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ABSTRACT 
Numerous advancements have been made in gas turbine health 
monitoring technologies focused on detection, classification, 
and prediction of developing machinery faults and 
performance degradation. Existing monitoring systems such as 
ICAS (Integrated Condition Assessment System), which is the 
Navy’s program of record and is deployed on many US Navy 
ships, employ alarm thresholds and event detection using rule-
based algorithms. Adding the capability to predict the future 
condition (prognostics) of a machine would add significant 
benefit to the Navy practice. The current paper describes a 
framework and development process that allows more “plug 
‘n play” integration of new diagnostic and prognostic 
technologies using evolving Open System Architecture (OSA) 
standards. Although many modules were developed in the 
PEDS framework, specific gas turbine modules that focus on 
compressor and nozzle degradation algorithms are discussed. 
The modules use statistical prediction algorithms and were 
developed using seeded fault data generated by the Navy 
engineering station. The modules are fully automated, interact 
with the existing monitoring system, process real-time data, 
and utilize advanced forecasting techniques. Such an advanced 
prognostic capability can enable a higher level of condition-
based maintenance for optimally managing total Life Cycle 
Costs (LCC) and readiness of assets.  

NOMENCLATURE  

API - Application Protocol Interface 
CBM – Condition Based Maintenance 
DDI - Demand Data Interface 

DLL - Dynamic Linked Library 
DTD - Document Type Definition 
FADC - Full Authority Digital Engine Controller 
GTP - Gas Turbine Performance  
ICAS - Integrated Condition Assessment System 
JSP - JAVA Server Page 
LCC - Life Cycle Costs 
MIMOSA - Machinery Information Management Open 
Systems Alliance 
OSA - Open System Architecture  
PEDS – Prognostic Enhancements to Diagnostic Systems 
PDF - Probability Density Function  
PHM - Prognostics and Health Management  
SGML - Standard Generalized Markup Language 
SXL - eXtensible Stylesheet Language  
TOC – Total Ownership Cost 
W3C - World Wide Web Consortium 
XML - eXtensible Markup Language 
 
C, F – Normal Distributions 
N – Speed 
P – Pressure 
Q – Volumetric Flow 
S – Weighted Coefficients 
T – Temperature 
y - Predicted Value 

CIT – Compressor Inlet Temperature 
CDT – Compressor Discharge Temperature 
CDP – Compressor Discharge Pressure 
TIT – Turbine Inlet Temperature 
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FMP - Fuel Manifold Pressure 
FF - Fuel Flow  
Φ - Normalized Cumulative Distribution 
α  -- Weighting Factor 
γ  -- Ratio of Specific Heats 
σ − Standard Deviations 
τ – Prediction Interval 

INTRODUCTION 
Various prognostics and health monitoring technologies have 
been developed that aid in the detection and classification of 
developing system faults. However, these technologies have 
traditionally focused on fault detection and isolation within an 
individual subsystem. Machinery health management system 
developers are just beginning to address the concepts of 
prognostics and the integration of anomaly, diagnostic and 
prognostic technologies across subsystems and systems. [1-3] 
Hence, the ability to detect and isolate impending faults or to 
predict the future condition of a component or subsystem 
based on its current diagnostic state and available operating 
data is currently a high priority research topic.   

In general, health management technologies will observe 
features associated with anomalous system behavior and then 
relate these features to useful information about the system’s 
condition. In the case of prognostics, this information relates 
to the condition at some future time. Inherently probabilistic 
or uncertain in nature, prognostics can be applied to 
system/component failure modes governed by material 
condition or by functional loss. Like diagnostic algorithms, 
prognostic algorithms can be generic in design but specific in 
terms of application. Various approaches to prognostics have 
been developed that range in fidelity from simple historical 
failure rate models to high-fidelity physics-based models.   

This paper will discuss some generic prognostic 
implementation approaches and provide specific applications 
to various mechanical systems. The ability to predict the time 
to conditional or mechanical failure (on a real-time basis) is of 
enormous benefit and health management systems that can 
effectively implement the capabilities presented herein offer a 
great opportunity in terms of reducing the 
operations/maintenance logistics footprint and overall Total 
Ownership Costs (TOC) of operating systems. 

Monitoring Systems and New Prognostics 

The Navy’s Integrated Condition Assessment System (ICAS) 
[4] is a tool to enable maintenance troubleshooting and 
planning for shipboard machinery systems. It provides data 
acquisition, data display, equipment analysis, diagnostic 
recommendations, and decision support information to 
operators and maintenance personnel. Additionally, ICAS 
links to other maintenance-related software programs to 
provide a fully integrated maintenance system.  ICAS assesses 
equipment and system condition for maintenance of 

machinery and equipment. Through the use of permanently 
installed sensors, the ICAS system monitors vital machinery 
parameters on a continuous basis. ICAS can diagnose the 
operational condition of a particular piece of machinery using 
customer-supplied performance data linked to a logical 
diagnostic process. 

The ICAS workstation is used for data acquisition, 
conditioning, performance analysis, trend and logsheet 
capture, and expert evaluation. Several types of data 
acquisition devices that process sensor output signals augment 
the workstation.  The ICAS workstation is also responsible for 
providing all user interface functions and long-term data 
storage.  

The Navy has formed an open-forum working group to 
establish Gas Turbine CBM [5], with the goal of planning and 
executing integration of CBM technologies into gas turbines 
on all CG & DDG class ships. Installation of FADC (Full 
Authority Digital engine Controller) controllers on all gas 
turbines in the CG & DDG classes by the Life Cycle 
Managers over the next 8 years will provide the hardware and 
computing power required for equipment health assessment 
and monitoring. ICAS will provide the necessary connection 
allowing gas turbine health monitoring systems to provide 
assessments and recommendations to ships crew. New 
algorithms developed by the Navy, industry or the other 
programs will be incorporated as part of the FADC. The 
system-wide development will incorporate ongoing and new 
R&D efforts into the development plan and complete system 
integration with ICAS. Most of the phases run concurrently 
and have parallel timelines. 

Within these program developments and evolving 
environment, the Prognostic Enhancements to Diagnostics 
Systems (PEDS) program is focused on demonstrating 
prognostic enhancements using demand data interface 
protocols and displays using pseudo sensor inputs or simple 
web-based interfaces.   

The approach for the PEDS program is to develop prognostic 
software that is modular and possesses the capability for 
multiple transition opportunities. The PEDS module 
communicates between existing elements and system 
enhancements using controlled proprietary               
interfaces or open middleware that “glue and hook” items 
together. The PEDS module should have the ability to 
interface directly with the existing database and data 
monitoring system, its user interface, and the decision support 
and logistics system using the pre-negotiated interfaces 
defined by the existing system.  This is accomplished using 
system specifications, such as a Demand Data Interface (DDI) 
and TCP-IP as in the case of ICAS. In addition, the PEDS 
module should have the ability to interface directly with any 
system that uses OSA-CBM specifications (i.e. OSA-CBM 
Compliant Sensors and Processing modules) or systems that 
are enhanced to include the OSA-CBM specifications. 
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Evolving Open Systems Standards 

Openness is a general concept that denotes free and 
unconstrained sharing of information. In its broadest 
interpretation, the term “open systems” applies to a systems 
design approach that facilitates the integration and 
interchangeability of components from a variety of sources.  
For a particular system integration task, an open systems 
approach requires a set of public component interface 
standards and may also require a separate set of public 
specifications for the functional behavior of the components.  
The development of the open-systems standards relevant to 
Condition-based Maintenance (CBM) and Prognostics and 
Health Management (PHM) development has been pursued by 
an International Standards Organization (ISO/TC 108/SC 5) 
committee, a consortium of condition monitoring companies - 
Machinery Information Management Open Systems Alliance 
(MIMOSA), and a DoD Dual-Use Science and Technology 
program (OSA-CBM) led by The Boeing Company. [6-8] 

The MIMOSA interface standards define open data exchange 
conventions for sharing of static information between CBM 
systems (openness at the intra-system level).  The goal of the 
OSA-CBM project was the development of an architecture 
(and data exchange conventions) that enables interoperability 
of CBM components (openness at the inter-system level). The 
interface set allows external clients open access to the 
information generated within the proprietary system solution.  
Alternatively, a CBM system can operate openly at the inter-
system and intra-system levels. In this case the individual 
components are exposed at the functional component 
interfaces. These component interfaces offer access to the data 
and services supplied by the component, and provide for open 
information flow between components during system 
operation. In addition, components may be readily replaced by 
components with improved capability as long as they follow 
the same public interface standards. The architectural 
constraints are applied to the structure of the public interface 
and to the behavior of the modules. This approach allows 
complete encapsulation of proprietary algorithms and software 
and is a key enabler to prognostic module implementation. 

Prognostics Approaches Considered 
A health management or CBM system that possess 
prognostics implies the ability to predict a future condition or 
capability. Inherently probabilistic or uncertain in nature, 
prognostics can be applied to system/component failure modes 
governed by material condition or by functional loss.  Similar 
to diagnostic algorithms, prognostic algorithms can be generic 
in design but specific in terms of application. Within the 
health management system architecture, the Prognostic 
Module function is to intelligently utilize diagnostic results, 
experienced-based information and statistically estimated 
future conditions to determine the remaining useful life or 
failure probability of a component or subsystem. Prognostic 
reasoners can range from reliability-based to empirical 
feature-based to completely model-based. 

Some of the information that may be required depending on 
the type of prognostics approach used in the system include: 

• Engineering Model and Data 
• Failure History 
• Past Operating Conditions 
• Current Conditions 
• Identified Fault Patterns 
• Transitional Failure Trajectories 
• Maintenance History 
• System Degradation Modes 
• Mechanical Failure Modes 

Examples of prognostics approaches that have been 
successfully applied for different types of problems include: 

Experience-Based Prognostics: Use statistical reliability to 
predict probability of failure at any point in time. May be 
augmented by operational usage information. 

Evolutionary/Statistical Trending Prognostics: Multi-
variable analysis of system response and error patterns 
compared to known fault patterns. 

Artificial Intelligence Based Prognostics: Mechanical failure 
prediction using reasoners trained with failure data. 

State Estimator Prognostics: System degradation or 
diagnostic feature tracking using Kalman filters and other 
predictor-corrector schemes. 

Model-Based or Physics of Failure Based Prognostics: 
Fully developed functional and physics-of-failure models to 
predict degradation rates given loads and conditions. 

COMPRESSOR PERFORMANCE PROGNOSTICS   
Fouling degradation of gas turbine engine compressors causes 
significant efficiency loss, which incurs operational costs 
through increased fuel usage or reduced power output. 
Scheduling maintenance actions based upon predicted 
condition minimizes unnecessary washes and saves 
maintenance dollars. The effect of the various maintenance 
tasks (washing and overhaul) on gas turbine engine efficiency 
is shown in the figure below. 
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Time

Degradation Rate with no 
on-line Waterwashing

Degradation Rate with 
on-line washing only

Recoverable losses with 
on-line washing

Recoverable Losses with
Crank Washing

Recoverable Losses with
Hot Section Overhaul

Degradation Rate with both 
on-line and crank washing  

Figure 1 - Effects of Washing on Efficiency and Overhaul 
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Currently, washes are performed on a preventative schedule of 
50 hours for on-line washes and 500 hours for crank washes. 
This maintenance task is performed with no engineering 
assessment of conditional need or optimal time to perform. In 
addition to the loss of availability and maintenance time 
incurred, unnecessary washes generate an environmental 
impact with the disposal of used detergent. Clearly, operating 
with a module that assesses condition and predicts the time to 
wash more appropriately would benefit the Navy. 

Data and Symptoms for Development 
The compressor wash prognostic model was developed using 
data from fouling tests taken at NSWCC in Philadelphia, PA 
and is an example of evolutionary prognostics approach. It is 
based upon specific system features and models for 
compressor efficiency. In order to simulate the amount of salt 
the typical Navy gas turbine is exposed to on a normal 
deployment, a 9% salt solution was injected into the engine 
intake. Over the course of the entire test (3 days) 
approximately 0.0057m3 of salt was used to induce 
compressor degradation at four different load levels (1/3, 2/3, 
standard and full load levels or “bells”).  This method of 
testing was performed on both Allison 501 and LM2500 
Units.  Figure 2 shows a borescope image of the salt deposits 
on the LM2500 1st stage blading.  

 
Figure 2 - Borescopic Image of Salt Deposits: 1st stage  

During the testing, several critical parameters were monitored 
and their response to degradation was tended. Table 1 contains 
the measured parameters with their units and ranges (Shaft 
RPM and Ngg are for the LM2500 testing only) 

  
Table 1 – Recorded Parameters from Digital Control System 

When a compressor undergoes fouling, several key 
performance factors are affected. The most sensitive of these 
factors is the compressor capacity or referred mass flow. 
(Peltier et al, [9]) This occurs due to loss of capacity that 
comes from throat blockage and increases in roughness on the 

suction side of the blading. Unfortunately, in most practical 
naval applications, compressor capacity is not reliably 
determinable.  The compressor inlet temperature (CIT), outlet 
temperature (CDT), inlet total pressure (CIPT) and discharge 
total pressure (CDPT) can typically be used to find compressor 
efficiency. (Boyce [8])   
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Within the developed approach, data preprocessor algorithms 
examine the unit’s operating data and automatically calculate 
key corrected performance parameters such as pressure ratios 
and efficiencies at specific load levels. The techniques 
employed and processing in the module are shown in detail in 
Figure 3.  

 A probabilistic-based technique was developed that utilizes 
the known information on how measured parameters degrade 
over time to assess the current severity of parameter 
distribution shifts and project their future state. The parameter 
space is populated by two main components. These are the 
current condition and the expected degradation path.  Both are 
multi-variate Probability Density Function (PDFs) or 3-D 
statistical distributions. As shown, the consideration of 
uncertainty is carried through the entire process to produce a 
confidence in the prediction. 

 Once the statistical performance degradation path is realized, 
along with the capability to assess current degradation 
severity, we needed to implement the predictive capability. 
The actual unit-specific fouling rate is combined with 
historical fouling rates with a double exponential smoothing 
method. This time series technique weights the two most 
recent data points over past observations. The following 
equations give the general formulation. (Bowerman [10])  

Analysis of the degradation requires simulation to predict the 
range of conditions that might exist given measurement and 
modeling uncertainties. This is accomplished using a Monte 
Carlo simulation, which cycles through parameter PDFs 
created from mean values and 2-sigma uncertainties. The 
resulting distribution is the range of Time-to-Wash 
predictions. Appropriate statistical confidence intervals can be 
applied to identify the mean predicted value. This estimate can 
also be updated with a weighted fusion of the predicted value 
and the historical degradation level derived from fouling data. 
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Figure 3 - Data Processing Flow Chart for Compressor Performance Prognostics

FUEL NOZZLE CLOGGING/START PROGNOSIS 
MODULE  

The fleet of US Navy Allison 501 K-17 and K-34 gas turbines 
uses either pilot type or air assist fuel nozzles. A clogged fuel 
nozzle reduces the efficiency of the combustion process and 
can create potentially damaging hot spots in the combustor 
and turbine sections. At startup, this is especially true to the 
extent that “hot starts” or “no starts” may be produced.  
Experience has shown that the pilot-type nozzles have a 
tendency to accrue carbon deposits (coking) in the pilot tube 
and the nozzle orifice causing improper spray patterns that 
contribute to hot and slow gas turbine starts and combustor 
liner damage. Due to high turbine inlet temperatures, hot starts 
can also cause damage to turbine hot section components. 
While apparently more reliable, degraded air assist fuel 
nozzles can also lead to the same consequences. Figure 4 
shows examples of clean and severely clogged fuel nozzles. 

    
Figure 4 - Clean and Clogged (right) Delavan Nozzles 

Data and Symptoms for Development 

The diagnosis of fuel nozzle clogging was demonstrated using 
an analysis of gas turbine sensor values. Features were 
identified from the Fuel Manifold Pressure (FMP), Turbine 
Inlet Temperature (TIT), Engine speed (RPM), and Fuel Flow 
(Wf).  The baseline data, in which the nozzles were known to 
be clean, was the basis signature. Multiple other indicative 

data sets were collected with progressive clogging conditions. 
A number of diagnostic indicators were developed to diagnose 
nozzle clogging. The first indicator captured the time delay 
between the end of the FMP increase and the start of the TIT 
increase, as defined by the baseline (multiplied by 100 for 
scaling purposes). The average difference between the actual 
FMP values at a given RPM and the expected FMP values for 
that RPM was also used. This value was only calculated for 
the FMP points associated with a start event. Another 
indicator was the max FF/FMP ratio, which is the maximum 
Fuel Flow (FF) to FMP ratio for the start. Finally, the slope of 
the TIT line was also used. These features appear to be 
reliable indicators of fuel nozzle clogging that can provide 
ample warning prior to full start. 
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Figure 5 – Processing Flow of Gas Turbine Component 

Prognostics Module 
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Figure 5 shows the processing flow of the fuel nozzle 
algorithm. Using this methodology, the module analyzes the 
GTG during start-up to determine if the start was normal, hot, 
slow, or a combination of hot and slow. If the start was 
determined to be abnormal, a confidence and severity is 
computed, and an analysis is performed to determine which 
nozzle is clogged. 

Prognostic adaptations focus on the automated interpretation 
of the nozzle clogging projected in time and a recommended 
change threshold based upon the features identified. The 
prognostic output should be a recommended number of starts 
or operational hours for a nozzle change.   

PROGNOSTICS MODULE ARCHITECTURE 
The requirements associated with a prognostic module’s 
interaction with the existing system were used to identify an 
architecture for prognostics module developments. The 
generic prognostic approach that was developed, along with its 
interaction with existing systems, can be seen below. As seen 
in the figure, the module architecture consists of a number of 
elements, each of which performs a different function in the 
operation of the module. The purpose of each of these 
elements is discussed next. In addition, the figure 
demonstrates how each element interfaces with the existing 
system. A review of the major functions of these PEDS 
elements is provided. 

Prognostic Director – The Prognostic Director stores 
configuration files for the dynamic link libraries, verifies the 
organization of data and inter-element communication using 
OSA objects and flows, and orchestrates the overall operation 
of the module. It also provides the API (Application Protocol 
Interface) and middleware information for the elements to 

interact with external sensors or databases. XML interfaces are 
anticipated to accomplish this function, but others are also 
possible with “bridge” software. If information is not available 
from an OSA data source, then the prognostics director will 
reformat it for inter-element use and appropriate “wrappers” 
would be deployed in the director. 

Initialization Element - The Initialization Element initializes 
shared memory, provides the startup parameters, launches the 
other elements and updates the logging and interface.   

Data Processing Element – The Data Processing Element 
accepts raw data acquired and processes features not available 
from the existing system. The data processing element will be 
necessary for “vertical” prognostics modules that input raw 
data and perform usage or failure prognostics directly. 
Advanced feature processing of vibration data is a typical 
example of the function of this element. 

Diagnostic Assessment Element - The Diagnostic 
Assessment Element links with the fault detection and 
diagnostic processes external to the prognostic module. This 
allows the prognostic module to consider the outputs of these 
processes in its prediction.  

Mission Upload Element - The Mission Upload Element 
provides a means to input data to the prognostic module on 
future environmental conditions and mission plans. This will 
enable mission planning to be considered in the prognosis. 

Prognosis Elements – The Prognosis Elements use 
information gathered and processed by the previous elements 
to make a prognosis about the system or component being 
monitored. They will possess the run-time DLLs (dynamically 
linked libraries) that perform the predictions on performance 
degradation and component faults.  
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Figure 6 - Prognostic Approach and Interface Diagram
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PEDS DEVELOPMENT WITH OSA 
The PEDS module implementation consists of translating the 
engineering code (MATLAB® in this case) into an 
implemented “plug and play” module. The final compiling of 
the code is somewhat platform specific, but for Windows 
based applications the code can be written in C++ and 
compiled as a DLL (dynamic linked library).  

The module currently supports OSA-CBM compliant XML 
(eXtensible Markup Language) and other documented data 
structures. Figure 7 shows the two possible deployment 
opportunities for the Gas Turbine Performance (GTP) module: 
ICAS and Tiger, and the elements of the module that are re-
usable between the two approaches. This is possible because 
the code has been written to allow for a number of different 
input possibilities. Flags are set in the initialization element 
that tells the module which inputs to expect for the current 
implementation. Therefore, this modularity of design allowed 
easy modification of the GTP module to interface with 
Sermatech’s Tiger gas turbine software. This resulted in 
faster development time and lower costs. 
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Figure 7 – Producing PEDS modules from Engineering Code 
The use of XML is considered a significant enabler to the 
open systems development. XML is an extension of Standard 
Generalized Markup Language (SGML) and has been a World 
Wide Web Consortium (W3C) recommendation since 
February 1998. XML describes information content and 
information relationships using a metadata structure. The 
structure of the XML document is defined by a user-generated 
Document Type Definition (DTD) or schema. The display 
format of an XML document is also specified by the 
user/generator of the document using eXtensible Stylesheet 
Language (XSL) and transformation sheets.  Thus, the same 
document can be displayed in multiple ways depending on the 
consumer of the information. 

A web-based demonstration interface was created to 
demonstrate the operation of the GTP module (Figure 8). The 
HSI and design concept of the stand-alone module 
demonstration provide a means to illustrate the functionality 

of the GTP module and explore the decision variables that 
affect the TTW recommendation. It also provides an example 
of a web-based implementation of a PEDS module with 
separable prognostics code and HSI display. The primary 
decision variables affecting the TTW cost benefit are: 
recommended wash time, allowable efficiency degradation, 
total fuel cost, and the cost of the maintenance action.   

 
Figure 8– Web-based Gas Turbine Performance Prognostics  

The Gas Turbine Performance interface operates using a 
combination of JAVA Server Pages (JSP), XML, and XSL. 
By linking a series of JSP pages using frames, the HSI allows 
the user to input cost variables to be used in the GTP module. 
After the user inputs cost variables in the text boxes, the 
Update Values button generates an XML files to hold these 
values, outputs a status message to the user, and activates the 
Run Module button. This button is used to activate the GTP 
module, the XML output of which is displayed in the right-
hand frame of the HSI using an XSL stylesheet. This HSI and 
design concept provides a means to illustrate the functionality 
of this performance prognostics module and explore the 
decision variables that affect the TTW recommendation.  

In order to facilitate the web-demonstration and to improve 
cross platform reusability of the module, a Java wrapper and 
JNI interface were developed for the GTP module. This 
interface enabled the execution of the module from the Java 
Server Page and controlled operation of the module for 
demonstration. A data simulation program was also developed 
to stimulate the module for demonstration and integration 
testing. The Java wrapper was used to read data from the 
simulation and call the GTP module at the appropriate time.  

Similar to the GTP module, a web-based demonstration was 
constructed for the GTC module (Figure 9). The HSI and 
design concept of this demonstration illustrates the 
functionality of the module and provides a means for pursuing 
transition of the module. It also serves as another example of a 
web-based implementation of a PEDS module with separable 
prognostics code and HSI display. 
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Figure 9 – GTC Module Web-Demonstration Interface 

The Gas Turbine Performance interface also operates using a 
combination of JAVA Server Pages (JSP) and XML/XSL 
documents. The HSI allows the simulation of a generator start 
and subsequent analysis by the module using a series of linked 
JSP pages embedded in frames. The demonstration begins by 
pressing the Start Engine button, located in far left side of the 
HSI. This simulates the start of the gas turbine generator and 
start data, including temperatures and engine speed, are 
displayed in the plots in the middle of the HSI. The user can 
click on these plots to show a larger representation of the plot 

for easier viewing. The start can be analyzed by pressing the 
Analyze Start button, which executes the GTC module. Upon 
completion of its analysis, the module will produce a number 
of XML documents containing the results of its assessment. 
These analysis results are displayed in the right frame using a 
number of XSL stylesheets. As seen in the figure, the HSI 
displays the results of the Start Description, Confidence, 
Clogging Severity, and Nozzle Isolation analyses described 
previously. 

PEDS DEMONSTRATION IN ICAS 

A major advantage of the PEDS architecture is its modularity 
and code re-usability. This was evident in the adaptation of the 
module for use with the Navy’s ICAS system. In this case, the 
legacy system did not support the OSA-CBM schema for data 
transfer, but Navy personnel have developed several other 
means to directly interface to the inference engine. These were 
implemented and the same basic modules were “wrapped” to 
provide a direct means to perform prognosis in ICAS. Impact 
developed a JNI interface to act as a buffer between ICAS and 
the PEDS modules and permit the use of these modules within 
Java. This interface was developed to control data streams and 
calls to the PEDS module. 

In order to enhance the ICAS capability, a means to pull data 
out of ICAS and write prognostic results was needed. This was 
accomplished using the Demand Data Interface and 
Transmission Control Protocol (TCP/IP).  

 
Figure 10 – PEDS Wrapper Implementation with ICAS and Quick Display Page for Prognostic Results 
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The DDI depicted was designed to allow real-time data 
retrieval from ICAS at a rate of 1 Hz. It takes the form of a 
Windows DLL and has a standard C interface that was coded 
in the wrapper program. A TCP/IP protocol is one of a number 
of ways to write data back into ICAS for display, logging, etc. 
Implementation of this approach required the construction of a 
TCP data interface server and a database table within ICAS. 
The data interface is required to enable the TCP/IP 
client/server interface and the database table is needed to 
translate incoming data streams to appropriate sensor 
channels. Alternative means to accomplish this interface and 
pass multiple parameters back to ICAS are available but not 
discussed here. 

Impact successfully implemented both the demand data and 
TCP/IP interfaces and demonstrated the operation of each 
across a Local Area Network. In order to test the ICAS 
interfaces described above, a Gas Turbine Generator 
simulation was created to generate data that can be used to 
populate ICAS. A custom CDS of the Allison 501 K-34 
engine that was previously developed at Impact with the help 
of Russ Leinbach (Code 9521) was utilized in the simulation. 

CONCLUSIONS 
This paper discussed many concepts associated with 
prognostic module development under the PEDS (Prognostic 
Enhancements to Diagnostic Systems) program. A brief 
review of prognostic approaches, implementation issues 
(including current OSA developments), and an example of gas 
turbine performance prognostics was provided. Data 
availability, dominant failure or degradation mode of interest, 
modeling and system knowledge, accuracies required and 
criticality of the application are some of the variables that 
determines the choice of prognostic approach. The OSA-CBM 
architecture described has been successfully adapted and 
implemented in marine, aircraft, and industrial environments. 

The prognostic compressor wash and nozzle algorithms were 
demonstrated successfully for the 501K34 gas turbine 
generators as described. The predictions have been validated 
with ‘ground truth’ degradations in the Navy land-based test 
facilities, and the open system integration was demonstrated 
and works well. The OSA implementations were developed 
using primarily XML and those used in current Navy 
monitoring applications. Preliminary work has also 
demonstrated the feasibility to adapt these algorithms for the 
LM2500 gas turbine generator. Although field experience has 
been limited to date, these algorithms and architecture are 
applicable to a range of DoD and industrial gas turbine 
monitoring systems and testing on more units is planned for 
full acceptance. 

Ultimately the ability to predict the time to conditional or 
mechanical failure (on a real-time basis) is an enormous 
benefit and machinery health management systems that can 
effectively implement the capabilities presented herein offer a 
great opportunity in terms of reducing the maintenance and 

logistics footprint and overall Life Cycle Costs (LCC) of 
operating systems. 
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