat ion p~rolblem,

fhere is an equlally likely chance that thme robot could be at many points lin thle

enivi ronmenem and~ each of these points must be given equal coiisiderat ion until mnore

inforinat ion is gatlieredl [45].

1.5 Particle Filter SLAM

The lmart iclc filter Is anl applroach to the nonlinear estimation probleni that represents,

Ipost(erior probability with a large, number of (discrete, evenly weighted samp~les [14,

32, 39]. lin the SLAMI case, each sample is a hypothesis of tHie posterior (an agent

pos andI a corresp)ond~ing set of landmarks) that is prop~agatedl according to a motioii

mlodel amid timeum weighted based oil how well the hypothesis agrees with a target

dIist ril itiloll [321. The target diistribuntion, in most formulations, is directly related

to featIure observations [39]. Successful particle filtering algorithmns typically draw a

new set of p~article-s after weights have been assigned. In lparticle filters, uncertainty

of, the state is stored inl dispersion of these uniformly weighted samples; a broader

spreard Imp~lies a more uncertain estimate. ConseqmuemtlY, multi-modal (listribuit ion s

fronm state conmstraints or nonlinear propagation canl be appIroxilmatedl easily. Ani
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example of particle filter propagation is shown ini figure 1-3. In this example, a large

number of particles are drawii from the 1)rior agent p)ose according to a probabilistiC

motion niodel representing uncertainty in agent movement. A feature observation

isolates the pose hypotheses that agree, and these particles are given larger weights.

After resampling, most of these particles will be duplicated. whereas particles outside

the bliue ellipse will Likely be eliminated. Surviving particles are then propagated

according to agelnt control information at the next time step, and the process repeats.

The Rao-Blackwellized particle filter (RBPF) is a specific type of particle filter

that, in the context of SLAM, updates pose information with a particle filter and land-

mark information with a. number of low-dimensional EKFs. Tile distinct advantage of

the RBPF over standard particle filters is that it scales well to mapping problems of

high-dimensionality [321. It does this by margializing the posterior and eliminating

cross-correlations between landmarks [4]. Since each sample in the particle filter is an

estimate of the true position, landmarks measurements become conditionally inde-

pendent. Advantages of the RBPF SLAM concoction include the ability to represent

all arbitrarily complex posterior distribution of the agent pose, as well as many in-

dependent estimates of an enviromnent map. As mentioned previously, this property

may be particularly useful in cases of indoor localizationi and mapping. Additionally,

the RBPF, as with other particle filters, converges to the optimal Bayesian posterior

in the limit of infinite particles [39]. As computational power increases, estimators

based on particle filtering will only improve their characterization of the posterior.

Unlike the basic EKE apI)roach. the computational comIplexity of the RBPF scales lin-

early with the dimension of the state, allowing favorable application to online SLAM

scenarios [31]. Most importantly, the application of 13BPF based SLAM algoritlmns

has demonstrated solutions to two l.)reviously unsolvable problems in robot localiza-

tion: global localization. and the kidnapped robot problem [47]. Both problems take

advantage of the multiple hypothesis nature of the RBPF to determine true position

under initial global uncertainty.
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Fi g ire 1-3: Sa i pe (Irawli fromi a prob~abi listic inot ion miocdel (a) withi a b~lue ellipse
rereseint in g fthe iieasu reriiieit. In this ease, the proposal and( target (listi l-1 bt toiis

iniltat x et I and p~article di versi ty Is' preservedl III (1)).

1.6 Particle Filter Limitations

Despij te thre I~vatitages that thle RBP F brings to SLAM, it also lbrings ('ertail ()III

pi (at lolls' t hat are trir1relrt~lv dIifficuilt to overcome. A Ipartjicular failure inode for the

parlticle biter oeecurs When thle p~roposal distri but ioll (inl ritost eases ehamraeteri'Aed by

lie ii ot iou imodel) and( tilie target dlistri bution (from a featuore ob~servat ion) are airs-

iiiactl red. isna liv froml aii accurate sensor mneasuiremlent. This sceenario is becomning

hii(reaisli gly relevrriit as cuirreitf trends ill iiiertijal systemis produce sinraller, (drip- hased

a ce leroineters anid gyros [It]. Though smnall and depeirdal Ale, these systenlis are oftenl

p lag ied IWithI errors. jlirludinig bias. seale factor. and1 random walk processes. At thle

sa tue thi te, 1uneastI.irenent dlevices hiave oniy become irore accurate a ild Jprecise, e5Jpe-

cia1 ly ralrgliig systeims b~asedI onl Liclar- Light Deteetion aiiid Ranging. Noreover. it is

,0u ('ieill'v 1110Wc feasi ole to) mi plernrent accurate sensor techntologies than to foilly pre-

dict thte miotioni otraracterist ics of a. complex robotic p~la tform especially as, it tralvels

throu ght a it uicertaur cirvironiment [11].

A p~article htter will incorp~orate accurate sensor informiation into the SLAMN pos-

('rim r estliniate by) rep~rodurcing the p~articles that corresponld to the ineasurienrient and

c'1liiihating oil ters. Ill effect, a particle filter contimoatlly builds anido t runs a set of

hidi iividu nil stintates of the trite agent trajectory [32]. \Nith anl infinite number of

partIices, Iris ft ritinini ung Of' conflicting poss5ibilities for agent posit ion would favorably
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Mei)ve the est imlatedl state (lIi this case. ail et ieiiiel accurate Weat itr )lCvatio)l

dlevice Wouldl be ideal. since. 11V1)pothlet eal lY. t here arie still a~ii inifuiite nlumiber of p.arti-

cles preserved in the process. [Since Jpractd iAl nplenientation are rest ricte( to a finite

niumbler of particles, this trimmiling reduices the nun ~we of discrete J)ossibil-it jes as par-

tides are relocated[ to these few uniiqiue points. Couplinig a noisy5 miotion niodlel wvithi

anl aeeorate nmeasuremeneit dlevice wvill onily reducie thle iinumher of'i uiquie poini ts that

align wvith the target (listribu)it ion. If thle (hiveri tv lost in t his process is not recovered.

particles coulId evei t iatli coalesce to oi ie sinogle t raljee t 01. Sinice uncert ai nty is stored

inl the dispersion of the lpart icle ckoir[ the filer is assu mi Ing pelfect knowledge of the

tru e state, whicihl is ohviously unlt rue. This failure nilod of particle filers. also known

as samiple iimpoverislhmient or particle (leplet ion. coli leadl to [particle drift. incorrect

associations hetweeni neasumreients and iandlina~rks. false iandliiark creation. and a

geiieral loss of pose and 111ap a'ci racy [16,i 21. 32. 39, 41. 43].

In figure 1-4, particles are drawni according to a p~rob~ahilistic motion niodel as inl

figure 1-3. With1 a precise ineasuenleneit . tile size of the ellipse representing tile target

(histrii'tltion is reduced. Only a few oiscrete poinlts ilow iliatlchi te highly selectivec

target criterion. During resaunpling. iilost points will stack to these few locations. hIl

a way, the particle filer has Iprel~ted(]dgeneracy by relocatinlg and sharpeniing the

area of interest. While it is true that thle result iig particle clouwl will euicircle the iiiost

likely pose of tile ageilt a pmaricle Blter estimates a state with dliscrete samples, not

a. coltiiilluols (distrihut ion. A finite inunhber of sailqpes iileaiis t hat thIere will alwa~ys

he unsainpied "gaps" in filter coverage. In a strict pro"Ahbilisti sense. a fiie saiillle

set also imiplies that tile agent will not coincide exactly with oiie, of these discrete

saiii"le [321 In order to eiisiue that the filer coiiuohms to conive'rge to anl accurate

rep~resentat ion of thle agent st ate, an adlequhate level of samnple dliversity, or unique

filtr samples after resa in pling. noist he miaiiitained. If not. tc lIeMile is proiie to

the mnany side effecs of saniple impoveriinent lised previously that will cause the

estimate to diveroe from the true p~osterior.
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Figi ire 1-4: M isliat('c[k tel proposal and target dlistri butions, a, consequence of'
m-((i- irtmieasuireiments. Only a few unique p~articles are resamnlledi ( b).

1.7 Thesis overview

It is, thle alilII of this (loculnielit to explore alternative meth1ods1 for recovering lost

smaiiJle (liversitV ill Rao-Blackwelliied particle filters and( to analyze the effects of

ilicreiised d (iversity onl the overall posterior accuracy of' the algorithmn. A literature

review p~rovides two p)ossible' soliit ion's.

T[he Lirst approach seeks to p~revent sample diversity lbY adlopting a more advanced

prop)osal (list 1ibiit loul than thait provided by only the agent miotioni model. It is the

hope tHat by incorporating measurement information in prop~osal calioiiation, more

partficles will propagate to favorable regions for resaniphing lbased on the target d7is-

tribI ut ion. There are several documented attempts at using measurement informiat ion

to li mdi ence p~article propagaitoion with only limited information relating to their per-

fortmmiaice iii a strict SLAM scelnaro [30, 36, 37, 391.

The second attempt focuses onl regaining lost diversity during resamtnhJlii by d]raw-

ing saimplles from a more continuous distribution. Instead of stacking onl dis'crete

points,, that receive highi weights, particle locations are adjunsted or "regularized" ac-

cordimig to aim aldditional draw from a regularization kernel. As a resuilt, regions of the

target dIistribuntionl are more evenly populatedl With Unique pose estimates that fill inl

thme miisamim1led "gaps" before p)ropagation.

This dlociument presents the results of a. research effort to characterize the role of

samiple diversity in overall R.BPF accuracy in SLAMN scenarios. In addition. alter-
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native proposal distributiot i 11s ae 7('0olfltiled with regiularizat, 1i0 lmethodls to explore

the performance of each combination and( to fild a robust and accurate solution for

particle depletion.
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Chapter 2

Simultaneous Localization and

Mapping

T7e Simultan ieous Localization and Mapp)ing problem considers a robot moving through

MI ,anknown eiviWomilneut. hi the mnost basic example, a robot exec'utes controls and

1112 kes observtltolls abouit the relative positions of local features, both of which are

co rrupI)ted (lv noise. \'ere an accwiirate. detailed 11a1) of the environinent avaital)le, the

po 1)blem reluices to deteriiliming the true path by observing the rwla.tive positions of

le'attIres [46]. Conversely, if the true position of tbe robot is kiowii through GPS or

so1ie other means, a map of the observed enviroinent (could be (dediced using these

rieativ tly(eeasurellients [45]. The process of recovering both the robot path and the

(,I Vi rollilielt 1110 j) fro lll l iited or no initial information becomes iiiich more diffif(ilt.

Pose iticertainty iitroduces systematic errors that contribute to the uncertainty of

lain hlark positions inapped with robot observations [32]. Successful attempts at this

rfl)(Ieni have takeu advalitage of this correlation between pose and landmark in'cer-

hilittv b)y stitiating both states simultaneously [12, 39]. Accurate knowledge about

t ie position of a landniark will reduce both pose uncertainty and tHWe uIcertailty of

other lanidmarks [32].
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2.1 SLAM Fundamentals

The goal of SLANI is to recover all estilliate of' the most recent robot pose, .s, and the

tobatiolts of local landmharks. 0. given the set of ('ontrol and (neasurement information,

II { U0, 1/ .. .... I I, and _ { , = .... :} respectively. This SLANI posterior state

is represented probalbilistically as:

( , 1 ', , !) (2.1)

To develop a recuirsive. optimal estintato 1or this problem. the posterior dis-

tribution is modeled as a partially observable Nlarkev chain [39, 131. UMder this

assuntption. the preseilt state is depenldent only oVn the previous state; all other past

and future states are (otlditionallv ind(ependelllt [46]. Exl)altig ttis A osterior us1ing

Bayes" Theoret yiekls:

P(si. ' i t, ) = Op( , I.s, -)p(s,, o1:,j-. t,) (2.2)

where q is a proportionality (constant. Through a Silephe derivation. a recursive for-

mulla is developed that infers the SLAM postcrior at any time I given knowledge of

the state at time It - . This elhgant and widely used recursion is known as the Bayes"

Filter [40]:

p(st,, el', a') = lp(tz, I.',. 0) P(SISh 1, US, (.s,, 8 5 .1 ,, ),.,_ (2.3)

Under the Bayes filter, the a pr/ort distribution at time t-1 evolves according to

a motion model, also known as a transitional density [32. 39. 451:

v(. ISt,-1, U/) (2.4)

The ob)servation 1(odel that relates incoming Ileasurements to the evolved state
is given by:

30(, Is, 0) (25)
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Though diffitcutlt or impossible to c(onipute in ('hose(l-forln, equation 2.3 can be

ap)roxinlated by restricting the forni of the SLAM posterior to a Gatuissiai probability

(lll sitfv iutictioo (1)d1). When the motion and observation models can be regarded

as lill'ear function1s of th le cuirrent state with with only tiuncorrelated, zero-nlean white

no ise, this recursiou [for the optimal Bayesian posterior becomes the Jxalman filter

[3. [18 25, 12]. Litearization of no-litnear inotion and measurement models forms the

I asis of tlie exteiceid haltan filter, an analytic aproxilnation of the optimal filter

for tioti-linlear situations [39].

2.1.1 Extended Kalman Filter SLAM

The EKF rel)rese'nts thie SLAM posterior distribution as a. hig]-dimensiolal lulti-

variate Gaussian parameterized by a mean Itt anld covarian(e E, for each state. The

tttea 1 posterior is the state vector in equation 2.8 and coutai 1s agent pose infortati

(2-d1 or 3-cl l)osition and heac.ling) amid the mean position estimate for each tualpec

lau([mark. State (ovarianc'es and J)airwise correlations bctweetn states are stored in

Ithe hiller covarianc' mat rix, equ(ation 2.9.

p,(.•, e l, ..:) = v(i,;/,P,, Z,) (2. (5)

.X/ = {s,,011, . -.. , ()x} (2.7)

P,, {,P,,, j~ ,,.. .* o,. } (2.8)
E.I , I .1,0 1  .. P. •,0A 8

Y10) s, E 0, Y10,0.2( 9E, Zi ZQ~(2.9)

E 0201

The first step in evaluating the SLAM posterior within an EKF at any tnile t is

to i)ropagate the mealt agent state at the previous time stcep) according to the 10on-

liniear inotion ntcctel h(tOI, u), and propagate the covariance using the linc'arizecI

Iloti)onl model Fr antd noise covariance of the motion inodel Pt. The lJacobian of the
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I10 Io -Iline Ar 11eCosuIIre III ieI It I od~elI d1(.r . 0~ ) . \X here it I is r Ie Ic ge Iit orIie IIt at 101 o 01a1 ( I~ tI S

a (lata associationihtei the inecilsirineilejt iiieosiireiieit and a landmark, is t hen

evaluI ated at tihe stote est iltiate /it . The renialinug equaitions 2.14 - 2.17 involve the

colceimlat loll of 0I Klman101 go ii A, Mid( tle 011)I)lCiQOt I iOuf t his gM1il to the ldte1,il)(O ii

i11 equation 2.16 and( thle u pdated covarianre Mi equalt ion 2. 17.

/ 7 h(ptI, . It/) (2.10)

F'. -F zI F.j P, (2.12)

ANt E- G.' ZJ' (2.15)

lit v lit- + Kt, - ft (2.16)

Y = (IJ- KtG, )E/ (2.17T)

A thorough derivation of' thle EKF SLAMi algori t 1m is found inl ý5. 42]. The ElK F

algorit liim is exp~loredl iore gem rierllv ill [3. 16. 25. 26].

2.1.2 Limits of EKF SLAM

One disadvantage of the hasie EIKE whent appliedI to onlline SLAM\ situations is the

qJuadratic coniplexitY of thle update equmat ionms. In ai plainar sceniario with a three-state

rep~resenitationm of ogenti pose, the SLAINI state veetor is of dhimiensionl 2N -+ 3. whiere

N is thle number of loudniarksý, stored ini the filter mnap. Lj iot ion 2. 17. thle (ovarlialee(

update, requires an i iier lproduct caOlculation1 that will grow omi thme order of (2N\+ 3 )2

as, inore features are mappled. Hel1(e(. naily01 iv oiine app~lications wvith (letaolelc inaps)

of miniions of feature~s either aivoidl the basic ElKF algorithmn or employ aolteruat ive

sch~enies, to reduce thins (oinJlexitY growth. A inumher of' solutions break a gloalm

feature 11101 into sinaller submiips [10, 22]. Updates to featuires in the global miap

32



an' (Iclovedl wh~ile thle agent remiainus within t he \'lility of a si bliia1 . Sinuce feature,-,

ot opposite (en1(1 of a Lirge enviromnieiit will have little or no correla tion, covarianice

rnot lices for lngh-diu uensioiual ila ls are often sparse. N easureuineit iupd(ates to this co-

Va riaiice mi at rix (all 1)e jn)rcessecl nore efficiently b, t akinig advolvitage of this sparsity

on1( ignioring (correla tionis I )itweei dlistanit feat ures [2].

Au iot her (lcawbacl( of thle basic EKE SLAN I algorit-Inn is shiiil-iy~)tlieses data

855()c jat lou. Data associa tloln is a (lecision-minki ng p~rocess iii which a11 incomin lg

ii ucastireilliel it is cit her illatclied withl anl existing landmuark inl the Hilter' map or dclniedt

n im icwfet ir. This deccis-ioii is ofen non-t rivia~l ini SLA NI situnat ions. where pose andI

181 i( iiuark iincertainity aid in1ieasiirenient noise can all COilt rih1 Mit to (data associatioln

amnibiguiity [5]. In thle basic EN P architectuire, the filer iiiist p)ick one( association For

n 11uieasi irenlieiit, typically withI a inaxiinunin likelihood lieiristhic and thle effct of alli

lincorrect (decisionl cali inever b~e uinionoie. Alternative dat a associat ion met hods for ElKF

S LA NI have b eeii evaluna ed, with thle niore robust tee lnquies reduncinig the chance of

855( )( iat ionl errors [5]. Still. thle iiievitability of incorrect associat ionis. especiall.y ill a

SLA NI ('iviroinient where associat ions are unknown, poses a threat to EKE stability

811(1 accuracy [31, 321. Mu Itiple hy1 )otheds tracking ( MHT) presenits a mnore flexible

ii etliod t hat I is the effet of delayed decision niakinig [38]. Iii ambiguous assoc'iat ion

Situa it onis, where multii A valid initerpretations exist, new hyptlxieses are created! and]

1118 intainued alongside the origila 111(Sthinate. Typically, these extra hmyplothleses inuist

lbe t riiiniied after fuituire observations to keep the inumber of imiuie iihlypot heses from

growiligy without bound1(.

NI HT iiiethodls are also essential in order for EI(E-based agoritluns to solve the

globalxi localizat ion anld kidnapped robot problems. In thle fornier a root must use,

all nccuirate map of the eilviirnxinent to localize with global iniiitial uncertainty. This

pirobleim has significant appllicationi to indoor autorinomous nlavigationl. The latter

problemu is t lie case when a well-locahzedl robot is teleported uniknowinugly to a (ilfeent

region of the nap). Bothi scenlarios require the Filter to simiuiitaiieouislv considerc many

dif[fereni t p~osterior hypotheses, giving each equial weight unotilI maniy observations favor

a si ugh' p~osterior over all others.
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2.2 The Particle Filter

Successful atteiptis at- soliniig for t he SLAM p [osterior wvithout restraining its fornil to

a Catis-sianl oust rihi)lt-ionl emiploy a more recent estinmat ion t-ool kniownri as thme p~art~icle

filter. Belongjing to a class of Sequ enti al N onite-Car-lo (SM C) meth1ods oriillia t mo

in the t9~50s. thle p~article filer Imas receiitlv enjoy.ed at tent ion as aodvaniceiments ini

applied statist-ics an 111 onuipltr piroessing speeds have promipted its alIl~icat ion to

a broad range of est imatilon prol )en is J8 24.)9 3N. i nprowemlivts to the mshc SN IC'

techniqu(~ es by Goro lo et. al . Ifitagawva. and Liui and C'hlen in the mid-to- lae 191%s

have jIrodiced recursivo Bayesian estimatos withI estahbushd theoretical (onivergelice

that are 110 lonmger boun md to thle Gaussian assuinipton of the Kalmnan filter and its

dlerivatives [20. 27, 28].

2.2.1 Particle Filters for Agent Pose Tracking

The particle filter addresses the dlifficulty of(ohmpliting a non-Gaussian posterior dis-

tribut ion from (2.3) in closed formi by approximating t-his (density with a large iii no1 er

of discrete. raildoiii s'amiples [13. 39]. Briefly igno)rinlg the enitire SLAM posterior and]

focusing solely onl trackinmg t lie posterior (list- ii bu t-ion of ihe rob~ot pose we begin vi tim

the Bayes' filter recu rs ion:

P (w K, ' mi) = Tip I ) JI'si~im Irps- t-i u1)d, (2.1I8)-

Ain oJpti nial fornimlat ion would samiple particles directly froni Q) , ju,. Q, to app~rox-

inmate tihe pose, posterior. However. having remloveo] thle Gauissiani assumipt ion. this

target- distribution mnay be (liffclit or practically implossible to draw from directly

[39]. InsteadI, partieles are drawii from a simipler prop~osal (list-ri but ion q( s,) accoro-

big to an SNIC technique known as imnportancoe samipling 1,20, 39]. Weights are tliein

assigned to thle particles su cli t hat:

A/I

p(.sj u) E ~q(s')zcv ) (2.19)
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wliii' 11, is ai set of illijiort dice Wveighit,- gi veii by filie rait io of thle t arget ( posterior')

(distributIiton to tile p~ropsl)O dI(istribultioni:

J)(., z', 11') (2.20)

d iid I hell normhalizAed accord(inug to:

(12.2)

xwTer Al is thbe total 1111 iii)Qi of p)articeles ulsedl to rep~resenit thle (listri1but ion . Using" thle

agenf imot ioul miodel p)(. 's, - I, tit) as tile proposal (distribu)lt ion. tile assignied weighting

facor t c1(onveniiintly IVI c( 01lies:

ws) =P(:l-st) (2.22)

which(1 ill mIost ap~)liea th j is tile agenit observation or peree ul~tin likel ihood [32.

415. 31]. For a (leta iled dleri vat ion see [321. A p)lyiiig tiis pri (1le' to t le eenwr--

sive Bavesiall frainework resuilts ill Seqjueiitial iiiplortancle sampljling l, Where p~article

we ights are ii vattedl at each tiine step. Tbe algorituli begins as each puaticle froim ail

in itial [(istrnilbultion p('Su ) is propagatedl accordfing to the agent miot ion model. prod uic-

Iiga p~roposal (list rib11ut ion. \'WeigThts are thlen a.ssigliedl to eachl particle bas"ed Ioil thle

ageilt ob servation il iikelihioodl at that disc'rete~ ipoka iin thle sta te s[pace. and thle iprocess

repeats

2.2.2 Resampling

( ver- t imel, 011ly a relat ivelvys nuail port on of partkices in tile st ate( space will (Wotim-ie

to reoceive sigili fio'ant Weights. In a locahizat ion sceniario, these part ices, would 111most

li kely rep~resenlt thle true pose (of the agent. To reallocate 0omp)u t at ional resources

a id( obtain1 a mlore (detailedl distr'ibut ion, resamil~illg is niecessarv. By (drawinig a new

IML-irtO ieSet (withI repila'emnent ) from the previous set, uith iiprob)abihi es proport iolal

to assignied IWeigh ts, part icles will conlverge to regions of thle s~t a t' n)( with Ii igh

likelihoods. JInitially proposed by Gordon et. at. this resainpluing teciiiquoe, known
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Propos~al 0-
IDistibution0 00

Ta rget
Distribution -*

lImportanecQ0

Calculation

0
0 00 0

Resampling -. 0 0 0 0 0

Proposal ___N~

(Next Time Step) 0 0 WO 00 0 0 0

Motion Modiel = --

Figure 2-1: The basic Particle Filter uses dliscrete p~oints and SNIC methods to ap-
p.roximrate anl evolving posterior (listributif01n

as sample importance resanljpliig (SIR.) or Bootstrap filtering, proditled the first

effective particle filter [20. 291. This recursion. depicted graphically in figure 2-t. will

approach the optinal Bavyesiani posterior in the limint of' infinlite particles [8, 39].

2.3 Particle Filter SLAM

Despite, their ability to track arbitrarily comnple'x, multi-modal dlistribut ions, p~art i-

dcl hiters carry a, pronouniced comuiptationial enuctmbrance: the mnuber of particles

needed to track a belief scales exponentiallY with the dimension of the state. A SLAMI

posterior that includes hundreds of landmarks (each a (dimtension of the p~osterior)

could require millions of particles to be tracked effectively (6. 91. A recent 'innovationn

introduced by Nt . N ontemierlo solves this, burden by conclitioning the SLAM posterior

onl the entire robot p~ath insteadl of the current pose [,31]. The basic premise is this:

if the entire path of' the robot were known, not just the current pose. a single land-

mark observation would not affect thle location or UmcertamtiY of any other landmark.

Conlsequently, landmnark measurements are conditionally indcependent . All landbnark

correlations are igniored andl the SLAMN posterior c-an be rep~resentedl as the product
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Robot Pose Landmark I Landmark 2 Landmark N

Particle 1: 1 It ý' =2yK 2 .'. .

Particle 2: S1 2(N, it 14' yI 1 '

Particle NI: st~x v) y I Li. ~

him 2iie~-2: The factored SLA .\ [ posterior: each particle carries" anl agent pose e'stimiate
Mnid a iiiap of' features [32].

of' th lp[athI posterior and N indi~ependenit landmark est ilina ors:

N

P(.o K,,n, - ., a) fT /)(0t,, --- u,)i (2.23)

p(1I/ posterior
lo ndinork ('5j/mio/ sa

NMoi cit iier-lo also jihist rates that all updat~e eqiuat ions for the( filter will depend onlly

oil tlie( iriost recenit pose linder the Markov property of the SLAM posterior. This

f'a(l'hriza~tion. illust rated iii figure 2-2. formis a part~icle filter based oin f li sainpllitig ar-

Si i I(5/ tire of R ao-Biackwellizat ion, where a small subset of' variabl )s are samiplecl (thle

agenlt j) sc jififoriiiat ioul) a ii( otheir marginials are Acalcnatedl iii closed form (landma~rk

est i at ion [paramneters) [4]. The( application of' this prn icip~le to fthe posit ionl-trackingo

parti(Ie hilter was introdlucedl bw Mulrphly and Russell ý34] . Building on the structure

oA' (2.23). N loitemriero develoJps ani algorithlm named FastSLAi\ 1[.0 that represenits"

lie( 1)050 erior -witlh N -+ I filtecrs, one for each term in (2.23). Each particle of the

a Igorit inn11 represents a dliffereiit hy pothesis of the. SLAM p losterior:

51101d - K1s1 / 1, [,dY, .jl ,k/, Z]mj[) (2.24)

TWhe ra~ckted niotationt represent~s tile index of the particle. The agent p~ose informa-

tion for each hiypothesis s,ý ..1 is lii)(at-ed with the SIR met-hod explained previously.
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The rest of the SLAMN posterior is inafint aijied with Iindependent Gaussian estimators

represewiting tile meati an,~dl I ovarialice L,,of' (%li oIhservedl landmnark. Given a

two or three dimiensional Cartestian space, thlese landmiarks wvill be low-diniensional

and hixed in size. Each particle carries its own set of landinark estimnators. Taken in

tot al., the particles form n MIamrav of A/ hlypotheses that represent a dliscrete approxi-

inatiomi to the optimal Bavesiaim SLAMN posterior [32].

2.3.1 Importance Weight Calculation

As with a standard particle filter, p~art icles in FastSLA NI are dIrawn fri'om the miotion1

inoolel to create a p~roposal (list ri Ihution [32. 39. 41. 45]. Thme Gatissian landmnark

est imnators are then upiJdated for each particle usi ng the agenit oh)servat ionl mlodel. thle

cu irrenit ineasuremnent z, . aind st andard EIKE npdatc equmat ions. Assuming a planiar

SLAMN scenario with aii ag-entl ineasurinc , range andl hearing to iiearblv featuinres. thie

observation funictionl becomes:

01[ K , ] = 01. [ /~ 2 + (l,1,.j -')21 (2.25)
0", ~ ~ ~ j] ) tal I IOt t/ S,

with the current agent pose and iniaslire(1 lanidmiark represented by s (st -St.y-t

a-nd KOo,,, O0, ýj) respectively. The updated Ganissiani 1)aianiitei5 For the iniasureol

landmnark are obtained byv:

*t i Ký ~ - (2.26)

Go,,, Vo,,,q(-.s. 011 ,,,) ... I~, (2.27)

Z,.t o,, -I 7o 04 + Rt (2.28)

t,= j GO",, ZlJý (2.29)

t +t,, I , , (2.30)

-(I - A[ý GO,, )Ent.. (2.31
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2.3.2 Data Association

Alllii iport ant litir lie for aiiv SLAM ailgorithm is (lata associatioin. Siiice o prob~leim

r'equII ireiint Include ii( ' p10 [Jiig, iiew featutres, the algori t iiu must decide f-ist If' theI(

iiii11(1 Ifeli('iit (orie51)oi((s to a new laii icinark. If not, it imust (decide oin a. per-part ic Ic

ioisis which(1 of the N kiiowii taiidinai'ks stored withiin f lie particle is most likelY, to liave

pr )( iiced this observat oio. After t his decision is miade. ENTF equations update the

11im mcid fli( ovariaiwi s for tie Identified landimark. Assi iiiiiig first t 1 tt knowledge of'

(Lito a 1550( t ionis are kniowvii, t he ob servationi likelihood cani Ibe coiplifie(1 iii close form.

It is d erived Ifromi th I l11iilova t lon or (differeilce betweeii the actuial iueasmi ieileit and~

t lic predlicted uineasurceucililt givein thle current agent pose( and~ the landmfllark est inlat lou

im i teters, [31]. Since thle landimark est imlator is ant EFix, tile seq1 uenlce of innovations

wvili be (,ahissiarl and~ the ol s('rva tion likel ihiood IS:

I______ I ~, [ Z,,,) ] K ý, - (2.32)

BY (oilpi thi g thtis likel ihood for each landmnark withLin thle p~article, we cant obtain the

wiaximiiiini likelihlood e~stiiiator for thlis mieasurement L~v sin pir\ selectinig the landmlark

w-it Hit ie highiest Iikcliloo(L

Lu, = arg Max p(:z ,11jt, "51) (2.33)

The e((st imatolr paramueters for this landmark are thien updated wvithuun the p~article.

TIhei ol servatihon likeli1100( for the miaximlum likelihood es5t imator, givenl by (2.32)7

also I econies the particle imp~ortanlce weight for resaiojling, ii, . If the likelihood

[ou eacil landmuark falls he low a t hreshold, a niew landimiirk is createdmid ait nitializedl

as follows:

(sH .. j , (2.34)
[tR- 1 Go,,,

47, G'O[,Ri 0 ~ (2.35)
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The icmpor)rt ance wei ght for thIiis part iclec is a pre-defi lied likelilhoo0( thliesliold. P() This

process is repeated uintilI each particle has beei assigiel a weigh t . \N\eiglits are then

niormnalized aiid newv particles are dirawni as iii SIM.

2.3.3 Preventing Filter Degeneracy

It is importalit to note, that res'aimlli ug is not alway-s necessary. It simiply redu ces

filter degeneracy by trimmijng excess particles that Lave little reealc to thecu(irreiit

nieasnenieit andc reprodci anig Imaricles iii thle area of' interest for ageiit pose inufor-

mlation. Solne particle filtering appjroac lies ilicitde a ilmeasure of dlegene~racy, AfQf

riefned as:

11, ; 1 l, ( I p))22 (2.36)

Ulpf the effetive size of tWe jart ie sot. is ini smlli ways a umeasuire of cdispersioni of

the imp~ortanlce Weights". If particles 'were dhrawii ac'ordling to tHie true p~osterior, all

samiples woulld receve the saiii weight. As variance of the weights increases, U ff

will (decrease. Thleoret ically. resallijling parti(les only wvhen JAI9jf falls below a defined

tWelOWd will decrease thle chiances of pruiiilg possib~ly accurate trajectories from thle

filter [21].

2.4 FastSLAM vs. EKF SLAM

There are several well documented strengtHs of the FastSLA \ architecture over stan]-

clard LIKE SLAMI approaches. Most import antlv. the Monte Carlo. particle-based. ar-

chuitectulre of FastSLANI allows t be filter to track miul]t iple hypJothieses simlul tanieou sly

at each nmeasuremient step. This helps, solve data association amlbiguitv inherenit in

the SLAMI prob~lemI thlat part icuilarly p~laguies st and~ardI ElKF ap~proachies [7, 471. A

robot must decidle whlether a cuirrenit mleasuiremrenit is cominlg fromi a new or pre iosly

mape landniark, which)ca be dlifficullt if features aerelatively ,oetgehr.I

Iandmblark mleasuremlents are' incorrectly at tributech. time LIKE (ali diverge rapidlyv. Ill-

stead. FastSLANM assigns data associat ions on a per part icle b~asis. All implhicit result
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is ( lelave( d ecisoi( i m aking ab ou it H1ie miost lil(elyN, ieasirirnciifi associat ion. Part i-

(LOS, wit-I im ip", HI ca (losely agree wVitlh inicomnhig data will suIrvive, resaillijli ug, While I

par-ticles thint disagree ([lue to inicorrect previous data associat ions are event ually chml-

ila te(. III Hi ie Ii iuit of i nhuiite particles, all data associa tion audiguities, are re'solved

mid( FaistS LAM p rovrides a [Fill Ba~vesiai i solution to thec SLAM p lroblemi [321. Fast-

S LAMN is Also 8 ii miversal (1(1151 ( 8pplroximiator, mleanintg it (all represenit arl)IIitarilV

comlexi ' Ilsr hilit ionls of the agenit pose. This c-an he part icutlarly useful iin imod el-

Il,( iioln-1iiiem, m iotioi models1 a ud Olhe tuntcertainity of aii agent uiapping a const'ra inied

ro1VIiii0i1110l1 [39]. Finlal lv, H ie (0111)1itat jotal compjlexitv of thle basic FastSLA NI ailgo-

n~tlinin Is 0(,A11 N). coinpared to 0(fr 2 ) with a standard EN F approach .N loutelierlo)

a Sýo) lilt r-odc ces a version of FastSLANl wvithI a compit atioiial complllexi ty of 0(log N)

[.32].

2.5 FastSLAM Challenges

Despite its a Ivalit aiges, FastSLA N does suiffer drawbacks co miuino to particle filters.

[1 ere wili always be miisamijledl gaps ini thle agent State space whenI ulsng a fniulie

number of pridecs. Wkhile resaqinpl~iiig reduces filter deoeneoracv b oclvtn

1)8 t ides in 11 allal('8 of interest inl thec st ate space, it cannlot guarantee convergence.

This is eSpeciallY frue if thle prop)losal and target distrihut ions (and the unicert ali uy Ill

tliese (list riibut ionls) are not well miatched, as shown in figure 2-3. If the agent's seiisor

is Very a-ce rate relative to the niotion model, the target (list ribut(ion will be sharply

peakedl relative to a. fiat proposal (distributioln. In the worst case scenario, no p~articles

rec,(eive, 110i-Iliegligilble imuiportance weights, preventing filter convergence to t he true

.state. Aiiot her possi bulitv is sam e imploverishlment ( usedl svuionviiously xvitl pric

(cIc lojlltio), wli lereinl a siiiall percentage of particles fromi t ie prop)osal distriuI )llt o

are assigned ionl-liiegligi I le weiglhts, causing significanut duptllica tion of a fewv uniq(uie

Ili [ot hieses anld large '-stacks" of p~articles. Stochastic propJosal propagationi xit li thle

tieXt agenlt conitrol input iiia~v not adlequately scatter thle p articles to recover lost

diversit-Y. Over timle, tHis could r-esuilt inl particles drifting aiway from tHie trite state.

41



Proposal1 Distrji)uliton

0o 0 0 001)00 0 00 0 0 0
P'articles I)ra~n Iirom Proposal

larget tDistributionII
from Accuirate - I

Sensor

0 0 0 00000 00 0 0 0
No Convergence to Farget IDistribution

After Resampling

P-Estimated Posterior J

True Posterior -

Figulre 2-3- A noisY moot ion mIo( el cre'ates, a b~road proplosal (list rihi it 'il,. a precise 'SenI-
SOl' meiasuiremlent resuilts 'in a niarrow target distribution. Co0iiVer(eilCe Of thle particles'
to thle trite posterior is prevented sinc'e the narrow, posterior occurs iian Al ms-anhlledl

gap ini the state space.

It alsot gives rise to a host of other issues that contrikuite to a loss of filter accuracY

and stAbllIlty.

2.5.1 Effects of Sample Impoverishment

hin addoition to particle drift, an obvious issue for all p.osc-tracking filters, sample jut1-

poverishmient using FastSLANI is extremnel~y dan gerolts because of' the nature of un-

('ertaintY storage in Rao-Blackwelhization. In EKE SLAM algorithims, niew latidniarks

are initialized to includle both thle error characteristics of the nieasurenient device and

the uncertainty of the agentf pose at the tlime of observation. Ini other words, an es-

tiunate of landmnark posit ion 'Is only as, good as the precision of the measi remient aunl

the knowledge of the agent st ate. Because the SLAINI Ipostcrior measures landmark

positions conditoioed onl an eshtimate of the robot p~athI, each p~article lin the filter is

(ouiclredan error-free hypothesis of the trute pose. Agent po~se uncertaintY is stored

in the dispersion of' the lparti(l Ic ('11(. As a result. each new feature in the landmark
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arraiy Is iiii t ialize(I witi tii ucertalinty from nieasuiremniit iioise alone. Subhsequient ilp-

(iates to t lie landmiuark est imation parameters inl FastSLANI are also processed( withi

ELK% P c[Iat bus, tlhat inc~lud mi(cOly thle error mtodel of the observation device.

Tills 4-alse certainty- lin landmark location greatly 'omp~llicates the data associa-

fiol pi rwoss ,\j Witi all extremlely accurate sensor, ea('h particle in tHie filter hias little

error a Ilowniuce whenl deciding o)ii a.1i association betweeni the incoming ineasurement

aull one( of its sfore(I landmliarks. Unless t tie mieasnremnent agrees exactly with a stored

Iawlinilark, time p~article receives a tow weioht. Without a diverse set of' samp~les, oillv

few,% of the particles will suirvivye resanm[ling and- tHie over-all unucertaiinty of eacli land-

ii uark will approach zero. Even if additional dliversi ty is added as lpart ides [propagate,

HIi i PreCisioii Of feat l ire est jniates, will ensure thiat only few particles survive the ne(,xt

to01i11I of weighit imig amid resamllipiig. Over time, the p~ose~ estliniate and( all mapped

Ia iid ilirks will be overcome by the noisy motion model and diverge substanitially

froii t ie t rue posterior [16]. As loops are( closed and thle agent ret urns to a previ-

oiislv immapped region offthe environment, the skewed mnap and pose drift will lead the

ageiit to believe tha-,t thle p~reviouisly ohserved featutre is actually a niew feature, lieuice

thet( creatlion of false landmnarks that furthier complicate dlata associationi inl the future-

(hgnre 2-4).

2.5.2 Overcoming Sample Impoverishment

Onle way to overconie Sanmple iimpoverishmnent, proposed by D. Fox et al. [17], is to use

a seiisor iuiodld that overestimuates nueasuremneit noise. Whille this does teind to give

uiiore p~articles iioim-nlegligible weights anid reduce particle depletion, it thirows away

valu ab~le information fromn precise sensor imeasuirenments. Selective resamiijliieg hased

Onl a filter clegeimeracy estiinate (AJff1 ) could delay the effects of sample imlpoverishi-

inicit, as all trajectories are p~ropagatecd and weighed uintil the degeneracy falls below

a1 cer-tainl threshold. Sonlic sotirces argue that in cases of extrenmely low meiasurement

ntoise. tlhefilter will dlegeinerate (1u-ickly since only few (if any) of the particles will

rciesi(Yniflcauut Weights [13]. Degenteracy will oinly be ftirther ainlplihied if resani-

[)ling is (delayed, as the p~rodhuct of weights at, eachi time step miagnifies the (lispersiOnl
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Agent Observes
Previously

Mapped Feature
' -

Incorrect Association

Phantom Landmark Created

Figure 2-4: An incorrect data association with the current measurement and a previ-
ously mnapl)ed featuore causes a new "false" landimark. Agent and landmark position
uncertainty is not reduced as was the case in 1-2.

between particle weights [39. 13]. Principlehd approaches from Fox, Pitt and Shepard

suggest changing the forim of the proposal distribution altogether [17. 36, 37, 39. 45].

Other approaches focus instead on the resanipling process, and propose a solution

to the impoverishment involving regularization- a readjustnient of the particles after

the resampling step with the intent of introducing lost diversity into the posterior

[6. 19, 39]. Both strategies have been evaluated in l)arti(le filters for trackilg and lo-

calization applications with somne success [23, 35. 36, 45]. The remainder of this thesis

will involve a detailed investigation of solutions to sample impoverishment within the

specific context of P ao-Blackwellized particle filters SLAM applications.
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Chapter 3

Recovering Sample Diversity

Parick l hI tei," h~av(e gaille i(' Iiu~it at t(lit10ioii i robots r1SIesearch an dii have pl ovided l a

Smt nia t iy to thle ER F withI proven (leftness5 in tackling more (oliillicated iavigat on

amid( mappjinmg sceniarios. The p~art iclec filter is not i ovinci fo, and( Several failure niodles

11aVe, ali'eaIdy beeni Well dhc lunlitiedl [16, 45. 32, 39. 47]. The increasing popuI larity of

)arlI ice( hi[ ters for iion-l ii iar positioni tracking applications has, prL'un J)terl thle (level-

opmtenit of' imtproveuenet st~ra tegies dlesignied to aniswer sonue of the [J tfalls assoca te

with Ii bsic SNIC f-iltering. This capter begins by highlighting several of' these early

11111 oveietnit stfrategies. WithI only recent research ini thle use of particle Filters fOr

S LAMN eivirouuineut s, few 01(4liods exist for- recovering sampille diversity iii situnations

prow, i to p article depletion , W)1it thIiis chapter ouitlines thle miost si giliificant soluitioiis to

dideI. A hli tonally, new techniqujies are prop~osed that buildI uponi the basic strategy

of recgiil a rizatioii , a coininuoi fix for particle filters in )osi tion tracking sceniarios. No

( ocuiiiieuite(I result~s onl thle app~licationi of regularzat on iuietlio(s to RBPF SLAMN

algorithiiis Were founid.

3.1 Sample Impoverishment Revisited

lIn sta liar(I resaunplii g, sainlple imupoverishment arises wheni a simallI sullbset of part i-

1,les recive, high Weights relative to the majority. These few part-icles are reprodueed

many thnes. and~ after resanifIuhitg, thme majority of the p~articles will occupy only a few
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niiil air poinits wvithlin Hii state spjace. As one, (an imagna .Heefwslgll)it

in tHie state space (1o not pir(liic an accura te clia racterizatiol of the true agent

ullcertaint~y. A better represeint atio of agent iiiicertaintv after an accurate sensor

reading is a tight dist rhI)it ion of uiniquei part lices. Diversity is still minait ained in the

p~article set beca use each occ upies a differeint pointl iii thle state space. lIn thle ea~se

of ni1obile rob~otics. this state sp~ace is easily v'isiialize( as a two or* three diiieiisionial

Cartesan space. M a inta ining appropria te sainpIvl diversityv involves ba lancing a deli-

(ate relatioiisiip betvweeii thle prop)osa-l midr target (Iistrilm)i iimi [17. 39]. The proposal

muist place aii adlequiate l11iii iii) of particles iii a fatvorable regonol of' the state space

in such awythat miauetarget distribution cnassigi iionaieohoibW eigt to

a large proport ion of' t iese p~articles. M ainitai nin g this halaince becomes miore diffh-

(lit as sensor ac('iracv iieramses and the target (list ri 1it ion becomes shairply peaked

withI respect to thle Pr-ojosa 1 distribution. SohIitioiis to sample impove risliiienlt are

based on inipleeneit ing (liversity recovecry inetiodls before or after resanipling. The

[ornier a pproach seeks anii minproed pIoposal (list riblition tM hat clides ineasiiruieut

information [30, 451. As a result, particles woiild t[ieoretically p~ropagate to niore

favorable regions, for resampiii)hg. The la ter groupl of soluitions inject diversity into the

p~osterior (iistribiai io after resairlplng to smi oothI thle resi Iting density before thle iiext

p~ropagation step) 19]. Approaches vary In the rigor of their clerivat ions and wheth[ir

or iiot they deiioiistiate thieoret ical coiivergeiiue. Thre more tmatheinat ically souind

soluitions 'Improve saniple (Ii vrsity while imainmt ainiini an approximation to thme olpti-

inal Bayesian posterior. Ot her imore siniii~e mnet lo s have also been iiirodmiic INtat

fix samplle inmpoverishmmienit but (10 not inece'ssarily gi arantee convergence [39]. The

iiext sect ion viH 11njtroduc~e several ap~proaches foiiii Iin literature anrl other iiituitivye

iiethiods developed over the course of this research project.
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3.2 Alternative Proposal Distributions for Posi-

tion Tr-acking

As mi enitionied iii sect ion 2.2.1, aii opt imial formulation woul dr1 faw particles directly

h'oiji thte po~ste-rior (listriibutit on p( st I u,, : ). Becau se this is d ifficuilt or imlpo)ssible to

imp1 lemeni'it for a comp jlex (list ribtition, the most recent ob~servat ion is u~sedl to wveight a

pl')p)05i1 particle set aCCOrdlinig to the perceptuial likeli hood for a feati obeolservation,

frher c rea t ing an aipp roximiationl to the target olistri 11it ioo with a niiite tiuniher of

pa tit c es. Li tera tulre suiggests5 that t he relative muismnatch biIetwceen the p~rop~osal ai 1(

target d istribu t~ionu aIfte(ts the coiivrg'ence of a p~article hilter- to the t ru e p~osterior

[17]. Convergence is also p~revenlted if' the percept ual likeliho 110(s1 extreniely narrow.

as woui ld bc~ thle case withI an accurate sensor measurement . Particles drawn fromt a

proposa[ I(ist ri but io that uOWN Niesfatme uteasuremets wmold have a better chance

of' Iina t Iii g, thius narrow target diensity. More particles woulol thIerefore receive a nion-

11cghigi I)Ic Weight anod survive resainuping. increasing lpart~ ide(lvesity andi reclucuig

thI e effect s of sample imipjo~verishmlent.

3.2.1 Auxiliary Particle Filter

The AuixilIiary p)article filter (APP) was introduced hy Pitt andl Shephard as one way

to in corpora te recent sensor mneasuireimients ill the prVopsl)0 (listri but ion. A variant

of' stanmodard SIR. the APF i nclnmes an additional sanjiJn iig step at thinie f - 1. using

ob~servat ion (data at t imme t, hefore particles are propagated aoccorodiing to the motion

moodel. p(.s ,s_ 1, it,) . This "presamphing'' step selects p~art icl[es that have a high like-

lihuood of p)ropag~atinig to a favorable region of the state space, and onmly allows these,(

particles, to advance [37]. The algorithmn begins at a, time f - 1 by propagating the

p~reviou s p)ost erior (list ribut ion to au auxiliary (list ribumt ionuisinug the umlotion m~odel

for thte cui rreint tnime step. Next, inqxpot atce weights arc calculatel amm~l resanqpi img

proc~eeos as in SIR, buit this t imoe only the indices of p~articles are of interest. Thme

selected p~art~icles aroe tramed back to their location at the p~revious tinie step, before
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motionl)1 iiiodel in-oJlaat lol. Iliese pa reit lplt ic les are thien prolpagated according, to

th e mnotion mlodlel. XV0i o'hts are calcidat cd aiic particles are resampjled producing the

A PP posterior (list ribirti ll. The advantage of this sctiemie is that it only p~ropagates

p~articles that aire more likelyv to end up iii tire regions, of high-likelihood accordin~g to

the recent semisom' ineas~ireiveiiit.

3.2.2 Local-Linearized Particle Filter

Another way to iliccrporat e reccent sensor lneasmlrelmelmts in particle filters for tracking-

applications is to upd(ate thle p)roposal (lellisitv. befo~re Weightinug amid iesarlflillg. wit Ii

senlsor information via a b)ank of extended Kxalmnau filters. This SNMC variant is knownl

as a Locafl-Linearized Iparticle filter. A p~osterior dlensity froim the t - 1 tinme step) is first

pmrpagatec according to the agent loot ion model. M eani anc I covariance parameters

for- this proposal (listribut ion are updated on a per-particle basis wvithI an EK F [39]. A

sample is drawim fromi this upd)(ated proposal and aii inipolmtauce wei ht Is([c lt

as b)efore. This rpgtel)(t-crwstep) is repeatel for each p~article. Momutenmerlo

introdnees a Rao-Blackwellizcd version of' a Local-Li nearizeri Jart ice filter for- SLAM

purposes known as FastSLANM 2.0 [30].

3.2.3 Mixture Monte Carlo Localization

Extending the app~licationm of par-ticle filters beyond p)ositionl tracking to the more

enceompassinig p)robleml of mobile rob~ot localization shows simoi lar drawbacks, fromi

samiple imploverishmenet. D. Fox et al. descrIble thme effects of highlylk accurate sensor

measuirerruents coup1ledl with Iia relat ivelv uiois~v iflotioil muodel and~ p~rop~ose a, solution

that involves clrawviiig from a m1ore sophisticated p)roposal (list ri bition [17]. A sublset

of thle proposal (listri burt lion will be drawn froni the inot ion model amid( alot her si lset,

approximately 10 (/( of the particles, is drawn from the lpercept ial model p( ,,JS)

hmportance factors are more difficuilt to calculate for- particles drawni according to

thec latter dlist ribut ion: the prior posterior belief miust be transformed into a kd-

tree iin order to obtain ami evol utionm of' th lpeicrcep~tumal denisit~y [33]. The inmportanice
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weciguht is proportional to t his dlensity tree and a (olistanlt factor. which is gignor(l(

snice weýights are n~ormlal i/.e( before resanhlli ug. Their resuilts dto show a significant

.11111 rovel~leilt ove staiidard particle filter performance ill cases of low ineasuremeiit

lloise. si illJplY becaulse a percenitage of samples from the proposa~l dlist ribi it 1011 are

drawni fromi this accurate Ipelcephtial (densi ty. \N'hille this te('hii]ique works well for

1111)1ic rol ot localization1 and posit ion tracking, it does n~ot address spcfcchallenges

po~se I ) S LA NI [321- ltn some cases. a partial map of local feat itres mayv be available.

hut iti( ) iii the strict S LANM ploh lem. Withbout a priori map iinforimationl it iiiav not

b e j )55i I e (Iraw partficles from thle p~erceptunal likelihood. This pa rt icula r algorit hili

Cot 11( potcnltiallY Ihe u sedl to refine posi tioii nncertaiiitY whlen [)relliniiiarv landmark

loca tion s Ihave heeim esfata])islie(I by SLAN I and after loop closuires [43].

3.3 Alternative Proposal Distributions for SLAM

N [l(ilt ci iierlo. ill hlisd(evelo])iient and evaluation of FastSLAMN. also rles(ri bes thle effect

of saipicl i iill overishiiiielit oii a R~ao-B [a-ckwellized p)article filter: it also suiffers a loss

ol ivi-stvwithI greater ilieastireiieilt precision and a nloisyv agen(,it mlotion imodel. He

I icrdeforc (le-veops ail alternati ye [proposal distribution that takes advaiitage of incoiul-

inl" tiiasiireiiieiits [32]. After a thorough and elegant (leriva~tioui, N onteinerlo arrives

ai a versioii oif FastSLA NI that updates tilie p~roposal cdistribiution with Iileasurelileit

iti fOrui at loll via a a series of extended Kalinan filters, one( for each iiiastireenet. xvithiln

Sit(' ob servat ion set for a tnime step). This alphroachi is simld]ar to t ie Local-Linearized

a rt (Ic filter for posit ion tra~cking appJlicationis explained p~rev'iouisly. .\ ontemerlo

I i~l5 AlSO doleri veel1 an expressoiil for Importance weights thI at conlsidlers n)ot oilly tilie

inicert aiiity iii laiidiiark posit ions a-ili measurements. b~ut also tlie( uncertainty of

lie( prop osal dlistribuition a~fter mleasurement updates. NMore iiil]ortaitlY, tile algo-

riit lii inicorlporates lpreviotisl~y liniiima]pedi landmarks, illaki hg It a (0omp[l ete approach

to Ibothi sillbsets of the SLA NI p)roblenm. Theoretical coiivergeiice is p~rovein for the

L~iimar-Gaiissian SLAN I scellarto) with one particle. This, is, a profouind resuilt because

prior to FastSLAMl 2.0, SLANI algorithim convergence was oiil~v provein for a full CO-
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variance niatrix repJesetlltatioln of t he posterior withI correlations between landmark

estiniates [47]. In exJerimental res•lts. FastSLANI 2(0 provides a more accurate awl

(liverse SLAMN posterior andI rmipires fewer particles to effectively track an agent pose

than the original FastSLANI algoritIHn. The algorithln begins as particdes are drawn

fIom a previous time step p)osterior distribution according to a motion model, again

characterized as a nonlinear fimctiou with zero-incai. micorrelated process noise.

This propagation yiellds aim initial prop)osal density:

ý1 I .. ) ut)(3.1)

where h(.st-,, 1t) is a nonflinear Function with noise covariamce P1. From that initial

p)roposal draw, an expected observation is produced (per-particle) for each landmark

a(cording to the agent miitrion model:

ý,., = .(I ,ý , I /. [m -] ) r1 n .. 1 ... . ' (1.2)

As before. the measurement noise covariance matrix is giveni by R,. After predicted

mieasurenments are cahu ated, an updated proposal (tistrilmtiol is caklulated for each

aldnmark using Kahlain filter upd(ate equations:

GO., = Vo,,y(. OW . I ,,) :,=, i,,",, (3.3)
G .,,,• (3.4)

G•, = V.•,q(s, ,Or,) __, ,:,,:o,,_ ,(3,.4)

ZlW" R, +~ Go,1 G7 . (3.5)
E l,, R-, 4 : ,r- I ] lr

GE',, [0  , , t G,,, , -+- Pt 1 (3.6)

v.., ,,, = ;. - ,,, . , ,, ' (Z, -Y.[,,) (3.7)

A p)article for the proposal is thlen drawn from the resulting distribution that includes

the most recent mueasuirement:

. N,.,, (.s, : ,.,,, a .E , ) (3 . )
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Af\ te (1 8 )rt ice h as been (Irawli Froin each of N different (list rilt )tious. li kel ihood

"weights mv aralciilatedl ill thle saine( fashion of FastSLA NI 1.0. The dIrawn part ide

with ihte largest weight thenl becomes part of thle prolposal that will be resam pled to

81)1 roxi urn t he posterior. This weight will not, however. be used as the impiort ance

weight fot resalipim hg. Siluce the p~roposal particles are clrawu froii a dOfEre& distri

bu t ioul H ima the aIgelt- lmotion imodel, time importance weigohts [or resainpling mui st be

(a [iii late(1 ill a slightly Ii ffereiit way:

L1  G7, 0, 1 G, q .~, ZF,, q G ~H,+ , (3..)

W[ ext)- ,)L7( 1 -(.0

As, IW)FOUC. thle 1)erCel)tlH ul ikel ihoodl u sed to calculate resamlpli ug iimiportaiice weights

is aI m ul ti-variate Galn s'siaii probabili ty deunsity function, onlly this tinec th[e norimal izing

iid/511(usiF(ieiit imimeertalimity L, iucludes tie ('ontribitimim froim time aIgeut process nioise.

New laiin [arks aire jiui tfted, iii the sanie way as Fast-SLAM t.0. when all landumark

li kelih1ouods fall below a Jpre-(lchued thresholdl. Also ill the case of a new landmark.

poses5 Loin m thle proposalI are drawnj From thle originial dlist ribut ion .,t exclumdinig featutre

mciiasn reimiemit iniformat ion. When multiple mecasuremenits are considered at each tWe

ste p. thle aIlgoritlini I becomes sl ightly more comp[l]icated. The 1r()101058 is upJdatedl

ii ciat ivxel v. once for each mueasiurenment. A particle is (Irawim after each itera mu ac-

con hug to (18~) ihi order to i11)date landmark estimator parameters. Pax~t ides for. the

propo sal, however, are onily sampled after all measurements have beeii processed. Aim

jIltist ratimu of t his aigori tlinm and its solution to the proposal-target niismnatch from

accurate seinsor imiesnuiireiiets is shown inl figure 3-1. Though OMtSAN\I 2.0 grows

at thle siimilar favorable rate of O( N-1l). it includes updlate equlatioiis for the proposal

(list ribuit ion and is therefore nuwimim more comiputational lv expensive than FastSLA \



I ~~Initial Pro posal Disrtributlion

Proposal af'ter incoporaliiig recent measuoremnt~I

P'articles IDra~ i from Proposal -. 0 OGDM 0

T~arget D~istribu~tion I
from Accurate

/'( 1'~Sensor

Resamnpled Particles

Estimated and Frue P'osterior __

Figure 3-1: In FastSLAM 2.0, the p~roposal (distribhutioni Incorp)orates recenit nieasuire-
inenits. Particles for lilnlortaliwe weight calculatiolns have a greater (lmince of receivingo

non-iiegligiblie weiohits ini tlie( caseN of ani accuirateN s'ensor aiid a noisy imot ion model.

3.4 Regularization

Aniother class of jimprovemlenit strategie(s for thle sa,11pJl)( if III)o\N(Nishlfleiflt 1rol)Ill fo-

(lit'sSp~ifically oil r(Ncovering dliversi ty, afterti(Nrsii~iu t .Asvrl npv

erished posterior wvill most likely conisist of a few rliscret(N poinits with miany~ particles

I~stacked" at these p~oinits. Rcgtlarizatioii inthotlios atteniiit to create a more diversec

posterior dlensity approximat ion by relocating tlit( p~articles in stacks to a nmore con-

tinuitis distrhi Io [1. 19. 351. Ani easy way to regutlarize wvould be to simply dIraw

a new set of particles ab~out the wide-sense) mneani anid covariance of the lis'trihi itio011.

However, thins approach wo.)t It not preserve thle j)055ibliv nion-linear and inult i-m1odal

characteristics of the dlistrilbution and wvould thuiis neg-ate thle atlvaitages of uising a

p~article filter in the first place. Consequenitly. de(signinlg a regularizationi schemie that

lintrodluces an app[ropriate amlounit of diversity, while preserving thle complex nut mire of

a (list rihuit ion. (caln be (difficult . M ost p~article filter regu larization schemes, in literatuire

52 I



a1ppnml()it~ th15is diff-tr iiy I V epreseltitng a (ontinuous11 (list ri hi )ltioii for particle adjulst -

icnct I ), a series of Epaitechniikov or Gaussian kernels, centered at p)oints inl the st ate

space occuped I resain [le( Iplarticles [1, 39]. The lparaineteis of thlese ind ividu al

kerniels can be inani pnlateel so that the kernel set a pproximnates an arbitrarily comi-

4e1(X postel'ior. Parttiele state adljulst meats are drawn from i indi vidultt kernels and~ t hen

m(id e( to resa ila Iled particeles. The next few sectionm describ~e possible kernel shap1inhg

mt eth1 od s withi slight variat ions that can alter the Kffetofi (A art ie l regniarizaton.

3.4.1 Regularized Particle Filter

lThe originial Regul a rizedi Part ick Fil[ter (IBPF) was dlesigned I)y S. cGodsi 11 and Ti.

C I app. [t is essentit ally a stma dard SIR filter with a regldanmizatit step &eWlcl( after

resa 111mptig. DurIn g neguInarzat ion, plarticles are adjursted ac'ordling thle conitinuous11

a[pprolximatijon:

I)(.,; I j ,) lit 1 K s

whex N(.) is a rescale(I kerilel density and I? is the kernel baiidwidth, a scalar speeihe

I o I lie keirnel that also lelpei(k Isoi the ninmber of particles in the filter. The kernel that

m1111111 lie thle t ieaii Iintegrated. squiare error between the t riie p~osterior lenIsi tý m ad

tIhe regi tIa ni/eli Version *11 (3. 11) is the Epaneehnikov kernel. Pr'aet eally. this kenel is

OWN-h tl to 1111 )letei anid thle Gatussian kernel is normial ly used as a eompinJt a tioltal Iv

ef-ficin tt stist itutct. The op~timlal banmdwidt h is then given by:

4 t_
b =p (1 N V (3.12)

n, + 2

wlwv t o, is. 1 thle di lilnlsol of the agent state vector, .st. Before resampinilg. the enm-

lpirical Icovariancee, At. is calculated from the proposal distributit on. The empllirical

covarianoe canll 1 Hloltglt of as a weighted proposal covariancle t hat ac'ounlts, for

Ito iutntertai1nty stored ill particle d-ispersion. After resampin)ltg. p~articles are adljuist ed

a((Or(Iilg" to:

si + u hoptDt6 (3.13)
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'where

DjDt/ = At and c' -" V(c: 0, 1) (3.14)

Compiitatioiiallv, thie IRPE differs fromn the standard SIR filter only in AI additional

draws fromn a, Gaussian kernel aildl the form ulatilonl of the emipirical covarialice mnatrix

before resamJpliiig. These steps ha~ve a minimia I effect oil overall processing timel(

[19]. Despite a rigorous derivat ion. regularizing Jparticles. accordling to the B.PF does

not necessarily guarantee asYm ptotic convergenc(e to time op~timfal Bayesian posterior.

This is a C0ommon01 theoretical dIrawback of almost ever~y reguilarization scheme. The

RPF hias improvedl performlance lit tracking a pplicatilolls, but 110 literature results

were found that d7escrib~e its ap~plication to the SLAMI problenm. Another advantage

of the RPF is that by setting the kernel adijustmnent proportional to the emplirical

covariance. the RPF avoids ' particle shock" that can occur when a relatively broad

distribution converges (jiicklY to a more p~recise distribution. Instead, a limit is p~laced

on the convergence speed of a particle clond. maintaining diversity along with greater

precision.

3.4.2 Markov Chain Monte Carlo Criterion

The N larkov Chain Monte Carlo step) is a regularization criterioin designed to ensure

that any regularization of resanll)lec particles asymptotically ap~proadh the Bayesaian

p~osterior in the limit of infinite particles [39]. The idea behind the schemne is that

a p~article .sl can be regularized, or moved to a new state .s,, only if < aý, where

ii -~ U[0, 1] and (T is the accep~tance probablility derived fromn the M1 et ropolis-H astings

algorithm:

0, m=i) 11. -<)A (3-15)

Put simply, the particle can lbe adijusted according to a regularization scheme only

if its intended mnove will p~lace it Ini a "mnore likelyv" region of the state Space, as

(determinedl by thle pre-mlove and post-umove p~roposal and [perceptunal dlensit ies. WVhile

in literature thec MCMC move step) is used inl context with thec mathemnatically derived

regularization scheme of the RPE. it is imipjortanit to note that t his criterion can be
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a pj lied to an iireg! iarizattion algorit hnl to ensure that asvmIsil ot convergeiic to thle

Baw~siaii pos~terior is miainitainled.

3.5 Other Regularization Approaches

A lthni gh Ht lie Ictet re search codiclctedl for this thesis (did iA iot hv prdc mxperiini tau

lecsiillis onl the i ise of, regul[arizratio 101For SLAMN purposes. a closer look at the Re(gullar-

ized pafit ele P iter showvs thait the hiea can easily he extended to SLANI illi a Cartesimaii

einv ironm i eintt The RP PEa gorthnt 11 uses a kernel ( Elanecliiikov or Gauissian ) to h)-

,aýll>' sp read p art icles aboXut thle (discrete stacks oftei pro(Iice( after reaiuplUn. The

varinc i(e. or b andid~ i thI as it is ref erred to in literature, is a p~roduict of thle root of thle

Clni ii~rcal I OVarianCe iliat rix of thle particles before resainl~ng. The int diit m ( iet mlois

iiitrodluced blo iW nchlue a Gainssaii kernel, simtilar to thle comnpitatioiially iiiexpen-

si ye version of thle RPFP, Ibut thle variances are calculated ii (lifferenltly iii order to

slia i e thle kerne 11For a possi bly bet ter sampIle diversity.

3.5.1 Fixed-Gaussian Regularization

A simpll)le veisioni (of reguilarizat ion wouldi involve (Teatin11 a Series of' hxe'l-variaiice

Gaoissioai kernels after resamfnij1i g, as shown in figure 3-2. Each part icle voiildl th eii

Ibe a lj iste( withiin Ilie Cartesianl space according to anl ni~ldiVidlial ([rawI froiii these

kernels:i

*s+ At( where c' N(c; 0, 1) (13. 1j)

TIhou gh t his m1e(thiod inltroduc(es dliversity to the posterior by sam lph og from a con-

tim i oiis dlist ribu tion, iI ie probal ili ty dlensit~y will become tnii-iioclal as, the spreadiiig

IXIraineter A, increases. Consequently, a balance must be unaint aiiied I y spreadling

lhe p a rticles withI einoiigh variance to introduce a proper amount of cliversi tY, while

at thle sa inc t iii e keeping this variance small enough to p~reserve thle p)ossilble iiiilti

uno kIal CI aracterist iCS Of thle distribuition. The proper At Will neecd to b e (~Cletriiiiell~

emiii[irically, anid will likely differ in every situation. It will also he the lower 1limit of
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Motion Model = -

Figure 3-2: Particles are regularized after resanipling according to a set of kernels
generated at the resanmpled points.

the wide-sense variance of the posterior distribut ion. Factors affecting the optimal

spreading parameter will include the initial uncertainty of the agent position and the

accuracy of the sensor. If the mean-square error of the sensor is less than the variance

of this regularization kernel, precious sensor information is lost.

3.5.2 Adaptive Regularization

One advantage of the RPF over a simple, fixed-variance Gaussian particle adjustminent

is that the variance of the kernel changes according to characteristics of the weighted

proposal distribution. In this respect, properties of the regularization kernels can

change over time, but there is only one kernel -shape- per time step. A further level of

adaptation canl also he formed by basing the standard deviation of the regularization

kernel on the proportion of particles that are resample( to a particular state.

s; + Aj'c' where N '-- N(: f, 1) (3.17)
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Figure 3-3: Particles are regularizedi by kernels, with adlaptive variances. The spread-
ii ing rad insis 1, roport jonllI to the height of ar parlticle "st ack.

A Th (3).18)

Wheire 6in Is thle [inllbei.e of d1uplicated p~articles at a part icuI lar point ini thle state

spaxce. This i riethod is pictuirecd ill figure 3-3. Th1eoret icailV. it Woul1d generate a

larger s'prea Ii ig rad ills a[boil itpril[ocartionls thai receivc 1 high likeli hoods anld

were tI uis largpely rep~roduced Iin resainpling. It will produice thle largest varianice, an

t liis have the greatest p)otentilal of recovering diversity, Mi cases with a sharply p)eaked1

lperceplt ial (lens'itY relative to thle proposal dlist ribution. As st ated earlier, thins is thec

ca~se most vulnerable to salinple imiploverishmlent.

3.5.3 Other Adaptive Regularization Techniques

A t hir I lutit 11 e regmilarization at tempt combines some of th li'propeit ies of t he matth-

emlat icallY (derived B PF with the above method of adapting tile kernel based on the

resalilpled particle stack height. Introducing the At' paramleter into tile standlard R PP
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('qua ti 101 ields thle foilowi hg regi lalrizat ionsliee

St s ~-r A~~)/)D~c(3.19)

III theory. t his mfove' wvill reshiape the op~timual kernlel bandidx~thi Initrodu(edl inl PPF

regularizationi basedl oii particle stack I ii ulit. hiicreasii) (lelisitv iii cases prone to

sailiplc linupoverishltieutf

3.5.4 Process Noise

A t horough look at regularization mid(1 an uniderstandliing of SMC prop)osal propagatiOii

leads to the awareness that the lpropagatioll of' ft(e particles accordling to a stochiastic

agent mlotionl imode I is itself a forin of regilarization similar to a Gauissaia kernel utsed(

above. Given this. it sholo d lead to the questilon of whet her or not regiilarizattonl

is needied Ill Ilie first place. Perhaps anl over-estliiiat ion of the agent process noise

would suffice. It is trite that hasic regularization using a fixed-variance Gaussian

kernel is eqnivalent to propagation iii somle cases [47]. Addit ionallv, a morec Alvance(

mnodel that accurately chiaiacterizes the stochiast-ic propert ies of thle agentf mlotionl

will produce p~rop~osal (list ribi it ioiis with a higher like]lihiood of' matching the target

distri bI t ionl. vrstat loll of the agenit process. while it would inltroduice niore

di versitv. would be a less (lesirable sol ut ion to t he probl eml for thle saiuie reCason as an1

over-est iIIIa t ionl of senlsor nloise-. Valuable iniforinlat ionl regardhing, the trine propagat ion

chiaracteristics of the agent wAouild 1be thbrown away. Acldi tionaltlv. thins approach wouild

further mismatch thle relative noise of t he inotimim model anid the p~erceptunal model,

leading to a severe rlecrease( iii diversity after r('samtnillig. Reguilarization techniques

with adaptive-variance kernels mistire that a proper aimounit of diversity is iiitroduiced

atspecific regions of the posterior dteiisitY. \i~tlit lmr afll.al atce ol

be propagated ill the same fashion and valuable inforintatoion about irregulari ty of the

distri but ion could be)( lost.
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Chapter 4

Simulated Results for Sample

Diversity Recovery Methods

"Ilie' pr evious (limp1tei pre'sented (Isever(al appr oachies- design ed to improve par~Htic le filter

S LAIN I performlanlce Mi sceniarios pronie to p)article (leplet iou. One Met of left hoC s

fIci5se 1oil thle proposald I(istrLibu11tio0n1 before resalinll)in1. by, (Irawi'1 I ) ig M iore Opjt i iAI

set of part ides for impl-ot ance weight calculation. Ot her techniqui es adjulstedI partidle

loca ltil)ii5 after resaijl ipling withI a set of regiularizat ion kerinels that app1roximiated

a ( I it iii 1)15list distibui oll. Th is sectioni presenits eXl)Crillieiit al re~smil ts showing thle

relative st reiig~t s aiild weakniesses of maniv of the ideas iltrodllice( I II thle ~reviom is

sec t 1)1. TI II goal ofh t his analYsis was,- to uise ýA si mnnilated SLAM eiivironlineiit to

1. Ieiiionst rate p~article filter SLANNI performance at dlifferent ineasuireienet noise(

levels and shiow thle effect of SampIle i inJpoverishlleinit on filter ac(1uracy and

2. t lllrolighlY eval iiate partidle filter eiihianceiiieiits designed to recover sa~uilple

(liversit~y InI (dep[leted scenarios and improve the overall accuracy of' the SLAMI

lilt er.

Thiree Baio-Blackwehlizecl particle fitters were dlevelop~ed, Imased oin the FastSLA NI al-

oo~ri t Iii pi~resented I L N iontenlierl() [32]. fn addition, four regiilarizat ion methods

were coded. Each strategy was tested. independently to characterize its performance

59



iii different SLAN I eiiviroliinciits MIarriages I )etweeh t ie [ilte hi-rs andr regularizationi

miethodls were also tested to (determline if their combinhred effect provides weven greater

flltei d( ( rac\/

4.1 Assumptions and Simulation Setup

The basic SLAN I scenario inio(Ietedl for this shirnilat 1011 rorisisteci of a roi)ot agentf

travrelinrg around a sinall, elliipt icalI track. At each tonie stpthe agent advanced

accordintg to a inot ion niodel rht laiiilreda cont rol in pm it anid nloise Frorn Vlie inlotionl

er-ror riiodet. The rob~ot thlen re(ceiver I si nuiatcl ineasuremnents fromn each lailndmark

Witin. its field of viewv. Only six landmnarks existed in thiis J. 0 in x 10 in eniviroinniert,

andl eachi landinark was niiriforinly spaced around t he (011omiandedi pathl of tire rolbot.

Figure 4-1 shows thle si nuilt on envi-romliment . tire agetia initijal posit ion, arid the

cwminlariledi pathi. as well as all lardmnarks that the rob~ot ericom liliterer I as it t raveler .

The robot was init ialized witlr an a priorl, estimiate of its JIose and thIe Wrt On of thlree

anchor featirres. The first task of time agenlt was to localize rising relativJe riieasrireneiirts

to these anchor features. As the simulatoioInprgressed. it xvoilr encounter three new

featuores that it mnust miap. WVithi two fuill loops around1( thle track. time robot wouldc

encounter previously inappecl landmnarks.

I 
0
3fl I 

0
TSo. 

0
1b 

0
ý

15 in 1.5 iii 0.0349I r. ad 0.3 in 0.3 in

Table 4. 1: Initial RN IS uncertainty of a gent pose (rn y. rn.) and anchor featnrc Met ionl

(.Y) for simiulatioins.

4.1.1 Development of the SLAM Environment

This p~articumlar envirnimient configmniranm was chomen iin ordeir to test several essential

abilties of a, successfnil SLA NI estimation routine. Set tinrg a highier u ncertainity rim

the initial agent pose and provkiling anchor feat mire rerqniire thle Filter to localize

and improve its inital pose estimrate. Ais it emicomint ereri new feat rres, it nmeeded
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Map of Commanded Path and Environment
10-

Anchor Features

7-
Initial Position

6-E

-5

4-

Unknown Features -

2

Smulation

0
0 2 4 6 8 10

Meters

F ig~i ire 4- 1: S LA NI envi )iltnnittl utsedl for. slimulations wit it robot pat[]i and inlitial
jpo'ý1it ll sltowtt.

to l-trsi reccognize thIese landitiarks as previously 1-rn1A pped, anid theni altgment its

itita o ccordlitigly. Fialte agent was requt ired to close an1 ol)servat joti 1001) by>

lit( St tt1 lrevioltslYv ittapped I a itiniar-ks. This is often the in ost difficultt task of anlY

\1A Nialgori t hi, esp1 ecially iii cases of iltot-ioi toiose adit 1 accuitrate inea-s'itretienits'. A's

Iiscits~sed H it sectioti 2 .5.1, algori tkiois ini thiis situtationi tend~ to Jprodltcc badly skewe I

tt talps with Ii itatt addi tionial phantoitn landmnarks.

4.1.2 Robot Motion

Thioutgl)i its continatuded anagilar anid tanigenitial velocities woutld recalize two rotations

a lbotit thle track. kitoienat ic err-ors in tite agent uitotion i 1110(1 altei-ed t he trite lpatht

stgt iificatittlY. A stochastic, foutr Jpararneter mnotion model was itsed to relireselit slip)

scale factorý antd skid errors encountterecd in mnost wheel-lbased robo)ts. The lparamieter

valut es a)re listed itt table 4.2, with the tatngential and angutlar velocities at each tithe
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Commanded Path and Actual Path (with Motion Noise)

10

Position after Two Loops
8-

7-

6- 3 Robot Motion Errors:

ci) Angular vol bias (deg/s): 2
5- 1

Angular vel at: 0. 1 %

4- Speed bias (m/s): 0.05

Speed sf: 0.05 %
3-

Simulation

0 1 2 3 4 5 6 7 8 9 10
Meters

Figure 4-2: True agent patti fr~om one( realizat ion of' thle stoclhast ic miotion nod el.

polillt drawnl according to:

!3 ~w ,1 ~,p ";I j 3Lkid) (4.2)

Table 4.2: Agent inot ion inodel paraimeters. including comm nlanlded translational v
and rotational wt vetocit jes and skip and skid errors uised for shinnilatilonls.

Onle realization of this s;tochIastic mjiot ion mlodel was usedI as t Ile trute agenit positiomi1

for everxy slinuu at ion, shown ini fiontre 4-2, in1 order to (oinpare hitter jperforlmlalce for

equiivalent sceniari'os.
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4.1.3 Simulated Measurements

ClIinnca rateitics o[ the agent iiieasureiieiit iiiodel are listed in tWbe 1.A. It was assiiiiec

lI ht each feat tire observationi y ielded a raige-bearnig nhseasireent pair. Becmiise the

agen t ree elsi lil dlated ineasuremients front every lan(hiiark withIiin its field of view,

eachi S LANI algorithInn iiee I(l the capabhili ty to process iimlit ipie ineasnrenineits in a

sinogle t i nie ste p. Whvlile easi lv in corporated in the st andlard FastSLA NI 1.0, t Iiis par-

tictalatr eiihiai ie(iielt i's onl I riefly addressed by Nfoloteinerl() iii his developmnie t of

VastSLANI W 2.. wicrlwat nig seiisor nieasureieiiets iii proposal calculat ion is not a

I riviaJ [task w hen i a ias'li-eneiueits froimi new Im~nidnarks linst be consideredl. Whinle in ost

HIleasi reilient m1ode[ ch(aracte'rist ics were reminia fixed t hroughouit t his ana lysis, the

Fa~lige unuce rtai iuty. conisid(ered the indejpenleide varia l&l for iiiost trials, was iian ipu-

lated( iii order to evaluate filter p~erformnance. Lowering this RNNIS valute froiiu 1.0 im

to 0.001 ini would( reveal I ow each algorit bin resp~ond~s as, the ineasturenienit noise,( is

redu edl and a proposal-[)ercejpttual distribliition iniisniatch is encouinteredl.

Field of NMaxiuiiim RNIS Bearing RN IS R ange
view Range Uncertainty Uncertainty

A.142 rad 7.0O in 0.0175 rad 0.001-1.0 in

Ta ble 4A3: NMeasuireiient inodel specifications anid uncertaint ies

4.1.4 Performance Metrics

Thle priiiiarv nietric for filter accuracy was the circular error p~robab le (CEP) of the

agen t x-y pose locat ion. Though agent. lwadhng error and landmark p)osition error

we're iiot diirect ly iliaslure( by this mietric, the correlated nat uie of t ie SLANI proble

infers that err~ors in these iimineasnred paramieters wonil( (ontribuite to the pose CEP.

4.2 SLAM Posterior Estimation

Fignure .4-3 illustrates a single run through a SLAMN sceiiario. WVith a large iinitial

timcertainity re[presented bY a, large sp~readl of partices, the first task of the filter
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was to decrease p)ose uliccrt anit~v using iniasureirnents from aiclior feat ures. Each

particle was Jpropagated alccordli ig to the stochastic minotion mnodel anld meiasuremenuts

were usedI to weight each p~article according to the maxuimum likelihood hieurist ic as

01 tlineil iiisect- iou 2.3. 1. Parti1cles were themi resanipledl accordling to weighfts. redumicing

the overall mincertaiiitv of thec filter. Thme p~osterior dlistribuItion at thle enid of thei 60J

secondi simm tilationl i's also shown 4-3(b). 'Not ice t hat uew Iauldinarks have approIpriatelv,

heell addedl to mlap amid the filter has tracked t he posc of the robot withL reasoilalle

accuiracY desp51ite iolisY kinemnat loS.

4.2.1 Sample Impoverishment and Particle Drift

The dlifhicultvY of' captumring an evolving' p~osterior dlistrihmmit ionl usinig a SN C umlet hod

with a finite numbher of particles hecanme aplpareint when uleasurenment noise was re-

dimced wvi thlout a correspondicing (Irol) iii kli emeinat ic iho! Se. This imisiiiatohi created anl

enivironniemit prone to cases of particle depletion. N otice inl figure 4-4(a) that- wit-kinl-

a few seooiids of initial izat ion. tble m~axinitinim likelihood heutristic with a hilghily aeon n-

rate sensor hias assignedI non-negligi hle weights, to only ai smiall p)ort ion of particles.

Conlsequetl)Y, sam lptes weest ackedF at the(se, points (luring resaupipnmg. Inst eadl of

a shnoot- pilosterior representinig thle actual in ncertaimmtvY of' t he agent., the distrihi it ion

was roiirlto onlly a1 few dliscrete livpotlieses. At t his, )ofiit- the widle senlse mnean

of this depletedl postecrior still provided aii accurate estimiate of thle true posit- ion.

Over time. hiowever. sever part ic he drift was evidlent- (figure 4-4(b)). The filter then

had little chanice of recovering to a reasoinab~le accuracy. At the endl of 60 seconds,

filter p)ose error was less thanl oil(e meter, primiarilY clue to thle fact tha~t the robot

Control coinnilanids inl a1 noise-frece realization traced twvo loops. A look at estimated

landumark locations shows, the correlation lbetween pose error aiid landlimark error,

as accurate nicasliremimncts coupledl with pose~ fiiccuraov p~rodluced( iimanv false lanld-

marks. Though )% outeinerlo discusses thle muse of miegat ive inuformiat ion to elimninate

lplianit-oi ladniharks-) [32], thec ill phenlient at lol of this feat iire Proved l more difficult- inl

prcieaill was therefore niot inclundedl iii thle algorit Iiuns for thils anialyvsis.
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Robot, Environment, and Estimated Posterior prior to resampling, t = 1 sec
10-

% \Algorithm :

N •, N FastSLAM 1.0 + No Spreading
Robot Speed: 0.62832 (m/s)

8 - . - Measurement Errors:

\."- "• N• Range rms (m): 0001

7 -2v c.jN , , Bearing rms (deg): 1
,.'• t I' Robot Motion Errors:

6"$" > ,f Angular vel bias (deg/s): 2
u) N Nv.,o ' Angular vel sf 0.10%

5- N N> Speed bias (m/s): 0.05

N '-Speed sf: 0.05%

4 " "N -4- :Estimated Pose
NN" N Estlimaled XY Covariance

3 0- 0, - -True Pose

"- - - True XY Covariance

2 - Correct Association

[3 E3 Incorrect Association

1 ÷- Negligible Association
...........Observation

Data Association Error: 2% Simulation Estimate Ln

0 .............. I ........... _ _ I... Estimated Landmarks 1-1
0 2 4 6 8 10

Meters

(a)

Robot, Environment, and Estimated Posterior after Resampling, t = 60 sec
10

a Algorithm:

96 FastSLAM 1.0 + No Spreading

Robot Speed: 0.62832 (m/s)

8

Robot Motion Errors:

7- Angular vel bias (deg/s): 2

Angular vet st 0.10/0

6 Speed bias (m/s): 0.05

in ~Speed st: 0.05%/

- 5 a

4. Estimated Pose

3- Estimated XY Covariance

4 True Pose
2

d .. - - True XY Covanance

1. Posterior Distribution

Simulation .. Estimated Landmarks 1-a

0 2 4 6 8 t0
Meters

(b)

-igure 4-3: A typical SLA\I scenario showing Initial oncertaintv (a) alnd the estimatted
)tost('rior alter 60 seconds (b).
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Robot, Environment, and Estimated Posterior after Resampling, t = 2 sec

9 Algorithm:

FasISLAM 1.0 + No Spreading

85 Impoverished Robot Speed: 0.62832 (m/s)

posterior distribution

atter resampling Robot Motion Errors:
8- Angular vel bias (deg/s): 2

Angular vel sf: 0.1%

7.5 Speed bias (m/s): 0.05

Speed st: 0.05%

-i5-- Estimated Pose
6.5-

Estimated XY Covariance

- True Pose

- - True XY Covariance

Posterior Distribution

5.5 
Smulaton - Estimated Landmarks 1-nS...... • . ~~.... .. ................ ... i

2 3 4 5 6 7 8

Meters

Robot, Environment, and Estimated Posterior prior to resampling, t = 19 sec

to

[0 Algorithm:

9 FastSLAM 1.0 + No Spreading

Robot Speed: 0.62832 (m/s)

8- Measurement Errors:

Range rms (m): 0.001

7 - + Bearing rms (deg): 1

Robot Motion Errors:

6 Angular vel bias (deg/s): 2

SAngular vel sf: 0.1%

05 Speed bias (rn/s): 0.05

Estimated Path Speed st: 0.05%

-, -- Estimated Pose

Estmated XY Covariance

- True Pose

- - True XY Covariance2 - - •
- - Incorrect AssociationTrue Path o •

- Negligible Association
1 Observation

Data Association Error: 5.5% ieltE at nion
Estimated Landmarks 1 -(3

0 2 4 6 8 10

Meters

Figiure 4-4: Anl inipoverished [Josterior (a) leading to p)arti(cle drift as -tc esi litiatiotli
progresses (b). The end of the simtutlation is shown li figure 4-5.
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Robot, Environment, and Estimated Posterior after Resampling, t =60 sec
10

0 -1-'Algorithm:
91 + + FastSLAM 1.0 + No Spreading

f Robot Speed: 0.62832 (m/s)

8

Robot Motion Errors:

7-. 4 Angular vel bias (degls): 2

Angular vel sf: 0.1 %

6-0 Speed bias (mn/s): 0.05

Speed st: 0.050/

4

-4-- Estimated Pose

3 Estimated XY Covariance

-+-True Pose

E3 + - -True XY Covariance

Posterior Distribution

Simulation .-.. Estimated Landmarks t-a

0 24 6 8 t0
Meters

Figur 4-5: Atr the end[ of the scenario, particle dIrift has lead to severe inaccuracies
in both Hi t'e pose and~ feature estimiates. Mlkany spurious landmarks were createdl.

4.3 SLAM Algorithms

4.3.1 FastSLAM 1.0

The hr-st of the three filters tused in this analysis was FastSLAM 1.0. Since it is

]ýIaSICahl V t lie basJiC Rao-BLaickweilized particle filter, it formned the backbone of t lie

other two filter inethods. It this set, of tests, it also served as a benchmiark, against

Which t he performxance all1 other filters and regularization algori-thmns were measured.

ft is dlesignted to operate with unknown data association ýand is therefore ideally suited

to the SLAMJ problemi. As with the more advanced filters used in this analysis, 200

p~articles were used to estimiate the SLAMI posterior. The importance threshold for

new landmnarks, in thils filter anid the others, was 10"~. Because it rises only motion

mondel inflormat ion to propagate the proposal distribution andI not informnation fromn

recenit sensor inecasuremneilts, it can in some(. cases be the most sensitive to a mnotion-

senisor accuracy inisinatch.
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4.3.2 FastSLAM 2.0

FastSLA\ 1 2.0. Nlonteinerlos more advanced particle filter that includes recent mea-

surement information in the proposal distribution, was codedi as a second filter for

this analysis. Propagation of the proposal distribution at each step began with a draw

from the motion model using a [)re-defined initial covariance. This mean and covari-

antec were then updated using EKF equations and the current measurement.. Data

associatiotn in this ease was more difficult because the algorithm needed to associate

a measurement with a known or new landmark before proposal update. The advan-

tages of this filter are descri bed ill literature to outvweigh this computational burden.

as Montemerlo proves one-particle convergence in a Linear-Gaussian SLAM estima-

tion scenario. Based on literature results, FastSLANI 2.0 was expected to perform

best without additional regularization after resanipling.

4.3.3 Auxiliary Particle Filter

Using FastSLAM 1.0 as a basis. a Rýao-Blackwcllized Auxiliary particle filter was de-

veloped as another example of nmeasnreineint influence on the proposal distributioni.

It is similar ill every respect to FastSLAM 1.0, except an additional resamupling step

was added consistent with the Auxiliary Particle Filter algorithln [3!9)]. Currentt.l
used only in o o trackin- scearios, it was coded to evahuate whether or not the

additional resampling step improves sample diversity and accuracy in a SLAM envi-

ronment. It incorporated multiple measuremnents per time step in the same fashion

as FastSLANI 1.0, and used the combination of these umeasuremnents in shapino the

propagation of the proposal.

4.3.4 Regularization Algorithms

Table 4.4 lists the regularization methods coded for analysis and briefly describes the

properties of the kernels used for particle adjustument in each one. It also lnenitions the

Markov Chain Monte Carlo criterion, which can supplement any of the four spreading

algorithhms.
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Rcgiilarzal ioul Methiod,
(Algorithmii Pseiiudomiian( DeIscr7iption

Sprca(IX Fixedi Gamissian regiilarizatioi-. Particles, at each1
resanipled po~iii are adjuisted using, a fxd
variance Gauissian kernel. Ref. section 3.5.1

SpircadX2 Gaussian regnlarization with the standard de(vi-
ýatioii of the kernel (lepei-deilt onl the ii~iii iiher of'
par-ticles sampJled at that po1 int and a fixe(, 1a
ramneter. Ref. sectioni 15.2

SpreadX.3 Gatissiain regularizat ion wvit i the st andlard (levi-
atio~ii of the kernel depenident on thle uiminber of
particles samnpledl at that poin t aii(l th le ('iil~i-l

cal covariance miatrix of the particle (list ribui tion

b)efore res'ainpling. Ref. sectioni 3.5.3
R PF F Regularizedl Particle Filter) Ganssiaii reguilariza-1

ht)o (leJperdent oil a fixed. dlerived para~iiet er and~
the empirical covariance niatrix of the particle cdis-
tribuntion prior to resamihliiig. Ref. section 3.4.1

N ICIN IC \larkov Chain Mlonte Carlo criterion. Canl suil)-

p1emieiit any ahove regniarizat ioi niet 110(. Eni-
suires that regularized particles asyniuitoticafll ap-
1)roachi the optimal Ba-yesaian p~osterlior (list riuil-
tioii. Ref. section 3.4.2

Tal le 4.4: Siuiiiiarv of reguilarization methodls tested iii siinuilationis

4.4 Filter Accuracy and Diversity Analysis

Each hfi er wxas tested wxithI a singular run t hrough thle SLAM NIceiiario: thle C EP of

lihe filter posit ioul est iiiiate was extracted a~t each second. Addi tion~ally the iiuiiiber of'

uiiqiu [ e part icle states after res'ainpliiug was recorded to p~rovidle a measure of dIiversity

at that timiie step. Thel( 1)urplose of this test was to show p~erformanIice of the filters

ill a cou o eIsceuiari() aiid to observe the relationlshipJ betweein thle diversiftv of the

1)art icle hfiler p~osterior aii(1 the, CEP.

Figure 4-6(a) shows FastSLANI 1.0 baseline performance at 0. . iii raiige nieasiire-

iiiueuut RN IS error, with an average CEP of 0.3034 in and an a~verage numnber of miliiiqle

paxrticles of around 40 after each resamphing step. Figure 4-6(h) shiowxs the saime fi[tee-

au ud SCOWiLiari, Only this t inue wit h a mismatch in the relative accuiracy of ageiit unot ion

amid feaftuire observat ions. There is a p~ronouncecd difference 'Iil bothI the accuracy of
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the filter anid tlire ni iniler of u niquie part icles. Ali a verage of' 10.5 d)(ist inc(t states inl the

posterior inplies a signlic(ant depiet ion iii state sj ace (coverage. The average CEP for

this test wAas 0. 4284. but miore important concl usions canl be drawn bY evaluiat ing thle

CEP time historY for- the r1in. At lpoints the C EP drops) to arouind 0. 1 ni.l however the

tong-period variations [)o~eteei 0.07 inl and 0.85 iii shou w t hat t he filter Is niot t racking'

thle true p)ositionl at all. 1)1ut instead pro[pagatinug t-le poste'rior aQ('orl i mug to the uIitlotill

model . Featurie observa tionls did lit tie to affec't time [posit ion ('Stinmiate as it sonlietillii('

wandered (lose to time t rue posit ion bu t thenr drifted away. If the a(ciiracv of thle

agent imeading est imnate were ca ltulre(I. it woulmd likelY reflect a (tifference inl t he true

and estinmated agent heading t hat reflect poor state estjimliate dlespite (lose prOXIlui tY.

Though somue (liversit v wouldl be recovered as lpart ides propagated ac(ordling to a

stochastic represenitatioii of uincertaiinty' iii the mnotion i 110(1(, it is reasonablel( to as,-

stune t hat this pro[)agat loionma~y mnot have sufficient lY rec'overed ltime loss iil state space

coverage caused by resamipliimg. wh'lich ca usedl the p~art icle (Irift . a loss ini accmirat'v.

and CEP instabiltfY.

4.4.1 FastSLAM 1.0 with Regularization

Figure 4-7 shows [time result of a siump~le regumlarizationl mmethiod addled to the Fas'tSLA.NI

1.0 algorithim. The average num nber of pairticles remuainedl at 200 for thli duration of thue

sceniario since SpreadX readj ustedh everY parti('te accorch ulg to a set of kern ets. There

was a considerable drop inl position error' at time 0. 1 ili RN S nieasi'meinet nioise level.

though-1 it is unclear wh~etther the inc'rease ill particle (liversit\. was tHie sole ('amuse of'

the increased estinmation ac('mracv. There was only~ a slight reducm(tionm ill average CEP

gained at thme 0.001 inl RM S mneasurenment nioise level wimlemi a real I lariza t ionl illet hod IS,

addced. M ore importantly, short periodl adjuistuments inl the CEP reveal a scii~sitivit~v to

ineasurenmemmt information muot evicdent iMi the CEP results for FastSLANI 1.0 wit'hiomit

regnilarizat ion1.
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Estimated Position Accuracy and Number of Unique Particles

0.8 CL Algorithm:

"E a FasISLAM 1.0 + No Spreading
SRobot Speed: 0.62832 (m/s)

W ~ Measurement Errors:

"1-0.6 Range rms (m): 0.1

w Bearing rma (deg): 1
wUa Robot Motion Errors:

A.. Angular vel bias (deg/s): 2

004 ' Angular vel st: 0.01%

C Speed bias (m/s): 0.05

'" Speed sf: 0.05%

w . Avg CEP: 0.3034 mLu0.2 E
* U a " Z Avg number of

Sunique particles
a 0 0 a after resampling: 40.5

"0 T0 20 30 40 50 60
Simulation Time (sec)

(a)

Estimated Position Accuracy and Number of Unique Particles
1 -- 200

Algorithm:
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Figu ire 4-6: FasrSLA I 1.0: CEP and diversity for single rum at ramne ineasiureient
NILS error of 0.1 in (a) and 0.001 in (b).
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Figure 4-7: FastSLA* 1.0 with Rcgularizaition: CEP a(d diversity for single run with
range measureiieut RN[S error of 0.1 In (a) al(d 0.001 11i (b). Regutlarization provided
a slight improvement in CEP at both ineasurenient noise levels.
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4.4.2 FastSLAM 2.0 Accuracy and Diversity Analysis

Sm-itchii g algorithms to PastSLANI 2.0 dlemonstratedl thle effects of a more adlvancedl

prVOoposal (list ri hilltiohl oil p~article dIiversify and fitter accuracy, withI results shown in

figure *4-8. At the 0. 1 in PAlS range measurement noise level, FastSLA NI 2.0 witffi-

a it regul arizat ion yi e[ldedt a not icalI e ilpnw)oelnelt jin accnmv froni FastSLAN 1U1.0

aiiand ai liiiit ioiial increase in average lminull.er of particles a fter resainlplin1g. This wXas

expct et ,1 as Li terat ire testifies to an1 iimp1 roved posterior estimlate over the standa~rd

Rao - B ackwel Iiied lparti (le hL ter. However, testinrg the algorit Inn againi at the 0.001

ini 13NIS iimeasue~im it level resultd in a (listllia ug los of' accuracy near thle end of

lie r-ilti. Since p)roniounced p~ositilon tracking losses happ~enedI suldd enly, a reasonab~le

ex plamiationl couldl inivolve [)ooi p)ropagation effects at thiis mleasuiremlent 1noise1 level.

fit oiigjiiil FastSLAN, p)osition tracking errors happened gradually, as a result of

drift . Conhversely. errors ini PastSLANt 1 20 happen suddeinly, likely not from a gradual

I )ropagatioli a)way troin the true meanl but an erroneous propagat ion altogether. Since

iieasu reiieiit in~formiat ion was inicluded] in p~roposal calcuilat ion, the algorithinn could(

halve niade large (hata associationi errors t hat lert to rap~id deviation front thle prior

vi's inia te. Figure 4-9 shows thle FastSLAN I 2.0 posterior after t he 60 second scenario,

h1111111ing) matppedl land ilia rks'. at two levels of range illeasurenient iloise. FastLA NI

2.0 e'xp erien~edl a h~reakdowii inl overall posterior accuracy at the cud of the scemiario.

figu re 4-9(b), as soiie particles made correct data ass)(iat ions aild rernahlo cl~ lose

to the t rue agenlt p)osition and other particles incorrectly associatedl measurements

to false landmiuarks. As is evidenced in this more detailed vJiew of time filter lpostc-

nior est imiate, FastSLAN 1 2.0 nav have had a. reasonab le chailce of cemovering~ to anl

ac curate posterior estimate at a later p~oint in time, buit only if omore correct dlata

assoc iat ions were made aiid erronieomus hypotheses eliminmat ed. Because of fthe Ide aYed

decisioni imakinig inherent ill the FastSLANI structure, a 60 secohld SLAM scenario mlay

niot eiicapsnilate a loge term romsns htcudemerge wit inore loops arountd

thle clvi rominent. Neverthmeless, it is impjort ant to characterize time t rue lperformiance(

of this Otter since soiime engineering app~lications may call for provein stability over
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Figure 4-8: FastSLANI 2.0: CEP and diversity [or single ru i at ran ge measttre nt('nt

RMS error of 0.1 in (a) and 0.001 n (b).
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posh)S1I ) long" t (1.11 accurlacy.

4.5 Monte Carlo SLAM Performance Analysis

lIn order to I et ter (llairacteri/,e the average behavior of thle filters and regularizat ion

nile thIodls (-o([led for t li a navsis, = Ma N oie Carlo r-uns wecre perufornmed for each hI ter

antd regi i lariza tion method. Each of tile three filters were-( tested first w'ith111 t regil-

Sa izat jolt thi el in a Iiarriage wit Ii eac 4o tihe four regulIarization mnet hods, gi ving a

tota of 15 p)0551 lle (onll)illatiolls. In addlitionl, each of' these (onliiiiatiolls- wvas tested

at 15 differenit rainge ineastureit RN IS values fromi 0.W to 1.M mn. focusing on thle

fol low"itg pe(rformlan~e treli(s:

1. The overall effect of' regul arizat imn and the average performnanice of each regnl-

lali/at-ioil Illethiod.

2. A comiipa risonl of' the accuracy, providled by t he t hree filter typ~es

3. The t reild ill agent position accuracy for each filter-regniarizat ion combidnat ion

a'S iie1iieiitioise is redulcedl to the point where pJarticle depletion occurs.

4.5.1 Filter Performance Results

T he first set (if NMonte Carlo runs coilipared the perforillaice of the three filters coded

[orI t his ercsabhsenit of ainy regularizat ion algorit hnis. R esults are given ill fign re 4-

I 0. As ranige llleasitremlelt RNMS error is reducedl, average CEP for each applroachl

(h101) as e )ece(lv bit then increases drainatically at the lwevst W\ IS erro levels.

Evenu PaSLA NJ 2.0. though it nmainained accuracy to a lower RMS level t han the

oth1er filters, ine1( apJoint at which the the inotion-semlor inisnmatch causes~ thle ad-

verse propagationi and instability mntioaned earier. One surprising result is that the

Au xilIiary particle hilter 1)erfoirnwd~ lunch worse in this scenario t han tile origihal Fast-

SI ANI a Igoritini. It seemns that tHis inethod. was far mnore snscephtble to the efc~ts

of' particle drift dlespiite tile inclusiomi of an addit~ional resalnlli ng step. One possible
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Robot, Environment, and Estimated Posterior after Resampling, t = 60 sec
to
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Figure 4-9: SLAM posterior estimation with FastSLAI\[ 2.0. At very low measuremelt
noise levels, substantial ('rrors ii the estimated posterior are iioted (b).
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Position Accuracy with Simulated Measurements Position Accuracy with Simulated Measurements
FasISLAM 1 0O +-No Regularization FastSLAMv 2 0 No Spreading

.0 no1 0 0.0

0 i 04 0,4

0

n0 MO4

o 0E o30.

Measurement Noise (Range) (in) Measurement Noise (Range) (in)

Position Accuracy with Simulated Measurements
Auxiliary PF +No Spreading

0

0 Q o 4t

0 (040-
0-

10a to100

Measurement Noise (Range) (in)

Fiire 4-1-W.- A velage filter C EP anld 95(X c-onfidenlce intervals for %Talous1 B ?\IS -.a
si I reinlei iti(i5'lsev'.

eXpki a at ioil1 is that the r-esamp )1ing step b~efore part icle p~ropagat~ion, though it mray in

som le eases increase th e chaiiees of particles Jprom) ~gt jug t aiire favorablc egi

for. mi por-taine welight calcuilat ion, redIuced particle diversity to an even greater degree

Hiai ini a st anl( flarch paýrticle filter. Evalhuating an isolated case, shown ihi figure 4-11,

rex'eais ti ta the aldi t ionlal resampling step did in fact prioduct(, an accuirate posit onl

esli i iiae for the first half of the simulation. Event uallv. however, t his hfiler dri ftecd

5)1 hsst antiahly front the trule p)ositionl. It couldl be that. as- In FastSLANI\ 2.0, usingo inc(a-

suieiueii t iinformnatlonl iii particle propagation resul~ts inl A proposal dist ribhution that IS
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Estimated Position Accuracy and Number of Unique Particles
1.8 1200

1,6-

Algorithm:
-14 -0.

E E Auxiliary PF + No Spreading
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go Robot Speed: 0.62832 (mn/s)
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SRange rms (in): 0.001
0
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0 Lý Robot Motion Errors:
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Figutre 4-il: AuxiliarY Particle Filter: CEP awld (liVerSitV for Sill-gle ion. Ranlge
itteastireniu tet XIS error of 0.001 lit.

more1 susceptible to thle adlverse effectS of data association errors. Unlike FastSLAM

2.0. however. particles Iio ani APF are not Ilire('tlY drawn the [prop~osal that inicludces

the-se associationi errors, leIttinga the omint iple hy~potheis1- property e\'enttnathY ehimnuatc

bIadl particles. histead. the AuitxIliar~y particle filter uses mneasuremnent Hi forniat iou to

trini the Size of' the proposal; thtus the effects of (lata association errors as the~y Shape

t he filter p~roposal at each time ,I e) cant tnever be und one.

4.6 Regularization Performance Results

4.6.1 SpreadX Parameter Selection

Since the Spi ea(X regularizationt algorithml utilizedl alt em11pirically chosenl iaratnieter.

(or kernel generat ion. a set of M onte Carlo runs asperformecd to deternilne the o1 )t i-

tinal Jparaineter for this SLAMI sceiiario. Table 4.5 Shows avelrage0( CEP for paraineter
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P egilaiiatin Rage PMS ýError, (in)
Paraimeter, A (mn) II 0.001 [ 0.01 . .

0.05 0.5008 0.3110 0.2884 0.3786
().1I() 0.4288 0.3023 0.3022 0.3710
0.15 0.4314 0.3182 0.2948 0. 3467
0.20 0.4024 0.2990 0.2927 0.3408
0.25 0.4141 0.3040 0.3016 0.3517
0.30 0.4296 0.3054 0.3009 0.3413
0.35 0. 4686 0.3281 0.3062 0.3447
0.40 0.4624 0.3341 0.3210 0.3576
0.45 0.4445 0.3104 0.3104 0.3.502
0.50 0.4410 0.3567 0.3143 0.3625

Tabl e 4.5: Sj rea(IX regniarizat ton Iparamieter (determiniation., using average CEP (inl)
of, [(00 Mon t e Ca rlo r ins'. R esul ts show A =0.20 nm to I )c the optlimal valume for this

vidies I etweeii 0.0.5 inl to 0.5 ili, wit ii the best performance at each noise [level from

A -0.2 iii. Tbhis reguilarizatioii p~arametier value was sublseqjuenitly chosei for ('ach

miliiplel icmen atloll of SprencdX for this anualysis. Figure -1-12 shows the result of a M ointe

( anl() lpeif( )iil iee imalysis uisinig FaistSLA NI 1.0 aud( each reguilarization ine(thmo(l from

table 4.4. Desl~ ii teh le variety of app~roaches enmployedl by t be (differenlt reguilarizatioui

algoni thins, thle oii[y inetitod wvithI anl impLrovemenet inl performnicie at thle lowest miiea-

su reni let iloise levJel was the Spread X algorithmn, usinig a hixed-Gaumssaiai kerniel. All

oither uiiet h 1(1 prodbmcedl mean C EP valuies comp~arable' to or greater thtan tilie basiC

FastS LA NI filter at ecah isolated mneasurenment noise level. This Is, Init iallys u~~r

Imig. (oiisi( (TinLg tHaIt Splea~cdX is the miost basic of all tested regni anization nmethodls

aimtl does nlot iinvolv/e a coimiplicated, (derived p~aramneter for kerntel genierat ion. The

b ackbIoine of thle Sprca IX algori thinn, and possibly the reasoii that it fared well iii this

aualviai aim emiiirically (chosenmi(nstanit regumlarization kernel. By test ing manYfl

possibl e vaýl imes anld arriving at an optinial spreadling [paramueter for this scenario.ý

Srea IX i ntro(dIuiced a proper aniounit of diversity for this eliviroimnulent conhgn"'ratioui,

imea1SUPiiriieiit iiaslel anld agent miot ion charac(teristics. Also. SpreadX injects a guiav-

a iiieed anion uit (if (diversi ty into thle posterior dlist ri hi it ion, w~i le inl other algoritim is

thie aiilouiit of Ii vers"i tY is variable audl may not be sufihcieuit ini soimie cases. For iil-

stamice. SpreadX2 adj nsts resamnjled states with kerniels that depend onl the --stack
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Position Accuracy with Simulated Measurements Position Accuracy with Simulated Measurements
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F'w~ure 4-112: F'astSLAM 1.0 with four different reg(Ilan/zationl alg-orithmns. Average
CEP and 95V colfidence intervals for variolls IR. IS nIcai .IreInciW't toise levels.
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height" oF jpart ide sets. In the situoat ion where measuremients are n~ot associated with

any previously iiia[)Iped landmarks, all padrticles receive equal weights, and the(, effect

of the regum larizat loll algorithm is minimized. Incidentally. in eases where no existinog

Ia 11(111 arks are observed and new featuores are being nmappjed, more diversity should

he recovered through regolarization tii orderI to keep thre uncertainty of these newv

landxl mark p)ositiolis high. This would give the est imiation rouiti ime a greater chanice

at ('aloing loops and recognizinig [previouisly mapped featuores. It is highly likely that

lie hfittr posit ion estimlate could drift away fromt the( true posit ion before mnappi 1w

miew feat ores. W\ith an1 aceurate sensor. these new features are i init ializel with undui e

[)osi t i( Ii ((rtaiilt- iumi less a reasonable amounit of (diversity is kept. SpreadX mainl-

aimiis a larger aimiomulit of diversity iii this sit oat ion thani the ot her methiods., since the

particle (1011(1 is not allowed1 to converge below a certain RNIS (distancee. Nonetheless.

regi ilarizat ion itself does not appear to increase filter accuracy In ally case but the

imost severe inisomlatch l)etweeli miotion and sensor noise levels. Average CEP val-

itce, for PastSLAN 11( witliout regumlarization are, for the most part, better without

regul larization at eývery other nineasoreinent noise level.

4.7 Markov Chain Monte Carlo (MCMC) Analy-

sis

Sitnec thme Nlarkov Chain M\ onte Carlo a~cceptanice criterion (-an supp~lemiemnt any regu-

larizat ion algorithim, it was ap~propriate. to test this algorithn wvith each of the four

s[)meaclding inethods. Because of its solid theoretical foundations, it was expectedi that

lie inc hmsiom (of this, criterion tin any state adjustment would only implJrove the average

CIEP of tIt(e filter p~ositioni estinmate. Table 4.7 summarizes the results of a Mionte

Carlo anialysis with average CEP at four different measurement RN IS error levels.

Perform ance was Iimplroved for SpreadIX2, SpreadX3, and thie B.PE met hod., hut only

at (t(li lowest and highest mecasuirement RNIS levels. No improvement in SpreadX

1)erformlaulce was offeredl by the NICMIC step. Again, this result is siirprising givenI
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Regula oriZa tio ange RM\ S Error. (mn)

Algorithmi 0.01 00 . .

SpreadIX 0.4024 0-.3040 0.3016 0.3467
SpreadX +i NICMC 0.4586 0.4011 0,2968 0.3744
Spre(adIX2 0.4852 0.3197 0.3015 0.3576
SpreadX2 -+ \ICMC 0.4395 0.4197 0.3022 0.3285
Sprei7ac IX 3 0.5682-0.-3651 0.3-1441 03 63 3
SpreadX3 + MCMNC 0.4756 0.4526 0.3170 0.3396
RPF 0.4 778 0.3191 0.3070 0.4214-
LRPF-FNf C0.26 0.3254 0.3082 0.3671

Table 4.6: MOICC criterion pe(rforIIIance'( anailvysis for FastSLA\ [ 1.0 and various reg-
uilarizat ion methods. Average CEP values (nii).

the fact that the M' arkov Caimn Nl.onite Carlo algorithmi theioretically p~rovidles for the

convergence of a reguilarizationi inetho(1 to the optimal Bavesiaii po'sterior. As inI the

case with the niore adlvance( regiilar~iation mnet 110(1. it could be hypothesizedl that

the MCNIC criterioni restricts the recoverY of diversit~y inI time filter p~osit ion estilMte

after resainphngi., as Jparticle~s are o-ilv mnovedl prov~idled th1ey imeet a strict selectioni

criterion that involves ai currenlt fea)ture ineastireinent.

\ICMC restricts particle aidjuistment baseýd on the current measurement, thus

one possibility is hat incorrect data association between ineaisuremnenits all(1 feat ures

could keep) the regularization inethodl from recovering p~article diversity lost InI resamnI-

pling. As inI time case where incorrect data association aidverselyv affected proposal

propagation inI FastSLAMI 2.0 and the Auxiliary lx-art ice filter. using mneasuirement

information to restrict regularizationl couldl potentially weaken the filter III cases of

particle drift where estimated fea,ýtutre location~s are. in fact erroneous.

4.8 Performance Summary for Filter/ Regularization

Marriages

Table 4.7 shows comprehensive resuilts of N lonte( Cairlo anialys,ýis of each algorithiii

developed for this exer~cise. including marriages betweeni filters and regmbiarizatiomi

atgorithins. FastSLAN 1 2.0 without regularization produlcedl optimal filter CEP p)er-
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Mleasureiniint Range RAIS Error = 0.001 in
Fiter Type I No Regiilarization SpreadX SpreadX2 SpreadX3 RPF

FTistSLAM 1.0 0.1596 0.4024 0.4852 0.5682 0.4778
FastSLAM 2.0 0.5t23 0.5852 0.5196 0.5832 0.8589
Auxiliary PF ( 0.6199 0.7474 0.5812 0.5930 0.6150

Mleasurenett Range RNIS Error = 0.01 in1
Fitter TypeJ No Rlegularization I SpreadX I SpreadX2 fiprea-d-X3 Rli4

FastSLANI 1.0 0.3050 0.3040 0.3197 0.3651 0.3191
FastSLAl 2.0 0.2419 0.2570 0.2621 0.2533 0.2653
Auxiliarv PF () 0.5315 0.5467 0.4714 0.5289 0.5183

hlasur('ement Range RMS Error= 0.1 in
iltr Te Io egiarizatio SpreadX ] SpradX2 [ 1d

VastSLAMI 1.0 0.2939 0.3016 0.3015 0.3144 0.3070
FastSLANI 2.0 0.2452 0.2802 (.2506 0.2598 0.2958
Auxiliary PF 0.421 4 0.4321 0.3970 0.40(87 0.3993

Mleasuremeneut Range RNIS Error = 1.0 1nFilter Type No RIegularization I SpreadX SIreadX2 [ SpreadX3 RPF

FastSLAMI 1.0 0.3463 0.3467 0.3576 0.3633 0.4214
FastSLANI 2.0 0.3161 0.3864 0.3146 0.3153 0.6807
Auxiliary PF )0.5116 0.6642 0.4886 0.5208 0.4888

TaLile 4.7: Average CEP values (m) for filter-regularization marriages. Bold values
ilt(licate Sigilifi(&alt results.

forthmale(' at all ineasu rem'ent noise levels except the extreme cases of (.001 in and 1.0

i R-IS range error. In these situations, other algorithlns produced better results.

As explained previously, FastSLAMI 1.0 with the simple spreading routine., SpreadX,

provide(l a 111u(ch lower C"EP thai ainy other algorithum. At 1.0 in R..IS range error,

FastSLANI 2.0 with SpreadX3 provided the best average CEP, but the 95( confidence

intervals for this result (do not sul)port significance for this conclusion. thusi the result

is iiOt l)olde(l in the table.
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4.9 Summary

It would he interesting to p~erform ln is analyvsis of SLAM algorithms withI a more

diverse Set of jperforniance inet rics t hani si mply) t he CEP of' the [positionl estimate at

each time. A lot -ould b e inf[erred by evaltia thi g the error in landmark position,, at

ýertaiii key moments,, suchi as when the filter in aps a previously mlnileece(tedl Featurie. Of

ýotirse, altering the SLAMN envir-onmlentf Ih ( hanginmg thle posit ions., aunl relatixe spaci ng

of landmluarks, giving thle age~nt more or fewer anchior features. or simply changing t le

(-onlimnanded robo p lathi -oulld 1have a profom 11und i)mp t on f lie performance of each

filter and regu larizat ion sc-hemne.

In some xways it is relatively difiMit to i mmprove upon the accu-tracy of' a SLAMN

filter once lanmdnarks have been mnappedl with] er-rors. As landmarks are inapped, tihe

filter will defauilt to thiese locat ions whlen Iperforimilig (data association. If the filter is

already experiencing part ide (liift , laimdmnarks wvill be plac-ed in ba Ily skewed positions

andloo 101)cosure will becomeic ( iffic nilt.

BY recovering saumple diversity t hn )gh particle readjljstnxleltý regidlarizatmio canl

acid additional uncl(ertainlty in the estimimate of agent [pose locýation, esJpecally wvheni

particl1e adjuistnments are based onl a fixed kernel. The results of' tHie N onfc Carlo ruimms

suiggest that this coim1( be one way to keep) ti e filter from lockin1g onl anl erroneous

heading and(l ceatinig a skew.ed imap. The effects of thle mmtioiimsmeaslamrc ent accii-

racy mismatch scemiaros reveal aim interesting perforinamice p~aradlox for partic-le filters

when applied to the SLAM I 1roblem. Observations, from uniseen or newly mnapped

features are processed with the same amounit of sensor acc(uracy as well-established

andl acc~urately marked featulres. However, if the estimiation algorithmn IJlaces hull

faith in precise measurements froml new features, it will eventually experience- a loss

in diversity. While in solne cases, snu(1 as the global localization przoblemn where a

xwell esablishled and complete, map is known a pri-ort. a loss in diversity con Id signal

convergenc-e to anl acc(urate p)O&ti0l etinmate. If tihe filtr is tasked withI localiza-

tiomi and imapping! t his loss ii (Ii versitv is (letri iental aim will eventumaIlly lead to the

phienmomena exlperieimced inl this anlalysis.
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R ee.ov('ri.i ig salipie [i versi tv t hroughi regularizat ion. thlouigh it may not b e thle

111 ost op timal or i ni lieiplecl prescri ption, Could help na-unt a il a niecessary iiiicertaiiity

inl thle [oc~at olis of iiew laidi~larks until misucelve nieasuimne~its or observat iii of

well estab~lish ed featli res are obtained. COne possi tble improvemenit onl thle st aiidlard

PasS LAN IMJ1. a igori~f t liiiol MtOM i~ in th is analysis would be to nutjalize i iw Ia ii-

iiark loca tions withI a larg~er (egree of imicertahit~y than jlist thle ii eat re ieit noise

covarna iiee li at rix. Keepiiig niew laiidiniarks more uneert aiii aiild thlien grail ia liv fixi iig

11heir. 1)0511iou as fuirther observations are processed conl] be onle way to keep thle

esi linii~ a Iist erior re'sistai it to thle effects of p~art icle drnift.
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Chapter 5

Experimental Results for SLAM

Algorithms

IIIordgrimo gai bt hetfo iinl er st aurling of the p~erformani~ce of' ft(e FastSLA NI algo-

11[it) Ii i wt Ii i mlroved regiila rizat on, several runis with niimasuiremient iniformiationi fromi

ara IV-won (I SLA NI sceniario) were performied. Ili t his analysis, onlly one( FastSLA NI

biter[ type aid1( regultarizatloll coinbi nation was used lit a sidie-by-si(Ie comp~arison withI

anl ElK S LA NI algoritlimn. The envirolnment for this comparison consisted of five

I~x-slia Id ol )jects si irroinlidjing a 5.1-nmeter straight-linie pathi. A cart cmrrviig ineA-

si l-ireiieiit ccIli iplilieit wals fli i edl alonig this p~ath, pausing every. 0.3068 mneters, for ai

"(11111,01 I iiasi ireineii1t. At the end of tihe lpath, fthe c'art was rotated 90 (legrees, withI

i neisi ircinielits t aken vr 30) degrees. This particular path andl set of inieasureincint

poinits provided for silipIle calculat ion of true positions as a reference for filter (onipar-

isoli. [ill total, tillis set of nieasureineiit and mnotion dlata would shilnate an 18-seconld

SCeiiar~io wvith the agenit advancinig for 15 seconds then~ performing a 90 degree right

tiri.over thle final 3 seconds. Several aissunmptions were mnade to give tile scenlario)

al H1l(re realistic Ii ia] tvy. First, a motion model was developed that wonuld mnat cl

(hamra('terist ics, of a robot advancing along this straight-line p~ath witfh relatively nloisyv

0lou iletrv minornmation. This motion model would be uised ill thle propaga tion step for

b oth Itlie PIKE and particle filter algorit hins, producing a similar situnat ion to posit ion

racmki img ]Ii thle presenice of actual miotion noise. 'Mot ion model paranmet ers used [or
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l)oth Li lgorithniis are iiste( I lbelow for boti tHie tranlslat iou and~ rotat ioni phases. Error

paramleters and( are gu yen iii tab~le 5.1.

Agent Motion Model

Tranislation Phase:. (t =1 - 15) r ~ ýkd

Rotationl Phiase: (t = 16 - 18) 1; Y( ,o jJku)

0.3068 ni/s 0.52,36 rad/s 0.03 nu/, 0.0524 radl/s

Talble .5.1: ý\ otioii lo(lei lparamleters for FastSLA\ 1-EKE comnlarisoni. Only' t wo
mlotion error parameters imne usecd: ski(l errors in tangnial(,J~ anid rotat joiial velocit~y.

5.0.1 Swiss Ranger Feature Observations

R aige and beaminig inea,ýsl iren iet's were coll1ectedl by\ processilig (lata from the CSE\I

Swviss Ranger 3000. a LIDAR nuiagnug0 sys~tem thalt prFovided ahi-rsltohe-

(1 iminiensionial represeuitat ioni of thle eilviriLliD eit . Raw ou1tpu~lts fromnicth Swiss Rangier

lukicl(led the accurate raniges for ever~y pixel wvfit hi tihe helcl of view. By process-

ing these rangues snga nuedian filter andl searching for- large gradlients ini the rangoe

patteriil. individlual feat ures were identlified aul(l tranlslatedl into a rauige. learriflg and(

elevationi relative to thle agent. Sinice ini this sceniario pose awl( lanmicark locationls wvereI

traclke(l in onily two (Iiiliiewisi(is., nlicasureniemits wvere l)r'ojected( on-to a jplaniar environ)I-

minet. Feat ures Iiii this ease were the edlges of objects. sinice these locations, lrodllice(l

the ranige (lifferendces idlentifiedI by the gradienit-hase I featumre extraction techimicine.

For more inforinationt nim the Swiss Ranmger imnagilhg svstemi see [44]. Specifics of tHe

nmeasuirenment noise miodel for the Swiss Baniger auid( feat tire extractioni are listed InI

tab~le 5.2. The effective uncertainities for range ani(l lbearimmg, listedl are for the cuit ire

featurrcextractioni process. They (10 niot represeiit thle noise characteristics of the

Swiss Raniger alone(.
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21D Effective Noit-miiiigtiity Effective Beariiig Effective Range
Field of Viewv [-441] Raiige [44] Uncertainty. RN S Uncertainty, RN S

E= 17.5 (leg 7.5 iii 1.0 deg* 0.05 in*

TI 1e 5.2: Effective measiuremlenit miodel specificat 115ion 1(1d uiicert adciies for the lea-
tile obser'vatio 101 steiii, in(clud1ing Swiss Ranger, anid featutre extractilon. *Valuies are
1H )toxi 1118 te.

5.0.2 Algorithm Specifics

The [c'L K F S LAMN algori t lii u sec illi this analysis was dIevelop~edl a(corclinig to the h~asic:

hanmitiwok dclscril d in sect ion 2. 1. 1, with It 2N +j 3 Ipostecrior staite vector. It utilized

lihe niiaxillitiin like[lihood data alssociationl heuristic with1 a fixed likelihood thlreshold

fo r ilewlatak Imidiiark itnitializatio01. To preveilt fase landiia rl initit alization frorn spurious

ii iasi iretnents, a featutre had 1 o he ob~served twice before inicorporat ion into thle EKE

iiiap. The only nilodi hatjolt to the O MtSA NI algori titti outl ined ciithie. previou s

cJia t er wais th e add ihtoii of thle SpreadX regniarizat ion itet hod (fr a description see

ki 1)1e 4.4I). Tilis partic ilar fi1 er and( regtiar~ization condina)ion~t t rll (t~ cosen 1 )mu se

it c letlotstratet b othI aceltracy aiid rohbust ness with siniitilat ed data., outplerformniitg

all1 ot her com1b i nat ions inl sitnat ions prone to particle deplet iou. Au i ititial particle

dist rihI )t ion was' drawn accorchinig to thle Gaussian paramneteis rep~resent ing thle same

a pc/oct menan and covariance as in the EN F.

5.0.3 Initial Estimates and Anchor Features

The agenut starts fromt fthe samte point for every test, with hiflter a primori estimatles

cIhaniged for comipiarisoni of filter quialit ies. Anchor featurnes are occa-sionally included

ill a1 prLiori pos'terIior' est imuates, the locations of which were (determiiined after proce~ssinlg

lie Inicasureincuits in order to place t hem in favorahie loca tionts for recogli t-iion hy the

Filter aIs it prcse uteastureinents. Each anichor feature giveun was asstnned anl initial

uitttert aiinty RN IS of 0.3 it in hothi x and y directions.
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5.0.4 Performance Metrics

T1he primtary mnet vi for- tins- evaluation wOis posi tion C<EP with Iieslpect to thle t -ic

agent position, but observation of t he ent ire posterior- is 81al)oJplot ted and will be liciphul

inl Iunderstmanding the( strength" msaid (ir-awi )cks of ecwh filter and( whY a certaini filter

lpertorilicr as 'It did for each sitati~onl. Severall jimiportantAo ser-vat lonl' w ere (1e Ili(

vistually as, the SLAM Nposterior- estiniate from cactli bilter tYfp was si iperiuiiposctl oil

the trite eniviroiunient. lit part-icuiur, fthis; bird s-e~cvie (w of' bothi filter e'stimate and~

tint h helps ideiit ify situ at ions where dat a aissociat )ionerr wereI, miiarlc mid( how these

errors effect the [processing of' so )se~picmnt feat ore observa,ýtionS.

5.1 Experimental Results

5.1.1 Scenario One: Position T'racking and Feature Mapping

Figure 5-1 shiow,,s the euxii\ lollnenIt lsed foi aMl tests. as wel clias thle minitial posterior

estimate and uncertalinty for the first exp~erimient. The irottial pose estiniate rcbectcel

onl1Vy slightf inaccturacv inl the (,P71rto no0ti u of agent j)OSItiOmi. With lthe trule p)osi tion

still wN-ell withini the uncertaintY ellipse (l-). -No a nelior fealtlores a-re p~rovicded for this

first assessincuit. which tested pose tracking an1( feait ur uiiappiiig ab~ilit ies gi vcii ai well-

localized initial estinmate. Fi gires 5-2(a) and( .5-2(b) itllustratfe the eiid result po~sterior0

estiniate after, pr-ocessing all moiot mi ad ni1casm mrcui~eimt infonuxatmfiu for the scelmiari.

Notice that the lpathl of the rlead-reckoniiig estimnlate froni lropliatltiui of oclouuutrv

inforniat ion has dieviatedl signlificaiitiv fr-om thle t rue path, While 1bothI filter estiliiates

have maintained a7 reasomiahlv accurate posit ionl est i iiate bY ollappiuig observed fea-

tuires and then adjusting a miotion-based estlinkcat by sumbsequuenit iniasurcuxents of t his

mnap. lIn adiditioni. CEP tinie history is shown for bothI filters and the (lead-reckomliiii

estimate from one realization of the st-ochastic miotioni (figure 5-3). Visual inspectionl

of the estimated posterior lii fig~ure 5-2(b) showys a slight lv skewecd lilap. a lprolmblel

caICof the slightl~y iimferior- CEP perforiamice of Past-SLAINI 'itfiure 5-3.Eal

nation of the landmiark covariances for botli methods showýs notably larger ellilpses
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EKF SLAM with Swiss Ranger Measurements, t = 0

- Algorithm:
7 -EKE SLAM

Robot Speed: 0.3048 (m/s)
6-

Dead Reckoning Errors:
Ang. vel. rms (degls): 6.9282

Speed rms (in): 0,17321

4- Measurement Errors:
Range rms (m): 0.05

3- Bearing rms (deg): 1

Initial Position Estimate
2- Initial Estimate Error(m): 0.27m

Estimate x-y c5 (in) 0.2

0- Estimated Path
-True Path and Envi~ronment

- Dead Reckoning
____Landmark 1-o Ellipse

-2 -*- Position 1--o Ellipse
-3 -2 -1 0 1 2 3

Meters

Figu re 5-.1: Etivironi inett t ruth and i not ml pos est ilnate for S LA NI scenario. INo
at 11 Lior [eat iltes. act 11ae ntial estilmate.

[Or ElK F [at ainuarks, t han wit h FastSLA NI. Thle fundanieitta l- of thle SLAN I probclem,

as i iet jot e I ill sect ion 2. 1. state that landiuark and poseý( uincertainties, are hriulv

linuked. That is, uncertainty inl the pose location at the t une the landmnark inutst he

incltuded inl laitiniark est iniate covariatice. Red ellipses indcicate historic'al covartancee

i'lli pses at eac1 p)ositioln. \Vitli accurate m~easutremients front the Swiss Raiiger, the

sizes of featitire titcertai ntv ellipses inl figure 5-2(a) are anjproxiiiiatel\: the samle size

ais t he agent pose iiicertainftv at t lie t jute they were nmapjpe(. Lifttle or- no additlional

ii1certailitY VI5 add(edl byV measurelnent noise. The tendenicy of FastSLA NI to prLod tlice

a1 false certfaintfy ini Iaidiniark [posit ionms, as nientjotiec hin sect ion 2.5. 1 is not iced iii this

sceitari(o (figure 5-2(b)). Landi uark uncertainty was reduiced to virtutallY zero at thme

('ill of thle test.
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EKF SLAM with Swiss Ranger Measurements, t = 18 sec
8 x Algorithm:

7 EKF SLAM

6' Robot Speed: 0.3048 (m/s)

5 - Dead Reckoning Errors:

! 4Ang. vel. rms (deg/s): 6.9282

4- ~ Speed rms (m):0. 17321

3 1 Measurement Errors:

SRange rms (m): 0.05

2- Bearing rms (deg): 1

1-j

0- Estimated Path
True Path and Environment

- Dead Reckoning-1
Landmark 1-o5 Ellipse

-2' ... Position 1-- Ellipse

-3 -2 -1 0 1 2 3
Meters

(a)

Particle Filter SLAM with Swiss Ranger Measurements, t = 18 sec

X Algorithm:

FastSLAM 1.0 + SpreadX

6 XoL- Robot Speed: 0.3048 (m/s)

5X~ Dead Reckoning Errors:

to Ang. vel. rms (deg/s): 6.9282
4 1 Speed rms (m): 0.17321

3- Measurement Errors:"0)
Range rms (m): 0 05

2 Bearing rms (deg): 1
</-7

0- Estimated Path
True Path and Environment

-1 -- Dead Reckoning
Landmark 1-c Ellipse

- , ,Position 1 -a Ellipse

-3 -2 -1 0 1 2 3
Meters

(b)

Figure 5-2: Final posterior esthnate for ENF (a) anid FastSLA\[ (b) after 18-second
sceinario. No anchor featulires, ac'tlrate hintial estiinate.
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Position CEP: EKF vs. Particle Filter
3-

- Dead Reckoning
EKF
FS1 + SpreadX

2.5

2-

C-
0

0
(IL

0--

Time (sec)

Figuire 5-3: Agent posit ion C'EP time hinstory for deadi reckoning estimate alld bothi

hit er est i mates. No a icitor featuores, accurate Initial esti miate.

5.1.2 Scenario Two: Localization

'i'l( teO1)111 t of eac h hilter to localize given anl accurate all accurate a, prlort tulap \,va

a,,,,(sSese I Lv )roVidill mg echl filter wvithi a full set. of aiichor featuores. The initii al pose

('stlt tt l hwe'ver, wa0s Offset significant distance from tHie triue locat ion. U ucerta ifnt

ill t his esti itia te wvas 5(t at 1 ini (1 a) to include thle trite initial positiolt within the

oovrtatciboumnds. Figure 5-4 sliows both the initiat etivi ronineilt and t lie p~osterior

est i itma t a fter thle hirst niteastretneirt . Whlie individuI al p~articles are tuot iillust ratedi

ill lhe hglttes. it is clear t hat particles in thle initial diisp~ersion locatedi near the triue

est ttat e tuade correct diata associationis with stored landmiarks and1 were weighted

hiptigil. The path est-intate reflects a dramiatic shift ilt the ineati after- this first re-

sampilIlintg step) as particles are repopl~uated to these few (liscrete poitts. FastSLA\]I

te.s )l toie ic qutickly to correct data associat ions and recovered1 fromi poor initial esti-

mimate.

Figure 5-5 shows thme estimnated1 posteriors for the test.. and~ tue EKF was in this
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case uniable to rec'(overI froiii t 1 us poor- initial cstiiiiate-. \\liile uiicert aiiitY (decreased

over the leiigth of the scenario. it (toes not appear that the ELF would have converged.

even with a [onger scenario. The EL F miad e a (lit ical (tat a associationl error earl-y

ini the exp~erimenet. Red arrows (tescribe thins associlatloll, as" feature (lusters Clearly

correspond to other true landmtiarks. The EL F also crea ted additional [ea~tures withI

mieasuiremnents that (differedfom ii any~ stored landmnarks'. Oth[er anchor featuores were

iielver associa te(1 with mineasu renieiits, as their covariaiice ellipses reflec(t the Initial

Siucertainty of 0.3 in. CEP t ime history, for thins sceniario is shown in figure 5-9. The

fuiuidainenltal drawhack of the ELF in this scenario was its iinahilitv to track mluilti[ple

hypotheses of its location. lInstead, it created a map that corresponded with the

poor iniit ial p)osit ion est imuate and a oClata a5500'iatioll error early in the test. These

experinmental results are consistent wvith ot her sources that testify to the strength[s

of' particle filters in tackling fprolbh'lns of glohal localization hased onl aii accurate a

pr~ior map [17. 45].

5.1.3 Scenario Three: Localization and Mapping

The third and fiiial test was d~esignedi to stress the ahihityv of each filter to bo0th localize

b~asedl on anchor teat ure ohservat ions and thlen proceed to iiap the remaining features

ini thte enviromnment. Only thI ree anchor feat ures were giveii. and ouil(e againl a poor

inlitial position estimate was provided (see figure 5-7). Results in this scenario Are

slimilar to the previous experim~enlt. Onice again the ELF algorithnii built a iiiap

consistent wit h a poor iinit ial position. It was able to inaint aml a proper hlead ilig

est im~ate despite mnotion nois,-e, hut theo map estimate is significantlY shifted fronil

the true feature positions (figi re 5-8(a). Again. the rigid relat ionship) hetween pose

and( landmark uiricertainitv Is evidlent. All mnapped landniarks reflect an uncertalinty

simnha to the one( measure nient that was associated withl a known anchor feature.

albleit incorrect [y. A fter that lpoint, there is no apparent add~it ional conivergence, of

either the pose or suhsequent mlappIed landmarks.
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EKF SLAM with Swiss Ranger Measurements, t = 0
8-

Algorithm:

7 -EKF SLAM

6 Robot Speed: 0.3048 (m/s)

Dead Reckoning Errors:
5 Ang. vel. rms (deg/s): 6.9282

Speed rms (m): 0.17321

4 A Measurement Errors:
Range rms (m): 0.05

3 Bearing rms (deg) 1

Initial Position Uncertainty

2 Initial Estimate Offset (m): 1.4

Position x-y a (m): 1 0

Estimated Path

True Path and Environment
0- Dead Reckoning

-- Landmark 1-G Ellipse
Position 1 -o Ellipse

A Anchor Features
-2 -- _________

-3 -2 -1 0 1 2 3
Meters

(a)

Particle Filter SLAM with Swiss Ranger Measurements, t = 1 sec

Algorithm:
7 FastSLAM 1.0 + SpreadX

6-) i Robot Speed: 0.3048 (m/s)

-541& Dead Reckoning Errors:

Ang. vel. rms (deg/s): 6.9282

4 Speed rms (m): 0.17321

(D
3- Measurement Errors:

rFastSLAfM Range rms (m): 0.05

2- recovers from Bearing rms (deg): 1
poor initail

./"- estimate

Estimated Path

True Path and Environment
0- - Dead Reckoning

-t-- Landmark 1-o Ellipse
- Position 1--o Ellipse

A Anchor Features

-3 -2 -1 0 1 2 3
Meters

(b)

Figure 5-4: it ial posterior estimate with poor initial estimate and three aichor

featitres (a). Position estimate recovery for FastSLAM after first measurements (b).
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EKF SLAM with Swiss Ranger Measurements, t = 18 sec

Algorithm:

7 EKF SLAM
Red arrows •;•..

6 indicate Robot Speed: 0.3048 (m/s)

iandmark
5 8assOilalton . Dead Reckoning Errors:

errors Ang. vel. rms (deg/s): 6.9282

4 , A )4 7 * Speed rms (m): 0.17321

S3 -Measurement Errors:

Range rms (m): 0.05

2 ," . Bearing rms (deg): 1

Estimated Path

... True Path and Environment
Dead Reckoning

-- Landmark 1-G Ellipse

Position 1-o Ellipse

A Anchor Features-2 1- __ _ _ _ _ _ _ _ _ _-i-- .. .. .______________

-3 -2 -1 0 1 2 3
Meters

Particle Filter SLAM with Swiss Ranger Measurements, t = 18 sec

Algorithm:

7 FastSLAM 1.0 - SpreadX

6 Robot Speed: 0.3048 (m/s)

5- Dead Reckoning Errors:

Ang. vel. rms (deg/s): 6.9282

4 : Speed rms (m): 017321

S 6x3 _ Measurement Errors:
Range rms (m): 0.05

2 Bearing rms (deg): 1

Estimated Path. True Path and Environment

0- - Dead Reckoning

-1 Landmark 1-o Ellipse

-21

-3 -2 -1 0 1 2 3

Meters

( b)

Figure 5-5: Final posterior estimate for EIKF (a) and FastSLANJ (b) after 18-second
scenario. Red arrows show data association errors of feattire cltusters.

96



Position CEP: EKF vs. Particle Filter
3-

2.5-
Dead Reckoning

FS I + SpreadX

0

0 1

0. -i-

0 2 4 6 8 10 12 14 16 18
Time (sec)

[iI lie !5-6: Agci it posit ion CEP tuime history for dead reckoniiun and hitfer' esi iiia t-es,
poor I Hit jal po5 st il4la te anid accurate initial mlap) est imate. ElKF coiiver()iCel is

liItIIIedi ihv hi i tial p)ose iiiacenrar(cV.

5.2 Summary

Tur e-i i t'- of, t le( xw eiliet denmoistrate tha~t while fthe Imart ice filter and ElNT

cili provide sIlnti ar robulstue-ss and accuracy ini SLAMI cases withi little initial itiucer-

Va i utiv. t le particle hilter approach clearly outpierformls a single-iy potliesis, ElKF iii

cw~cs where the agoent is Init ially p~oorly localized. While a conipreleicisive evaluiation

that wolll1i supp~jort tHe coniclusive acceptance of a particular particle hilter SLA NI

algori t 1111 over EIKF hased alg-ori thins would require results from a br.oad ran~ge Of

seel iarios andl M onte Carlo tests, the single data set arid few variations in this test

reVealeel several basic cliclilsions. First, there are cases where p~article filter SLAM\

Alg"orit lulls and EIKE based algorithins yield conmparable results, b)othi in robust-nes's

amid( genteral aeccuracy. Thec ENE algorithmn has the adlvantage of analytically approx-

Il iiat iiig thle opt imala Bayesaian posterior undler the restrictive assumpI.tionls iieut iolled

ill ch ap~ter 2, w licreas thec particle filter is a sampling applroach that only app)roxiiiiatces
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thle oiptin ial posteri or wh eni p~rop~erly confinHgured. Coiivergenice of' a samlinjl g approachi

will depeiid onl thle iinumber of -saiiiples us.)edý a proper weighting heurist ic, and an

adequate model (f inor io andl sensor characteristkis. aniong other fact ors [I]. Addi-

tionially. thle prinmcipiles bhe inid the hashc EKE SLAM\ algori Vi and it erformianice

have lheei well (Owiilleitedl It is curremntly held as the go] i staiimlar appm)racl to

state estininicatin. xvi ti acelta )ie per lorliiai(' hi (ert ii SLAM situmatVions [18. ~3'.

As evikieit frmWin the resul ts ithis Wsection. t here are also soiiie cases where thle per-

forumamice of t lie ElKF SLAM I agori thin breaks down aiid the FastSLAN I algorithmi

iaI ntAnisaii. aca OCirate est inmate of the rol )t Imsc and laniolnarik loci insm. Fi allv.

the imiproved r obu)istniess ando accu racv of FastSLA \I over the basic ElKF algori thin in

certain sceniarios lies in its a bility to track nmiltip~le hypot hese~s of' time pose locatioiis,

landmark locat ions. anmd dlata associations between landmdarks an 11Ineasm iri mieiits. A

miore inivolved pe'rformana ce anialvsis for each fIltM with Swiss R~anger (lata would have

helped frirn m1any of W mee concl1usions. F-ut ore tests should involve thle agen t miakinug

a. compl~ete loop around thle enivironmieint iii order to test SLAMN filter perforimiance

during loop closures.
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Particle Filter SLAM with Swiss Ranger Measurements, t = 0

Algorithm:
7- FastSLAM 1.0 + SpreadX

6 Robot Speed: 0.3048 (m/s)

Dead Reckoning Errors:

Ang. vel. rms (degls): 6.9282

Speed rms (m): 0.17321

4 Measurement Errors:

Range rms (m): 0.05
4) 3- Bearing rms (deg): 1

Initial Position Uncertainty:

2 initial Estimate Offset (m): 1.41
Position x-y G (m): 1.0

- -Estimated Path
True Path and Environment

0 
_ Dead Reckoning

-- Landmark 1 -c Ellipse

S........ Position 1--o Ellipse

"A Anchor Features

-3 -2 -1 0 1 2 3
Meters

Figure f5-7: Enivirotnmenit truth and initial pose est inate for SLAMI sceuario. iWICCU-
raote iult ial est ituait and partial map knowledge.
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EKF SLAM with Swiss Ranger Measurements, t = 18 sec
8

.- Algorithm:
7- EKF SLAM

X ) :, ,x)

6- Robot Speed: 0.3048 (m/s)

5- Dead Reckoning Errors:
Ang. vel. rms (deg/s): 6.9282

4 -i Speed rms (m): 0.17321

(, Anchor
3 Features Measurement Errors:

never - Range rms (m): 0.05

2 measured" X Bearing rms (deg): 1

Estimated Path
True Path and Environment

0/ Dead Reckoning

___ Landmark 1-(5 Ellipse-t
Position 1-• Ellipse

-21 nA Anchor Features

-3 -2 -1 0 1 2 3
Meters

(a)

Particle Filter SLAM with Swiss Ranger Measurements, t = 18 sec
8

ýX _ XAlgorithm:

7 FastSLAM 1.0 + SpreadX

6 Robot Speed: 0.3048 (m/s)

5- Dead Reckoning Errors:

Ang. vel. rms (deg/s): 6.9282
4 Speed rms (m). 0.17321

"K1x Measurement Errors:

Range rms (m): 0.05

2 Bearing rms (deg): 1

Estimated Path

True Path and Environment
0 - Dead Reckoning

Landmark 1-a Ellipse

Position 1-- Ellipse
A Anchor Features

-3 -2 -1 0 1 2 3
Meters

(h)

Figure 5-8: Final posterior estimate for EKF (a) and FastSLAM (b) after 18-second
scenario. Red arrows show skewed map of EKF froni data association errors.

100



Position CEP: EKF vs. Particle Filter
3-

2.5 Dead ReckoningS. .... EKF

FS1 + SpreadX

E -

uLJ

C
0

o 1

0.5

0
0 2 4 6 8 10 12 14 16 18

Time (sec)

ligtire, 5-9: Agent positilon CEP time history for (lead reckoning and filter estinaties.

poor hiital pose (mestihate and three initial anchor [eatlures. Once again, ElK F conver-
geilc( is lilited b)y iinitiai pose inaccuracy.
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Chapter 6

Conclusions and Future Work

6.1 Research Conclusions

Re(stilts fromi the M onte Clarlo at tlYsis of FastSLAM derivat ives- combined with vanr-

ouis reguliarizationt techniquctes revealed1 a substantial imtprovemient InI saimple diversi tv

ai m]( a((tiracy with FastSLANI 2.() In most situations'. At I hie lowest mteasuremient RAIS

vaidties. wvhere the prpsl pretnamismatch is, most severe. FastSLAN 1 2.0 was

)r( )ict to ousttirb-Ii g lossin C EP pose accuracy. It was in this situtation that Fast-

S LA NI 1.0 wvithi thle adldit iou of a Fixed-variance regulariza tion a] goriftlint. SpreadX,

Mta~tittai t((ld a bet ter e'st imate of ag('ttt pose. The addlition of SpreadX provided a

0.05 111 averiage' CEP Impt]rovemen('tt over thie standard FastSLA.NI algori thini, an1d a 0.1

to CEPP impnlrovemnett over FastSLA NI 2.0. These cotiCI tisiotis supp~lort thle adoption

of' PastSLA N 1.0 with ani em pirically derived, fixed-variance regitlarizatioti algorit hut

over t [he mtore' compJlicated FastSLANI 2.0 ini SLAM sittitatiotus where' roltustneiss of the

Fi 14 (r III t lie p~resence of e'xt remet(ly low nicastiremelit iiois(' Is a pri utarvy performianc~e

CompiI arinig FastSLAMl 1.0 +- SpreadX with an extend~ed IKalmtani filter ini the

satme actuialI SLAM scenario with Swiss Ranger Featuore observatiotns highlighted the

a Ii litvY of ptarticle Filter-based algorit hims to recover from situtat ions of high initial

tticert ntitt. Starting fromt initial poseC errors of 1.4 m.1 1)oth filters p~rocessed feature

ob~l )(vat ionls withi partial or comptl)ete a przort maps of the elivirointient . The H BPF-

103



ba~sed aligori thm recoveredl to wxith in 0.4 in pose CE P byv the endI of thle seenrario.

whereas thIe EKE niairntained a pose error of at least 1.0) iii. These results demonstrate

the flexibility' of an B BPF algorift un and ifs, abili tv to recover accuracy dlesp)ite iniitialI

error by efficienitly t rackinrg miii t ip)le agent pose ihypothleses. This featumre makes it

an ideal algori t [n for esthinmatio in SLAMN situatiowns wvithI of' large or glolhal init ial

uncertainty arid a partial or (imilplete WInta niap.

The exJperinleNts xvM i Swiss BRanger measireriieit s lenuiiist rate t~ lw )i lit ies t hat

SB PP SLAM ajIorit lis ofer in an run knowit environm ien t w\here, convxentitonial lo-

c'ali'zation mrethlods such as C PS are tunavai[able. The statistial ('orelatknio l0tweemi

laiindmark location anid [pose estimriates is clearly evidlent. \\iemi exploi ted, V his corre-

Waion can providle a b et ter sol itori thban suo ii W lad re'ouuui vAn o(Ioiretl' infior-

mnation. The (Irawbacks of thle lpose-lani i [rark stat istic'al relat ioinshipf are also seen.

in the partic'le Biter. cases prm to sain])l iniiilverislinriiei aiid spuriorus landmaraks

('an lplo(hui(e maps that are locally aeemirate. burt badly skewved and shifted fromu thle

true mnap. Cases wilth lioth simulated arid real (data illustrated this effect iii varying

degrees. In the EKE algorithmn. te'stedl iii simiular s'eniarios to the FastSLA NI algo-

riOhin, tins correlation l)'weel jpost(rior st ate's allowedl the sigir hypotHesis ('arried

iii the FixF mean to aecelt dlata asso'i atioli errors'. pr(evenrtinmg it from ('0]nverginig to

the true agent location. The resuult Was a shinfted niaj). offset- h thle inint ial ('stiiiiate'

error. It reflects that a singl-ýe-hypothesis EKE algorithlmi iW SLAM ('ivirmiinerits is

limited ini aeeuraev, hv its iniit ialI pose est imate.

6.2 Future Work

Au encompassing goal of this researeh effort was to thoroughly evaluate the per-

forniance of RBPFs in SLAM enviror inilent S. anid experirient with Soluntioiis, to a

commonly accep~ted fai lure mnode. Given their advantages over die EKE in several

difficult localization problenms and t heir alternlative arid (les('ril~ti ye represeiitation of'

the [posterior distribuition, particle filters hraxve the potent ial to I ecoimie a powerful

estimation techiniquie. As evbncd y tests wvithi Swiss Planger (lata, they prov'ide
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s~it ilali I)etortla ii8CC 10o ani ENKF-baseci algorithmn for pose tracking in a SLA'M environl-

111(1 t. M oreover. other tests revealed the streint s of FastSLA NI hin SLAM scenaros

wvith pomr it t ali etii ats an1 I( igh hit tal pose unicertainuty and1( a parti al envirolnmen t

1imap. Thle exp~erimnent al resuliits for alternative prolposals and( regutlarizat ion techni(liqes

con t a ined iii t his t liess (4o n ot providII a nioteworthyv (851' for FastSLANt 2.0. SpreadX.

or1 att~v ot he(r 8ioii~tht as a (efidit ive sol t ion to samipie i nljoverislnwiet iii partic[e

-ilt('i~s. Howevevr, in Ilighit of f lie restults" front this lijinited suirvey of jimprovemenet st rate-

gies. it (toes seetit relasOtil)lab to conlcilude that thle recent ('Xpoerilietital Aleffrs aimed

atl'I ih the particle depleicton probl)eml are worthy cau ses t hat- xviii hopefully, -withI

tl~l )Ft re(sc1a rCi prov id(e a high ly ad vanicedl post erior estliltat ion techniqui~t e based 011

sd ji enlit a M onte Carlo 111(4110(15. Solvinig the saniple iiilIovrishnleiit failutre niode

()tthIM great-lv exp~and til' liuttiter of 50k/able esti mat ion sceniarios and( Ipoteit iaii v~ielli

0 sit gleC robutst filter' Wxi th t he a ichitect oe to enable aiitoioiioiis veldcle op)eration ill

alitio.st aiiv iiiikitow1i elivirotittient

One o f' thle surp~risitig resul ts fromt t he simulation. phase, of t is l[rolect %as the

fact thmta FastSLANI 2.0 was not. in soillC extreme cases. tlienilt iniate answer to

samtple' imptoverishmtlent. Whvilie the inchusion of feature observation information in

pr(posa11 dev'elopm entf o(loes provid e a marked increase iii post erior accu racy at iiiost

it(leastil'tneitet RN IS levels. tiit tmost miisiia~tched jproJposaI-plorcepul~tIt scenario revealed

dlistutrbin)i g projpagatioi effect that practicaily eLitinitated arny [hosteior tmrcking abi -

ittv. It app~lears as tlhoutghi FastSLANI 1.0, while not as advance-l andl not as accurate

it all situtat ions, provided t lie tmost robust proposal dist rilmI t ion. The particle diver-

sityv recovered by tlie add(it ion of a si-nuple regularizatioii aligorithm~. such as, Sprea~dX.

(-it give t itis simple Wier an increa'sedi senisitivity to featuire ob~servations and greater

io0sftrior aC~ltracy W~ithi the most p~recise nmeasuremtenlt dlevice. Uinfort unately, the

Spiea( X regulariza~tioin alpproa~ohinvuse a fied. emnpriall dlerivedl laratineter andi was

Itierefore tnot as flexible to iniplemenet as other mnet hods A seetoiniigy vworthivhiie eni-

leavor cotutld b e to cotiti ii t a regularization niet hod research effort and develop othlen

anltciitical Soluttion',s to linatch thle accuracy of' thle empirical int ie oth. Perhaps ani op-

ýit iiiat iou formula ishi g (cha racterist ics of the SLAMN scettario cotuit leatd to a miore
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Hexibfle regiilorizatioii mcliniki(ie A hot lo' conisidleratio 101voli d be f( t) i olu'hcl wkithll

ilie regiilarizatioii kernel a palra meter ba)sed.ol intlie' residunal b~etweeni te le (st imated

and( ob~servedl featuore ineasi remneits'. hi other words. spr-eadinhg would he dependent

up1o0n iow Well iileasuriirelnet fromt thle p)ose a1n(1 landmlark est imiates iiiatchi the ac-

t ual observat ions, wvitli less a( j tstirteit for partices that cimoretly predlict the featuore

obs5ervationl.

lIn ordler for FastSLA NI toc(st lilate effect ivlv wlieii 111(051 renlenit 11(1 mnot ion noise

are severely inisniatclied. there slmotd b11le somne waY to i iicora)rte more uincertaOinty'

in landmarks. One( way, proposed hr Noloimenilerlo. is time inlcorp~orat ion of negative

evid ence to eliminate false la ndmatrks: this w'\as ilot used. hNit shon ld he studied. fiirt her

inl situoat ions with low nileasuireimieit noise. Also, landmitArks shiould he initijalized

with moref( Uncetaaintv than jlist what is represeutedl ill measu retoent noise. As was

seen hin several occasions. hoth Iin Hi simumilated eiiviroinient 01 id with Swviss Ranger

ii ea~smreinets, tihe Rao-Dlackwellized p~art i cl filter, iii 01 maping eliviroinehmt . is

pronie to a false certainty iii landmliiark posit ion. T his imlteulsifc(l doato association

errors through the creation of false lanidniarkss. One( way to inct(orporate t his WOniCI be

to iniclu de parameters that m ieosu re plarticle dispersioii inl t ie colci lat ioni of landmlark-

covarialice at it ma liZat io. MAtWo e way' wonld he to iiNWl l an ad hoc crieri

for landmnark initializatkioi, iiai ocl that a p~articumlar landmanork shiould be observed

a defined number of times beflore it is incorporated inito the filter. This featutre

was inclnded in tihe EXF SLAM algorithmn used with Swiss Ranger uneosuremiments in

(lial~er 5.
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