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Abstract

A novel method is presented for the solution of the
non-linear control allocation problem. Historically,
control allocation has been performed by assuming
that a linear relationship exists between the con-
trol induced moments and the control effector dis-
placements. However, aerodynamic databases are
discrete-valued and almost always stored in multi-
dimensional look-up tables where it is assumed that
the data is connected by piecewise linear functions.
The approach that is presented utilizes the piece-
wise linear assumption for the control effector mo-
ment data. This assumption allows the non-linear
control allocation problem to be cast as a piecewise
linear program. The piecewise linear program is ul-
timately cast as a mixed-integer linear program, and
it is shown that this formulation solves the control
allocation problem exactly. The performance of a
re-usable launch vehicle using the piecewise linear
control allocation method is shown to be markedly
improved when compared to the performance of a
more traditional control allocation approach that as-
sumes linearity.

Introduction

The utilization of dynamic inversion control laws for
flight control, coupled with new aircraft configura-
tions with redundant control effectors, has resulted
in an increased interest in the subject of control
allocation. Dynamic inversion control laws require
a control allocation algorithm when the number of
control effectors exceeds the number of control vari-
ables. This is because there are typically only a
small number of desired moments or control vari-
ables and a large number of control effectors may
be used to generate the desired commands. It is
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quite common that the desired commands can be
achieved in many different ways, and a control allo-
cation algorithm is necessary in order to find solu-
tions that meet some desired objective. Satisfactory
control allocation requires an accurate estimation of
the control effector’s moment producing capabilities.
This is especially important if the vehicle has expe-
rienced a control effector failure. Control allocation
has historically been performed by assuming that a
perfectly linear relationship exists between the con-
trol moments and the control effector displacements,
despite the fact that the forces and moments pro-
duced by aircraft control surfaces are almost always
non-linear functions of control surface displacement.

Control allocation is vital to the adaptive/re-
configurable flight control systems that are now be-
ing developed. These control systems are gaining
favor due to their robustness properties, especially
when an aircraft experiences control effector fail-
ures. Several examples of dynamic inversion based
adaptive/re-configurable flight control systems can
be found in the literature.1–3 Control allocation
algorithms also play an important part in the on-
line determination of an accurate footprint for a re-
usable launch vehicle that has experienced a con-
trol effector failure.4 Buffington5 has demonstrated
the application of a dynamic inversion control law
along with a control allocation algorithm to a tailless
fighter application. Tailless aircraft have reduced di-
rectional stability due to the lack of a vertical tail,
and hence they lack a rudder for directional con-
trol. Ailerons or spoilers are examples of conven-
tional control surfaces that can be used to provide
directional control; however, these control effectors
lack the control authority that a rudder would have,
requiring that a mix of control effectors be used to
generate the appropriate moments. Furthermore,
left-right pairs of effectors such as ailerons and ele-
vators typically have highly non-linear contributions
to the yawing moment. This is especially true at low
angles-of-attack where the effects of parasitic drag
dominate induced drag. Non-linear control alloca-
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tion is required to make beneficial use of the non-
linear effects that are rejected as disturbances by the
control system.

Comprehensive surveys of existing control alloca-
tion techniques have been presented by Bodson6 as
well as Page and Steinberg .7, 8 Page and Stein-
berg7, 8 have performed extensive simulation studies
and documented the open and closed-loop perfor-
mance of the most common linear control allocation
algorithms. On the other hand, Bodson6 compared
constrained, numerical-based optimization methods
for control allocation to determine their feasibility
for use in a real-time flight control system.

There are numerous linear control allocation al-
gorithms5, 9–11 currently available and well docu-
mented in the literature. Buffington’s5 approach
was to solve to the control allocation problem us-
ing a multi-branch approach. The first step of this
multi-branch control allocation is a simultaneous
check of control feasibility and control deficiency.
The control feasibility and control deficiency deter-
mine whether the control effectors are capable of
producing a given moment command without vio-
lating control effector limits. Control feasibility and
deficiency are checked by solving an optimization
problem that minimizes the �1 norm of the error
between the desired moment and the moments pro-
duced by control effectors. The value of the per-
formance index indicates the feasibility of the com-
manded moment. If the commanded moment is de-
termined to be feasible, there exists at least one
and possibly more feasible solutions to the problem;
therefore, a second branch is considered. This con-
trol sufficiency branch provides solution uniqueness
by minimizing the �1 norm of the control effector
positions with respect to some “preferred” effector
positions. Durham9, 10 developed a linear control al-
location method called direct allocation that makes
use of geometric concepts that relate to an attain-
able moment set (AMS). The AMS is a volume in
moment space that represents all physically realiz-
able moments. Direct allocation attempts to pre-
serve the direction of the commanded moment by
finding the maximum moment on the boundary in
the same direction as the commanded moment. For
commanded moments that lie outside of the bound-
ary, the commanded moments are clipped to the
boundary of the AMS volume. If the commanded
moment is interior to the AMS, the control surface
deflections are simply scaled back to produce the
commanded moment. Other efforts include those of
Ikeda , et.al.,11 who used �1 optimization to deter-

mine the maximum attainable moment set. Hodel
and Shtessel12 have used linear programming to cal-
culate a “local estimate” of the attainable moment
set with respect to the current control surface posi-
tions.

Recently, there have been several efforts put forth
towards improving upon the linear approximation.
To begin, Doman and Oppenheimer13 have imple-
mented a linear control allocator that uses the local
slope of the control moment curve with an added
intercept term to more accurately account for the
non-linear behavior of aerodynamic control effec-
tors. They have shown an improvement in tracking
performance without significantly increasing compu-
tation time. The shortcoming of the intercept cor-
rection method is that the control moments must be
monotonic functions of effector position. If there are
slope reversals present, it is possible for the control
allocator to want to drive the effectors in a direction
opposite to that where the actual solution lies. Do-
man and Sparks14 have provided a method for the
determination of the non-linear attainable moment
set (AMS) for the two-dimensional case. Their effort
considered control effectors that produced a control
moment that was a quadratic function of effector po-
sition about one axis and a linear function about a
second axis. More recently, Bolender and Doman15

extended the work of Doman and Sparks to three
dimensions for the computation of the non-linear
AMS volume when the control moments about the
third control axis were linear functions of effector
position. At the present time, non-linear control al-
location methods are computationally intensive and
do not lend themselves to be applied in a real-time
control system.

The objective of this paper is to demonstrate
that the control allocation problem can be posed
in a manner such that the moments that result
from the corresponding control surface deflections
are exactly the moments that are returned from
the aerodynamic database. Aerodynamic data
is discrete-valued and typically stored in large,
multi-dimensional arrays that are functions of flight
condition- typically angle-of-attack, sideslip angle,
and Mach number. For flight control system design
and handling qualities analysis, it is commonplace
to assume that the data is connected by piecewise
linear functions. The method that we are proposing
assumes that the control moments are piecewise lin-
ear functions of control surface deflection and flight
condition. We will then pose the control alloca-
tion problem as a piecewise linear program. The
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piecewise linear program will account for the non-
linearities of the aerodynamic data, and the solution
to this problem will produce moments that are ex-
act with respect to the aerodynamic data. This ap-
proach results in improved command tracking per-
formance when compared to the linear programming
approaches discussed above. Results will be pre-
sented for a lifting-body type aircraft with redun-
dant control effectors.

Dynamic Inversion Flight
Control

Dynamic inversion controllers attempt to cancel and
replace the dynamics of the plant being controlled
with those of some pre-selected reference model. If
the fidelity of the reference model is high enough,
then the dynamic inversion control law results in
a closed-loop system that behaves like a decoupled
bank of integrators. In the context of flight control,
a common objective of a dynamic inversion control
law is to provide good body-axis angular rate track-
ing.

It is assumed that a pilot or an outer-loop guid-
ance system generates body-axis angular velocity
commands Pc, Qc, Rc. The inner-loop dynamic in-
version control law is designed so that the aircraft
tracks these body-rate commands (see Figure 1).
The rotational dynamics for an aircraft can be writ-
ten as:

ω̇ = f(ω, P ) + g(P , δ) (1)

where ω =
[
P Q R

]T and P denotes measurable
or estimable quantities that influence the body-rate
states. The parameter vector P includes variables
such as Mach number, angle of attack, sideslip an-
gle and vehicle mass properties such as moments of
inertia. Equation 1 expresses the body-axis rota-
tional accelerations as a sum that includes control
dependent accelerations, g(P , δ), and accelerations
that are due to the wing-body aerodynamics and
propulsion system. We will collectively refer to the
latter as the base moments. It is assumed that the
mass properties of the aircraft change slowly when
compared to the body-axis rates so that İ ≈ 0 and

ω̇ = I−1(GB − ω × Iω) (2)

where

GB = GBAE(ω, P )+Gδ(P , δ) =




L
M
N





BAE

+




L
M
N





δ
(3)

where GBAE(ω, P ) is the moment generated by the
base engine-aerodynamic system and Gδ is the sum
of the moments produced by the control effectors.
Thus

f (ω, P ) = I−1(GBAE(ω, P ) − ω × Iω) (4)

and
g(P , δ) = I−1Gδ(P , δ) (5)

The model used for the design of the dynamic inver-
sion control law becomes:

ω̇ = f(ω, P ) + Gδ(P, δ) (6)

and our objective is to find a control law that pro-
vides direct control over ω̇ so that ω̇ = ω̇des, i.e.

ω̇des = f(ω, P ) + Gδ(P , δ) (7)

therefore, the inverse control must satisfy:

ω̇des − f (ω, P ) = Gδ(P , δ) (8)

Since there are more control effectors than controlled
variables, a control allocation algorithm must be
used to obtain a unique solution. Solution of this
control allocation problem will be discussed in de-
tail in a later section. Equation 8 states that the
control effectors are to be used to correct for the
difference between the desired accelerations and the
accelerations due only to the base moments.

Piecewise Linear Programming

Piecewise linear programming is an optimization
method that allows non-linear programming prob-
lems that are comprised of separable functions to
be approximated by a linear program. The result-
ing linear program can subsequently be solved using
a modified simplex method.16 The piecewise lin-
ear program may also be reformulated and solved
as a mixed-integer linear program.17 The utility of
piecewise linear programming allows one to cast an
�1 optimization problem as a piecewise linear pro-
gram.17 In fact, Buffington5 poses linear control al-
location problems as �1 optimization problems and
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transforms these into linear programs. The resulting
multi-branch control allocation problem minimizes
the �1 norm of the control moment error (control
feasibility and control deficiency branch) and subse-
quently minimizes the �1 norm of the control error
with respect to some preferred effector positions (the
control sufficiency branch). The restriction of ap-
proximating separable functions by piecewise linear
functions may appear to be overly restrictive. For
most aircraft, the control induced moments can be
considered as separable since, in many cases, there
are no significant aerodynamic interactions among
the control effectors. There are instances of phys-
ical systems, (e.g., automobiles) where there exists
a cross-coupling of steering and braking effectors.
This coupling may take the form δ1δ2, and at first
glance, may not appear to be separable. However,
the product δ1δ2 can be written in separable form
as

δ1δ2 = δ2
3 − δ2

4 (9)

where

δ3 =
1
2
(δ1 + δ2) (10)

δ4 =
1
2
(δ1 − δ2) (11)

and then approximated using a piecewise linear
function for δ2

3 and δ2
4 . Our interest in piecewise

linear programming is motivated by a desire to im-
prove upon current linear control allocation tech-
niques and to enable the solution of non-linear con-
trol allocation problems.

For purposes of illustration, we will approximate a
single-valued function, f(x), by its piecewise linear
approximation and show how to formulate the mini-
mization of f(x), x ∈ [a, b] as a piecewise linear pro-
gram. The approach given below for a single vari-
able function can be generalized for multi-variable,
separable functions rather easily. Furthermore, we
are not restricted to only approximating the objec-
tive function by a piecewise linear approximation
since it is also possible to consider piecewise linear
approximations of the constraints, if they are sepa-
rable, within the same framework. A detailed dis-
cussion can be found in Reklaitis, et.al.16

Without a loss of generality, we begin by consid-
ering a function, f(x), of a single variable, de-
fined on an interval, [a, b]. Begin by defining a
grid of K points spaced in the interval [a, b] and
denote these points as x(k), k = 1, . . . , K where
a = x(1) < x(2) < · · · < x(k) < · · · < x(K) = b. Note

that we are not restricted to a uniform spacing of
the x(k). Furthermore, let f (k) denote the value of
f(x(k)). A piecewise linear approximation of f(x)
can then be constructed by connecting (x(k), f (k))
and (x(k+1), f (k+1)) with a straight line as shown
in Figure 2. The equation connecting the points
(x(k), f (k)) and (x(k+1), f (k+1)) is given by

f̃(x) = f (k) +
f (k+1) − f (k)

x(k+1) − x(k)
(x − x(k)) (12)

where x ∈ [x(k), x(k+1)]. There will be K − 1 such
equations, one for each subinterval. Observe that on
a given subinterval, x can be written as

x = λ(k)x(k) + λ(k+1)x(k+1) (13)

where λ(k) ≥ 0 and λ(k+1) ≥ 0. The λ(k) are nor-
malized such that

λ(k) + λ(k+1) = 1 (14)

It can then be shown that Equation 12 can be writ-
ten as

f̃(x) = λ(k)f (k) + λ(k+1)f (k+1) (15)

Therefore, in the interval [x(1), x(K)], each x and
the approximate value f̃(x) can be determined by
assigning appropriate values to λ(k) and λ(k+1) that
correspond to the subinterval in which x lies. Since
x can only be defined on a single subinterval, all the
λ(k) which are not associated with that particular
interval all must be equal to zero. As a result, we
can express Equations 13 and 15 as

x =
K∑

k=1

λ(k)x(k) (16)

f̃(x) =
K∑

k=1

λ(k)f (k) (17)

subject to the following conditions:

K∑

k=1

λ(k) = 1 (18)

λ(k) ≥ 0, k = 1, . . . , K (19)

and

λ(i)λ(j) = 0 if j > i + 1; i = 1, . . . , K − 1 (20)

Equation 20 in necessary to insure that only points
lying on the piecewise linear segments are consid-
ered as part of the approximating function. For ex-
ample, given a value of x, no more than two of the
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λ(k)’s are allowed to be positive, and the two λ(k)’s
must be adjacent. If we consider a value of x where
λ(3) and λ(4) are positive, with λ(1) = λ(2) = 0 and
λ(k) = 0, k = 5, . . . , K, then the value of f̃(x) lies on
the approximating function between x(3) and x(4).
On the other hand, if λ(4) > 0 was to be replaced
by λ(6) > 0, and all other λ(k) = 0, then a line
connecting x(3) and x(6) would be generated that
is not part of the approximating function. Further-
more, if we chose a value of x such that x = x(k)

and f̃(x) = f(x), then from Equation 18 λ(k) = 1
and all other values of λ = 0. Lastly, it is important
to note that one can always obtain a more accurate
approximation of f(x) by increasing the number of
gridpoints; however, there is a resulting increase in
problem size.

Given that we now have a piecewise linear approxi-
mation to f(x) and the additional constraints that
result from the transformation, we are able to state
the Piecewise Linear Program that corresponds to
the minimization of f(x) on the interval a ≤ x ≤ b.

min f̃(x) =
K∑

k=1

λ(k)f (k) (21)

subject to

K∑

k=1

λ(k) = 1 (22)

λ(k) ≥ 0 (23)

Once the solution to the piecewise linear program
is obtained, one uses Equation 16 to find the cor-
responding value of x that gives an approximate
minimum to f(x). Finding a solution to a piece-
wise linear program requires an approach that en-
sures that Equation 20 is satisfied. Recall that
Equation 20 requires that no more than two adja-
cent λ(k)’s are allowed to be non-zero. Therefore,
to find an optimal feasible solution to the piece-
wise linear program, one of two approaches must
be taken. One approach is to solve the problem
using the simplex method with a restricted basis
entry rule.16 A second approach is to formulate
Equation 20 using binary decision variables17 to con-
strain x to be on only one subinterval, resulting
in another increase in the size of the problem be-
yond what was necessary for the piecewise linear
approximation. The addition of the binary variables
transforms the piecewise linear programming prob-
lem into a mixed-integer linear program (MILP). We
take the latter approach as it is sufficient for demon-

strating the validity of our approach, and also be-
cause of the in-house availability of a commercial
branch-and-bound code (TOMLAB r©)18 for solv-
ing mixed-integer linear programs.

Transformation of the Piecewise
Linear Program to a Mixed-Integer
Linear Program

Begin by considering the piecewise linear approxi-
mation shown in Figure 2. Note that if there are K
breakpoints, then there are K − 1 linear segments.
We assign a variable y(k) that corresponds to the kth

linear segment of the piecewise linear approximation
such that

y(k) =

{
1 if λ(k) �= 0 and λ(k+1) �= 0,
0 otherwise

(24)

for k = 1, . . . , K−1. Next, we make the observation
that if λ(1) �= 0 and λ(2) �= 0, then

λ(1) ≤ y(1) (25)

λ(2) ≤ y(1) (26)

where y(1) = 1. However, if we are on the segment
where λ(2) �= 0 and λ(3) �= 0, such that y(2) = 1,
then

λ(2) ≤ y(2) (27)

λ(3) ≤ y(2). (28)

If we proceed in this manner, we observe that the
following restrictions can be imposed upon the λ(k)

λ(1) ≤ y(1), (29)

λ(k) ≤ y(k−1) + y(k), k = 2, . . . , K − 1 (30)

λ(K) ≤ y(K−1). (31)

The rationale behind Equation 30 is as follows: the
λ(k) that correspond to points that are interior to
the interval (i.e., they are not the endpoints of the
interval on which x is defined) can be associated
with one of two line segments. A particular λ(k) is
the endpoint for the line segment immediately pre-
ceding it in addition to the line segment that comes
immediately after it. Only one of these two line seg-
ments may be “active” at any time; therefore, the
right-hand side of Equation 30 is never greater than
one. In addition to Equations 29-31, we have an
additional constraint to ensure that only one of the
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K − 1 line segments is active, hence only one of the
y(k) can be equal to one:

K−1∑

k=1

y(k) = 1 (32)

By including Equations 29-32 into the piecewise lin-
ear program, we transform it into a mixed inte-
ger linear program. The transformed optimization
problem is stated as follows:

min f̃(x) =
K∑

k=1

λ(k)f (k) (33)

subject to

K∑

k=1

λ(k) = 1 (34)

λ(k) ≥ 0 (35)

λ(1) ≤ y(1) (36)

λ(k) ≤ y(k−1) + y(k), k = 2, . . . , K − 1 (37)

λ(K) ≤ y(K−1) (38)
K−1∑

k=1

y(k) = 1 (39)

y(k) ∈ {0, 1} (40)

By including the additional constraints which are
necessary to complete the transformation of the
piecewise linear program, we have added an addi-
tional K −1 decision variables to the problem. This
does not include any slack or surplus variables that
may be required by the solver. The slack and sur-
plus variables will further increase the number of de-
cision variables. The solution to the mixed integer
linear program is obtained by using a branch-and-
bound algorithm. Technical details on the branch-
and-bound algorithm can be found in Bertsimas.17

Formulation of Control

Allocation Problems as Mixed
Integer Linear Programs

For typical aircraft, there are three controlled vari-
ables (moments) and three control surfaces, result-
ing in a square system of equations that form a
unique mapping of the control moments to the con-
trol surfaces while obeying position and rate lim-
its on the actuators. On the other hand, aircraft

such as the X-33, X-37, F/A-18 HARV, F-15 AC-
TIVE, and AFTI/F-16 have more control surfaces
than controlled variables. The resulting underdeter-
mined system requires that a control allocation algo-
rithm be used to ensure that Equation 8 be satisfied.
There are often an infinite number of solutions for
given values of the controlled variables; therefore,
control allocation is often cast as an optimization
problem in order to obtain a solution with some de-
sired properties. Such objectives may include the
minimization of control effector displacement or the
minimization of the control moment error. The con-
trol allocation formulation that is used in this paper
follows the multi-branch approach, similar to that
posed by Buffington;5 however, the assumption that
the control induced moments are linear functions of
the control moments has been removed.

In this section, the control allocation problems are
formulated as piecewise linear programs. The PLP
approach minimizes a linear performance index sub-
ject to piecewise linear constraints. Linear inequal-
ity constraints are used to ensure that effector posi-
tion limits are not violated. The control allocation
problem is broken-down into a control deficiency
branch and a control sufficiency branch. We will
begin with a discussion of the linear control allo-
cation problem. We will derive the piecewise lin-
ear programs that achieve the same objectives as
the linear programming formulations of the multi-
branch control allocation approach. The piecewise
linear programs are then subsequently transformed
and solved as mixed-integer linear programs using a
branch-and-bound algorithm. The resulting mixed-
integer program is much more complex and difficult
to solve when compared to the traditional linear pro-
gramming algorithms; however, we are now able to
achieve exactly the moments that we desire, some-
thing that the linear programming algorithms can-
not achieve.

Control Deficiency Branch

The control deficiency branch is used to test the
feasibility of satisfying Equation 8. For convenience
we will refer to the left-hand side of (8) as ddes:

ddes
�= ω̇des − f(ω, P ) = Gδ(P )δ �= Bδ (41)

If it is not feasible to obtain ddes = Bδ due to con-
trol effector constraints, then the difference between
the desired and actual effector-induced body-axis ac-
celerations is minimized. Thus the objective can be
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summarized in terms of minimizing a 1-norm per-
formance index subject to constraints:

min
δ

JD = ‖Bδ − ddes‖1 (42)

subject to:

δ ≤ δ ≤ δ (43)

where δ and δ are the most restrictive lower bounds
and upper bounds on the control effector deflection.

δ = min(δu, ∆T δ̇r + δ)

δ = max(δl,−∆T δ̇r + δ)
(44)

where δu is the upper position limit vector, δl is the
lower position limit vector, δ̇r is a vector of effec-
tor rate limits and ∆T is the inner-loop flight con-
trol system update rate. The optimization problem
posed in Equation 43 may be transformed into the
following linear programming problem:5

min
δ

JD =
[
0 · · · 0 1 · · · 1

]
[

δ
δs

]
(45)

subject to:








δs

−δ
δ

−Bδ + δs

Bδ + δs







≥








0
−δ
δ

−ddes

ddes








(46)

where δs which is the same dimension as the set
of controlled variables. If JD = 0 then the com-
manded controlled variable rates are achievable and
there may be excess control power available that can
be used to optimize sub-objectives. If JD �= 0, the
commanded controlled variable rates are not achiev-
able and the control allocation algorithm provides a
vector of effector commands that minimize the defi-
ciency.

Control Deficiency Branch as a MILP

To transform the �1 optimization of the control er-
ror to a piecewise linear program, we will focus on
the transformed linear program as defined in Equa-
tions 45 and 46. The transformation of the control
allocation problem to the piecewise linear program
will involve the control effectors, δi, i = 1, . . . , m
and the terms containing Bδ. We want to replace
Bδ, where an element in the ith row of B is a linear

approximation of the control moment produced by
δi, by a piecewise linear approximation of the control
moments as a function of control effector position.

Let Li(δi), Mi(δi), Ni(δi) denote the rolling, pitch-
ing, and yawing moments produced by deflecting the
ith control surface, δi. The piecewise linear approx-
imation of Li(δi), can be written as

Li(δi) =
Ki∑

k=1

L
(k)
i λ

(k)
i (47)

=
[
L

(1)
i L

(2)
i . . . L

(Ki)
i

]









λ
(1)
i

λ
(2)
i
...

λ
(Ki)
i









(48)

where Ki is the number of breakpoints chosen to
approximate the rolling moment due to δi, and the
λ

(k)
i are the normalized coefficients introduced pre-

viously. The piecewise linear approximations for
Mi(δi) and Ni(δi) follow accordingly. Furthermore,
we have the following expression for δi given λ

(k)
i :

δi =
Ki∑

k=1

λ
(k)
i δ

(k)
i (49)

We are now able to re-write the B matrix as

B̃ =






L
(1)
1 L

(2)
1 . . . L

(k)
i . . . L

(Km)
m

M
(1)
1 M

(2)
1 . . . M

(k)
i . . . M

(Km)
m

N
(1)
1 N

(2)
1 . . . N

(k)
i . . . N

(Km)
m






(50)
We also define a vector Λ as

Λ =












λ
(1)
1

λ
(2)
1
...

λ
(k)
i
...

λ
(Km)
m












(51)

such that Bδ is replaced by B̃Λ. The vector Λ
is of length

∑m
i=1 Ki and B̃ is a matrix of size

ncr ×
∑m

i=1 Ki where ncr is the number of controlled
variables. In formulating the piecewise linear con-
trol allocation problem, we no longer consider the
case where the actuator rate limits and the sam-
ple rate of the flight control system set the upper
and lower position limits on the control effectors.
This is due to the fact that we have made the as-
sumption that the control moments are functions of
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control deflection only; therefore, there is no provi-
sion within the piecewise linear formulation of the
problem for including actuator rates. In addition,
the upper and lower position limits for each effector
are now accounted for in the a priori selection of
each control effector’s breakpoints and are therefore
automatically included in the problem formulation.
Since we have replaced an explicit dependence on
δi with an implicit one, λk

i , we only need to impose
the following bounds: λ

(k)
i ≥ 0 k = 1, . . . , Ki. Recall

that we do not need to explicitly define the upper
bounds on the λ

(k)
i since we have the constraint that

∑Ki

k=1 λ
(k)
i = 1, i = 1, . . . , m and the constraints

associated with the binary decision variables, y
(k)
i

that will restrict λ
(k)
i ≤ 1. Once we obtain an op-

timal solution to the problem, we compute each δi

using Equation 49. There are also an additional m
constraints of the form

Ki∑

k=1

λ
(k)
i = 1, i = 1, . . . , m (52)

Transformation to the MILP form requires the ad-
ditional constraints involving the binary variables,
y
(k)
i .

λ
(1)
i ≤ y

(1)
i , i = 1, . . . , m (53)

λ
(k)
i ≤ y

(k−1)
i + y

(k)
i ,

i = 1, . . . , m, k = 2, . . . , Ki − 1 (54)

λKi

i ≤ y
(Ki−1)
i , i = 1, . . . , m (55)

Ki−1∑

k=1

y
(Ki−1)
i = 1, i = 1, . . . , m (56)

y
(k)
i ∈ {0, 1} (57)

The control feasibility and control deficiency branch
in the form of a mixed-integer linear program is

min
δs

JD =
[
0 · · · 0 0 · · · 0 1 · · · 1

]



Λ
y

δs





(58)

subject to:

δs ≥ 0 (59)

B̃Λ + δs ≥ ddes (60)

−B̃Λ + δs ≥ −ddes (61)

λ
(k)
i ≥ 0,

i = 1, . . . , m, k = 2, . . . , Ki (62)
Ki∑

k=1

λ
(k)
i = 1, i = 1, . . . , m (63)

λ
(1)
i ≤ y

(1)
i , i = 1, . . . , m (64)

λ
(k)
i ≤ y

(k−1)
i + y

(k)
i

i = 1, . . . , m, k = 2, . . . , Ki − 1 (65)

λKi

i ≤ y
(Ki−1)
i , i = 1, . . . , m (66)

Ki−1∑

k=1

y
(Ki−1)
i = 1, i = 1, . . . , m (67)

y
(k)
i ∈ {0, 1} (68)

Note the vector y is of length −m +
∑m

i=1 Ki and is
defined in the same manner as Λ:

y =
[
y
(1)
1 . . . y

(K1)
1 . . . y

(k)
i . . . y

(Km)
m

]T

(69)

Control Sufficiency Branch

If there is sufficient control power available such that
JD = 0, then there may be excess control power
available to optimize a sub-objective. One sub-
objective could involve driving the control effectors
to a preferred position δp. A linear optimization
problem reflecting this objective is given by:

min
δs

JS =‖W δ(δ − δp)||1 (70)

subject to:

Bδ = ddes (71)

δ ≤ δ ≤ δ (72)

where W δ is a vector that allows one to weight one
preference over another. This optimization problem
can be cast into the LP framework as follows:

min
δ

JS = W T
δ δs (73)

8
American Institute of Aeronautics and Astronautics



subject to:









δs

−δ
δ

−δ + δs

δ + δs








≥









0
−δ
δ

−δp

δp









(74)

Bδ = ddes (75)

where δ, δs,δp and W δ are of the same dimension
as the number of control effectors. The preference
vector δp is used in this case to de-correlate the con-
trol effectors to enable on-line system identification
of the control effectiveness matrix B. More detail
can be found in Chandler, et.al.19

Control Sufficiency Branch as a MILP

The differences between the MILP formulation of
the control deficiency branch and MILP formulation
of the control sufficiency branch are relatively minor.
The primary difference is that the control sufficiency
branch is a slightly larger problem since that the
objective function is being optimized with respect to
the control effectors rather than the moments. This
results in additional constraints due to the presence
of two inequality constraints of the form δ + δs ≥
δp in the linear program. The number of binary
variables, y

(k)
i and the parameters λ

(k)
i are the same

as for the control deficiency branch.

The control sufficiency branch can be stated as the
following MILP:

min
δs

JS =
[
0 · · · 0 0 · · · 0 1 · · · 1

]



Λ
y

δs





(76)

subject to:

δs ≥ 0 (77)
Ki∑

k=1

λ
(k)
i δ

(k)
i + δs,i ≥ δp,i, i = 1, . . . , m (78)

−
Ki∑

k=1

λ
(k)
i δ

(k)
i + δs,i ≥ −δp,i, i = 1, . . . , m (79)

B̃Λ = ddes (80)

λ
(k)
i ≥ 0,

i = 1, . . . , m, k = 2, . . . , Ki (81)
Ki∑

k=1

λ
(k)
i = 1, i = 1, . . . , m (82)

λ
(1)
i ≤ y

(1)
i , i = 1, . . . , m (83)

λ
(k)
i ≤ y

(k−1)
i + y

(k)
i ,

i = 1, . . . , m, k = 2, . . . , Ki − 1
(84)

λKi

i ≤ y
(Ki−1)
i , i = 1, . . . , m (85)

Ki−1∑

k=1

y
(Ki−1)
i = 1, i = 1, . . . , m (86)

y
(k)
i ∈ {0, 1} (87)

Results

The mixed-integer linear programs for the multi-
branch control allocation discussed above were im-
plemented in a Simulink simulation of a lifting body
type vehicle in the approach and landing phases.
There are six control surfaces on the vehicle: left
and right rudders, left and right flaperons, a body
flap, and a speed brake. The simulation models the
descent, final approach, and touchdown of the vehi-
cle.

The performance of the piecewise linear approach
is compared to a “worst-case” linear control alloca-
tion method. The linear control allocation method
utilizes a global slope approximation of the control
moments as a function of deflection. At each update
of the flight control system, a linear least-squares fit
to each control moment curve is computed. The
corresponding slopes make up the elements of the
B matrix.

For the control sufficiency branch of the control allo-
cator, a “preferred” control position, δp is required.
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There are several different δp which may be used in-
cluding minimum control deflection (δp = 0), min-
imum �2 norm of deflection, and null-space injec-
tion. The preference vector that results from using
the null-space injection approach is the solution to
a weighted constrained least-squares problem where
the weights are scaled by sampling from a uniform
random distribution on the interval [−1, 1]. A ran-
dom weighting of the control preference vector can
aid with on-line identification of the control effec-
tiveness parameters by de-correlating the control ef-
fectors. The approach that is followed here is to
assume that the weighting matrix is constant and
equal to the identity matrix. The preference vector
in this case is δp = BT (BBT )−1ddes. This δp min-
imizes δT δ subject to Bδ = ddes in a least-squares
sense. Such a preference vector facilitates robustness
analysis with the control allocator in the loop. For
the piecewise linear control allocation, we found that
it is sufficient to compute the right pseudo-inverse
solution, δp, with a B matrix that uses local slopes
of the control moments at the last control surface
position.

The results that follow show the closed-loop vehi-
cle performance when there are two failures injected
into the flight control system. The first failure oc-
curs 30s into the simulation, and involves fixing the
body flap at a displacement of −5 deg. This fail-
ure contributes a constant pitching moment to the
aircraft. A second failure, where the right rudder
is fixed at 1 deg, occurs at 40s. This adds an ad-
ditional pitching moment to the aircraft in addition
to constant rolling and yawing moments. Also, since
the dynamic-inversion control law is trying to track
normal load factor, Nz, the gain on Nz is adjusted
to ensure that the aircraft can track the commanded
load factor.

We will measure the closed-loop performance of the
four control allocators by the ability of the dynamic
inversion control law to track the commanded nor-
mal load factor. A second performance measure
is a “truth model” comparison of the control mo-
ments estimated by the control allocator effective-
ness model to the moments that actually result from
the non-linear aerodynamic database given the con-
trol effector positions returned by the control allo-
cation algorithm. Together these two performance
measures will provide an indication of the ability of
a particular control allocation algorithm to produce
moments that have no unanticipated effects on the
aircraft.

Simulation Results

The results for the piecewise linear control alloca-
tor are shown in Figures 3-5. We see in Figure 3
that we can track the commanded load factor ex-
tremely well up to the time that the second failure
is introduced at the 40s mark. After the second
failure is introduced, we see that about 10s passes
before the measured load factor is reasonably close
to that which is commanded. It was observed that
during the 10s window spanning 40s to 50s that the
ddes resulted in a control deficiency in the yawing
moment coefficient. Above 60s the tracking perfor-
mance is not as well behaved due to the flare maneu-
ver used to set-up for landing. Around 65s the land-
ing gear is extended and the control system is not
able to track the Nz command very accurately af-
ter that time; however, the tracking performance ex-
ceeds that of the linear control allocation algorithms
(see Figures 7- 9). Control surface commands, as
output from the control allocator, are given in Fig-
ure 4. We see that after the second failure is in-
jected into the simulation that the flaperon deflec-
tions approach their upper limit. Above 60s the
speed brake becomes active and the command oscil-
lates between 30 and 70 deg. Finally, the modelling
error that results from approximating the aerody-
namic data by piecewise linear functions is shown
in Figure 5. As is expected, the piecewise linear
approximation more accurately describes the non-
linear aerodynamic data as compared to a purely
linear fit of the moment coefficients. The aerody-
namic data that were used in this simulation were
neural network fits of an aerodynamic data base.
The neural networks allow for the data to be stored
quite compactly. Note that there are a few minor
discrepancies between the piecewise linear approx-
imation and the neural net fit since the latter was
smoothed in order to provide a continuous approxi-
mation to the data.

It should be noted that the simulation with the
branch-and-bound solver was extremely slow. It was
observed that the solver returned a solution in 3-5s,
which is unacceptable for it to be considered for use
in a real-time, digital flight control system. Research
is currently underway to determine if performance
gains can be achieved using the simplex method with
the restricted basis entry rule.

The results shown in Figures 7-9 are for a linear
control allocator that uses a least-squares linear fit
model of the control moment data. The slopes of
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each least-squares estimate comprise the elements
of the B matrix. The performance is initially ad-
equate with the presence of some lag because of a
50% reduction on the load factor error prefilter gain
(Figure 6) as compared to that used for the piece-
wise linear control allocation. Here we see that the
load factor is not tracked (Figure 7) after the right
rudder failure is introduced into the simulation at
40s. This can be accounted for by examining the
modelling error time histories as shown in Figure 8.
The modelling errors for this particular control al-
location approach is two orders of magnitude worse
on average than for the piecewise linear control allo-
cator. The effect of the modelling errors are evident
in Figure 9. Specifically, the ruddervators are de-
flected in the opposite direction of those generated
by the piecewise linear control allocator. We also
see that there are very large errors in the control
pitching and yawing moment coefficients after the
second failure. This is a direct result of the mod-
elling errors that result from attempting to describe
the aircraft’s true moment producing capability us-
ing a linear least-squares fit.

Conclusions

A novel method was presented for the solution of
the control allocation problem. Control allocation
has historically been performed by assuming that
a linear relationship exists between the control in-
duced moments and the control effector displace-
ments. Since aerodynamic data almost always ex-
hibits some non-linear behavior, such assumptions
can lead to degraded performance or vehicle loss
when secondary non-linear effects must be used to
control a vehicle, particularly after control effec-
tor failures have occurred. Aerodynamic databases
are usually discrete-valued and almost always stored
in multi-dimensional look-up tables where it is as-
sumed that the data is connected by piecewise lin-
ear functions. The approach that was presented
assumes that the control effector moment data is
piecewise linear. This assumption allows us to cast
the control allocation problem as a piecewise linear
program. In order to solve the piecewise linear pro-
gram, it was re-formulated as a mixed-integer linear
program and solved using a commercial, off-the-shelf
branch-and-bound algorithm. Analysis showed that
the piecewise linear program formulation results in
improved tracking performance when compared to
a more traditional control allocation approach that
uses a linear approximation of the control moments

as a function of control surface deflection, especially
when the aircraft is subjected to control effector fail-
ures. The piecewise linear control allocator was able
to maintain control of the aircraft and safely land
after the failures were introduced while the control
allocator that assumed a simple linear relationship
did not.
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