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1. Introduction

The electron radiation belts exhibit a two-zone structure. The inner radiation belt is very stable, while
the outer belt shows high variability in the magnitudes of electron fluxes, the location of the peak of
fluxes, and the duration of the intervals of depleted and enhanced electron fluxes. During geomag-
netically quiet times, a "slot" region, separating the inner and the outer radiation belts, is formed as a
result of the inward radial diffusion and losses to the atmosphere [Lyons and Thorne, 1973]. During
disturbed geomagnetic conditions, the slot region is occasionally refilled [Thorne and Russell, 1971],

and the plasmapause can be compressed down to low L values [Baker et al., 2005], which creates
preferential conditions for the local acceleration (low plasma density and strong magnetic field)
[Horne et al., 2005].

O 'Brien et al., [2001] showed that increases in relativistic electron fluxes at geosynchronous orbit are
correlated with the ULF wave activity, which is consistent with a radial diffusion acceleration mecha-
nism. However, radial diffusion model simulations are incapable of reproducing the build up of
peaks in phase space density [Brautigam and Albert, 2000 and Shprits and Thorne, 2004], frequently
observed in the recovery phase of the storms [Green and Kivelson, 2004]. Shprits et al. [2005a] per-
formed the radial diffusion simulations with constant outer boundary conditions and a variable life-
time parameter and concluded that both acceleration mechanisms occur on similar time scales and
that both mechanisms contribute to the variability of the relativistic electron fluxes in the radiation
belts.

Flux variations can generally be divided into two categories: adiabatic or reversible changes, and
non-adiabatic or irreversible. Adiabatic changes in electron fluxes occur when the magnetic field

changes slowly compared to the timescale associated with the particle adiabatic invariants [Roederer,
1970]. When the magnetic field slowly decreases due to an increase in the storm-time ring current,
electrons move out to conserve the third invariant, and will loose energy to conserve the first adia-
batic invariant. When either the gradient of the energy spectrum or the radial gradient is steep, the
radial displacement of electrons will result in significant changes of electron fluxes at a fixed radial
distance and energy as observed by spacecraft [Li ei al., 1997; Kim and Chan 1997; Reeves et al.,
1998]. To explain the net effect of adiabatic variations, it is instructive to consider two extreme cases
when particles move outward due to decreases in magnetic field. If there is no radial gradient in PSD,
but there is a declining spectrum, the spacecraft will see fewer particles at a fixed energy because they
originate from an initial (smaller) population at higher energies. On the other hand, if the energy
spectrum is flat but there is an inward radial gradient (more particles at lower L-values), the space-
craft will measure an increase in electron fluxes. The magnitude of the adiabatic flux variations will
depend on the steepness of the energy spectrum, radial gradients, the magnitude of the disturbance in
the field, and the background magnetic field. The strongest effect is usually at higher L shells where
the background magnetic field tends to be weaker [Kim and Chan, 1997]. For many storms, fluxes do
not return to the original pre-storm values, which indicates that non-adiabatic losses occur during
storms [McAdams and Reeves, 2001; Onsager et al., 2002, Green et al., 2004]. The net effect of



losses during storms could be compensated by the various enhanced sources of electrons [Reeves et
al., 2003].

Significant progress has been made in recent years in quantifying non-adiabatic loss mechanisms in
the radiation belts. Losses inside the plasmasphere are predominantly due to whistler mode hiss wave
scattering with loss timescales on the order of 5 to 10 days [Lyons et al., 1972, Albert, 1994; Abel and

Thorne, 1998]. Meredith el al. [2004] also demonstrated that the intensity of the hiss, and conse-
quently the rate of pitch angle scattering, are correlated with the level of geomagnetic activity.

From radial diffusion simulations, Shprits ei al., [2005a] concluded that effective losses in the heart
of the radiation belts (where the outer radiation belt fluxes maximize) usually occur on the timescale
of a day, which is much shorter than timescales associated with plasmaspheric hiss. This conclusion
is supported by the theoretical estimates of the scattering rates due to chorus waves, which indicate
that such losses occur throughout the outer radiation belt [Albert, 2005; Horne et al., 2005; Thorne el
al., 2005b]. Combined SAMPEX and Polar observations also show that microburst precipitation,
which is thought to be produced by bursty chorus waves, can provide electron losses on the scale of a
day or less throughout the outer radiation belt zone [O'Brien et al., 2004; Thorne et al-, 2005b].

EMIC waves could provide fast, localized losses on the time scale of hours [Thorne and Kennel,
1971; Albert 2003; Summers and Thorne, 2003]. These waves are preferentially excited in the high-
density plasmasphere, along the dusk side plasmapause [Horne and Thorne, 1993; Kozyra el al.,
1997; Jordanova et al., 200la,b], during enhanced convective injection of the ring current ions. In
the vicinity of the plasmapause, the minimum electron energy for resonance can drop to 500 keV
[Meredith e al., 2003; Summers and Thorne, 2003]. Resonant relativistic electrons only briefly trav-
erse the dusk side region of intense EMIC waves, but may produce very rapid precipitation events
that are strongly localized in MLT. Precipitation due to EMIC waves may be also related to the
bursts of hard X-rays seen by balloon-born instruments [Millan el al 2002].

Even though radial diffusion rates are strongest during the main phase of the storm and are capable of
effectively transporting electrons to lower L shells and accelerating them, electron fluxes are com-
monly observed to decrease during the main phase of a storm [e.g., Nagai, 1988, Mathie and Mann,
2000; O'Brien ei al., 2001, Onsager, 2002].

Green et al. [20041 concluded that such losses can not be produced by magnetopause encounters
alone since losses extended much further into the heart of the radiation belts than the estimated
stormtime magnetopause location. In this study, we attempt to verify whether inward gradients in
phase space density created by the losses to magnetopause and consequent outward radial diffusion
that acts to minimize these gradients are capable of contributing to the main phase depletions of the
radiation belts, and thus produce flux drop outs at lower L-values.

In Section 2, we present SAMPEX observations of a 70-day period in October, November, and
December 2003. We show that the flux drop outs are not adiabatic, are well correlated with increases
in Kp, and are also correlated with increases in the solar wind dynamic pressure. To determine
whether the main phase drop outs are a result of scattering by EMIC waves or outward radial diffu-
sion, we present multi-energy HEO observations in Section 3 as well as HEO proton measurements.
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To verify the viability and efficiency of the outward radial diffusion loss, in Section 4, 5, and 6, we
present radial diffusion simulations with the variable outer boundary and show how electron flux
variations near geosynchronous orbit affect fluxes at lower L-shells by means of outward or inward
radial diffusion.



2. SAMPEX Observations

Figure 1 shows the evolution of the 2-6 MeV electron fluxes observed by the PET instrument on
SAMPEX starting on DOY 290, 2003 ( October 17) for 70 days. The variability of the electron
fluxes and formation of the new radiation belt during these strong geomagnetic storms have been pre-
viously reported and studied by Baker et al. [2004], Horne et al. [2005], Shprits et al. [2005b],
Thorne et al. [ 2 0 0 5a]. Clearly evident are the formation of new radiation belts in the slot region in
the recovery phases of the October 31 and November 20 storms (DOY 304 and 324). Also evident
are increases in the inner radiation belt (L < 2) following the rapid refilling of the slot region. In this
study, we concentrate on depletions of the radiation belts during this time period. Part of the drop out
in fluxes may be associated with adiabatic changes. For most of the storms shown on Figure 1, Dst
recovers before the fluxes come back to pre-storm values, which indicates that non-adiabatic losses
occur during the main phases of the storms.
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Figure 1. SAMPEX observations of 2-6 MeV electron fluxes in logl 0(cm- 2 sr-I s-1) from
October 17 till December 26, 2003 (top panel). Evolution of the Dst index
(second panel), Kp (third panel), and solar wind dynamic pressure inferred
from ACE measurements in km 2 sI ccI (fourth panel) and estimated Magneto-
pause location (bottom panel).



If the inward radial diffusion was the only acceleration mechanism, and it operated throughout the
outer radiation zone, the increases in ULF wave activity and increases in Kp should correspond to
flux increases. In contrast, Figure 1 shows that each of the depletions (October 24,29, 3 1, November
4, 20, December 4, 20, which correspond to DOY 297, 302, 304, 308, 324, 338, 354) occurred when
the Kp index suddenly increased. Such catastrophic decreases in fluxes during disturbed geomagnetic
conditions could be explained either by increased EMIC wave activity and pitch angle scattering into
a loss cone [Summers and Thorne, 2003; Albert, 2003], or it could be due to the outward radial diffu-
sion driven by losses to the magnetopause. As shown on the forth panel of Figure 1, the solar wind
dynamic pressure (Dp) increases for each of these events, causes a compression of magnetopause, and
consequently losses on the dayside. The bottom panel of Figure 1 shows the magnetopause standoff
distance, estimated using the Shue et al., [1997] model, which moves inward in response to the
increases in the solar wind dynamic pressure. Some of the magnetopause compressions, such as on
November 8 (DOY 312), do not produce a significant drop in Dst, but clearly produce depletions in
the outer radiation belt zone, which again indicates that losses associated with increases in Kp and
solar wind dynamic pressure are irreversible.

6



3. HEO Multi-Channel Observations

Since EMIC waves only interact with electrons at energies >0.5 MeV [Meredith et al., 2004,
Siummers and Thorne, 2003], precipitation loss from EMIC scattering can be separated from losses
due to the outward radial diffusion by comparing the evolution of fluxes at various energies. Figure 2
shows Highly Elliptical Orbit (HEO) satellite observations at six energy channels ranging from E >
0.13 MeV to E > 3 MeV. The depletions of relativistic electrons are seen simultaneously on the low-
orbiting SAMPEX and the polar-orbiting HEO spacecrafts. The comparison of SAMPEX and HEO
observations suggests that electron flux drop outs occur over a broad range of pitch angles and at all
local times. For the same events, as described in Section 2, HEO observations show that all channels
(including E > 0.13 and E > 0.23 MeV) are depleted down to L = 4 during the main phases of the
strong storms. Such loss can not be explained by the EMIC wave scattering. However, EMIC waves
may contribute to depletions at lower L-values.
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Figure 2. Integrated electron flux measured on HEO for energies > 3.0, 1.5 0.63, 0.45, 0.23, and
0.13 MeV (first 6 panels) in log10(cm-2 sr-' s-•) and the Kp index (bottom).
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Any loss to the magnetopause, driven by outward radial diffusion, should affect both electrons and
protons. Some of the HEO proton channels are affected by energetic electrons and are not suitable
for comparison to electron and proton fluxes. Figure 3 shows a comparison between the > 1.5 .MeV
electron channel and >320 keV proton channel. Note that the new electron radiation belt, formed on
DOYs 302-318 between L = 2 and 4 [Baker et al., 2004], is not apparent on this proton channel, indi-
cating little contamination from the high-energy electrons. During the strongest electron drop out
events, proton fluxes also show depletions. The most dramatic loss of relativistic electrons and pro-
tons is seen during the November 20 storm (DOY 324).
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4. Variable Outer Boundary Conditions

To verify whether radial diffusion is fast and efficient enough to produce radiation belt depletions
down to L = 4, we carried out radial diffusion simulations with variable outer boundary at L * = 7,
which we present in Section 6. In this section, we describe the variable outer boundary used for the
simulations. Geosynchronous fluxes are highly affected by adiabatic changes, producing variations
by as much as 3 orders of magnitude. These adiabatic changes can be filtered out by evaluating the
phase space density as a function of the third adiabatic invariant, or equivalently the L* parameter
[Roederer, 1970]. Once phase space density is prescribed as a function of L*, all remaining flux
variations must be caused by non-adiabatic loss or source processes. In the current study, we evaluate
fluxes at L* = 6 and use this to prescribe an outer boundary condition for a radial diffusion model that
accounts for the non-adiabatic changes and ignores local acceleration.

Figure 4 (top panel) shows the Combined Release and Radiation Effects Satellite (CRRES) measure-
ments of 1.0 MeV electron fluxes at L* = 6, computed with T89 dynamic and OP77 static models.
Since data at L*=7 is sparse, following Brautigam andAlbert [2000], we use the normalized
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Figure 4. Daily averages of the 1-MeV electron fluxes at L* = 6, measured on
CRRES log 0o(cm- 2 srC s' keV),. The L* parameter was derived using the
T89 dynamic and OP77 static models.
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variation at L* = 6 and apply it to the average fluxes at L* = 7 to produce variable boundary condi-
tion. Since radial diffusion coefficients are very high near geosynchronous orbit, phase space density
tends to be flattened out by the radial diffusion [Shprits and Thorne, 2004]. Consequently, we can
expect similar relative variation in fluxes for high L* values. Figure 4 (bottom panel) shows the
evolution of the Kp index. Most of the strongest electron flux depletions at L* = 6 are associated with
a sudden increase in Kp. CRRES measurements are confined to a narrow band of nearly equatorial
pitch angles and will be used as a boundary condition for the radial diffusion model, which treats only
90' pitch-angle particles.
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5. Model Description

Conservation of the first and second adiabatic invariants results in acceleration of particles during the
inward transport and deceleration during the outward transport. The direction of the net diffusive flux
is opposite to the radial gradient in phase space density. The net diffusive flux depends on the diffu-
sion coefficients and the gradient in phase space density. If local acceleration is ignored, the temporal
evolution of phase space density can be obtained from Schulz and Lanzerotui [1974]:

af- L2 a [DLLL-2 Of, (1)

at aL[ al c

where ris the electron lifetime, and DLL is the radial diffusion coefficient. In this formulation, the
first two adiabatic invariants, $mu$1t and $J$J, are held constant and Eq. (1) can be solved numeri-
cally forj(L,t). In the present study, we adopt an empirical relationship for the rate of radial diffusion
due to magnetic fluctuations [Brautigam and Albert, 2000], which tends to dominate throughout the
outer radiation zone:

DLL (Kp, L) = 1O( L5 06 Kp 9 32 5 ) LO,Kp = I to 6 (2)

Solutions of the time-dependent code, ignoring the effects of local acceleration and only considering
radial diffusion with losses, are compared to CRRES MEA observations.

The inner boundary for our simulation f(L = 1) = 0 is taken to represent loss to the atmosphere. Con-
stant outer boundary conditions are based on averaged fluxes at L = 7 obtained from CRRES and
Polar measurements (N. Meredith, P. O'Brien, personal communication). We model fluxes by an
exponential fit J = 8222.6exp(-7.068K), T = 8222.6exp(-7.068K) cm-2 sr-1 keV-1 s-i, where K is
kinetic energy in MeV. Variable outer boundary conditions were described in Section 3.

For simplicity, we first assume that the diffusion coefficients and lifetimes are independent of energy
and solve (1) forf(L,), normalized to unity at the outer boundary. This solution will be the same for
allI y values. Consequently, to obtainedf(E, L), the normalized phase space density should be multi-
plied by J(E*)/p *2, where E* andp* are the kinetic energy and momentum of the particles adiabati-
cally scaled to the outer boundary, and J is a differential flux at the outer boundary. Shprits et al.
[2005a] showed that for simulations with constant outer boundary conditions, parameterizations of
lifetimes r= 3/Kp is optimum for reproducing observations. Since maximum radial diffusion rates
during storms correlate with depletions of the outer zone fluxes, introduction of the variable boundary
results in a lower net diffusive flux. For simulations with variable outer boundary, lifetime param-
eterizations -r= 5/Kp produced best agreement with CRRES observations in terms of the location of
the peak of fluxes and the radial extent of fluxes. Since chorus scattering rates do not show signifi-
cant L dependence [Thorne et al., 2005b], we adopt a lifetime parameter independent of L.

11



6. Simulations with Variable and Constant Outer Boundary.

To verify that outward radial diffusion, driven by losses at magnetopause and outer boundary varia-
tions around geosynchronous orbit, can produce significant depletions in the heart of the radiation
belts, we conducted numerical simulations with both variable and constant outer boundary condi-
tions, as described in Section 4. We chose a modeling period from July 19, 1990 (DOY 210) until
November, 6, 1990 (DOY 310) and compared results of the radial diffusion simulation to CRRES
measurements at 1 MeV. During this time, Kp was less than 6 for which diffusion coefficients (2) are
valid. Figure 5 (top panel) shows radial diffusion simulations with constant outer boundary condi-
tions. Our radial diffusion model predicts almost instantaneous increases in the I -MeV fluxes during
the main phase of the storm when diffusion coefficients maximize. In contrast, CRRES observations
(second panel) show depletions during the main phase of the storms. Results of the simulations with
variable outer boundary (bottom panel) are in better agreement with observations at high L-shells.
Enhanced radial diffusion down to L = 4 causes fluxes to respond rapidly to outer boundary varia
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Figure 5. I-MeV electron fluxes computed with the radial diffusion code and constant
outer boundary (top panel). CRRES MBA observations of 1-MeV electronfluxes (second panel). Radial diffusion simulations with variable outerboundary (third panel). Differential flux is color-coded in 1og10(cm-2 sr-' s-'keV-'). Evoluition of the Kp index. Time interval from July 19, 1990 (DOY
210) till November, 6, 1990 (DOY 310).
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tions. We conclude that magnetopause losses together with outward radial diffusion are capable of
explaining the main phase depletions in the radiation belts down to L = 4. The differences between
model results and observations may be due to the neglect of EMIC wave scattering, which provides
additional losses at lower L, and the neglect of the chorus wave scattering, which may locally acceler-
ate electrons.

Figure 6 shows a comparison of the two models for one of the strongest depletions of the radiation
belts during the August 26, 1990 storm (DOY 238). Solar wind density, as observed on IMP8 satel-
lite, reached 40 cc', while solar wind speed was above 700 ms-'. Such dramatic increases in the
solar wind dynamic pressure compressed the magnetopause to low L-values and produced significant
losses near the geosynchronous orbit. This decrease in the outer boundary flux was propagated to a
lower L-shell by the outward radial diffusion. Radial diffusion even overestimates losses during this
time period, possibly due to the neglect of any local acceleration processes that operate in the recov-
ery phase of many storms [Horne et al., 2005].
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Figure 6. Same as Figure 5 but for August 23 till September 2, 1990
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7. Summary and Discussion

The HEO, SAMPEX, and CRRES observations presented above indicate that main phase depletions
are correlated with increases in the solar wind dynamic pressure and increases in geomagnetic activ-
ity. They occur at energies from a few hundred keV to a few MeV. EMIC wave scattering could
provide very fast losses on the scale of hours and may be responsible for MeV electron loss in the
heart of the radiation belt but can not explain the radiation belt depletions at higher L-shells, which
occur down to a few hundred keV.

Comparison between the radial diffusion simulations and CRRES MEA observations indicate that
radial diffusion is fast and efficient enough to propagate outer boundary variations down to L = 45.
Scattering loss due to EMIC waves may also play an important role at lower L-values and compete
with local acceleration, which will be most efficient just outside the plasmasphere. The results of our
simulations indicate that radial diffusion can effectively redistribute outer radiation belt fluxes and
smooth PSD gradients that are produced by losses to magnetopause and convection of plasma sheet
electrons or by local acceleration and loss. While our results clearly show that radial diffusion is
important in transporting relativistic electrons across the L-shells, it still remains unclear whether a
majority of the relativistic electrons in the radiation belts came from the plasma sheet and were trans-
ported inwards or were accelerated inside the radiation belts and than diffused out.
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