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Abstract

This thesis considers possible solutions to sample impoverishment, a well-known fail-
ure mode of the Rao-Blackwellized particle filter (RBPF) in simultaneous localization
and mapping (SLAM) situations that arises when precise feature measurements vield
a limited perceptual distribution relative to a motion-based proposal distribution.
Ouce set of solutions propagates particles according to a more advanced proposal dis-
tribution that includes measurement information. Other methods recover lost sample
diversity by resampling particles according to a continuous distribution formed by
regularization kernels.

Several advanced proposals and kernel shaping regularization methods are con-
sidered based on the RBPF and tested in a Monte Carlo simulation involving an
agent traveling i an environment and observing uncertain landinarks. RMS error
of range-bearing feature measurements was reduced to evaluate performance during
proposal-perceptual distribution mismatceh. A severe loss in accuracy due to sample
nupoverishient is scen in the standard RBPFE at a measurement range RMS error of
0.001 m ina 101w x 10 w environiment. Results reveal a robust and accurate solution
to saple impoverishiment in an RBPE with an added fixed-variance regularization
algorithin. This algorithm produced an average 0.05 m improvement in agent pose
CEDP over standard FastSLAM 1.0 and a 0.1 m improvement over an RBPFEF that
includes feature observations in formulation of a proposal distribution.

This algorithm is then evaluated in an actual SLAM environment with data from
a Swiss Ranger LIDAR measurement device and compared alongside an extended
Kalman filter (EKF) based SLAM algorithm. Pose error is hmmediately recovered
i cases of a 1.4 m error in initial agent uncertainty using the improved FastSLANM
algorithm, and it continues to maintain an average 0.75 m improvement over an EKF
in pose CEP through the scenario.
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Chapter 1

Introduction

A complicated but inereasingly relevant scenario in robotic navigation and explo-
ration involves an agent traveling without the aid of an absolute positioning system
or an accurate map of the enviromment. To produce a globally consistent map, an
agent must gather information about its surroundings through relative observations
of local features. By combining these measurements with a correct notion its position
and heading at the thme of cach observation, it can create a proper spatial model of
the envirommuent [46]. In a related manner, an agent can use relative observations of
features in the environment to infer position and heading, but only when measure-
nents are correctly associated with entities stored in an accurate a priore map. When
neither the agent path nor the environment map are provided and must instead be
estimated jointly, a unique correlation develops and errors in each state are linked

32].

1.1 Joint Estimation

[ a conventional mapping situation with an accurate position estimate at all times. a
robot will measure the location of different features as it travels through the environ-
ment, storing the positions of these landmarks in an estimated wmap of an arca. Since
the true path is known. measurements between one state and another are statistically

imdependent.  Making more measurements of a state, such as a landmark position,

¥



will ouly provide a better estimnate of the state and will not affect the knowledge of
any other state. When the true path of the agent is unknown and must be estimated
along with each landmark. all states in the estimmation problem become statistically
dependent. Any error in the robot pose estimnate at the time relative measurement is
processed will have a systematic effect on the accuracy of the landmark estimate [46].
If pose error is not mitigated with the measurement of a well-localized landmark or
an absolute position reference. this systematic error in the map will build over time as
control errors accuinulate. making it difficult or impossible for the agent to produce
a consistent map. Au illustration of this dilemma is shown in figure 1-1. An agent
starts from a well-localized position and measures a feature in the environment. At
this point. all other features are unknown. With an accurate estimate of the agent
pose at the time of the first relative observation, there is little dloubt in the location
of the landmark. Over time, robot control errors lead to an increased uncertainty
in agent pose. Statistical dependence inherent to the joint estimation problem leads
to increased uncertainty of future landmark positions, denoted by larger red ellipses.
Both the problem and approach involving joint estimation of agent pose and local
map are referred to as Simultaneous Localization and Mapping (SLAM) [11. 32] or
Concurrent Mapping and Localization (CML) [46, 45]. SLAM estimation algoriths
take advantage of this statistical correlation between pose and landmark wncertainty.
When the agent observes and correctly identifies a previously mapped feature, shown
in figure 1-2, the agent position error is corrected. Because of the statistical cor-
relation between agent posc and landmark position, the uncertainties of all other

estimated landmarks are also reduced.

1.2 SLAM Applications

In many navigation situations, a full SLAM solution. both agent pose information
and local landmark positions, may not be necessary. Obvious circumstances include
many aerospace or open-field environments with unobstructed access to signals from

Global Positioning System (GPS) satellites, views of stars contained in a star tracker

13
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However, the benefits of SLAN

Figure 1-1:
database. or any other absolute referencing system [11]. With the increasing avail-

ability of high-resolution satellite imagery, detailed maps of observable features can

be provided as an additional absolute reference.

algoritluns extend beyond the striet pose-and-map estimation explained previously.
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Consider a robot. vehicle, or even a human traveling through an urban environment

cquipped with inertial measurements from accelerometers and gyroscopes (INS), and
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Figure 1-2: The agent makes one full loop and returns to a previously mapped fea-
ture (a). If a correct assocation is made between a measurement and a previously
observed landmark, overall nncertainty in the agent pose and map are reduced (b).

a suite of other measurement devices designed to augment inertial measurements:
Doppler radar, wheel encocers. GPS, or an image-based pseudo-inertial measurement
systenr. Of all the measurements in this system, only GPS provides an absolute po-

sition reference. and in an urban canyon this signal could be intermittent, reflected

20



by buildings (multipath). or completely blocked. During GPS outages from blocked
signals, a vehicle interested i self-localization must continue to navigate using only
relative measurements of rotation, velocity and acceleration from the other devices
[L1]. Ervors in these measurcments will quickly propagate over time since parameters
must be integrated to determine the agent pose estimate. Unless an additional con-
strait is added to certain parameters of the navigation filter, ervor will grow without
bound until another absolute position fix is obtained. Ln this scenario, a SLANI-based
approach may help preserve the integrity of the navigation systein during long periods
without GPS measurements. Mapping local features with accurate GPS-determined
path information will create a database of landmarks that can be used to maintain
an acceptable pose estimate when GPS signals are blocked by natural or manmacde
obstruetions [L1]. Indoor environments, on the other hand. completely prevent GPS
signal positioning, and in some cases an aceurate floor plan or map of the building
mav not be available. Navigation in unfamiliar buildings with the conteniporary mea-
surement suite deseribed above would be next to impossible unless a map of features

is estimated along with the agent pose [1, 32].

Robotic platforms are now sent to the frontiers of exploration as advancements in
structural techmologies and design permit robust operation in austere environments.
These areas, where prior maps are too difficult, costly, or dangerous to procure,
present soute of the most promising areas for the implementation of SLAN-based al-
goritlhuns [32]. Particular target cuvironments for SLAN approaches include undersea
autonomous vehicles, robotic exploration of mines [30], and autonomous navigation
o extraterrestrial planets. In general, independent localization and mapping is a
necessary prerequisite to completely antonomous operation of mobile robotics in any
situation.  Currently, mauny advanced estimation algorithins exploit the fexibility

provided by an implementation of a SLAM approach [47].
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1.3 Bayesian Estimation

The most widespread and successtul braueh of SLAN estimation algorithims cmploy
probabilistic techniques, meaning that thev estimate a posterior probability distri-
bution over all possible maps and all possible poses [39, 46]. Each agent control or
cnvironmental observation can be thought of as a probabilistic constraiut [32]. This
iniplies that the set of all possible agent poses at any time is reduced as more informa-
tion is obtained about cither the robot™s motion or its surroundings. In the linit of an
infinite amount of such mformation. the set of all possible SLAN posteriors converges
to one agent pose and one map. Baves™ theorem is a recursive formula that incorpo-
rates sensor and control information to adjust the posterior probability distribution,
accounting for any measurcments that are available at a given time [14, 32, 39]. In
this respect. Bavesian estimation in its purest form is a Hexible estimation architec-
ture that can update an estimate with any information that can be mathematically
related to the posterior. Additionally, the recursive nature of Bayesian estimators is
ideal for online applications. Since the agent pose and map estimates evolve from
the posterior at the previous time step. all other past estimates can be forgotten.
Finally, Bayes™ filter can be used to estimate a state of any size, restricted ouly by
the computational limitations of the navigation computer. Unfortunately. the esti-
mation integral forming the basis of the Baves™ filter cannot he computed in closed
form [14. 32]. Many Bayesian algorithins solve this by restricting the form of the
posterior, motion model or measurcment model. Others employ alternative sampling
techniques to approximate the Bavesian posterior without making these limitations.
Two popular SLAM algorithins that typify each approach arve the extended Kalman

filter (EKFE) and the particle filter.

1.4 EKF SLAM

The Kalman filter is an optimal Bayesian estimator that operates under the strict

asstmptions of a Gaussian posterior probability distribution and linear motion and
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measurcnient models [320 39]. Linearization of nonlinear motion and measurement
models results in the extended Kalman filter, an analytical approximation of Bayes'
filter. The recursive solution provided by the extended Kalinan filter is sufficient if the
posterior probability distribution for SLAM states can be adequately characterized
by the uni-modal Gaussian parameters of mean and covariance [39, 47]. Uncertainty
inan ERKE SLAM algorithin is stored in a covariance matrix, with not only individual
state uncertainty but also correlations of uncertainties between states. Unfortunately,
i many scenarios a stimple Gaussian distribution does not adequately encapsulate
the full posterior probability distribution. Indoor navigation environments provide
coustraints in the form of physical obstructions or walls. Pure Gaussian uncertainty
implics a small chance that the agent could be inside the wall, or outside the building
in mid-air. In addition, Gaussian uncertainty carries only one mean, or most likely
estimate, for a particular state. In many cases, such as the global localization problewm,
there is an equally likely chance that the robot could be at many points in the
environment, and ecach of these points must be given equal consideration until more

information is gathered [45].

1.5 Particle Filter SLAM

The particle filter is an approach to the nonlinear estimation problem that represents
posterior probability with a large number of discrete, evenly weighted samples [14,
32.39]. In the SLAM case, each sample is a hypothesis of the posterior (an agent
pose and a corresponding set of landmarks) that is propagated according to a motion
model and then weighted based on how well the hypothesis agrees with a target
distribution [32]. The target distribution, in most formulations, is directly related
to feature observations [39]. Successful particle filtering algorithms typically draw a
new set of particles after weights have been assigned. In particle filters, uncertainty
of the state is stored in dispersion of these uniformly weighted samples; a broader
spreacd implies a more uncertain estimate. Consequently, multi-modal distributions

from state constraints or nonlinear propagation can be approximmated easily. An
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example of particle filter propagation is shown in figure 1-3. In this example, a large
number of particles are drawn from the prior agent pose according to a probabilistic
motion mocel representing uncertainty in agent movement. A feature observation
isolates the pose hvpotheses that agree, and these particles are given larger weights.
After resampling. most of these particles will be duplicated. whereas particles outside
the blue ellipse will likely be eliminated. Surviving particles are then propagatec

according to agent control information at the next time step, and the process repeats.

The Rao-Blackwellized particle filter (RBPF) is a specific type of particle filter
that, in the context of SLAM, updates pose information with a particle filter and land-
mark information with a number of low-dimensional EKFs. The distinct advantage of
the RBPF over standard particle filters is that it scales well to mapping problems of
high-dimensionality [32]. It does this by marginalizing the posterior and eliminating
cross-correlations between landmarks [4]. Since each samiple in the particle filter is an
estimate of the true position, landmarks measurenients become conditionally inde-
pendent. Advantages of the RBPF SLAM concoction include the ability to represent
an arbitrarily complex posterior distribution of the agent pose, as well as many in-
dependent estimates of an enviromnent map. As mentiouned previously, this property
may be particularly useful in cases of indoor localization and mapping. Additionally,
the RBPF, as with other particle filters. converges to the optiinal Bayesian posterior
in the limit of infinite particles [39]. As computational power increases, estimators
based on particle filtering will only improve their characterization of the posterior.
Unlike the basic EKFE approach. the computational complexity of the RBPF scales lin-
early with the dimension of the state, allowing favorable application to ouline SLAM
scenarios [31]. Most importantly. the application of RBPF based SLAN algorithis
has demonstrated solutions to two previously unsolvable probleins in robot localiza-
tion: global localization. and the kidnapped robot problem [47]. Both problems take
advantage of the multiple hypothesis nature of the RBPFE to determine true position

under initial global uncertainty.
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Figure 1-3: Samples drawn from a probabilistic motion model (a) with a blue ellipse
representing the measuwrement. In this case, the proposal and target distributions
match well and particle diversity is preserved in (h).

1.6 Particle Filter Limitations

Despite the advantages that the RBPFE brings to SLAM, it also brings certain cown-
plications that are currently difficult to overcome. A particular failure mode for the
particle filter occurs when the proposal distribution (in most cases characterized by
the motion model) and the target distribution (fromn a feature observation) are mis-
matched, usually from an accurate sensor nmeasurement. This scenario Is becoming
increasingly relevant as current trends in inertial systems produce smaller, chip-based
accelerometers and gyvros [11]. Though small and dependable, these systems are often
plagued with crvors. including bias. scale factor. and random walk processes. At the
saie time, measurement devices have only become more accurate and precise, espe-
cially ranging systeins based on Lidar- Light Detection and Ranging. Moreover, it is
generally more feasible to implement accurate sensor technologies than to fully pre-
dict the motion characteristics of a complex robotic platform especially as it travels
throngh an uncertain enviromuent [11].

A particle flter will incorporate accurate sensor information into the SLAM pos-
terior estimate by reproducing the particles that correspond to the measurement and
climinating others. In effect, a particle filter continually builds and trims a set of
individual estimates of the true agent trajectory [32]. With an infinite number of

particles, this frimming of conflicting possibilities for agent position would favorably

]
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resolve the estimated state. In this case. an extremely accurate feature observation
device would be ideal. since. hypotheticallv. there are still an infinite number of parti-
cles preserved in the process. Since practical implemeutations are restricted to a finite
number of particles, this trimming reduces the number of discrete possibilities as par-
ticles are relocated to these few unique points. Coupling a noisy motion model with
an accurate measurcuient cdevice will only recduce the nuunber of unique points that
align with the target distribution. If the diversity lost in this process is not recovered.
particles could eventually coalesce to one single trajectory. Since uncertainty is stored
in the dispersion of the particle cloudl. the filter is assiuning perfect knowledge of the
true state, which is obviously untrue. This failure mocde of particle filters. also known
as sample impoverishment or particle depletion. can lead to particle drift. incorrect
associations between measurements and landmarks. false landmark creation, and a

general loss of pose and map accuracy [16, 21. 32, 39, 41. 43].

In fgure 1-4, particles are drawn according to a probabilistic motion niodel as in
figure 1-3. With a precise weasurement. the size of the ellipse representing the target
distribution is reduced. Ouly a few discrete points now match the highly sclective
target criterion. During resampling. most points will stack to these few locations. In
a way, the particle filter has preveuted degeneracy by relocating and sharpening the
arca of interest. While it is true that the resulting particle cloud will encirele the most
likely pose of the agent, a particle filter estimates a state with discrete samples, not
a continuous distribution. A finite munber of samples means that there will always
be unsampled “gaps™ in filter coverage. Tu a strict probabilistic sense. a finite sample
set also implies that the agent will not coincide exactly with one of these discrete
samples [32]. In order to ensure that the filter continues to converge to an accurate
representation of the agent state, an adequate level of sammple diversity, or unique
filter samples after resampling. must be maintained. If not. the flter is proue to
the many side effects of sample impoverishment listed previously that will cause the

estimate to diverge from the true posterior.
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Figure 1-4: Mismatcll between proposal and target distributions, a consequence of
accurate measurements. Ouly a few unique particles are resampled (b).

1.7 Thesis overview

It is the ahm of this document to explore alternative methods for recovering lost
saimple diversity in Rao-Blackwellized particle filters and to analyze the effects of
increased diversity on the overall posterior accuracy of the algorithin. A literature
review provides two possible solutions.

The fivst approach seeks to prevent sample diversity by adopting a more advanced
proposal distribution than that provided by only the agent motion model. It is the
hope that by incorporating measurement information in proposal calculation, more
particles will propagate to favorable regions for resampling based on the target dis-
tribution. There are several documented attempts at using nieasurement information
to influence particle propagation, with only limited information relating to their per-
formance in a strict SLAM scenario [30, 36, 37, 39].

The second attempt focuses on regaining lost diversity during resampling by draw-
ing samples from a more continuous distribution. Instead of stacking on discrete
points that receive high weights, particle locations are adjusted or “regularized” ac-
cording to an additional draw from a regularization kernel. As a result, regions of the
target distribution are more evenly populated with unique pose estimates that fill in
the unsampled “gaps™ before propagation.

This docwunent presents the results of a research effort to characterize the role of

sample diversity in overall RBPFE accuracy in SLAM scenarios. In addition, alter-
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native proposal distributions are combined with regularization methods to explore
the performance of each combination and to find a robust and accurate solution for

particle depletion.



Chapter 2

Simultaneous Localization and

Mapping

The Simultancous Localization and Mapping problen considers a robot moving through
an unknown environmment. In the most basic example, a robot executes controls and
makes observations about the relative positions of local features, both of which are
corrupted by noise. Were an accurate. detailed map of the environmment available, the
problem reduces to determining the true path by observing the velative positions of
[eatures [46]. Conversely, if the true position of the robot is known through GPS or

sotne other means, a map of the observed enviromment could be deduced using these
relative measurcments [45]. The process of recovering both the robot path and the
cnviromuent map from limited or no initial information becomes much more difficult.,
Pose uncertainty introduces systematic errors that contribute to the uncertainty of
landimark positions mapped with robot observations [32]. Successful attempts at this
problem have taken advantage of this correlation between pose and landmark uncer-
taintv by estimating both states simultaneously [12, 39]. Accurate knowledge about
the position of a landmark will reduce both pose uncertainty and the uncertainty of

other landmarks [32].
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2.1 SLAM Fundamentals

The goal of SLAN is to recover an estimate of the most recent robot pose, s and the
locations of local landmarks. ©. given the set of control and measurement information.
ul = {ug,uy, .. owg}, and 2= {5, 21, .. 2} respectively. This SLANM posterior state

is represented probabilistically as:

(s, 0

el (2.1]

To develop a recursive. optitnal estimator for this problem. the posterior dis-
tribution is modeled as a partially observable Markov chain 39, 13]. Under this
assumption. the present state is dependent ouly on the previous state; all other past
and future states are conditionally indepeudent [46]. Expanding this posterior using

Bayes™ Theorem yields:
plsi Oz, wy) = np(ze| s, ©)plsy, Olzi=1. wy) ()

where n is a proportionality constant. Through a siimple derivatrion. a recursive for-
mula is developed that infers the SLAM posterior at any time ¢ given knowledge of
the state at time { — 1. This elegant and widely used recursion is known as the Baves’

Filter [40]:
P(«S‘r«(')|3[» LL[) = ’77)(31|5/-(“)> /[)(s,|s,,], 11,,)[)(5',,_1,(“)|:,,1‘, U1 )ilsi (2o

Under the Bayes™ filter, the a priore distribution at time t-1 evolves according to

a motion model, also known as a transitional deusity [32. 39. 45]:
[)(.S’/|«S’,,[. Il,/) (24)

The observation model that relates incoming measurements to the evolved state

is given by:

5.0) (2.

o
(2]
o

Pl
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Though difficult or impossible to compute in closed-form. equation 2.3 can be
approximated by restricting the form of the SLAM posterior to a Gaussian probability
density fhuietion (pdf). When the motion and observation models can be regarded
as lincar functions of the current state with with only uncorrelated, zero-mean white
noise. this recursion for the optimal Bayesian posterior becomes the Kalman filter
[3. 18,25, 12]. Linearization of non-linear motion and measurement models forms the
hasis of the extended Kalman filter, an analytic approximation of the optimal filter

for non-linecar situations [39].

2.1.1 Extended Kalman Filter SLAM

The EXFE represents the SLAM posterior distribution as a high-dimensional nlti-
variate Gaussian parameterized by a mean g, and covariance 2, for each state. The
nicatn posterior 1s the state vector in equation 2.8 and coutains agent pose information
(2-dl or 3= position and heading) and the mean position estimate for each mapped
landmark. State covariances and pairwise correlations between states are stored in

the filter covariance matrix, equation 2.9.

ple, Blann) = Nivgw,Xa) (2.6)
g = Taell ] (2.7)
He = s Hoys -« oy, } (2.8)
(B Ba o= B |
o |0 u B (2.9)
26,0,
| 5 S

The Arst step in evaluating the SLAM posterior within an EKFE at any time t is
to propagate the mean agent state at the previous time step according to the non-
lincar motion model h(py_y. w), and propagate the covariance using the lincarized

motion model £ and noise covariance of the motion model F. The Jacobian of the
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nou-linear measurement model g(.y.ny). where o, is the agent orientation and n; is
a data association between the measurcment measurement and a landmark. i1s then
evaluated at the state estiinate g . The remaining equations 2.14 - 2.17 involve the
calculation of a Kalman gain Ay and the application of this gain to the updated mean

in equation 2.16 and the updated covariance in equation 2.17.

i = (o) (2.10)
Py = o o1 o), (2.11)
E = LB gFELP (2.12)
Go = Vag(ren)l,,—- (2.13)
Z = GE G+ R 3, =ulu.n (2.14)
by = ELE (2.15)
iy = Gl = S (2.16)
¥ o= U= RKagRE (2.17)

A thorough derivation of the EKF SLANI algorithm is found in [5, 42]. The EKF

algorithm is explored more generally in [3, 18, 25. 26].

2.1.2 Limits of EKF SLAM

Oune disadvantage of the basic EKEF when applied to ouline SLANI situations is the
uadratic complexity of the update equations. Tn a planar scenario with a three-state
represenitation of agent pose, the SLAN state vector is of dimension 2N + 3. where
N is the number of landmarks stored in the filter inap. Equation 2.17. the covariance
update, requires an inner procduct calculation that will grow on the order of (2N + 3)?
as more features are mapped. Heuce. many online applications with detailed maps
of millions of features cither avoid the basic EKFE algorithm or employ alternative

schemes to reduce this complexity growth. A munber of solutions break a global

feature map into smaller submaps [10, 22]. Updates to features in the global map
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are delaved while the agent remains within the vicinity of a submap. Since features
at opposite ends of a large environment will have little or no correlation, covariance
matrices for high-dimensional maps are often sparse. NMeasurcnient updates to this co-
variance matrix can be processed more efficiently by taking advantage of this sparsity

and ignoring correlations between distant features [2].

Aunother drawback of the basic EKE SLAM algorithin is single-hypotheses data
association.  Data association is a decision-making process in which an incoming
measurenent is either matcehed with an existing landinark in the filter wap or deemed
a new feature. This decision is often nou-trivial in SLAN situations. where pose and
fandmark uncertainty and nieasurement noise can all contribute to data association
ambiguity [5]. In the basic EKF architecture, the filter must pick one association for
a measuremnent, typically with a maximuwn likelihood heuristic, and the effects of an
incorreet deeision can never be undone. Alternative data association methods for ERF
SLANI have been evaluated, with the more robust techniques reducing the chance of
association errors [5]. Still. the inevitability of incorrect associations. especially in a
SLAMN environment where associations are unknown, poses a threat to EKFE stability
and accuracy [31, 32]. Multiple hypothesis tracking (MHT) presents a more flexible
method that has the effect of delayed decision making [38]. Tn ambiguous association
situations, where multiple valid interpretations exist, new hypotheses are created and
maintained alongsicde the original estimate. Typically, these extra hypotheses must
he trimued after future observations to keep the number of unique hypotheses from

erowing without bound.

MHT methods are also essential in order for EKFEF-based algorithing to solve the
global localization and kidnapped robot problems. In the former, a robot must use
an accurate map of the environment to localize with global initial uncertainty. This
problem has significant application to indoor autonomous navigation. The latter
problent is the case when a well-localized robot is teleported unknowingly to a different
region of the map. Both scenarios require the filter fo simultaneously consider many
different posterior hypotheses, giving each equal weight until many observations favor

a single posterior over all others.
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2.2 The Particle Filter

Successful attemprs at solving for the SLAN posterior without restraining its form to
a Gaussian distribution emplov a more recent estimation tool known as the particle
filter. Belonging to a class of Sequential Moute-Carlo (SMC) methods originating
i the 1950s. the particle filter has recently enjoyed attention as advancements in
applied statistics and computer processing speeds have prowmpted its application to
a broad range of estimation problems [8. 24. 39]. Improvements to the basic SNIC
techimiques by Gordon et. al.. Kitagawa. and Liu and Chen in the mid-to-late 1990s
have produced recursive Bavesian estimators with established theoretical convergence
that are no longer bound to the Gaussian assumption of the Kalman filter and its

derivatives [20, 27, 2§].

2.2.1 Particle Filters for Agent Pose Tracking

The particle filter addresses the difficulty of computing a non-Gaussian posterior cis-
tribution from (2.3) in closed form by approximating this densitv with a large number
of cliscrete, random samples [13. 39]. Brieflv ignoring the entire SLANI posterior and
focusing solely ou tracking the posterior distribution of the robot pose, we begin with

the Bayes™ filter recursion:
plae]z’s 1) = npla]s) /[)(.s,|s,_1, w )plse—i|zoy. w1 )ds - (2.18)

An optimal formulation would sample particles directly from p(s,|u,. z) to approx-
imate the pose posterior. However, having removed the Gaussian assunption, this
target distribution may be difficult or practically impossible to draw from directly
[39]. lustead, particles are drawn from a simpler proposal distribution ¢(s,) accord-
ing to an SMC technique known as importance sampling (20, 39]. Weights are then

assigned to the particles such that:

M

Plse|z wp) = Zq(s"‘)u(si) (2.19)

= |
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whoere @ is a set of lmportance weights given by the ratio of the target (posterior)

distribution to the proposal distribution:

Bl ’g(q'()') (2.20)

and then normalized according to:

P
= S @)

(2.21)

where A is the total number of particles used to represent the distribution. Using the
agent motion model plsg|s, -1, uy) as the proposal distribution, the assigned weighting

factor conveniently becomes:

o
]
(RN]

1%(#) = p{z|s)

which in most applications is the agent observation or perceptual likelihood |32,
15, 39]. For a detailed derivation see [32]. Applying this principle to the recur-
sive Bavesian framework results in sequential importance sampling, where particle
weiglits are updated at each time step. The algorithn begins as cacly particle from an
initial distribution p(sy) is propagated according to the agent motion model. produce-
ing a proposal distribution. Weights are then assigned to each particle based on the
agent observation likelihood at that discrete point in the state space. and the process

repeats.

2.2.2 Resampling

Over time, only a relatively small portion of particles in the state space will continue
to receive significant weights. In a localization scenario, these particles would most
likely represent the true pose of the agent. To reallocate computational resources
and obtain a more detailed distribution, resampling is necessary. By drawing a new
particle set (with replacement) from the previous set, with probabilities proportional
to assigned weights, particles will converge to regions of the state space with high

likelihoods. Initially proposed by Gordon et al., this resampling technique, known
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Figure 2-1: The basic Particle Filter uses ciscrete points and SMC methods to ap-
proximate an evolving posterior distribution

as sample importance resampling (SIR) or Bootstrap filtering, produced the first
effective particle filter [20. 29]. This recursion, depicted graphically in figure 2-1, will

approach the optimal Bayesian posterior in the limit of infinite particles [3, 39].

2.3 Particle Filter SLAM

Despite their ability to track arbitrarily complex, multi-mocal distributions, parti-
cle filters carry a pronounced computational encumbrance: the number of particles
needed to track a belief scales exponentially with the dimension of the state. A SLANM
posterior that includes hundreds of landmarks (each a dimension of the posterior)
could require millions of particles to be tracked effectively [6, 9]. A recent innovation
introduced by M. Montemerlo solves this burden by conditioning the SLANM posterior
on the entire robot path instead of the current pose [31]. The basic premise is this:
if the entire path of the robot were known, not just the current pose. a single land-
mark observation would not affect the location or uncertainty of any other landinark.
Consequently, landmark measurements are conditionally independent. All landiark

correlations are ignored and the SLAN posterior can be represented as the product
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Figure 2-2: The factored SLANI posterior: cach particle carries an agent pose estimate

and a map ()[ features [32).

of the path posterior and N independent landmark estimators:

N
i % 0| 5y, ) = 0085 1) H AT (2.2
— 2

- n=l
palh posterior

landmark estomalors

Moutemerlo also illustrates that all update equations for the filter will depend only
on the most recent pose under the Markov property of the SLANM posterior. This
factorization. illustrated in figure 2-2, forms a particle filter based on the sampling ar-
chitecture of Rao-Blackwellization, where a small subset of variables are sampled (the
agent pose informmation) and other marginals are calculated in closed form (landmark
estimation parameters) [4]. The application of this principle to the position-tracking
particle filter was introduced by Murphy and Russell [34]. Building on the structure
ol (2.23). Montewerlo develops an algorithim named FastSLAN 1.0 that represents
the posterior with N + 1 filters, one for each tenn in (2.23). Each particle of the

algorithin represents a different hypothesis of the SLANI posterior:
S 50, o)

The bracketed notation represents the index of the particle. The agent pose informa-

tion for cach hypothesis S}'"] is updated with the SIR method explained previously.
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The rest of the SLAN posterior is maintained with independent Gaussian estimators

] of eacli observed landmark. Given a

representing the mean //E,'_';] and covariance 2.
two or three dimensional Cartesian space. these landmarks will be low-dimensional
and fixed in size. Each particle carvies its own set of lanchmark estimators. Taken in
total, the particles form an array of Al hypotheses that represent a discrete approxi-

mation to the optimal Bayvesian SLAN posterior [32].

2.3.1 Importance Weight Calculation

As with a standard particle filter, particles in FastSLAM are drawn from the motion
model to create a proposal distribution [32, 39, 41. 45]. The Gaussian landmark
estiimators are then updated for each particle using the agent observation model, the
current measurement z;. and standard EKF update equations. Assuining a planar
SLANMI scenario with an agent measuring range and bearing to nearbyv features. the

observation function becomes:

((5 0 ) "(Sh H/I,) \vfj::(()m.f == 'S/..r)Q Al (H'l/-!/ o S’-!/)Q (2 25)
giSe. 0y, ) = = ’ A
18, By ) fan ™! (Freemie) — g,

Hn[ S8

with the current agent pose and measured landmark represented by s; = (572, ¢y 8.0
and (8, 1.0y, ). vespectively. The updated Gaussian parameters for the measured

landmark are obtained by:

o= gl ) (2.26)
i, = v“”"(](s"‘6”’)|~'z:-9',”"':()n,:p',,",’,',,, [ 2.27)
By = g, 20l gl 24 (2.28)
B, = ol %l (2.29)
/’[rm = /IEII:’.]r—]ﬁL[\'/(Zz—fr) (2.30)
5—:,:7.]/ = (I = NG, )Z,;Z)_J,,l (2.31)
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2.3.2 Data Association

An important hurdle for any SLAN algorithm is data association. Since a problem
requirement includes mapping new features, the algorithim must decide first if the
measurement correspods to a new landmark. 1f not. it must decide ou a per-particle
basis which of the N known landinarks stored within the particle is most likelv to have
produced this observation. After this decision is made. EXF equations update the
mean and covariance for the identified landmark. Assuming first that knowledge of
data associations are knowin, thie observation likelihood can be computed in close forni.
It is derived from the innovation, or difference between the actual measurenient and
the predicted mmeasurcinent, given the current agent pose and the landinark estimation
parameters [31]. Since the landmark estimator is an EKF, the sequence of innovations
will he Gaussian and the observation likelihood is:

J‘ 2 Tr o — ~ Ya
exp{—=(z = Zne) [Z0]) " (2 = 20,0)) (2.32)

18] 2

By computing this likelihood for each landmark within the particle. we can obtain the
maxinnnu likelihood estimator for this ineasurement by shimplv selecting the landmark

with the highest likelihood:
ny = arg max p(zlng, s;) (2.33)
ny

The estinator parameters for this landimark are then updated within the particle.
The observation likelihood for the maximum likelihood estimator, given by (2.32),
also becomes the particle importance weight for resampling, u',[ml. If the likelihood
for cach landmark falls below a threshold, a new landimark is created and initialized

as follows:

[m] —Lp tml
:U’/l/.[ - (] (‘Sl 3 ~L>

i S (O e ¢ Wy (2.35)
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The importance weight for this particle is a pre-defined likelihood threshold. py. This
process is repeated until each particle has been assigned a weight. Weights are then

normalized and new particles are drawn as in SIR.

2.3.3 Preventing Filter Degeneracy

[t is important to note that resampling is not always necessarv. It simply reduces
filter degeneracy by trimining excess particles that have little relevance to the current
measurement aud reprocducing particles in the arca of intevest for agent posce infor-
mation. Some particle filtering approaches include a measure of degeneracv. M,y
defined as:

1
Mg —— s (2.36)

]
£M, ()

M. sg. the effective size of the particle set. is in sonme wavs a measure of dispersion of
the importance weights. [f particles were drawn according to the true posterior, all
samples would receive the sane weight. As variance of the weights increases, Al sy
will decrease. Theoretically. resampling particles only when Aley; falls below a defined
threshold will decrease the chances of pruning possibly accurate trajectories from the

filter [21].

2.4 FastSLAM vs. EKF SLAM

There are several well documented strengths of the FastSLAN architecture over stan-
dard EKF SLAMI approaches. Most importantly. the Nonte Carlo. particle-based ar-
chitecture of FastSLANI allows the filter to track multiple hypotheses simultancously
at cach measurement step. This helps solve data association ambiguity inherent in
the SLAN problewn that particularly plagues standard EKFE approaches [7, 47]. A
robot must decide whether a current mecasurement is coming from a new or previously
mapped landmark. which can be difficult if features are relatively close together. If
landinark measurcinents are incorrectly attributed. the EKFE can diverge rapidly. In-

stead, FastSLAM assigns data associations on a per particle basis. An implicit result
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is delaved decision making about the most likely measurement association.  Parti-
cles with maps that closely agree with incoming data will survive resamnpling, while
particles that disagree due to incorreet previous data associations are eventually elim-
inated. In the it of infinite particles, all data association ambiguities are resolved
and FastSLAN provides a full Bavesian solution to the SLAN problem [32]. Fast-
SLANI is also a universal density approximator, meaning it can represent arbitrarily
complex distributions of the agent pose. This can be particularly useful in model-
ing non-lincar motion models and the uncertainty of an agent mapping a constrained
enviromuent [39]. Finally. the computational complexity of the basic FastSLAN algo-
rithm is O(Af - N). compared to O(N?) with a standard EKF approach. NMontemerlo
also mtroduces a version of FastSLAM with a computational complexity of O(log N)

[32].

2.5 FastSLAM Challenges

Despite its advantages. FastSLAM does suffer drawbacks comnmon to particle filters.
There will always be unsampled gaps in the agent state space when using a finite
mnnber of particles. While resampling reduces filter degeneracy by concentrating
particles i an arca of intervest i the state space. it cannot guarantee convergence.
This is especially true if the proposal and target distributions (and the uncertainty in
these distributions) are not well matched, as shown in figure 2-3. [f the agent’s sensor
is very accurate relative to the motion model, the target distribution will be sharply
peaked relative to a Hat proposal distribution. In the worst case scenario, no particles
receive non-negligible importance weights, preventing filter convergence to the true
state. Another possibility is sample impoverishment (used synonymously with particle
depletion), wlhierein a small percentage of particles from the proposal distribution
are assigned non-negligible weights, causing significant duplication of a few uuique
hypotheses and targe “stacks™ of particles. Stochastic proposal propagation with the
next agent control input mayv not adequately scatter the particles to recover lost

diversity. Over time, this could result in particles drifting away from the true state.
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Figure 2-3: A noisy motion model creates a broad proposal distribution, a precise sen-
sor neasurement results in a narrow target distribution. Convergence of the particles
to the true posterior is prevented since the narrow posterior occurs in an unsanpled
gap in the state space.

It also gives rise to a host of other issues that contribute to a loss of filter accuracy

aid stability.

2.5.1 Effects of Sample Impoverishment

In addition to particle drift. an obvious issue for all pose-tracking filters, sample -
poverishment using FastSLAM is extremely dangerons because of the nature of un-
certainty storage in Rao-Blackwellization. In EKEF SLAN algorithius. new landimarks
are initialized to include both the error characteristics of the measurement device and
the uncertainty of the agent pose at the time of observation. [ other words, an es-
timate of landmark positiou is only as good as the precision of the measurement ancl
the knowledge of the agent state. Because the SLAN posterior measures landinark
positions conditioned on an estimate of the robot path, cach particle in the filter is
considered an error-free hypothesis of the true pose. Agent pose uncertainty is stored

in the dispersion of the particle cloud. As a result. each new feature i the landmark
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array is iitialized with uncertainty from measurement noise alone. Subsequent up-
dates to the landmark estimation parameters in FastSLAM are also processed with
EKF cquations that include only the crror model of the observation device.

This ~false certainty” in landmark location greatly complicates the data associa-
tion process. With an extremely accurate sensor, each particle in the filter has little
crror allowance when deciding on an association between the incoming measurement
and one of its stored landimarks. Unless the measureinent agrees exactly with a stored
landmark, the particle receives a low weight. Without a diverse set of samples, ouly
few of the particles will survive resampling and the overall uncertainty of each land-
mark will approach zero. Even if additional diversity is added as particles propagate,
the precision of feature estimates will ensure that only few particles survive the next
round of weighting and resampling. Over time, the pose estiimate and all mapped
landmarks will be overcome by the noisy motion model and diverge substantially
from the true posterior [16]. As loops are closed and the agent returns to a previ-
ously mapped region of the environment, the skewed map and pose drift will lead the
agent to believe that the previously observed feature is actually a new feature, hence
the creation of false landmarks that further complicate data association in the future

(figure 2-4).

2.5.2 Overcoming Sample Impoverishment

One way to overconie sammple impoverishment, proposed by D. Fox et al. [17], is to use
a sensor model that overestimates measurement noise. While this does tend to give
more particles non-negligible weights and reduce particle depletion, it throws away
valuable information from precise sensor measurements. Selective resaimpling based
on a filter degencracy estimmate (Af.rs) could delay the effects of sample impoverish-
ment, as all trajectories are propagated and weighed until the degeneracy falls below
a certain threshold. Some sources argue that in cases of extremely low measurement
noise, the filter will degenerate quickly since only few (if any) of the particles will
receive significant weights [13]. Degeneracy will only be further amplified if resam-

pling is delayed. as the product of weights at each time step magnifies the dispersion
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Figure 2-4: An incorrect data association with the current measurement and a previ-
ously mapped feature causes a new “false” landmark. Agent and landmark position
uncertainty is not reduced as was the case in 1-2.

between particle weights [39. 13]. Principled approaches from Fox, Pitt and Shepard
suggest changing the form of the proposal distribution altogether [17. 36, 37, 39. 45].
Other approaches focus instead on the resampling process. and propose a solution
to the impoverishinent involving regularization- a readjustment of the particles after
the resamnpling step with the intent of introducing lost diversity into the posterior
(6, 19, 39]. Both strategies have been evaluated in particle filters for tracking and lo-
calization applications with sone success [23, 35, 36, 45]. The remainder of this thesis
will involve a detailed investigation of solutions to sample impoverishnient within the

specific context of Rao-Blackwellized particle filters SLAM applications.



Chapter 3

Recovering Sample Diversity

Particle filters have gained recent attention in roboties research and have provided an
alternative to the EKE with proven deftuess in tackling more complicated navigation
and mapping scenarios. The particle filter is not invineible, and several failure modes
have already been well docunented [16, 45, 32, 39. 47]. The increasing popularity of
particle filters for nou-lincar position tracking applications has prompted the devel-
optient of improvement strategies designed to answer some of the pitfalls associated
with basic SNC filtering. This chapter begins by highlighting several of these early
mnprovement strategies. With only recent research in the use of particle filters for
SLAN envirouments, few methods exist for recovering sample diversity in situations
prone to particle depletion, but this chapter outlines the most significant solutions to
date. Additionally. new techniques are proposed that build upon the basic strategy
ol regularization, a common fix for particle filters in position tracking scenarios. No
documented results on the application of regularization methods to RBPE SLANMI

algorithis were found.

3.1 Sample Impoverishment Revisited

In standard resampling, sample impoverishment arises when a sinall subset of parti-
cles receive high weights relative to the majority. These few particles are reproduced

many tines, and after resampling, the majority of the particles will occupy only a few
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singular points within the state space. As one can imagine. these few singular points
in the state space do not produce an accurate characterization of the true agent
uncertainty. A better representation of agent uncertainty after an accurate sensor
reading is a tight distribution of unique particles. Diversity is still maintained in the
particle set because each occupies a different point i the state space. In the case
of mobile robotics. this state space is casily visualized as a two or three dimensional
Cartesian space. Maintaining appropriate sample diversity involves balancing a deli-
cate relationship between the proposal and target distribution [17. 39]. The proposal
must place an adequate number of particles in a favorable region of the state space
in such a wayv that an acute target distribution can assign non-negligible weights to
a large proportion of these particles. Maintaining this balance becomes more diffi-
cult as sensor accuracy increases and the target distribution becomes sharply peaked
with respect to the proposal distribution. Solutions to sample impoverishient are
based on implementing diversity recovery methods before or after resampling. The
former approach secks an improved proposal distribution that includes measurciment
information [30, 45]. As a result, particles would theoretically propagate to niore
favorable regions for resampling. The later group of solutions inject diversity into the
posterior distribution after resampling to smooth the resulting density before the next
propagation step [19]. Approaches vary in the rigor of their derivations and whether
or not they demonstrate theoretical convergence. The more mathematically sound
solutions improve sample diversity while maintaining an approximation to the opti-
mal Bayvesian posterior. Other more simple methods have also been introduced that
fix sample impoverishment but do not necessarily guarantee convergence [39]. The
next section will introduce several approaches found in literature and other intuitive

methods developed over the course of this rescarch project.
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3.2 Alternative Proposal Distributions for Posi-

tion Tracking

As mentioned in section 2.2.1, an optimal formulation would draw particles directly
from the posterior distribution p(si|uw, 2/). Because this is difficult or impossible to
inplement for a complex distribution, the most recent observation is used to weight a
proposal particle set according to the perceptual likelihood for a featwre observation,
thereby creating an approximation to the target distribution with a finite number of
particles. Literature suggests that the relative mismatceh between the proposal and
target distribution affects the convergence of a particle filter to the true posterior
[17]. Convergence is also prevented if the perceptual likelihood is extremely narrow.
as wotlld be the case with an accurate sensor measurcinent. Particles drawn from a
proposal distribution that includes feature measurements would have a better chance
of matching this narrow target deusity. More particles would therefore receive a non-
negligible weight and survive resammpling, increasing particle diversity and reducing

the effects of sample impoverishment.

3.2.1 Auxiliary Particle Filter

The Auxiliary particle filter (APF) was introduced by Pitt and Sheplard as one way
to incorporate recent sensor measurements in the proposal distribution. A variant
of standard SIR. the APE includes an additional sampling step at thme ¢+ — 1, using
observation data at time t, before particles are propagated according to the motion
model. p(silse— . w). This “presampling” step selects particles that have a high like-
lihood of propagating to a favorable region of the state space, and ouly allows these
particles to advance [37]. The algorithin begins at a time 7 — 1 by propagating the
previous posterior distribution to an auxiliary distribution using the motion model
for the current time step. Next, inportance weights are calculated and resampling
proceeds as in SIR, but this time only the indices of particles are of interest. The

sclected particles are traced back to their location at the previous tine step, before
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wmotion model propagation. These parent particles are then propagated according to
the motion model. Weights are calculated and particles are resampled producing the
APF posterior distribution. The advantage of this schieine is that it only propagates
particles that are morve likely to end up in the regious of high-likelihood according to

the recent sensor measureinent.

3.2.2 Local-Linearized Particle Filter

Another way to incorporate recent sensor measturements in particle filters for tracking
applications is to update the proposal density, before weighting and resampling. with
sensor information via a bank of extended Kalman filters. This SMC variant is known
as a Local-Linearized particle filter. A posterior density from the £—1 time step is first
propagated according to the agent motion model. Mcean and covariance parameters
for this proposal distribution are updated on a per-particle basis with an EKFE [39]. A
sample is drawn from this updated proposal and an importance weight is calculated
as before. This propagate-update-draw step is repeated for each particle. Montemerlo
introduces a Rao-Blackwellized version of a Local-Lincarized particle filter for SLANI

purposes known as FastSLAM 2.0 [30].

3.2.3 Mixture Monte Carlo Localization

Extending the application of particle filters beyvond position tracking to the more
encompassing problem of mobile robot localization shows shmilar drawbacks from
sample impoverishment. D. Fox et al. describe the effects of highly accurate sensor
measurements coupled with a relatively noisy motion model and propose a solufion
that involves drawing from a more sophisticated proposal distribution [17]. A subset
of the proposal distribution will be drawn from the motion model and another subset.
approximately 10% of the particles, is drawn from the perceptual model p(z|s;).
Linportance factors are more cdifficult to calculate for particles drawn according to
the latter distribution: the prior posterior belief must be transformed into a kd-

tree in order to obtain an cevolution of the perceptual density [33]. The importance
I
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woeight s proportional to this density tree and a constant factor. which is ignored
since weights are normalized before resampling. Their results do show a significant
inproveuent over standard particle filter performance in cases of low measurement
noise. simply because a percentage of samples from the proposal distribution are
drawn from this accurate perceptual density. While this technique works well for
mobile robot localization and position tracking, it does not address specific challenges
posed by SLAN [32]. In sowme cases. a partial map of local features may be available.
but not in the strict SLANM problem. Without a priori map information it mav not
be possible draw particles from the perceptual likelihood. This particular algorithi
could potentially be used to refine position uncertainty when preliminary landmark

locations have been established by SLAN and after loop closures [43].

3.3 Alternative Proposal Distributions for SLAM

Moutemerlo. in his developuent and evaluation of FastSLANM. also describes the effect
of sample impoveristunent on a Rao-Blackwellized particle flter: it also suffers a loss
of diversity with greater measurcient precision and a noisy agent motion model. He
therefore develops an alternative proposal distribution that takes advantage of inconi-
g measureents [32]. After a thorough and elegant derivation, Montemerlo arrives
at a version of FastSLANM that nupdates the proposal distribution with measurenicut
information via a a series of extended Kalhinan filters, one for cach measurement within
the observation set for a tiine step. This approach is similar to the Local-Linearized
particle filter for position tracking applications explained previously.  Montemerlo
has also derived an expression for importance weights that considers not ouly the
uncertainty in landmark positions and measurements. but also the uncertainty of
the proposal distribution after measurement updates. More importantly, the algo-
rithim incorporates previously unmapped landmarks, making it a complete approach
to both subsets of the SLAN problem. Theoretical convergence is proven for the
Lincar-Gaussian SLAN scenario with one particle. This is a profound result because

prior to FastSLAM 2.0, SLAM algorithm convergence was only proven for a full co-
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variance matrix represelitation of the posterior with correlations between landmark
estimates [47]. In experimental results, FastSLAN 2.0 provides a nore accurate and
diverse SLAM posterior and vequires fewer particles to effectively track an agent pose
than the original FastSLAN algorithin. The algorithin begins as particles are drawn
fromm a previous time step posterior distribution according to a motion model, again
characterized as a nonlinear function with zero-mean. uncorrelated process noise.

This propagation vields an initial proposal density:

) ;
o9F —'/l(.g'lﬁl.(/[) (31)
where his;_y.uy) is a nonlincar function with noise covariance I, From that initial
proposal draw, an expected observation is produced (per-particle) for each landmark

according to the agent motion model:
~ i F
Sa=gladil)  m=1...N (3.2)

As before. the measurement noise covariance matrix is given by R,. After predicted
measurenients are calculated, an updated proposal distribution is calculated for each

landmark using Kalman filter update equations:
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A particle for the proposal is then drawn from the resulting distribution that includes

the most recent measurcinent:
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After a particle has been drawn from each of N different distributions. likelihood
welghts are calculated in the same fashion of FastSLAM 1.0. The drawu particle
with the largest weight then becomes part of the proposal that will be resampled to
approximate the posterior. This weight will not, however. be used as the importance
weight tor resampling. Since the proposal particles are drawn from a different distri-
butiou than the agent mwotion model, the importance weights for resampling must be

calculated in a slightly different way:

Ly = Guy PG, +GonZiio1Gpyy + Ry (3.9)
m l 1 ~ Cr— ~ gy &
u'} = — (‘Xl){—g(zz e~ Zr.m)l L, l(3'/ = ?l.m)} (3.10)
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As before. the perceptual likelihood nsed to calculate resampling nnportance weights
is a multi-variate Gaussian probability density function, only this time the normalizing
measurement uncertainty L, includes the contribution from the agent process noise.
New landimarks are initiated, in the same way as FastSLANM 1.0. when all landmark
likelihoods fall below a pre-defined threshold. Also in the case of a new landmark,
poses from the proposal are drawn from the original distribution s, excluding feature
measurcment inforination. When multiple measurements are cousidered at each time
step. the algorithm becomes slightly more complicated. The proposal is updated
iteratively, once for cach measurement. A particle is drawn after cach iteration ac-
cording to (3.8) in order to update landinark estimator parameters. Particles for the
proposal, however, are only sainpled after all measurements have been processed. An
illustration of this algorithm and its solution to the proposal-target mismatch from
accurate sensor measurenments is shown in figure 3-1. Though FastSLAM 2.0 grows
at the similar favorable rate of O(N - A), it includes update equations for the proposal
distribution and is therefore much more computationally expensive than FastSLAMNI

L.0.
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Figure 3-1: In FastSLAM 2.0, the proposal distribution incorporates recent measure-
ments. Particles for importance weight calculations have a greater chance of receiving
nou-negligible weights in the case of an accurate sensor and a noisy motion model.

3.4 Regularization

Another class of improvement strategics for the sammple impoverishment problem fo-
cuses specifically on recovering diversity after the resampling step. A severely nnpov-
erished posterior will most likely consist of a few discrete points with many particles
“stacked” at these points. Regularization methods attempt to create a more diverse
posterior density approximation by relocating the particles in stacks to a more con-
tinuous distribution [1. 19. 35]. An easy way to regularize would be to simply draw
a new set of particles about the wide-sense mean and covariance of the distribution.
However, this approach would not preserve the possibly non-linear and multi-inodal
characteristics of the distribution and would thus negate the advantages of using a
particle filter in the first place. Consequently, designing a regularization schene that
mtroduces an appropriate amount of diversity, while preserviug the complex nature of

a distribution. can be difficult. Most particle filter regularization schemes in literature



approach this difficulty by representing a continuous distribution for particle adjust-
moent by a series of Epancchnikov or Gaussian kernels, centered at points in the state
space occupicd by vesampled particles [1, 39]. The parameters of these individual
kernels can be manipulated so that the kernel set approximates an arbitrarily com-
plex posterior. Particle state adjustinents are drawn from individual kernels and then
added to resampled particles. The next few section describe possible kernel shaping

nethods with slight variations that can alter the effect of particle regularization.

3.4.1 Regularized Particle Filter

The original Regularized Particle Filter (RPF) was designed by S. Godsill and T.
Clapp. [t is essentially a standard SIR filter with a regularization step included after
resatipling.  During vegularization, particles are adjusted according the continuous
approximation:
M 5 !
1 (-5/ == .5’)

plsr|z w) = ;'w; e K— = (3.11)

where N () s a rescaled kernel density and his the kernel bandwidth, a scalar specific
tfo the kernel that also depends on the number of particles in the filter. The kernel that
minimizes the mean integrated square error between the true posterior density and
the regularized version in (3.11) is the Epanechnikov kernel. Practically. this kernel is
difficult to implement, and the Gaussian kernel is normally used as a computationally

efficient substitute. The optimal bandwidth is then given by:

4
m) 17_ul- 1 ]\,Y rt_<l. L (512)
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where n, is the dimension of the agent state vector, s,. Before resampling, the eni-
pirical covariance, A,. is calculated from the proposal distribution. The empirical
covariance can be thought of as a weighted proposal covariance that accounts for
the uncertainty stored in particle dispersion. After resampling, particles are adjusted
according to:

S h()pthEi (Jl-j)
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where

D =&, ancl e~ N(e:0,1) (3.14)

Computationally, the RPF differs from the standard SIR filter only in A/ additional
draws from a Gaussian keruel and the formulation of the empirical covariance matrix
before resampling. These steps have a minimal effect on overall processing time
[19]. Despite a rigorous derivation. regularizing particles according to the RPF does
not necessarily guarantee asymptotic convergence to the optimal Bavesian posterior.
This is a common theoretical drawback of almost every regularization scheme. The
RPF has nnproved performance in tracking applications, but no literature results
were found that describe its application to the SLANM problem. Aunother advantage
of the RPF is that by setting the kernel adjustment proportional to the empirical
covariance. the RPF avoids “particle shock™ that can oceur when a relatively broad
distribution converges quickly to a more precise distribution. Instead, a limit is placed
on the convergence speed of a particle cloud. maintaining diversity along with greater

precision.

3.4.2 Markov Chain Monte Carlo Criterion

Tlie Markov Chain Monte Carlo step is a regularization criterion designed to ensure
that any regularization of resampled particles asymptotically approach the Bayesian
posterior in the limit of infinite particles [39]. The idea behind the schewe is that
a particle s! can be regularized. or moved to a new state s*, ouly if v < «, where
u ~ U]0,1] aud «v is the acceptance probability derived from the NMetropolis-Hastings

algorithim: _ o
ol |8l I plelt| s s )

Pl lsDp(silst 1. o)

v = ming 1,

(3.15)

Put simply. the particle can be adjusted according to a regularization scheme only
if its intended move will place it in a “more likely™ region of the state space, as
determined by the pre-move and post-move proposal and perceptual densities. While

in literature the NCNC move step is used in context with the mathematically derived

regularization scheme of the RPFE. it is important to note that this criterion can be
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applied to any regularization algorithm to ensure that asyinptotic convergence to the

Bavesian posterior is maintained.

3.5 Other Regularization Approaches

Although the literature search conducted for this thesis did not produce experimental
restilts on the use of regularization tor SLAN purposes. a closer look at the Regular-
ized particle filter shows that the idea can easily be extended to SLANM i1 a Cartesian
cuvironment. The RPE algorithm uses a keruel (Epancchnikov or Gaussian) to lo-
cally spread particles about the discrete stacks often produced after resampling. The
variance. or bandwidth as it is referred to in literature, is a product of the root of the
cmpirical covariance matrix of the particles before resampling. The intuitive methods
introduced below melude a Gaussian kernel, similar to the computationally inexpen-
sive version of the RPFEF, but the variances are calculated in differently in order to

shape the keruel for a possibly better sample diversity.

3.5.1 Fixed-Gaussian Regularization

A simple version of regularization would involve creating a series of fixed-variance
Gaussian kernels after resampling, as shown in figure 3-2. Each particle would then
be adjusted within the Cartesian space according to an individual draw from these
kernels:

s = s 4+ A€ where € ~ N(e:0. 1) (3.16)

Though this method introduces diversity to the posterior by sampling from a con-
tinuous distribution, the probability density will become uni-modal as the spreading

= . Al . b e 2 2 -
parameter A hereases. Cousequently, a balance must be wmaintained by spreading
the particles with enough variance to introduce a proper amount of diversity, while
at the same time keeping this variance small enough to preserve the possible multi-
modal characteristics of the distribution. The proper A, will need to be deteriined

cmpivically, and will likely differ in every situation. It will also be the lower limit of
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Figure 3-2: Particles are regularized after resampling according to a set of kernels
generated at the resampled points.

the wide-sense variance of the posterior distribution. Factors affecting the optimal
spreading parawmeter will include the initial uncertainty of the agent positioun aud the
accuracy of the sensor. If the mean-square error of the sensor is less than the variance

of this regularization kernel, precious sensor information is lost.

3.5.2 Adaptive Regularization

One advantage of the RPF over a simple, fixed-variance Gaussian particle adjustiment
is that the variance of the kerncl changes according to characteristics of the weightec
proposal distribution. In this respect, properties of the regularization kernels can
change over time, but there is only one kernel “shape™ per time step. A further level of
adaptation can also be formed by basing the standard deviation of the regularization

kernel on the proportion of particles that are resainpled to a particular state.

s =8+ e’ wlhere el ~ N(e:0,1) (3.17)
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where 1, s the nunber of duplicated particles at a particular point in the state
space.  This method is pictured in figure 3-3. Theoreticallv, it would generate a
larger spreading radins about particle locations that received high likelihoods and
were thus largely veproduced in resampling. It will produce the largest variance, and
this have the greatest potential of recovering diversity, in cases with a sharply peaked
pereeptual density relative to the proposal distribution. As stated carlier, this is the

case most vilnerable to sample nnpoverishiment.

3.5.3 Other Adaptive Regularization Techniques

A third intuitive regularization attenipt combines some of the properties of the math-
cmatically derived RPFE with the above method of adapting the kernel based on the

resaipled particle stack height. Introducing the Al parameter into the standard RPF

=
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equation yiclds the following regularization scheme:
By == b Al et (3.19)

[u theory. this move will reshape the optimal kernel bandwidth introduced in RPF
regularization based on particle stack height. increasing density in cases prouce to

sample impoverishiment.

3.5.4 Process Noise

A thorough look at regularization and an understanding of SNC proposal propagation
leads to the awareness that the propagation of the particles according to a stochastic
agent motion model is itself a form of regularization similar to a Gaussian kernel used
above. Given this. it should lead to the question of whether or not regularization
is needed in the first place. Perliaps an over-estimation of the agent process noise
would suffice. It is true that basic regularization using a fixed-variance Gaussian
kernel is equivalent to propagation in some cases [47]. Additionally, a more advanced
model that accurately characterizes the stochastic properties of the agent motion
will produce proposal distributions with a higher likelihood of matching the target
distribution. Over-estimation of the agent process, while it would introduce more
diversity. would be a less desirable solution to the problem for the same reason as an
over-cstimation of scnsor noise. Valuable information regarding the true propagation
characteristics of the agent would be thrown awayv. Additionally. this approach would
further mismatch the relative noise of the motion model and the perceptual model.
leading to a severe decrease in diversity after resampling. Regularization techniques
with adaptive-variance kernels ensure that a proper amount of diversity is introduced
at specific regions of the posterior density. Without regularization. all particles would
be propagated in the same fashion and valuable information about irregularity of the

distribution could be lost.



Chapter 4

Simulated Results for Sample
Diversity Recovery Methods

The previous chapter presented several approaches designed to mprove particle filter
SLANI performance in scenarios prone to particle depletion.  One set of methods
focused on the proposal distribution, before resampling. by drawing a more optimal
set of particles for importance weight caleulation. Other technigues adjusted particle
locations after resampling with a set of regularization kernels that approximated
a continuous distribution.  This section presents experimental results showing the
relative strengths and weakuesses of many of the ideas introduced in the previous

section. The goal of this analvsis was to use a simulated SLAN environment to

. demonstrate particle filter SLAM performance at different measurcinent noise
levels and show the effect of sample hmpoverishinent on filter accuracy and
stability.

2. thoroughly cvaluate particle filter enhancements designed to recover sample
diversity in depleted scenarios and improve the overall accuracy of the SLANI
filter.

Three Rao-Blackwellized particle filters were developed, based on the FastSLANI al-
gorithin presented by Montemerlo [32]. In addition. four regularization methods

were coded. Each strategy was tested independently to characterize its performance
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in different SLAM enviromments. Marriages between the Alters and regularization
methods were also tested to determine if their combined effect provides even greater

filter accuracy.

4.1 Assumptions and Simulation Setup

The basic SLAM scenario modeled for this shmulation cousisted of a robot agent
traveling around a swmall. elliptical track. At cach time step the agent advanced
according to a motion model that mcluded a control input and noise frow the motion
error model. The robot then received simulated measurciments from each landmark
within its field of view. Only six landmarks existed in this 10 m x 10 m environment,
and each landmark was uniformly spaced around the commanded path of the robot.

Figure 4-1 shows the simulation environment, the agent initial position, and the
commanded path. as well as all landinarks that the robot encountered as it traveled.
The robot was initialized with an a prior: estimate of its pose and the location of three
anchor features. The first task of the agent was to localize using relative nieasurenments
to these anchor features. As the simulation progressed. it would encounter three new
features that it must map. With two full loops around the track, the vobot wonld

encounter previously mapped landimarks.

Tsp. : Tty 00y.y
0.0349 yad | 0.3 J[ 0.3 m

Table 4.1: Initial RMS uncertainty of agent pose (r. y. ) and anchor feature location
(a. y) for simulations.

4.1.1 Development of the SLAM Environment

This particular environent configuration was chosen in order to test several essential
abilities of a successful SLAN estimation routine. Setting a higher uncertainty in
the initial agent pose and providing anchor features required the filter to localize

and improve its initial pose estimnate. As it encountered new features, it needed
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Figure 4-1: SLAN environment used for simulations with robot path and initial
position shown.

to frst recognize these landmarks as previously unmapped, and then augment its
map accordingly.  Finally, the agent was required to close an observation loop by
weasuring previously mapped landmarks. This is often the most difficult task of any
SLANL algorithm, especially in cases of motion noise and accurate measurements. As
cliscussed in section 2.5.1, algoritluns in this situation tend to produce badly skewed

maps with many additional phantom landmarks.

4.1.2 Robot Motion

Though its commanded angular and tangential velocities would realize two rotations
about the track, kinematic ervors in the agent motion model altered the true path
significantly. A stochastic, four parameter motion model was used to represent slip
scale tactor and skid errors encountered in most wheel-based robots. The parameter

values are listed in table 4.2, with the tangential and angular velocities at cach time
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Commanded Path and Actual Path (with Motion Noise)
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Figure 4-2: True agent path from one realization of the stochastic motion moclel.
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0.3068 m/s | 0.0-0.5236 rad/s | 0.05 | 0.05 m/s | 0.1 | 0.0349 rad/s

Table 4.2: Agent wmotion model parameters, including commanded translational o,
and rotational w; velocities and skip and skid errors used for simulations.

One realization of this stochastic motion model was used as the true agent position
for every simulation, shown in figure 4-2, in order to compare filter performance for

equivalent scenarios.



4.1.3 Simulated Measurements

Characteristios of the agent measurement inodel are listed in table 4.3, It was asswined
that cach feature observation yielded a range-bearing measurewment pair. Because the
agent received simulated measurements from every landinark within its field of view.
cach SLAM algorithm needed the capability to process multiple measurements in a
single time step. While easily incorporated in the standard FastSLAN 1.0, this par-
ticular enhancement is only briefly addressed by Montenerlo in his development of
FastSLAN 2.0. Incorporating sensor measurements in proposal calculation is not a
trivial task when measurements from new landmarks must be considered. While most,
measureent moclel characteristics were remain fixed throughout this analysis, the
range uncertainty, considered the indepencent variable for most frials, was manipu-
lated in order to evaluate filter perforinance. Lowering this RMS value from 1.0 m
to 0.001 m would reveal how each algorithm responds as the measurement noise is

reduced and a proposal-perceptual distribution mismateh is encountered.

Field of | Maxtimun | RMS Bearing | RMS Range
- View Range Uncertainty | Uncertainty
3.142 rad 7.0 m 0.0175 rad 0.001-1.0 m

Table 4.3: Measureinent model specifications and uncertainties

4.1.4 Performance Metrics

The primary metrie for filter accuracy was the circular error probable (CEP) of the
agent x-v pose location. Though agent heading error and landimmark position error
were not directly measured by this metric, the correlated nature of the SLAM problem

infers that ervors in these unmeasured parameters would contribute to the pose CEP.

4.2 SLAM Posterior Estimation

Figure 4-3 illustrates a single run through a SLAM scenario. With a large initial

uncertainty represented by a large spread of particles, the first task of the filter
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was to decrease pose uncertainty using nicasuremnents from anchor features. Each
particle was propagated according to the stochastic motion model and measurcinents
were used to weight cach particle according to the maximum likelihood heuristic as
outlined in section 2.3.1. Particles were then vesampled according to weights. reducing
the overall uncertainty of the filter. The posterior distribution at the end of the 60
second siinulation is also shown 4-3(b). Notice that new landinarks have appropriatelv
heen added to map and the Alter has tracked the pose of the robot with reasonable

accuracy despite noisy kinenatics.

4.2.1 Sample Impoverishment and Particle Drift

The difficulty of capturing an cvolving posterior distribution using a SMC method
with a finite number of particles becane apparent wlien measureiment noise was re-
duced without a corresponding drop in kinewaric noise. This wismatch created an
environnent prone to cases of particle depletion. Notice in figure 4-4(a) that within
a few seconds of initialization. the maximum likelihood heuristic with a highly accu-
rate sensor has assigned noun-unegligible weights to only a small portion of particles.
Cousequently, samples were “stacked” at these points during resanpling. Instead of
a smooth posterior representing the actual uncertainty of the agent, the distribution
was reduced to only a few discrete hvpotheses. At this point the wide sense mean
of this depleted posterior still provided an accurate estiiate of the true position.
Over time. however. sever particle drift was evident (figure 4-4(b)). The filter then
had little chance of recovering to a reasonable accuracy. At the end of 60 scconds,
filter pose error was less than one wmeter, primarily due to the fact that the robot
control commands i a noise-free realization traced two loops. A look at estimated
landimark locations shows the correlation between pose error and landmark error,
as accurate measurciments coupled with pose inaccuracy produced many false land-
marks. Though Montemerlo discusses the use of negative information to eliminate
phantom landmarks [32]. the implementation of this feature proved more difficult in

practice and was thercfore not included in the algoriths for this analvsis.
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Robot, Environment, and Estimated Posterior prior to resampling, t = 1 sec
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Figure 4-3: A typical SLAM scenario showing initial uncertainty (a) aud the estimated
posterior after 60 seconds (b).



Robot, Environment, and Estimated Posterior after Resampling, t = 2 sec
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Figure 4-4: An impoverished posterior (a) leading to particle drift as the simulation
progresses (b). The end of the simulation is shown in figure 4-5.
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Robot, Environment, and Estimated Posterior after Resampling, t = 60 sec
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Figure 4-5: At the end of the scenario. particle drift has lead to severe inaccuracies
in both the pose and feature estimates. Many spurious landmarks were created.

4.3 SLAM Algorithms

4.3.1 FastSLAM 1.0

The first of the three flters used in this analysis was FastSLAN 1.0, Since it is
basically the basic Rao-Blackwellized particle filter, it formed the backbone of the
other two filter methods. It this set of tests, it also served as a benchmark against
which the performance all other filters and regularization algorithins were measured.
[t is designed to operate with unknown data association and is thercfore ideally suited
to the SLAM problenm. As with the more advanced filters used in this analysis, 200
particles were used to estimate the SLAM posterior. The importance threshold for
new landmarks, in this filter and the others, was 107%. Because it uses only motion
model information to propagate the proposal distribution and not information from
recent sensor meastireimnents, it can in some cases be the most sensitive to a motion-

sCHsOr accuracy mismatch.



4.3.2 FastSLAM 2.0

FastSLAN 2.0. Montemerlo's more advanced particle filter that includes recent mea-
surement information in the proposal distribution, was coded as a second filter for
this analysis. Propagation of the proposal distribution at each step began with a draw
fronm1 the motion model using a pre-defined initial covariance. This mean and covari-
ance were then updated using EKF cquations and the current measurement. Data
association in this case was more difficult because the algorithim needed to associate
a measurenient with a known or new landmark before proposal update. The advan-
tages of this filter are described in literature to outweigh this computational burden.
as Montemerlo proves one-particle convergence in a Linear-Gaussian SLAM estima-
tion scenario. Based on literature results, FastSLAM 2.0 was expected to perform

best without additional regularization after resampling.

4.3.3 Auxiliary Particle Filter

Using FastSLANM 1.0 as a basis. a Rao-Blackwellized Auxiliary particle filter was de-
veloped as another example of measurement influence on the proposal distribution.
[t is shmilar in every respect to FastSLAM 1.0, except an additional resampling step
was added consistent with the Auxiliary Particle Filter algorithm [39]. Currently
used only in position tracking scenarios, it was coded to evaluate whether or not the
aclditional resampling step improves sample diversity and accuracy in a SLAM envi-
ronment. It incorporated multiple measurements per tinie step in the same fashion
as FastSLAM 1.0, and used the combination of these measurements in shaping the

propagation of the proposal.

4.3.4 Regularization Algorithms

able 4.4 lists the regularization methods coded for analysis and briefly describes the
Table 4.4 lists tl eul it 1ethod led for analy 1 briefly describes tl

properties of the kernels used for particle adjustment in each one. It also mentions the
Markov Chain Monte Carlo criterion, which can supplement any of the four spreading

algorithms.
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R(@llelrmt’ﬁ)ll Method
(Algorithm Pseudoname) | Description
SpreadX Fixed Gaussian regularization. Particles at cach
resainpled point are adjusted using a fixed-
variance Gaussian kernel. Ref. section 3.5.1
 SpreadX2 Gaussian regularization with the standard devi-

ation of the kernel dependent on the number of
particles sampled at that point and a fxed pa-
rameter. Ref. section 3.5.2

Spread X3 Gaussian regularization with the standard devi- |
ation of the kernel dependent on the number of
particles sampled at that point and the empiri-
cal covariance matrix of the particle distribution

] before resampling. Ref. section 3.5.3
g (Regularized Particle Filter) Gaussian regulariza-

tion dependent on a fixed. derived parameter and
the empirical covariance matrix of the particle dis-
% tribution prior to resanipling. Ref. section 3.4.1

MCNC Markov Chain Monte Carlo criterion. Can sup-
plement any above regularization wmethod.  En-
sures that regularized particles asvinptotically ap-

proach the optimal Bayesian posterior distribu-
tion. Ref. section 3.4.2

Table 4.4: Sumary of regularization methods tested i siimulations
4.4 Filter Accuracy and Diversity Analysis

Fach flter was tested with a singular run through the SLAN scenario: the CEP of
the filter position estimate was extracted at each second. Additionally the number of
unique particle states after resampling was recorded to provide a measure of diversity
at that time step. The purpose of this test was to show performance of the filters
in a controlled scenario and to observe the relationship between the diversity of the
particle Alter posterior and the CEP.

Figure 4-6(a) shows FastSLAM 1.0 baseline performance at (.1 m range measure-
ment RNS error, with an average CEP of 0.3034 m and an average number of unique
particles of around 40 after each resampling step. Figure 4-6(b) shows the same filter
and scenario, only this tiime with a mismatch in the relative accuracy of agent motion

and feature observations. There is a pronounced difference in both the accuracy of
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the filter and the number of imique particles. An average of 10.5 distinet states in the
posterior inplies a significant depletion in state space coverage. The average CEDP for
this test was 0.4284. but more important conclusions can be drawn by cvaluating the
CEP tie history for the run. At points the CEP drops to around 0.1 n1, however the
long-period variations between 0.07 m and 0.85 m show that the filter is not tracking
the true position at all. but stead propagating the posterior according to the motion
model. Feature observations did little to affect the position estimate as it sometimes
wandered close to the true position but thewn drifted away. If the accuracy of the
agent heacling estimate were captured. it would likely reflect a difference in the true

and estimated agent heading that reflect poor state estimate despite close proximity.

Though some diversity would be recovered as particles propagated according to a
stochastic representation of uncertainty in the motion wodel, it is reasonable to as-
swne that this propagation may not have sufficiently recovered the loss in state space
coverage caused by resampling, which caused the particle drift. a loss in accuracy,

and CEP instability.

4.4.1 FastSLAM 1.0 with Regularization

Figure 4-7 shows the result of a simple regularization method added to the FastSLAM
1.0 algorithm. The average number of particles remained at 200 for the duration of the
scenario since SpreadX reacljusted every particle according to a set of kernels. There
was a considerable drop in position error at the 0.1 m RNS measurement noise level.
though it is unclear whether the increase in particle diversity was the sole cause of
the increased estimation accuracy. There was onlv a slight reduction in average CEP
gained at the 0.001 m RMS measurement noise level when a regularization method is
added. NMore importantly, short period adjustments in the CEP reveal a sensitivity to
measurciment information not evicdent in the CEP results for FastSLAN 1.0 without

regularization.
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Estimated Position Accuracy and Number of Unique Particles
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Figure 4-6: FastSLAN 1.0: CEP and diversity for single run at range measurciment
RNIS error of 0.1 1n (a) and 0.001 m (b).
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Figure 4-7: FastSLAN 1.0 with Regularization: CEDP and diversity for single run with
range measurement RNS error of 0.1 m (a) and 0.001 m (b). Regularization provided
a slight improvement in CEP at both measurement noise levels.
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4.4.2 FastSLAM 2.0 Accuracy and Diversity Analysis

Switching algorithins to FastSLANM 2.0 demoustrated the effects of a more advanced
proposal distribution on particle diversity and filter accuracy, with results shown in
figure 4-8. At the 0.1 m RMS range measureient noise level, FastSLAN 2.0 with-
out reeularization vielded a noticeable improvement in accuracy from FastSLAN 1.0.
and an additional increase in average number of particles after resampling. This was
expected. as literature testifies to an improved posterior estiimate over the standard
Rao-Blackwellized particle Alter. However, testing the algorithm again at the 0.001
m RMS measurenent level resulted in a disturbing loss of accuracy near the end of
the run. Since prounounced position tracking losses happened suddenly. a reasonable
explanation could involve poor propagation effects at this measurciment noise level.
In original FastSLANM, position tracking errors happened gradually, as a result of
drift. Converselv. ervors in FastSLAN 2.0 happen suddenly, likely not from a gradual
propagation away from the true mean but an erroncous propagation altogether. Since
measurement information was included in proposal calculation, the algoritlhim could
have made large data association errors that led to rapid deviation from the prior
estimate. Figure 4-9 shows the FastSLAM 2.0 posterior after the 60 second scenario,
meluding mapped landmarks. at two levels of range measurement noise. FastSLAMNI
2.0 experienced a breakdown in overall posterior accuracy at the encl of the scenario.
figure 4-9(b). as some particles made correct data associations and remained close
to the frue agent position and other particles incorrectly associated measurements
to false landmarks. As is evidenced in this more detailed view of the filter poste-
rior estimate, FastSLAN 2.0 may have had a reasonable chance of recovering to an
accurate posterior estimate at a later point in time, but only if more correct data
associations were made and erroncous hypotheses elininated. Because of the delayed
decision making inherent in the FastSLAM structure, a 60 second SLANI scenario may
not cucapsulate a longer term robustness that could emerge with more loops around
the enviromment. Nevertheless, it is iimportant to characterize the true performance

of this flter since some engineering applications may call for proven stability over
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Figure 4-8: FastSLANM 2.0: CEP and diversity for single run at range measurement
RMS error of 0.1 m (a) and 0.001 m (b).
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possible long term accuracy.

4.5 Monte Carlo SLAM Performance Analysis

In order to better characterize the average behavior of the filters and regularization
methods coded for the analvsis, 100 Monte Carlo runs were performed for each flter
and regularization method. Each of the three filters were tested first without regu-
lavization. then in a mmarriage with cach of the four regularization methods, giving a
fotal of 15 possible combinations. In addition, each of these combinations was tested
at 15 different range measurement RNS values. from 0.001 to 1.0 1. focusing on the

following performance trends:

L. The overall effect of regularization and the average performance of each regu-

larization method.
2. A cowparison of the accuracy provided by the three filter types

3. The trend in agent position accuracy for each filter-regularization combination

as measurcent noise is reduced to the point where particle depletion occurs,

4.5.1 Filter Performance Results

The first set of Monte Carlo runs compared the performance of the three filters coded
tor this exercise, absent of any regularization algorithis. Results are given in figure 4-
10, As range measurenment RMS error is reduced, average CEP for each approach
drops as expected but then increases dramatically at the lowest RNIS ervor levels.
Even FastSLANL 2.0. though it maintained accuracy to a lower RNS level than the
other filters, met a point at which the the motion-sensor misnatch causes the ad-
verse propagation and instability mentioned earlier. One surprising result is that the
Auxiliary particle filter performed much worse in this scenario than the original Fast-
SLAM algorithin. It seems that this method was far more susceptible to the cffects

of particle drift despite the inclusion of an additional resaipling step. One possible
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Figure 4-9: SLAM posterior estimation with FastSLAN 2.0. At very low nieasurciment
noise levels, substantial errors i the estimated posterior are noted (b).
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Position Accuracy with Simulated Measurements Position Accuracy with Simulated Measurements
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Fignre 4-10: Average filter CEP and 95% confidence intervals for various RMS mea-
o
surement noise levels.

explanation is that the resampling step before particle propagation, though it may in
sotme cases increase the chances of particles propagating to a more favorable region
for mportance weight calculation, reduced particle diversity to an even greater degree
than in a standard particle filter. Evaluating an isolated case, shown in figure 4-11,
reveals that the additional resampling step did in fact produce an accurate position
estimate for the first half of the simulation. Eventually, however, this filter drifted
stubstantially from the true position. It could be that, as in FastSLANM 2.0, using mca-

sureinent infornation in particle propagation results in a proposal distribution that is
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Figure 4-11: Auxiliary Particle Filter: CEP and diversity for single run. Range
measurement. RMS error of 0.001 .

more susceptible to the adverse effects of data association errors. Unlike FastSLAM
2.0, however. particles in an APF are not directly drawn the proposal that includes
these association errors, letting the multiple hypothesis property eventually eliminate
bad particles. Instead. the Auxiliary particle filter uses measurcment information to
trimi the size of the proposal; thus the cffects of data association errors as they shape

the Alter proposal at each time step can never be undone.

4.6 Regularization Performance Results

4.6.1 SpreadX Parameter Selection

Since the SpreadX regularization algorithin utilized an empirically chosen parameter
1

for kernel generation, a set of Monte Carlo runs was performed to determine the opti-

mal parameter for this SLAN scenario. Table 4.5 shows average CEDP for parameter
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| Regularization || Range RMS Ervor, (m)

| Pavameter, A (i) | 0.001 ‘ 0.01 ‘ 0.1 l 1.0 |

| 0.05 ] 0.5008 | 0.3110 | 0.2884 | 0.3786
0.10 0.4288 | 0.3023 | 0.3022 | 0.3710
(15 0.4314 | 0.3182 | 0.2948 | 0.3467
0.20 0.4024 | 0.2990 | 0.2927 | 0.3408
(.25 0.4141 0.3040 | 0.3016 | 0.3517
.30 0.4296 | 0.3054 | 0.3009 | 0.3413
0.35 0.4686 | 0.3281 | 0.3062 | 0.3447
.40 0.4624 | 0.3341 (.3210 | 0.3576
0.45 0.4445 | 0.3104 | 0.3104 | 0.3502

L 0.50 0.4410 | 0.3567 | 0.3143 | 0.3625

Table 4.5: SpreadX vegularization parameter determiuation. using average CEDP (1)
of 100 Monte Carlo runs. Results show A = 0.20 m to be the optimal value for this
simlation.

values between 0.05 wm to 0.5 m, with the best performance at each noise level from
A = 0.2 m. This regularization parameter value was subsequently chosen for cach
implementation of SpreadX for this analysis. Figure 4-12 shows the result of a Monte
Carlo performance analysis using FastSLAM 1.0 and each regularization method from
table 4.4, Despite the variety of approaches employed by the different regularization
algoriths, the only method with an improvement in performance at the lowest imca-
surcinent noise level was the SpreadX algorithm, using a fixed-Gaussian kernel. All
other methods produced mean CEP values comparable to or greater thaun the basic
FastSLAM filter at each isolated measurement noise level. This is initially surpris-
ing. cousidering that SpreadX is the most basie of all tested regularization methods
and does not involve a complicated, derived parameter for kernel generation. The
backbone of the SpreadX algorithim, and possibly the reason that it fared well in this
analysis. 1s an empirically chosen constant regularization kernel. By testing manv
possible values and arriving at an optimal spreading parameter for this scenario.
SpreadX introduced a proper amount of diversity for this environment configuration,
measurement mocel and agent motion characteristics. Also, SpreadX injects a guar-
anteed amount of diversity into the posterior distribution, while in other algorithins
the amount of diversity is variable and may not be sufficient in some cases. For in-

stance. SpreadX2 adjusts resampled states with kernels that depend on the ~stack
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Figure 4-12: FastSLAMN 1.0 with four different regularization algoritluns. Average
CEP and 95% confidence intervals for various RMS measurenent noise levels.



heieht™ of particle sets. In the situation where measurements ave not associated with
any previously mapped landinarks, all particles receive equal weights, and the effect
of the regularization algorithm is minimized. Incidentally, in cases wlere no existing
landimarks are observed and new features are being mapped, more diversity should
be recovered through regularization in order to keep the uncertainty of these new
fandmark positions high. This would give the estimation routine a greater chance
at closing loops and recognizing previously mapped features. It is highly likely that
the filter position estimate could drift away from the true position before mapping
new features. With an accurate scnsor, these new features are initialized with unduie
position certainty unless a reasonable amount of diversity is kept. SpreadX main-
tains a larger amount of diversity in this situation than the other methods since the
particle cloud is not allowed to converge below a certain RMS distance. Nonetheless,
regularization itself does not appear to increase filter accuracy in any case but the
most severe mismateh between motion and sensor noise levels.  Average CEDP val-
ues for FastSLAN 1.0 without regularization are, for the most part, better without

regularization at every other measurement noise level.

4.7 Markov Chain Monte Carlo (MCMC) Analy-

S1Ss

Since the Markov Chain Monte Carlo acceptance criterion can supplement any regu-
larization algorithn, it was appropriate to test this algorithm with each of the four
spreading methods. Because of its solid theoretical foundations, it was expected that
the inclusion of this criterion in any state adjustiment would only improve the average
CEP of the filter position estimate. Table 4.7 summarizes the results of a Monte
Carlo analysis with average CEP at four different measurement RMS errvor levels.
Performance was improved for SpreadX2, SpreadX3, and the RPF method, but only
at the lowest and highest measurement RMS levels. No inprovement in SpreadX

performance was offered by the MCMC step. Again, this result is surprising given
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Regularization | ‘Range RMS Error. (m)
Algorithm  [0.001 | 0.00 | 01 [ 10
SpreadX [0.4024 [ 0.3040 | 0.3016 | 0.3467
SpreadX + MCMC | 0.4586 | 0.4011 | 0.2968 | 0.3744
SpreadX?2 ) 0.4852 | 0.3197 | 0.3015 | 0.3576
SpreadX2 + MCMC || 0.4395 | 0.4197 | 0.3022 | 0.3285
" SpreadX3 | 0.5682 | 0.3651 | 0.3141 | 0.3633
SpreadX3 + MCMC || 0.4756 | 0.4526 | 0.3170 | 0.3396
RPF 0.4778 | 0.3191 | 0.3070 | 0.4214
| RPF + MCMC | 0.4265 | 0.3251 Jo.;so& 0.3671

Table 4.6: MCMC criterion perfortnance analysis for FastSLAN 1.0 and various reg-
ularization methods. Average CEP values ().

the fact that the Markov Chain Monte Carlo algorithin theoretically provides for the
convergence of a regularization method to the optimal Bavesian posterior. As in the
case with the more advanced regularization methods. it could be hypothesized that
the MCMC eriterion restricts the recovery of diversity in the filter position estimate
after resaipling, as particles are only moved provided they meet a strict selection
criterion that involves a current feature measurement.

MONC restricts particle adjustment based on the current measurement. thus
one possibility is that incorrect data association between measurements and features
could keep the regularization method from recovering particle diversity lost in resaim-
pling. As in the case where incorrect data association adversely affected proposal
propagation in FastSLAM 2.0 and the Auxiliary particle filter, using measurement
information to restrict regularization could potentially weaken the filter in cases of

particle drift where estimated feature locations are in fact erroncous.

4.8 Performance Summary for Filter /Regularization

Marriages

Table 4.7 shows comprehensive results of Monte Carlo analysis of each algorithin
developed for this exercise. including marriages between filters and regularization

algorithms. FastSLAM 2.0 without regularization produced optimal filter CEP per-
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Measurement Range RMS Error = 0.001 m

Filter Tvp(‘ [No Regularization ‘ SpreadX ‘ SpreadX?2 | SpreadX3 ‘ RPF

‘ FastSLAM 1.0
(IStSLA l\l 2

Auxiliary PF

0.4596 0.4024 0.4852 0.5632 0.4778
0.5123 0.5852 0.5196 0.5832 0.8589
0.6199 0.7474 0.5312 0.5930 | 0.6150

Measurement Range RMS Error = 0.01 m

: Filter Type TT No Regularization ! SpreadX ’ SpreadX?2 LS[)HQ(T)@ R,I’Fﬁ\

FastSLAN 1.0
FastSLAM 2.0

Auxiliary PF

().3050
0.2419
0.5315

0.3040
0.2570
0.5467

Qe 17
0.2621
0.4714

Measurement Range RMS Error = 0.1 m

(0.3651
0.2533

(0.5289

Peal 8l
0.2653
0.5183

FastSLAM 1.0
FastSLAN 2.0
Auxiliary PF

Filter Type H No Regularization ‘ SpreadX | SpreadX?2 ‘ S])roa(leSJ RPEF

0.2930
0.2452
0.4214

O 3016
00.2882
0.4321

0. i()lo

0. Qu()()
0.3970

0.3144
0.2598
0.4087

0.3070
0.2958

0.3993 |

Measurement Range RMS Error = 1.0 m

Filter Type H No R(oulan/dnon [ SpreadX LE)I)I(A( X")J bproadXJ RPF |

[ FastSLAM 1.0
FastSLAM 2.0
Auxiliary PF

Table 4.7:

0.3463
0.3161
0.5116

0.3467
0.3864
0.6642

0.3576
0.3146
0.4856

dicate significant results.

Average CEDP values () for filter-regularization marriages.

0.3633
0.3153

0.5208

0.4214 |
0.6307

Aﬁ4xsxj

Bold values

formance at all measurement noise levels except the extrenie cases of 0.001 my and 1.0

i RAIS range crvor.

In these situations, other algorithms produced better results.

As explained previously, FastSLANM 1.0 with the simple spreading routine, SpreadX,

provided a much lower CEP than any other algorithun.

FastSLAN 2.0

At L.O m RMS range error.

with Spread X3 provided the best average CEP, but the 95% confidence

intervals for this result do not support significance for this conclusion. thus the result

s not bolded in the table.
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4.9 Summary

It would be interesting to perform this analvsis of SLAMN algorithins with a more
diverse set of performance metries than simply the CEP of the position estimate at
each time. A lot could be inferred by evaluating the error in landmark positions at
certain key moments. such as when the filter maps a previously undetected feature. Of
course. altering the SLAN environment by changing the positions and relative spacing,
of landmarks, giving the agent more or fewer anchor features. or simply changing the
commancded robot path could have a profound impact on the performance of cach

filter and regularization scheme.

[n some ways it is relatively difficult to improve upon the accuracy of a SLANI
filter once landinarks have been mapped with errors. As landmarks are mapped, the
filter will default to these locations when performing data association. If the filter is
alreacly experiencing particle drift, landmarks will be placed in badly skewed positions
and loop closure will beconme difficult.

By recovering sample diversity through particle readjustinent, regularization can
add additional uncertainty in the estimate of agent pose location, especially when
particle adjustiments are based on a fixed kernel. The results of the NMonte Carlo runs
sngeest that this could be one way to keep the filter from locking on an erroneous
heading and creating a skewed map. The effects of the motion-measurcment accu-
racv mismatch scenarios reveal an interesting perforinance paracdox for particle filters
when applied to the SLAM problem. Observations from unseen or newly mapped
features are processed with the same amount of sensor accuracy as well-established
and accurately marked features. However, if the estimation algorithin places full
faith in precise measurements from new features. it will eventually experience a loss
in diversity. While in some cases, such as the global localization problemn where a
well established aud complete map is known a priore. a loss in diversity could signal
convergence to an accurate position cstimate. If the filter is tasked with localiza-
tion and mapping, this loss in diversity is detrimental and will eventually lead to the

phenomena experienced in this analysis.
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Recovering sample diversity through regularization. though it may unot be the
wost optimal or principled prescription, could help maintain a necessary uncertainty
in the locations of new landmarks until successive measureinents or ohscervations of
well established features are obtained. One possible improvement on the standard
FastSLAN] 1.0 algorittun not studied in this analvsis would be to initialize new land-
mark locations with a larger degree of uncertainty than just the measurcnent noise
covariance matrix. Keeping new landinarks more uncertain and then gradually fixing
their position as further observatious are processed could be oune way to keep the

estimated posterior resistant to the effects of particle drift.



Chapter 5

Experimental Results for SLAM

Algorithms

[n order to gain a better understanding of the performance of the FastSLAN algo-
vithi with improved regularization, several runs with ineasurement information from
a real-world SLAN scenario were performed. T this analysis, only one FastSLANI
Hlter type and regularization combination was used in a side-by-side comparison with
an EKE SLAN algorvithin. The environment for this comparison consisted of five
box-shaped objects surrounding a 5. 1-meter straight-line patl. A cart carrving mea-
surcment ecuiptent was pulled along this path, pausing every 0.3068 meters for a
seusor measuremcent. At the end of the path, the cart was rotated 90 degrees, with
measurcments taken every 30 degrees. This particular path and set of measurement
poiuts provided for simple caleulation of true positions as a reference for filter compar-
ison. [n total, this set of measurement and motion data would simulate an 18-second
scenario with the agent advancing for 15 seconds then performing a 90 degree vight
turn over the final 3 scconds. Several assumptions were made to give the scenario
a more realistic quality. First. a motion model was developed that would match
characteristies of a robot advancing along this straight-line path with relatively noisy
odometry information. This motion model would be used in the propagation step for
hoth the EKFE and particle filter algoritluns, producing a similar situation to position

tracking in the presence of actual motion noise. Motion model parameters used for
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both algorithms are listed below for both the translation and rotation phases. Error

paraieters and are given in table 5. 1.
Agent Motion Model

'('Il o ‘/V(Z‘; Ut a’skzr!)
Translation Phase: (f=1—15)
&y~ N{w: 0. Bapu)

i, e (L 0 fltgn )
Rotation Phase: (f = 16 — 18) ; '
iy v Tl ol Dt )

———
|

| Uy Wi speicd N

| 0_.3()68 m/s | 0.5236 rad/s | 0.03 m/s | f).{'J524 rad/s

Table 5.1: Notion mocel parameters for FastSLAN-EKFE comparison.  Only two
motion error parameters are usec: skicd errors in tangential and rotational velocity.

5.0.1 Swiss Ranger Feature Observations

Range and bearing measurements were collected by processing data from the CSEN
Swiss Ranger 3000, a LIDAR imaging system that provided a high-resolution. three-
dimensional represenftation of the environnent. Raw outputs from the Swiss Ranger
included the accurate ranges for every pixel within the field of view. By process-
g these ranges using a median filter and searching for large gradients in the range
pattern, individual features were identified and translated into a range. bearing and
elevation relative to the agent. Since in this scenario pose and landmark locations were
tracked in only two dilnensions, measurements were projected onto a planar environ-
ment. Features in this case were the edges of objects, since these locations produced
the range differences identified by the gradient-based feature extraction technique.
For more information on the Swiss Ranger imaging svstew see [44]. Specifies of the
measurement noise model for the Swiss Ranger and feature extraction are listed in
table 5.2. The effective uncertainties for range and bearing listed are for the entire
feature extraction process. They do not represent the noise characteristics of the

Swiss Ranger alone.
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2D Effective | Non-ambiguity | Effective Bearing Effective Range
Ficld of View [44] Range [44] Uncertainty. RMS | Uncertainty, RMS |

475 deg ba 1 L0deg® | 005m* |

Table 5.2: Effective measurcient model specifications and uncertainties for the fea-
ture observation systeni, including Swiss Ranger, and feature extraction. *Values are
approxiiate.

5.0.2 Algorithm Specifics

The ERKEF SLAN algorithim used in this analvsis was developed according to the basic
framework described in section 2.1, 1, with a 2N + 3 posterior state vector. It utilized
the maxinnun likelihood data association heuristic with a fixed likelihood threshold
for new landmark initialization. To prevent false lancdark initialization from spurious
measurcments, a feature had to be observed twice before incorporation into the ERKFE
map. The only modification to the FastSLANM algorithin outlined in the previous
chapter was the addition of the SpreadX regularization method (for a deseription see
table 4.4). This particular filter and regularization combination was chosen because
it demonstrated both accuracy and robustness with simulated data, outperforming
all other combinations in situations prone to particle depletion. An initial particle
distribution was drawn according to the Gaussian parameters representing the same

a preore mean and covariance as in the EKF.

5.0.3 Initial Estimates and Anchor Features

The agent starts from the same point for every test, with filter a priori estimates
changed for comparison of filter qualities. Anchor features are occasionally ineluded
in a priori posterior estimates, the locations of which were determined after processing
the measureiments in order to place them in favorable locations for recognition by the
filter as it processes measurcments. Each anchor feature given was assumed an initial

uncertainty RMS of 0.3 m in both x and y directions.
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5.0.4 Performance Metrics

The primary metric for this evaluation was position CEP with respect to the true
agent position. but obscervation of the entire posterior is also plotted and will be helpful
in understanding the strengths and drawbacks of cach filter and why a certain filter
performed as it did for each situation. Several nnportant observations were deduced
visually as the SLAN posterior estimate from cach flter type was superimposed on
the true environment. In particular, this bird's-eve view of both filter estimate and
truth helps identifv situations where data association errors were macde and how these

crrors effect the processing of subsequent feature observations.

5.1 Experimental Results

5.1.1 Scenario One: Position Tracking and Feature Mapping

Figure 5-1 shows the environment used for all tests. as well as the initial posterior
estimate and uncertainty for the first experiment. The initial pose estimate reflected
only a slight inaccuracy in the a priori notion of agent position. with the true position
still well within the uncertainty ellipse (1o). No anchor features are provided for this
first assessimment, which tested pose tracking aud feature mapping abilities given a well-
localized initial estimate. Figures 5-2(a) and 5-2(h) illustrate the end result posterior
estimate after processing all motion and measurciment information for the scenario.
Notice that the path of the dead-reckoning estimate from propagation of odowmetry
information has deviated significantly from the true path. while both filter estimates
have maintained a reasonably accurate position estimate by mappiug obscrved fea-
tures and then adjusting a motion-based estimate by subsequent measurements of this
map. In addition, CEP time history is shown for both filters and the dead-reckoning
estimate from one realization of the stochastic motion (figure 5-3). Visual inspection
of the estimated posterior in figure 5-2(h) shows a slightly skewed map. a probable
cause of the slightly inferior CEP performance of FastSLAM in figure 5-3. Exami-

nation of the landmark covariances for both methods shows notably larger ellipses
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EKF SLAM with Swiss Ranger Measurements, t =0
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Figure 5-1: Enviromment truth and initial pose estimate for SLAN scenario. No
anchor features. accurate initial estimate.

for EXF landimarks than with FastSLAN. The fundamentals of the SLAN problewn,
as mentioned in seetion 2.1, state that landmark and pose uncertainties are firmly
linked. That is, uncertainty in the pose location at the time the landinark must be
incluced i landmark estimate covariance. Red ellipses indicate historical covariance
cllipses at cach position. With accurate measurements from the Swiss Ranger, the
sizes of feature uncertainty ellipses in figure 5-2(a) are approximately the same size
as the agent pose uncertainty at the time they were mapped. Little or no additional
uncertainty is added by measurcment noise. The tendency of FastSLANM to produce
a false certainty in landmark positions, as mentioned in scction 2.5.1 is noticed in this
scenario (Agure 5-2(b)). Landinark uncertainty was reduced to virtually zero at the

end of the test.
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EKF SLAM with Swiss Ranger Measurements, t = 18 sec
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Particle Filter SLAM with Swiss Ranger Measurements, t = 18 sec
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Figure 5-2: Final posterior estimate for EKF (a) and FastSLAN (b) after 18-second
scenario. No anchor features, accurate initial estimate.
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Position CEP: EKF vs. Particle Filter
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Hh-3: Agent position CEP time history for dead reckoning estimate and both

flter estimates. No anchor features, accurate initial estimate.

Figure

5.1.2 Scenario Two: Localization

The ability of each filter to localize given an accurate an accurate a priory map was
assessed by providing cach filter with a full set of anchor features. The initial pose
estinate, however, was offset significant distance from the true location. Uncertainty
in this estimate was set at 1 m (lo) to include the true initial position within the
covariance bounds. Figure 5-4 shows both the initial environment and the posterior
estimate after the first measurement. While individual particles are not illustrated
in the Agures, it is clear that particles in the initial dispersion located near the true
estimate made correet data associations with stored landimarks and were weighted
highly. The path estimate reflects a dramatic shift in the mean after this first re-
sampling step as particles are repopulated to these few discrete points. FastSLANMI
respotdled quickly to correct data associations and recovered from poor initial esti-

nafe.

Figure 5-5 shows the estimated posteriors for the test. and the EKFE was in this
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case unable to recover from this poor mitial estimate. While uncertainty decreased
over the length of the scenario. it does not appear that the EKE would have converged.
even with a longer scenario. The EKF made a critical data association error early
i the experiment. Red arrows describe this association, as feature clusters clearly
correspond to other true landmarks. The ERFEF also created additional features with
measurements that differed fromn anv stored landmarks. Other anchor features were
never associated with measurcients; as their covariance ellipses reflect the initial
uncertainty of 0.3 m. CEP time history for this seenario is shown in figure 5-9. The
fundamental drawback of the EWF in this scenario was its inability to track multiple
hypotheses of its location. Instead, it created a map that corresponded with the
poor initial position estimate and a data association error carly in the test. These
experimental results are consistent with other sources that testify to the strengths
of particle filters in tackling problems of global localization based on an accurate a

priori map [17. 45].

5.1.3 Scenario Three: Localization and Mapping

The third and final test was designed to stress the ability of each filter to both localize
based on anchor feature observations and then proceed to map the remaining features
in the environment. Ouly three anchor features were giveu. and ouce again a poor

H-7). Results in this scenario are

initial position estimate was provided (see figure
siimilar to the previous experiment. Once again the EKFE algorithmm built a map
consistent with a poor initial position. It was able to maintain a proper heading
estiinate despite motion noise, but the map estimate is significantlv shifted from
the true feature positions (Agure 5-8(a). Again. the rigid relationship between pose
and landmark uncertainty is evident. All mapped landmarks reflect an uncertainty
similar to the one measurement that was associated with a known anchor feature,
albeit incorrectly. After that point, there is no apparvent additional convergence, of

either the pose or subsequent mapped landmarks.
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EKF SLAM with Swiss Ranger Measurements, t =0
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Particle Filter SLAM with Swiss Ranger Measurements, t = 1 sec
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Figure 5-4: Initial posterior estimate with poor initial estimate and three anchor
features (a). Position estimate recovery for FastSLAN after first measurements (b).



EKF SLAM with Swiss Ranger Measurements, t = 18 sec
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Figure 5-5: Final posterior estimate for EKE (a) and FastSLAM (b) after 18-second
scenario. Red arrows show data association errors of feature clusters.

96



Position CEP: EKF vs. Particle Filter
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Figure H-6: Agent position CEP time history for dead reckoning and filter estimates,
o e ] 1
poor initial pose estimate and accurate initial map estimate. EKE convergence is
limited by initial pose inaccuracy.

5.2 Summary

The results of these experiinents demonstrate that while the particle filter and ERF
can provide similar robustness and accuracy in SLAN cases with little initial uncer-
taintv. the particle filter approach clearly outperforms a single-hypothesis EKFE in
cases where the agent is itially poorly localized. While a comprehensive evaluation
that would support the conclusive acceptance of a particular particle filter SLANI
algorithim over EKFE based algorithins would require results fron a broad range of
scenarios and Monte Carlo tests, the single data set and few variations in this fest
revealed several basic conclusions. First, there are cases where particle filter SLAM
algorithis and EWFE based algorithins yield comparable results, both in robustness
and general accuracy. The EKFE algorithm has the advantage of analytically approx-
imating the optimal Bayesian posterior under the restrictive assuinptions mentioned

in chapter 2, whereas the particle filter is a sampling approach that only approximates

97



the optimal posterior when properly configured. Convergence of a sampling approach
will depend on the number of samples used, a proper weighting heuristic, aud an
adequate model of motion and scnsor characteristies, among other factors [8]. Addi-
tionally. the principles behind the basic EKE SLAN algorithm and its performance
have been well documented. Tt is currently held as the “gold standard™ approach to
state estimation, with acceptable performance in certain SLAN situations [18. 32].
As evident froin the results in this section. there are also some cases where the per-
formance of the EIXE SLAN algorithm breaks down and the FastSLAN algorithm
maintains an accurate estimate of the robot pose and landmark locations. Finallv.
the improved robustness and accuracy of FastSLAN over the basic EKE algorithm in
certain scenarios lies in its ability to track multiple hypotheses of the pose Jocations,
landmark locations, and data associations between landmarks and measurcinents. A
more involved performance analysis for cach filter with Swiss Rauger data would have
helped firm many of these conclusions. Future tests should involve the agent making
a complete loop around the environment in order to test SLAN filter perforimance

during loop closures.
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Particle Filter SLAM with Swiss Ranger Measurements, t =0

8
Algorithm:
7r FastSLAM 1.0 + SpreadX
5 Robot Speed: 0.3048 (m/s)
Dead Reckoning Errors:
sk Ang. vel. ims (deg/s): 6.9282
Speed rms (m): 0.17321
4t A Measurement Errors:
o Range rms (m): 0.05
% 3l 2 Bearing rms (deg): 1
= Initial Position Uncertainty:
2F Initial Estimate Offset (m): 1.41
A Position x-y ¢ (m): 1.0
1 -
e y Estimated Path
,i’ \\ True Path and Environment
or g
/ \ Dead Reckoning
{ ‘ | Landmark 1-c Ellipse
-1r \ | : ;
\ Position 1-¢ Ellipse
P4 A Anchor Features
-2 sl i . ¥ — [ R e d
-3 -2 -1 0 1 2 3
Meters

Figure 5-7: Enviromment truth and initial pose estimate for SLAM scenario. maccu-
rate initial estimate and partial map knowledge.

99



EKF SLAM with Swiss Ranger Measurements, t = 18 sec

8 -
\,, * Algorithm:
Tt \ i EKF SLAM
£y (X
6 ¥ Robot Speed: 0.3048 (m/s)
5F Dead Reckoning Errors:
| Ang. vel. rms (deg/s): 6.9282
4r = Speed rms (m): 0.17321
g Anchor /*
< 3fFeatures Measurement Errors:
= never Range rms (m): 0.05
2 _measured"\ Bearing rms (deg): 1
)
e = =
Estimated Path
ol True Path and Environment
Dead Reckoning
Landmark 1-o¢ Ellipse
il - Position 1= Ellipse
S . 5 . ; ] . A Anchorieatures
-3 -2 -1 0 1 2 3
Meters

(a)

Particle Filter SLAM with Swiss Ranger Measurements, t = 18 sec

8 -
i > Algorithm:
7F FastSLAM 1.0 + SpreadX
6| ol Robot Speed: 0.3048 (m/s)
e y
B ) e Dead Reckoning Errors:
.""'_ Ang. vel. rms (deg/s): 6.9282
4t i Speed rms (m). 0.17321
2
% 3r éx Measurement Errors:
= Range rms (m): 0.05
2r Bearing rms (deg): 1
AN
1k ) _
Estimated Path
ol True Path and Environment
Dead Reckoning
Landmark 1-¢ Ellipse
-1t .
Position 1—¢ Ellipse
A Anchor Features
_2 | S L W e s
-3 -2 -1 0 1 2 3
Meters

(h)

Figure 5-8: Final posterior estimate for EKF (a) and FastSLAM (b) after 18-second
scenario. Red arrows show skewed map of EKFE from data association errors.
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Position CEP: EKF vs. Particle Filter

- Dead Reckoning
EKF
FS1 + SpreadX

2.5

Position Error (CEP)(m)

0.8

0 — 1 —. | 1 J— | 1 1 ; po—
0 2 4 6 8 10 12 14 16 18
Time (sec)

Figure 5-9: Agent position CEP time history for dead reckoning and filter estimates.
poor iuitial pose estimate and three initial anchor features. Ouce again, EIKF conver-
genee is linited by initial pose inaccuracy.
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Chapter 6

Conclusions and Future Work

6.1 Research Conclusions

Results from the Monte Carlo analysis of FastSLAM derivatives combined with vari-
ous regularization technicques revealed a substantial improvement in sample diversity
and accuracy with FastSLAN 2.0 i most situations. At the lowest measurement RMS
values, where the proposal-pereeptual mismatch is most severe. FastSLAN 2.0 was
prone fo disturbing losses in CEP pose accuracy. It was i this situation that Fast-
SLAM [.0 with the addition of a fixed-variance regularization algorithim, SpreadX.
maintained a better estimate of agent pose. The addition of SpreadX provided a
0.05 m average CEP improvement over the standard FastSLAM algorithm, and a 0.1
m CEDP inmproveuwent over FastSLAN 2.0. These conclusions support the adoption
of FastSLANI 1.0 with an cipirically derived. fixed-variance regularization algorithim
over the more complicated FastSLAN 2.0 in SLAM situations where robustness of the
filter in the presence of extremely low measurement noise is a pritary performaiice
requireiment,

Comparing FastSLAM 1.0 4+ SpreadX with an extended Kahman filter in the
same actual SLAN scenario with Swiss Ranger feature observations highlighted the
ability of particle fAlter-based algorithins to recover from situations of high initial
uneertainty. Starting from initial pose errors of 1.4 m. both filters processed feature

obscrvations with partial or complete a priori maps of the environment. The RBPF-
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based algorithin recovered to within 0.4 m pose CEP by the end of the scenario.
whereas the EKEF maintained a pose ervor of at least 1.0 m. These results demonstrate
the Hexibility of an RBPFE algorithm and its ability to recover accuracy despite initial
error by efficiently tracking multiple agent pose hypotheses. This feature makes it
an ideal algorithin for estimation in SLAN situations with of large or global initial
uncertainty and a partial or complete mitial map.

The experiments with Swiss Ranger measurcinents demonstrate the abilities that
RBPE SLAM algorithms offer in an unknown cuvironmment where conventional lo-
calization methods such as GPS are unavailable. The statistical correlation between
landmark location and pose estimates is clearlv evident. When exploited, this corre-
lation can provide a better solution than simply dead reckoning via odowmetry infor-
mation. The drawbacks of the posc-landmark statistical relationship are also seen.
I the particle filter. cases prone to sample impoverishiment and spurious landimarks
can produce maps that are locally accurate. but badly skewed and shifted from the
true map. Cases with both simulated and real data illustrated this effect in varying
degrees. In the EKF algorithm. tested in similar scenarios to the FastSLAN algo-
rithm, this correlation between posterior states allowed the single hypothesis carried
in the EKF mean to accept data association crrors. preveuting it from converging to
the true agent location. The result was a shifted map, offset by the initial estimate
error. It reflects that a single-hvpothesis EKFE algorithm in SLAN environments is

limited in accuracy by its initial pose estimate.

6.2 Future Work

An encompassing goal of this research effort was to thoroughly evaluate the per-
formance of RBPFs in SLAM enviromuents. and experiment with solutions to a
comimonly accepted failure mode. Given their advantages over the EKF in several
difficult localization problems and their alternative and descriptive representation of
the posterior distribution. particle filters have the potential to become a powerful

estimation techuique. As evidenced by tests with Swiss Ranger data, they provide
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similar performance to an EKF-based algorithm for pose tracking in a SLAN environ-
ment. Morcover. other tests revealed the strengths of FastSLAN in SLANI scenarios
with poor initial estimates and high initial pose uncertainty and a partial environment
map. The experinteutal results for alternative proposals and regularization technicques
contained in this thesis do not provide a noteworthy case for FastSLAM 2.0. SpreadX.
or anv other algorithm as a definitive solution to sample impoverishiment in particle
filters. However, in light of the results from this limited survey of improvement strate-
gies, it does seenn reasonable to conclude that the recent experimental efforts aimed
at solving the particle depletion problem are worthy causes that will hopefully, with
more rescarch, provide a highly advanced posterior estimation technique based on
sequential Monte Carlo methods. Solving the saniple impoverishment failure mode
could greatly expand the number of solvable estimation scenarios and potentially vield
a single robust filter with the architecture to enable autonomous vehicle operation in

almost any unknown environment.

One of the surprising results from the simulation phase of this project was the
fact that FastSLAN 2.0 was not. in some extreme cases. the ultimate answer to
sample impoverishment.  While the inclusion of feature observation information in
proposal developient does provide a marked increase in posterior accuracy at most
measurement RMS levels, the most mismatched proposal-perceptual scenario revealed
disturbing propagation ctfects that practically eliminated any posterior tracking abil-
itv. It appears as though FastSLAM 1.0, while not as advanced and not as accurate
in all situations, provided the most robust proposal distribution. The particle diver-
sity recovered by the addition of a simple regularization algorithn. such as SpreadX.
can give this simple filter an increased sensitivity to feature observations and greater
posterior accuracy with the most precise measurement device. Unfortunately, the
Spread X regularization approach used a fixed, empirically derived parameter and was
therefore not as flexible to implement as other methods. A scemingly worthwhile en-
deavor could be to continue a regularization method research effort and develop other
analytical solutions to match the accuracy of the empirical method. Perhaps an op-

thnization formula using characteristics of the SLAM scenario could lead to a more
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Hexible regularization technique. Another consideration would be to include within
the regularization kernel a parameter based on the residual hetween the estimated
and observed feature measurcnents, In other words. spreading would be dependent
upon how well measurcments from the pose and landmark estimates mateh the ac-
fual observations, with less adjustinent for particles that correctly predict the feature
obscrvation.

Iu order for FastSLANI to estimate effectively when measurement and motion noise
are severely mismatched. there should be some wav to incorporate more uncertainty
in landmarks. One way. proposed by Montewmerlo. is the incorporation of negative
evidence to eliminate false landimarks: this was not used. but should be studied further
i situations with low measurement noise.  Also. landimarks should be initialized
with more uncertainty than just what is representec in measureinent noise. As was
seen in several occasions, both in a shmulated enviroment and with Swiss Ranger
measurements. the Rao-Blackwellized particle filter, in a mapping enviromment. is
prone to a false certaintv in landinark position. This intensified data association
crrors through the creation of false landmarks. One way to incorporate this would be
to include parameters that measure particle dispersion in the caleulation of landmark
covariance at initialization. Another way would be to include an ad hoce criteria
for landmark initialization, namely that a particular landiark should be observed
a defined number of times before it is incorporated into the filter.  This feature
was included in the EKF SLAN algorithm used with Swiss Ranger measurements in

chapter 5.
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