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TWO-DIMENSIONAL ERAT TRANSFER IN RADIATING STAINLESS-STEEL-CLAD COPPER FINS

by Norbert 0. Stockman and Edward C. Bittner

Lewis Research Center

SUMMARY

JAn analysis of the two-dimensional heat transfer in a radiating composite
fin is presented together with details of the numerical method of solution. A
Several stainless-steet-cld copper fins typical of finned-tube space radiators
are analyzed over a range (0 to 1) of stainless-steel to copper thickness ratio.
Items discussed are temperature profiles along the fin length, temperature drop
across fin thickness, effective conductivity, fin efficiency, heat rejection
rate per unit weight, and ratio of effective conductivity to effective density.
It was found for the particular geometries analyzed that the two-dimensional
temperature distribution in the fin cross section is essentially one-
dimensional. The use of the thickness-averaged conductivity in one-dimensional
calculations yields essentially the same results as the two-dimensional calcu-
lations.j

INTRODUCTION

The radiator of an electric- op generation sysjm for .pV applications
may account r a substantial portitci of the powerpla--t total eight (refs. 1
and 2). An important factor in the minimum-weight design of these radiators is
the selection of suitable materials (ref. 3). The large number of basic re-
quirements (see ref. 3 for discussion) that must be satisfied makes the selec-
tion difficult. Often all the desirable qualities cannot be found in any one
currently available material, and composite materials are therefore considered.
In particular, the fin material for a space powerplant radiator should have a
high value for the ratio of thermal conductivity to density (ref. 3), adequate
strength, and a low sublimation rate in vacuum at high temperature. Stainless
steel has adequate strength and satisfactory sublimation rate but low thermal
conductivity, whereas copper has very high conductivity but questionable
strength and sublimation rate at temperatures above about 8000 K. These facts
lead to a consideration of the composite material, stainless-steel-clad copper,
for radiator fins (e.g., in the SNAP-50/SPUR design studies, refs. 4 and 5).
Stainless-steel-clad copper has already been used in other applications (e.g.,
cooking utensils and heat exchangers) for several years and is commercially
available. If a composite material is to be used for radiator fins, its effec-
tive thermal conductivity must be known for use in one-dimensional calculations
for radiator design and comparison purposes. Suppliers of stainless-steel-clad
copper material usually quote two values of effective conductivity: one value



for one-dimensional conduction in the direction parallel to the plane of the
interface, and another value for one-dimensional conduction normal to the plane
of the interface. For any significant thickness of clad these two values are
quite different (e.g., for a stainless-steel to copper thickness ratio of only
0.05 these values are, respectively, 0.955 and 0.525 that of copper alone). In
a radiator fin the conduction heat transfer is two-dimensional, and the value
of effective conductivity will lie somewhere between the two one-dimensional
values.

Specifically, the heat radiated by a fin is initially supplied across the
fin thickness at the tube edge and is conducted parallel to the fin surface.
The heat must subsequently reach the surface of the fin where it is radiated to
space. There is clearly a two-dimensional effect involved, and the magnitude
of this effect will increase as the stainless-steel to copper thickness ratio
increases since the stainless steel has a much lower conductivity than copper.
On the other hand, a radiator fin is usually very long relative to its thick-
ness, which will tend to decrease the two-dimensional effect. Therefore, it is
not a priori evident how great the two-dimensional effect will be, nor is it
evident what the effective conductivity of a radiating fin will be.

Reference 6 attacks this type of problem in a quasi-two-dimensional way by
assuming a one-dimensional heat flow in the fin core parallel to the radiating
surface and one-dimensional heat flow in the clad or coating normal to the ra-
diating surface. The primary application of the analysis of reference 6 is for
coated fins having a relatively thin, very low conductivity, nonmetallic coat-
ing. The metallic-clad and the nonmetallic-coated fins present essentially the
same problem. However, it is not obvious that the method of reference 6 will
be adequate for metallic-clad fins in all cases because a metallic clad is
thicker and has a higher value of thermal conductivity than a nonmetallic coat-
ing.

This report presents a brief analysis of the two-dimensional heat transfer
in a composite fin with the conventional fin-tube radiator boundary conditions,
that is, radiation from both surfaces and prescribed constant temperature at
the fin base. An exact effective conductivity is obtained from the two-
dimensional results and is compared with the conductivity for one-dimensional
conduction in the direction parallel to the fin surface.

Several cases are analyzed that cover a range of the conductance parameter
(the conventional identifying parameter for radiating fins). The range in this
parameter is obtained by varying the length and thickness of the fin at two
different temperature levels. For each case several values of stainless-steel
to copper thickness ratio are prescribed. The results to be presented are
discussed under two main headings: first, the degree of two-dimensionality of
the several cases, and second, the effect of varying the conductance parameter
and the stainless-steel to copper thickness ratio on fin temperature profiles,
fin efficiency, heat rejected per unit weight, and effective conductivity to
effective density ratio.
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Tube, ube-7ANALYSISTube 0 Clad fin, tss 2tc u Ton Tube7

IThe configuration to be analyzed
2L f T is shown in figure 1. This is a

stainless-steel-clad copper fin such

(a) Application. as might be used in a central fin-tube
radiator (fig. l(a)). Only one quar-
ter of the fin is analyzed (fig. l(b))
because symmetry is assumed about
x = L and y = 0. There is no heat
flow across these boundaries. The

Stainless steel-, temperature at x = 0 is assumed con-
Copper-, /stant and equal to the tube outer-CoppeI --T surface (base) temperature in a fin-

cu4t tube configuration.tcu

0 1 The analysis is based on steady-
L •state two-dimensional conduction in

(b) As considered in analysis (thickness exaggerated). the fin and the clad with perfect ther-
mal contact at the interface (y = tcu).

Figure1.-Crosssectionofstainless-steel-cladcopperfin. The surface of the clad (y = t) is

assumed to be radiating hemispherically
at constant emittance to space, but radiant interchange with the tubes and in-
cident radiation from the surroundings are neglected for simplicity. Also, the
effective sink temperature of space is assumed to be zero. It is assumed that
the thermal conductivity along the fin does not vary with temperature. For the
range of variables considered herein the maximum error in assuming constant con-
ductivity is estimated as less than 0.6 percent by the methbd of reference 7.

Basic Equations

The equation governing the two-dimensional conduction in the copper is

S2 Tcu(Xy) ý2 Tcu(xy)

6x2  82 + 0 (

and in the stainless steel clad is

62 Tss(x,y) 2T ss(Xy)
+ =0 (2)5xy 2

where Tcu(xýy) is the local temperature in the fin and Tss(x,y) is the local
temperature in the clad. (All symbols are defined in appendix A.)

At the boundary y = tcu between the fin and clad, perfect thermal con-
tact is assumed:

Tcu(x,tcu) = Tss(xtcu) (3)
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Also at this boundary there must be continuity of heat flow; hence,

76Tcu(X,y)] 6Ts(,)

L 6 ly=tcu Ly=tcu

where kcu is the thermal conductivity of the fin and kss that of the clad.

At the radiating surface (y = t),

-k [sTS (xy)1 ccTT 5 (x.t) (5)

In accord with the assumptions mentioned previously, the equations for the
remaining boundary conditions are

Tcu(X,y) = Tss(X,y) =To x = 0

6Tcu(xy) ýT s s (xy)

6x 6 X 0 x = L

and symmetry

6Tcu(X,Y) 
0

In order to facilitate comparison of the solutions for different cases,

the following dimensionless parameters are formed:

(1) Clad-to-core thickness ratio, tss/tcu

(2) Aspect ratio of copper fin, tcu/L

(3) Conductivity ratio, kss/kcu

(4) Temperature ratio, e(X,Y) = T(xy)/To

(5) Distance ratio for any distance, X = x/L and Y = y/L

(6) Conductance parameter, caT3L 2 /kcut

This last ratio does not occur naturally in the two-dimensional analysis of
clad fins, but it is used because of its wide occurrence in fin-tube radiator
literature.

Putting the dimensionless parameters into equations (1) and (2) yields
the following:
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In the fin:

62ecu(X.,Y) 62ecu(X..Y)

+ 6 o (6)•x2  y

In the clad:

62ess(X,y) 62ess(xY)

+ o0 
(7)

The boundary conditions then become the following:

tcu.
At Y =tu:L

ecu(X ) ess(X, CU,

and

6ecu(XY) k s s 6ess(XY)
= - (9)

6Y kcu 6Y

ttcu (1+ts• •
At Y - 1 +

60ss( = . tcuL ks cu s 4 
(10)

At X=O:

At X =l0: es s (x,y) - ecu(x,Y) = 1.0 (12)

At X = 1.0:

6ess(XMY) 6 cu (XIY) 
(2

At Y = 0:

6ecu(x,Y) 0 (: 0 (13)
6Y

It is thus seen that the independent parameters are tcu/L, tss/tcu, kss/kcu,
and ?ý, and their specification determines the temperature distribution through-
out the fin. Results are given in dimensionless form in terms of these dimen-
sionless variables; however, the calculations were made on the dimensional equa-
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tions (1) and (2). These equations subject to the dimensional boundary condi-
tions given previously were solved numerically on an IBM 7094 computer using a
finite-difference, line-by-line, overrelaxation method. Details of the numer-
ical method of solution are given in appendix B.

Fin Efficiency

A common measure of fin performance is the radiating efficiency, which is
defined as the ratio of the actual heat radiated by the fin based on the calcu-
lated temperature distribution along the outer surface to the heat radiated by
an isothermal fin at the base temperature To: that is,

L

ofEaT (xt) dx
0 Qid0ealQ = j0 5 (X,) dX (14)ýda = cYToL = Lss

This parameter will be used to evaluate the effect of various thicknesses of
clad.

Effective Thermal Conductivity

The effective conductivity of a clad fin is a function of the conductiv-
ities and the relative dimensions of the copper core and the stainless steel
clad. It is also a function of the path the flow of heat must take to reach
the radiating surface of the clad fin. These considerations are reflected in
an effective conductivity k of clad fin which, in this report, is that value
of conductivity that satisfies

eoT3L2

0
keff t (15)

where 7\eff is that value of 2' which, when used in one-dimensional radiating
fin calculations (such as those of refs. 8 and 9 or the constant property cases
of ref. 7), will result in the value of radiating efficiency r obtained
herein by two-dimensional calculations.

RESULTS AND DISCUSSION

Several fin geometries representative of 300-kilowatt and 1-megawatt
electrical-power-output Rankine-cycle space powerplants were analyzed. Two
temperature levels (8110 and 9500 K) were chosen, and the fin length and fin
thickness were varied to obtain a range of practical values of the identifying
parameter ?\. These input parameters are summarized in table I. Each basic
configuration of table I was analyzed over a range of thickness ratios between
0 and 1. The variation in thickness ratio for a given configuration was ob-
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TABLE I. - INPUT PARAMETERSa

[Emittance, E. 0.9; thermal conductivity of copper, kcu,
3.65 W/(cm)(OK); thermal conductivity of stainless

steel, kss, 0.1818 W/(cm)(°K); conductivity ratio,
kss/kcu, 0.05.]

Case Base Fin Copper Conductance Aspect

temper- length, fin parameter, ratio of
ature, L, thickness, copper

T cm tcu, fin,

OK cm tcu/L

A 811 2.0 0.05 0.1218 0.0250

B 5.1 .20 .1904 .0400
C 4.1 .05 .4874 .0125
D 10.2 .20 .7616 .0200
E 5.6 .05 1.0000 .0089
F 15.5 .20 1.7136 .0131

G 950 1.8 0.05 0.1499 0.0286
H 4.3 .20 .2210 .0471

1 3.6 .05 .5996 .0143

J 8.6 .20 .8841 .0236
K 12.9 .20 1.9892 .0155

aTo convert from cm to in., multiply by 0.3937; OK to OF,

OF = 9/5 oK - 460; oK to OR, multiply by 9/5; W/(cm)(°K) to
Btu/(hr)(ft)(OR), multiply by 57.8.

tained by decreasing tcu, the
thickness of copper, and in-
creasing tss, the thickness of
stainless steel clad, while main-

Clad-to-core Case taining a constant total thick-
-thickness ness t. The conductivity ratio

ratio, kss/kcu should be a function of
l.O• tsshcu

I- fin-base temperature; however,
A to reduce the number of parame-

9 -"- 1 1) ters, the same value was used for
both temperature levels.

_.8__ The results to be presented
are discussed under two main

- __ - headings: first, the degree of
. 0 two dimensionality present in

the cases analyzed, and second,
K the effect on certain fin parame-

_- 1.0 ters of varying the stainless-'0 .2 .4 .6 .8 1.0 steel to copper thickness ratio.

Distance ratio along fin, X

Figure 2. - Surface temperature distribution of cases A and K for thickness
ratios from 0 to 1.0. Degree of Two-Dimensionality

The items to be discussed
in this section are temperature
profiles along the fin length,
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temperature drop across the fin
Case Conductance Thickness to- thickness, effective conductiv-parameter, lengthratio, ity, and comparison of two-

x H 0.22 0.0471dimensional and one-dimensional
0 • H 0.22 0.0471 rsls

2 K 1.99 .0155 results.

Clad-to-core Temperature drop across fin. -
--- thickness- Of the several cases analyzed

ratio, (table I), case A has the smallest
- - - - -,- -tss~tcu temperature gradient along the fin

SL \o length and case K has the largest.
The temperature profiles of these
two extreme cases at three values

- \------of thickness ratio tss/tcu are
shown in figure 2. The two-

4-- \ \, dimensional effect, that is, the
----- - -- -difference between the tempera-

-=- -I ture profile along the radiating
2---- ': Lsurface of the fin (Y = t/L) and

--- - that along the adiabatic surface
.2-- -- . _ (Y 0), is not large enough to

.2 .4 .6 .8 LO be seen on the scale of figure 2.
Distance ratio along fin, X

Figure 3. - Temperature ratio drop across fin thickness against dis- The two-dimensional effect
tance ratio along fin. is shown more specifically on

figure 3 in the form of the temperature ratio drop across the fin from Y = 0
to Y = t/L for three values of tss/tcu. The cases shown are case K, because
it has the steepest X-direction temperature gradient (fig. 2), and case H, be-
cause it has the largest Y-direction temperature gradient. The variation in
tss/tcu was obtained by reducing tcu and increasing tss to maintain a con-
stant total thickness t. The clad fins have a greater two-dimensional effect
than the all-copper fins (tss/tcu = 0) as shown in the figure. It should be
noted, however, that the scale of the ordinate in figure 3 is greatly expanded
and the maximum difference in temperature ratio between the fin centerline and
the fin surface is only about 1.15X10-3 unit.

Effective conductivity. - As was stated in the INTRODUCTION the value of
effective conductivity of a radiating clad fin should lie somewhere between the
one-dimensional value for conduction in the direction parallel to the fin sur-
face and that for conduction normal to the surface. In view of the small two-
dimensional effect noted in the previous section, it is to be expected that the
effective conductivity of the radiating fin would be close to that for one-
dimensional conduction in the parallel or x-direction. To check this expecta-
tion, the exact effective conductivity for the two-dimensional radiating fin
will be investigated and will then be compared with the one-dimensional
x-direction conductivity.

An exact value of effective conductivity can be obtained from equation (15).
Solving equation (15) for the exact effective conductivity k and forming the
ratio Y/kcu yield
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0a~ (16)
-kcu tkcu)eff

,p The grouping EaT3L2 /tkcu of equation
-•- - - - - (16) is equal to the conductance parame-

\ .ter ?\. Substituting 7 into equa-
--- -- -tion (16) yields

ase (17)
-kcu 

\eff

A value of 2\eff was obtained from
-- one-dimensional calculations for each

.5 0- .----- ---------- value of ' obtained from the two-
o .2 .4 .6 .8 1.0 dimensional calculations reported herein,

Clgur Ead-tofcrve ccthicn ratio t nst t and the effective conductivity ratio was

Figure 4 -r act effective conductivity ratio against thick- obtained from equation (17). On fig-ness ratio.
ure 4 are shown curves for the exact ra-
diating-fin effective conductivity ratio

k/kcu as a function of thickness ratio tss/tcu for cases E and H. The
remaining cases listed in table I fall between these two curves and are omitted
for clarity. The close agreement among the several cases indicates that the
effective conductivity ratio k/kcu is dependent primarily on thickness ratio
tss/tcu for a given conductivity ratio kss/kcu. The exact value of effective
conductivity will be compared with the effective conductivity based on one-
dimensional conduction in the x-direction, which is the thickness-averaged
value given by

_ =tsskss + tcukcu
tss + tcu

Writing equation (18) in terms of dimensionless ratios yields

tss kss

kx tcu kcu(1
-- l+= (19)kcu tss

tcu

Thus, the ratio Tx/kcu is a function only of the thickness ratio tss/tcu

and the conductivity ratio kss/kcu. The relation between Ex/kcu and tss/tcu
is shown on figure 5(a) for a conductivity ratio kss/kcu of 0.05. Also
plotted in figure 5(a) is the exact effective conductivity ratio of the case
that deviates most from the thickness-averaged conductivity (case H). The close
agreement between kx/kcu and k/kcu is evident.

As was stated earlier, only one value of kss/kcu was used even though
two temperature levels were considered. To determine whether the change in

9



1.0

S.9

-. - -Thickness-averaged conductivity,-
S-Thickness-averaged conductivity, R x/kcu (one-dimensional)

k -/kcu (one-dimen-ional)

dmse H (ns o- - Case H (two-
dlmenslonal)-ý/" dimensional)-'

.2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0

Clad-to-core thickness ratio, tss/tcu

(a) Conductivity ratio, 0. 05. WbI Conductivity ratio, 0. 07.

Figure 5. - Comparison of thickness-averaged conductivity with exact two-dimensional effective conductivity.

kss/kcu over the temperature range of interest significantly affected the
agreement of k/kcu and kx/kcu, case H was analyzed with a conductivity ratio
kss/kcu of 0.07 (corresponding to a temperature of 9110 K). The results are
shown in figure 5(b), and the agreement is seen to be not significantly differ-
*ent from that of figure 5(a).

This close agreement of kx/kcu with k/kcu means that the thickness-
averaged effective conductivity can safely be used in radiator heat-transfer
calculations for geometries comparable to those treated herein.

Comparison of one-dimensional and two-dimensional results. - As a further
check of the closeness between the results of one-dimensional calculations with
the thickness-averaged conductivity kx and the two-dimensional solutions,
several cases were analyzed by the method of reference 7 but with constant
properties. (The one-dimensional methods of refs. 8 or 9 could also be used.)
The cases chosen from table I were those having extreme values of ?\ cases A
and K, and those having extreme values of t/L, cases E and H (case H has the
greatest two-dimensional effect). In all cases the temperature profiles and
fin efficiencies agreed with the two-dimensional results to within three places
with small variations in the fourth place. Thus, for the range of 7', t/L, and
tss/tcu treated herein, the use of thickness-averaged conductivity in one-
dimensional calculations will give essentially the same results as the more
exact two-dimensional calculations.

Effect of Varying Thickness Ratio

The stainless-steel to copper thickness ratio used will in general depend
on the particular application. All the cases of table I were analyzed with
thickness ratios tss/tcu of 0, 0.1, 0.3, 0.5, and 1.0. The effect of this

10



variation in thicknsss ratio on

several parameters used in evalu-

.9 dConductance ating fins or fin materials is

Case parameter, presented in this section. Most
SCase A of the results presented were

.8_ _ I obtained from the same two-

-GA 0.15 dimensional calculations as the

temperature profiles presentedt .12 previously. Essentially the.7 --- H - .22--
same results could also have

_ _been obtained from one-
2 _dimensional calculations because

of the close agreement noted in

J __ - - IC-- .49- the preceding section.

_• -D .76 Fin efficiency. - The effect
J .--88-- on fin efficiency ' of varying

.4E 1,00 tss/tcu is shown on figure 6.
This figure indicates a signifi-

F 1.71 cant drop in heat transfer as
.3 1.99 the high conductivity copper is0 .2 .4 .6 .8 1.0Orpae ytelwrcnutv

Clad-to-core thickness ratio, tss/tcu replaced by the lower cond-ctiv-
ity steel. Thus, making the

Figure 6. - Fin efficiency against thickness ratio for cases with constant simplest assumption and treating

total fin thickness.
the clad as if it were copper
would introduce a large heat re-
jection error in radiator calcu-
lations (except for very small

_r tss/tcu). For example, for case K
(• = 1.99) with tss/tcu = 0.5,

__ the fin efficiency is 16 percentSConduca e
96 parameter, lower than that for the all

Case X copper fin (tss/tcu = 0). How-

- - .12 ever, as was indicated earlier,
- .1 the clad fin can be treated

accurately in one-dimensionalS• • B .19
H _ - .22 radiator calculations with the

• -_ use of the thickness-averaged

(effective) conductivity.

"Heat rejection rate per unit

1 .60 weight. - An important parameter
D .76-- used for comparative evaluation

E -1.00 of a radiator component is the
0 F 1 heat rejection rate per unit

__ - 1.99- weight Q/W. Therefore, to study
.76 K the effect of varying the propor-

o .2 .4 .6 .8 1.0 tion of stainless steel to copper
Clad-to-core thickness ratio, tssltcu in a clad fin the ratio

Figure7. - Heat rejection per unitweight ratio against thickness ratio. (Q/W)/( Q/W)o is formed, where
(Q/W)o is the Q/W for an all
copper fin (tss/tcu = 0). This
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.04 ratio is plotted in figure 7 as a
function of tss/tcu. For most practi-
cal radiators, tss/tcu will be less

.040- than 0.5, and consequently the reduc-
\ tion in Q/W will vary between 3

__ and 14 percent for values of ?
S.036-- ranging between 0.12 and 2.0, respec-
. - tively. However, this is the effect

on the fin only. The net effect of
"• .032- using clad fins on the total radiator

S-- Q/W will depend on the relative con-
tributions of the fins to total radia-

S.028-. tor weight and in many cases will be
less than the effect shown in figure 7.

024 . Conductivity to density ratio. -AClad-to0corethicknessratio, t.. 6 u parameter based on material propertiesthat is used to compare the conducting
Figure & - Ratio of effective conductivity to effective density capabilities of materials on a weight

against thickness ratio. basis is k/p (ref. 3). To compare _
stainless-steel-clad copper on this basis, the ratio kx,/ is formed, where p
is the average density of the clad fin and is given by

-tsspss + tcuPcu
t(20)

tss + tcu

and kx is the thickness-averaged conductivity defined previously in equa-
tion (18).

TABLE II. - CONDUCTIVITY TO DENSITY RATIOa FOR

SEVERAL MATERIALS AT 811° K

Material Conductivity to
density ratio,

(W) (m2)/(kg) (°K)

Pyrolytic graphite 0.132
Beryllium .0583
Commercial graphite .0550
Copper, tss/tcu = 0 .0428
Stainless-steel-clad copper, tss/tcu = 0.5 .0308
Stainless-steel-clad copper, tss/tcu = 1.0 .0231
Molybdenum .0132
Columbium .0077
Tantalum .00385
Titanium .00385
Stainless steel .00286
Vanadium .00231

aAll data except stainless-steel-clad copper obtained from

fig. 9 of ref. 3.
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The ratio Fx/F is plotted against tss/tcu in figure 8. In table II

these values of Rx/F are compared with the k/p values obtained for a variety
of materials from reference 3. It can be seen that for thickness ratios up to
0.5, stainless-steel-clad copper has a higher 75 value than most of the
materials listed, and is not too far removed from the best materials.

SUMMARY OF RESULTS

For the particular configurations analyzed the following results have been
obtained:

1. The temperature in the clad fin shows only a slight two-dimensional
effect.

2. The effective conductivity of a radiating clad fin is very nearly equal

to the thickness-averaged conductivity (one-dimensional) of the clad fin.

3. One-dimensional calculations that use the thickness-averaged conductiv-

ity yield essentially the same results for temperature profile and fin effec-

tiveness as the two-dimensional calculations.

4. Increasing the proportion of stainless steel in a clad fin of given

total thickness decreases the radiating effectiveness of the fin. For a
stainless-steel to copper thickness ratio of 0.5, the reduction is 16 percent.

5. The ratio of effective conductivity to effective density of a stainless-
steel-clad copper fin is relatively high and remains competitive with the other
materials of interest.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, August 17, 1965.
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APPENDIX A

SYMBOLS

d matrix of system of finite-difference equations

a diagonal elements of matrix .4

Ssubmatrices of order NY of .4 which lie along the diagonal

b off-diagonal elements of matrix .4

C off-diagonal submatrix of order NY of d

c elements of matrix e

d vector whose components are right-hand sides of finite-difference
equation

I position number of horizontal grid line

J position number of vertical grid line

k thermal conductivity, W/(cm)(°K)

k effective conductivity of radiating clad fin, W/(cm)(°K)

kx effective conductivity of clad fin transferring heat by conduction in
x-direction only, W/(cm)( 0 K)

L fin length, cm

m number of current iteration

NDX number of vertical grid strips

NDYC number of horizontal grid strips in clad

NDYF number of horizontal grid strips in fin

NX total number of vertical grid lines

NY total number of horizontal grid lines

n distance normal to surface, cm

Q heat rejection rate, W/(cm)(sec)

Qideal heat rejection rate of an isothermal fin at temperature To,
W/(cm)(sec)
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s distance along a surface, cm

T temperature, 0K

T vector of temperatures

T vector of temperatures, intermediate in the computation

t thickness, cm

W fin weight, kg

X x/L

x distance along length of fin, cm

Ax grid spacing in x-direction, cm

Y y/L

y distance along thickness of fin, cm

grid spacing in y-direction, cm

z dummy variable vector

zi components of z

Ui coupling parameters (eq. (B15)) in difference equations

6 emittance

I radiating efficiency of fin

o temperature ratio, T/To

conductance parameter, EaTLý3 /kcut

\eff ? of clad fin, caT3L2 /Et

vector of ratio of elements of the matrix

components of p.

p density, kg/m3

p thickness-averaged density, kg/m3

a Stefan-Boltzmann constant, 5.67X10- 8 W/(m 2 )(°K4 )

W block-successive overrelaxation parameter

15



ab optimum value of w

Subscripts:

cu copper fin

J variable horizontal position along fin

NX last horizontal position along fin

NY last vertical position on fin

o value at x = 0 or tss/tcu = 0

ss stainless steel clad

Superscripts:

(m) mth iterate

(o) initial approximation
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APPENDIX B

NUMERICAL APPROXIMATION OF TEMPERATURE DISTRIBUTION

Equations (1) and (2) may be replaced by the single equation

6 kL)+ 6 (k ý) = 0 (Bi)

which holds in the entire fin as a partial differential equation with discon-
tinuous coefficients. Such problems have been treated recently (e.g., ref. 10).
To solve equation (Bl) subject to the boundary c onditions, a rectangular grid
is superimposed on the composite rectangle above the x-axis of figure l(b) (p.3)
in such a way that each boundary (including the interface) is a grid line, Sx
is a constant L/NDX where NDX is the number of vertical strips laid off in
the rectangle by the discretization, and iAy is one constant in the fin
Aycu = tcu/NDYF and another in the clad Ay5ss = tss/NDYC. The grid points are
labeled with ordered pairs (IJ) of positive integers in the manner to be de-
scribed.

Let NY = NDYF + NDYC + 1 be the total number of horizontals in the grid.
Number these 1, 2 . . . NY starting at the lowermost (y= 0). Let NX = NDX + 1
be the number of verticals in the grid. Number these 1, 2 . . . NX from left
to right starting at the leftmost (x = 0). The first element of the Ordered
pair (IJ) is the position number of the horizontal and the second element is
that of the vertical; thus, (I,J) is such that 1 < I <_ NY and 1 < J < NX.

Next the partial differential equations and boundary conditions are re-
placed by a system of algebraic equations (some of which are nonlinear) ob-
tained by integrating the partial differential equation over the cells of the
"dual grid" (ref. 11, p. 11), by applying the divergence theorem, and by re-
placing the normal derivatives occurring in the boundary integrals by differ-
ence quotients, zero or -EaT4 , depending on the position of the cell in ques-
tion (ref. 12, sec. 6.3).

This process is illustrated by the following example taken at the point
x = !x, y = t (i.e., (IJ) = (NY,2)). The cell in question of the dual grid
(shaded in fig. 9) has its boundaries (except the upper one) midway between
grid lines of the original grid. The algebraic equation at (NY,2) is obtained
in the following steps.

0=1 [f(Lk6)+ 6 (k6)]dx dy
Cell

O =f k 6T ds
J.Around 7 d

cell
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=(NY,2) d x 2Ax 0=/ k( 6Tds+f kss ( •'

bca-~b b-c \Y

(NY-1,3) k ds + k 6Tds

I d d-a

Figure 9. - Detail of grid for numerical solution.

0Oks[o - T(NY,2) J + ks s T(NY - 1 2) - T(NYk,2)• 1

+ kss -,,(Y3) - T(A,2) I ss - EaT4(NY,2)Ax (B2)

This particular point was chosen to illustrate the fact that sometimes a path
length in the integration is only one-half a total mesh width (4yss/2) and to
illustrate the ease of handling the two types of boundary conditions inherent
in this method of discretization (note first and fourth terms).

Repeating the integration on all cells that surround the points (I,J),
1 < I < NY and 2 < J < NX, yields a system of NY(NX - 1) equations (of which
NiX - 1 are nonlinear, viz., (NYJ), 2 < J < NX) in as many unknowns T(IJ).
It is noted that T(Il) = To when 1 • I < NY.

A direct solution of this system is impossible because of the nonlinearity;
therefore, an iterative procedure must be used. Let T(m) (IJ) represent the
mth iterate for T(IJ) where T(O) (IJ) is some initial approximation to
T(I.,J). Equations at the points (NYJ), 2 < J < NX, are linearized in the same
way that Newton's method for finding the roots of equations is derived (see
ref. 13, p. 192). The term [T(m)(NY j)]4 is replaced by the first two terms
in its Taylor expansion about T(m-1)(NY,J), that is by

[T(m-l)(NYJ)]4 + 4[T(m-l)(NYJ)]3[T(m)(NYJ) - T(m-1)(NYJ)]

which reduces to

4.[T(m-l)(NY,J)]3T(m)(NY,J) - 3[T(m-1)(Ny,J)]4

The resulting system of equations linear in T(m) can be written in matrix nota-
tion as

T•(m) (B3)

where

•=•E•m-l)](B4)

is a square matrix of order NY(NX - 1) and
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-. 3

d (T-') (B5)

is a column vector with NY(NX - 1) components. - is a block tridiagonal
matrix, that is,

2 0' . . . 0 0

rf 43'r. .. 0 0
o0 '4 . 0 0

44 : (B6)

0 0 0 . . . afx-

0 00.. 4 ' X

Here

Nj =4(T(m-l)(NY,J)) 2 < J < NX - 1. (B7)

are square, tridiagonal matrices of order NY, all of whose elements are con-
stant (independent of both J and R(m-l)) except for the element in the NYNY
position which depends on T(m-l)(NYJ). The remaining matrix on the diagonal
of d is

,RX=lff(T(m-l) (NY,NX)) (B8)

and le is a diagonal matrix (constant) of order NTY. The iterative method may
be described as a line-by-line (vertical) overrelaxation scheme, which is
carried out in the following way.

An initial approximation to the temperature is taken at all points (e.g.,
T(O)(IJ) = TO). The temperatures are changed by sweeping through them from
left to right an entire vertical at one time; the sweep is repeated if the con-
vergence criterion has not been met. If attention is focused on the jth verti-
cal, the change is carried out by the following formulas. Let

T(m)(l1,J)

T~m) (B9)

T(m)(NYJ9)

be the vector of temperatures along the jth vertical at the mth iterate. It is

assumed that ý(m) has already been computed and ~(m) defined by
J-1

T(m)= • (m) + •(m-ll (Blo)
J J LJ-1 J+l
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Start where 9j is stored in computer
Smemory in partially factored form

Read physical since Rj is tridiagonal and
and discretiza- almost constant. Therefore the
tion parameters -m.

computation of Tj is only a mat-

Triangularize ter of a correction to the right-
s2; compute P hand side and a back substitution.

3 "Then,
Initialize T; T' T 'm m ,( )]set LJ= - 1 = Vm-1) + W ( ) _ ý m-1

Compute Ith 4 (Bll)
component of jth
right-hand side
and modifywithVi where w is the "block successive

overrelaxation parameter" (ref. 12,

'oNo I ch. 4) that controls the rate of
SJ1 T s convergence, andI = 1+1 Yes mm+1 T tr

Compute NYth 6 No 10 < cD < 2 (B12)
I Y WriteT

component of Tj; Relative error and output To further clarify this, the
set NY -1 small? parameters computation (eq. (BlO)) on the

7 -Yes 10second vertical (J = 2) is examined
Compute Ith + N in detail, and reference is made
component of T No • to the block diagram of the com-

"puter program (fig. 10).
No IYes Compute-'

1-1I-1 V ,m)

Figure 10. - Computer flow diagram.

For J = 2,

a, -bI 0 . . . 0 0 0

-bI a2 -b 2  . . . 0 0 0

0 -b 2  aS ... 0 0 0

S. . . . . ... ( B13)

0 0 0 . . . any_2 -bNy_2 0

0 0 0 . . . -bNy_2  aNY_l -bNy_l

0 0 0 . .. 0 -b

and

0diag(c. cny) (B1)
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For convenience, define

,6ysskss

4Fcukcu

(Bl5)

_xkss

a3 - ss

6xkcu
G4= - cu

Then, when equation (B2) and analogous equations for the other points on
this vertical are considered, the elements of 92 and W can be written as
follows:

U2 + a 4  i = 1

2(a 2 + 04 ) i = 2 . . . NDYF

ai = e1 + a2 + a3 + a 4  i = NDYF + 1

2(aI + a3 ) i = NDYF + 2 . . . NY - 1
a1 + (N+ 4E [T(m-1)(NY,J)]3 i = IY

= m4 i = 1 . . . NDYF - 1 (B6)be3i = NDYF . . . NY -1

a 2/2 i = l

Q2  i = 2 . . . NDYF

ci = I(a 1 + a2 )/2 i = NDYF + 1

1  i = NDYF + 2 . . . NY -1

a/2 i = NIY

Therefore, with equation (Blo) rewritten for J = 2 as

- 2Tm 2 [(m) + (m-l)]

the computation for m) is carried out by solving the following system of
equations where, for brevity, the vector
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- = I (B17)

replaces the vector T(2m)

a l zl - b 2 z 2  = cl[To + T(1,3)]

" "blz + a 2 z2 - b2z, - c2[To + T(2,3)]

- b2 z2 + a 3 z 3 - b3•4  =c 3 [To + T(3,3)]

(Bls)

-bNy_ 2zNY_ 2 +aNYilzNyI - bNY-iZNy = cNYl[To + T(NY-l,3)]

- bNY~ZNY~l + aNyzNy = cNy[To + T(N3Y,)]

Here the superscripts on T(IJ) have been dropped to be consistent with what
actually takes place in the computer program, namely, the immediate replacement

of •(m-l) by --•[(m) once it is computed.

Of all the numbers ai, bi and ci, only aNy depends on the fact that
computations are being carried out on the second vertical and at the mt1l
iterate. Thus. if some other vertical, other than the last, were examined, the
only changes that would occur in the coefficients in (BlS) are as follows:

(1) any is replaced by its correct value.

(2) To + T(I,3) is replaced by T(IJ - 1) + T(I,J + 1), I = 1 . N . NY.

Therefore, if the previous system is solved by the elimination of unknowns, it
is seen that as one proceeds from vertical to vertical and from iteration to
iteration, the same arithmetic operations are performed on the same members with
the same ratios (ýti) appearing repeatedly (at least so far as the left-hand
sides are concerned). Even for the right-hand sides the same operations are
being performed with the same ratios (11i) as with the left-hand sides, but the
operations are performed on numbers that depend on J and m. It is therefore
advantageous to compute and store these ii ratios before any iterations are
performed. It is this saving of the ti along with the modified ai that has
been referred to previously by "triangularizing of 92" (block 2 of fig. 10).
Applying the previously mentioned operations and Ii ratios to the iteration-
and vertical-dependent right-hand sides (blocks 4 and 5 of fig. 10) leads to a
reduced system of equations, the last of which involves only zny (block 6).
This is then substituted into the preceding (modified) equation, which involves
it with zny-I and the process continues backwards (in I) to z1 (blocks 7
and 8). The values for the temperatures on this second vertical are then re-
placed by the new values (block 9):
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T(I,2) + [z - T(I,2)]I = 1 . . . NY

Numerical experiments at Lewis indicate that there is an optimum value Wb
for W. as in the case of equations that are all linear, where an a priori
value can be given. For example, for a case where NDYF = 4, NDYC = 2,
NDX = 100. L = 0.1333, tcu = tss = 0.0004167, kss = kcu = 210, To = 2337,
E = 0.9, and a = 0.1713>x10-83 it is found that %ib near 1.96 gives a relative
residual error

Iheat in - heat out L
heat out

near 0.0001 in less than 300 iterations. This is a practicable convergence
criterion for the problem at hand and is so used in the computer program
(block 11 of fig. 10).

Here

heat in = -Left k dT as

end

heat out = -Radiating k 7 das = ds

boundary

Trapezoidal integration is used to be consistent with the finite-difference
equations. These experiments also indicate that for w < ob heat in increases
monotonically to meet heat out, which is decreasing as m increases if

T(o)(IJ) is chosen to be To everywhere.

The program was converted to double precision after it was found that the
large aspect ratio of the cells of the grid led to appreciable loss of signifi-
cance. The program takes less than 1 minute to carry out 400 iterations for
cases similar to those mentioned previously.

REFERENCES

1. Lieblein, Seymour: Special Requirements on Power Generation Systems for
Electric Propulsion. Electric Propulsion for Spacecraft. NASA SP-22,
1962, pp. 5-14.

2. Denington, Robert J.; LeGray, William J.; and Shattuck, Russell D.: Elec-
tric Propulsion for Manned Missions. Proc. AIAA and NASA Conf. on Eng.
Problems of Manned Interplanetary Exploration, Palo Alto (Calif.),
Sept. 30-Oct. 1, 1963, pp. 145-159.

23



3. Diedrich, James H.; and Lieblein, Seymour: Materials Problems Associated
with the Design of Radiators for Space Powerplants. Power Systems for
Space Flight. Vol. 11 of Progress in Astronautics and Aeronautics,
Academic Press, 1963, pp. 627-653.

4. Osmun, William G.: Space Nuclear Power: SNAP-50/SPUR. Space/Aeronautics,
vol. 42, no. 7, Dec. 1964, pp. 38-45.

5. Parker, Kenneth 0.; and Stone, Robert A.: Spur High-Temperature Space
Radiator. Power Systems for Space Flight. Vol. U1 of Progress in
Astronautics and Aeronautics, Academic Press, 1963, pp. 505-533.

6. Plamondon, J. A.: Thermal Efficiency of Coated Fins. TR 34-227, Jet Prop.
Lab., C.I.T., 1961. (See also Paper No. 61-WA-168, ASME, 1961.)

7. Stockman, Norbert 0.; and Kramer, John L.: Effect of Variable Thermal
Properties on One-Dimensional Heat Transfer in Radiating Fins. NASA
TN D-1878, 1963.

8. Lieblein, Seymour: Analysis of Temperature Distribution and Radiant Heat
Transfer Along a Rectangular Fin of Constant Thickness. NASA TN D-196,
1959.

9. Bartas, J. G.; and Sellers, W. H.: Radiation Fin Effectiveness. Jour.
Heat Transfer (Trans. ASME), ser. C, vol. 82, no. 1, Feb. 1960, pp. 73-75.

.10. Roudebush, William H.: Analysis of Discretization Errors for Differential
Equations with Discontinuous Coefficients. Ph.D. Thesis, Case Inst.
Tech., 1963.

11. Engeli, M.; Ginsburg, T.; Rutishauser, H.; and Stiefel, E.: Refined Itera-
tive Methods for Computation of the Solution and the Eigenvalues of Self-
Adjoint Boundary Value Problems. Birkhauser, Verlag (Basel) 1959,
pp. 9-23.

12. Varga, R. S.: Matrix Iterative Analysis. Prentice-Hall, Inc., 1962.

13. Scarborough, J. B.: Numerical Mathematical Analysis. Johns Hopkins Press,
1955.

24 NASA-Langley, 1965 E-2986


