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Mapping Near-Equatorial Particle
Distributions to Higher Latitudes:

Estimates of Accuracy
and Sensitivity

I. INTRODUCTION

The technique of mapping particle distributions measured near the magnetic equator to
higher latitudes is often used to obtain estimates of the global distributions (e.g.
Brautigam, et al. 1992; Gussenhoven, et al., 1993). In addition to the errors resulting from
imperfect measurement of the near-equatorial distributions (e.g. finite energy range and
angle of arrival determination) , inaccuracies are introduced into the global distributions
through the mapping process. In this report an estimate is made of the mapping error as a
function of location and particle energy. A general treatment estimating a "typical" error
will be followed, rather than a comprehensive error budget analysis for a specific
mission, instrument, and mapping procedure.

2. PARTICLE MAPPING

Particle mapping is performed in a magnetic coordinate space defined by (L, s; a, K)
where L is the magnetic L-shell, defined as the distance from the center of the Earth to a
magnetic field line along the magnetic equator; s is the distance along a magnetic field
line from the magnetic equator; a is the pitch angle, defined as the angle between the
particle's velocity components parallel and perpendicular to the magnetic field, and K is
the particle kinetic energy (Figure 1). Measurements of the particle fluxj at a point near
the magnetic equator are mapped to a point further down the magnetic field at the same
L, assuming there are no losses (K = constant), i.e.,

j(L, so;ao,K) - j(L,s;a,K) (1)

where the fluxes at field line point so and angle cr will map into fluxes at angle aat point
s. The mapping is done according to solutions of the particle equation of motion,

S= (E+ ×xB (2)
dt

where p is the momentum, v the velocity, q the charge, E the electric field, and B the
magnetic field. For trapped radiation belt particles it is assumed that the magnetospheric
electric field is negligible and the magnetic field is a dipole-like topology represented
well by models containing an component from currents inside the Earth, such as the
International Geophysical Reference Field (IGRF) and a component from
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Figure 1. Magnetic Coordinate System Used for Particle Mapping in the Magnetosphere.

magnetospheric and ionospheric currents, such as Olson-Pfitzer 1977 or Tsyganenko
1989 (see Hilmer, 2001 for references). Furthermore, the solution to the equation of
motion is assumed to preserve the adiabatic invariants corresponding to the standard
cyclotron and bounce motions.

For example, in the case where the Earth's magnetic field is approximated by a dipole, the
mapping is determined by the relation (cf. Lyons and Williams, 1984),

sin- a sin 2  
(3oB - B (3)

where B is the magnitude of the magnetic field at (L,s) and B0 is the magnitude at the
magnetic equator. The next section explores the degree to which each of the above
assumptions is valid and the sensitivity to the magnetic field models chosen. Specific
attention is given to the inner-magnetosphere, i.e. 1.0 < L < 3.0, where the energetic inner
proton belt lies.

3. ESTIMATES OF MAPPING ACCURACY

There are at least four sources of error in the mapping process described above: neglect
of the electric field term in the equation of motion, the adiabatic invariant approximation
to the equation of motion solution, the inaccuracies of magnetic field models used to map
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from a near-equatorial position to a lower altitude position along a field line, and the
uncertainties generated by mapping measurements from an imperfect instrument. These
sources are considered in turn below.

3.1. Magnetospheric Electric Fields

An estimate of the error, e, involved in neglecting the electric field can be obtained by
estimating the ratio of the electric to magnetic field terms on the right-hand-side of in the
equation of motion [Eq. (2)],

Eield = (4)
2-xB
C

Defining K = y-1to be the kinetic energy normalized to the rest mass, where )/is the

usual relativistic factor, and assuming a dipole magnetic field where 1I - B0 / the

above ratio can be written,

9Efed =1.06X10-5 (K + I) 2El [mV/m] (5)

[K(K + 2)]

where Bo - 0.31 gauss and the magnitude of the electric field is given in mV/mi. A value
of 1 mV/m will be used based on models of the average inner magnetospheric electric
field derived from in-situ satellite data (Rowland and Wygant, 1998) which give this
value as an upper bound except during rare large storms (when values up to 1.5 can be
found).

Figure 2 shows the electric field error defined by Eq. (5) as a function of energy for
several values of L for both protons (Figure 2a) and electrons (Figure 2b). In the inner
magnetosphere the error is below 1% for protons above I MeV and well below 1% for
electrons over the entire energy range considered.

3.2. Adiabatic Invariants

Invoking the adiabatic invariants as constants of the motion to approximate the solution
of Eq. (2) requires that the cyclotron radius, p, of the particle be small compared to the
scale length of the Earth's magnetic field, lB. Assuming a dipole field, a typical scale
length can be approximated as the inverse of the gradient of the radius of the field
magnitude at the magnetic equator:

l, RE (6)

3
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Figure 2a. Electric Field Error Factor for Protons as a Function of Energy from
10 keV to 1 GeV. Curves for several values of L from 1.5 to 6.5 are shown.
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Figure 2b. Electric Field Error Factor for Electrons as a Function of Energy from 10 keV
to 10 MeV (representative of the asymptotic values). Curves for several values of L from
1.5 to 6.5 are shown.
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where RE is the Earth's radius. With the cyclotron radius defined as:

p - - v1  (7)

Q cqBj

where m is the particle mass, v, is the velocity perpendicular to the magnetic field, and

Q is the cyclotron frequency, the adiabatic error can be estimated as:

2

CAdiabaic 3 L2[K(K + 2)]/2 (8)

where it is assumed that the entire particle velocity is perpendicular (an upper bound to

p).

In Figure 3 the adiabatic invariant error is plotted as a function of energy for several
values of L for both protons (Figure 3a) and electrons (Figure 3b). Errors for the electrons
are less than 2% in the inner magnetosphere up to energies of 30 MeV, a value believed
to be well beyond the energies characterizing the bulk of the distribution function.
Protons, on the other hand, can have an error of up to 20% at L - 3.0 and energy of 100
MeV due to their relatively large cyclotron radius.

3.3 Magnetic Field Models

The sensitivity to using an imperfect magnetic field model can be estimated by
comparing mapping results from two different magnetic field models in a typical region
of interest. Figure 4 shows a cross section of the magnetosphere with field lines from
both the IGRF '85/Olson-Pfitzer '77 (green) and IGRG '85/Tsyganenko '89 (purple)
magnetic field models. Olson-Pfitzer represents an "average" magnetosphere while the
Tysganenko model, driven with the magnetic index Kp = 7, represents a very active
magnetosphere. Differences between the field configurations are reflective of variations
due to geophysical activity as well as discrepancies in the modeling process itself since
different methodologies were used in model construction. Shown also in Figure 4 are the
inner and outer radiation belts as depicted by relative flux contours of the 36 MeV
protons and 1.6 MeV electrons from the CRRESPRO Quiet and CRRESELE Average
models, respectively (see Hilmer, 2001 for references).

Estimates of the mapping error will be made at a set of points P along a radial line at 0
degrees longitude and 30 degrees latitude as shown in Figure 4 (white line). The chosen
latitude clips the horns of the inner belt protons but is sufficiently far off the magnetic
equator to illustrate mapping inaccuracies. The following procedure is employed: (a) the
magnetic field line from both of the models going through each of the points at 30 deg
latitude is mapped to the geographic equator (red axis in Figure 4); (b) the radial
separation between the two model predictions at the equator is used as an estimate for the
difference in L at the magnetic equator, AL; (c) upper bounds to the gradient of
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Figure 3a. Adiabatic Invariant Error Factor for Protons as a Function of Energy from
10 keV to 1 GeV. Curves for several values of L from 1.5 to 6.5 are shown.
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Figure 3b. Adiabatic Invariant Error Factor for Electrons as a Function of Energy from
10 keV to 1 GeV. Curves for several values of L from 1.5 to 6.5 are shown.
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Figure 4. Cross Section of the Earth's Magnetosphere Showing Field Lines from the
IGRF/Olson-Pfitzer '77 (green) and IGRF/Tysganenko '89 (purple) Models. Field lines
from both models intersect along the 0 deg longitude, 30 deg latitude radial line (white.)
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characteristic energetic proton and electron distributions along the equator are estimated;
and finally (d) the relative error, '8Bfi/d , of the particle flux along the 30 deg latitude line
as determined by mapped measurements of the fluxes near the magnetic equator is
estimated as,

0881 d j(Lp) TL (9)

where Lp is the L value corresponding to point P mapped to the magnetic equator using
the IGRF/Olson-Pfitzer '77 model. Table 1 gives the points P, the mapped values Lp and

the estimates of AL . Flux gradient estimates are obtained from radial differential energy
flux profiles of the 36 MeV protons and 1.6 MeV electrons as given by the CRRESPRO
quiet and CRRESELE average models, respectively (Figure 5). Fitting an exponential to
the steepest part of the curves (shown by the red circles in Figure 5), that is,

j(L) - Jo exp {aL} , where a is the inverse scale length, the relative error estimate can be

written,

8 Bfid aAL (10)

where a = 6.0 (3.6) for the protons (electrons).

Figure 6 shows the mapping error estimate as a function of distance along a 30 deg
latitude line for both the protons and electrons. Inner magnetosphere errors
(P at radius = 2.5 Re corresponds to L - 3.3) are less than 10% for protons and electrons.
This smallness is due to the domination of the relatively well modeled (by IGRF)
internally generated magnetic field in the inner magnetosphere Note, however, that the
error in IGRF itself has not been estimated and is assumed small compared to the error
generated by the externally generated fields. Beyond L - 3.5 the error increases
dramatically as a result of the less than perfectly understood and geophysically active
nature of the external magnetic field.

Table 1. Values of P Along the 0 Degree Longitude, 30 Degree Latitude Line Used to
Map the Model Magnetic Fields Together With Values for the Mapped L and Estimated
AL Near the Magnetic Equator.

P (Re) at 0' long, 300 lat L (IGRF/Olsen-Pfitzer map) AL
1.25 1.4900 0.0020
1.50 1.8200 0.0045
1.75 2.2100 0.0100
2.00 2.5800 0.0125
2.50 3.3100 0-0150
3.00 4.1000 0.0400
3.50 4.9000 0.0800
4.00 5.8000 0.1800
4.50 6.7000 0.7900

8
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Figure 6. Error in Mapping due to Variations in Models as a Function of Radius Along
the 0 Degree Longitude, 30 Degree Latitude Line.Magnetic Field

3.4. Mlapping of Instrument Mveasurement Errors

Particle detectors do not provide arbitrarily precise and accurate measurements of
equatorial energy and pitch angle. An uncertainty in energy range of 10% at the equator,
for example, w~ill map directly into a 10% energy range uncertainty off-equator due to the
energy conserving nature of the mapping process. This is not true, however, of the pitch-
angle mapping. Considering a dipole approximation to the Earth's magnetic field, the
uncertainty da at a point off the equator can be written in terms of the uncertainty dao at
the equator by taking the differential of the mapping equation [ Eq. (3)1,

c/a = C~dao (I1)

where,

cos a.0 12
Cos 6, (12)' Ol

[(1 + 3sin 2 /1-sin
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and 2 is the magnetic latitude. There is a critical value of ac for each 2 beyond which the
denominator of Eq. (12) is imaginary and the mapping process is undefined. This is no
surprise - this critical value corresponds to those particles that mirror at 2; particles with
equatorial pitch angles above the critical value simply do not reach the specific off-
equatorial point. In Figure 7 the pitch angle mapping factor Ca is plotted as a function of
ao (in radians) for 2I = ;/6 (30 degrees). The critical value is ao- 0.6 radian (-34 degrees)
above which no particles make it to 30 degrees magnetic latitude. Below the critical
values, the uncertainties dao will be amplified by the appropriate value of C,. It is
appropriate to view the amplification as a result of having to map only a portion of the
equatorial pitch angle range (i.e. that below the critical angle) into the full 0 - rT12 range
accessible at the off equatorial point.

4. CONCLUSIONS

Neglecting the finite resolution of the instrument, the sum total of the error estimates
gEfield + EAdiabatic +9 Bfied is plotted in Figure 8a (8b) for protons(electrons) as a function of

radial position along the 0 degree longitude, 30 degree latitude line. Translations from the
L-based estimates [Eqs. (5) and (8)] to the points P along the line are made using the field
line mapping values in Table 1. For both protons and electrons, the error is monotonic in
radius. Defining the outer boundary of the inner magnetosphere at a radius = 2.5 Re,
corresponding to L - 3.3, results in an error for protons that is between 10 and 20% for
energies up to- 10 MeV and then increases to- 33% at 100 MeV and - 100% at 1 GeV.
In the heart of the inner proton belt at L- 1.5 - 1.8 (corresponding to radius = 1.25 - 1.5)
the error is less than 10% for energies up to 10 MeV, reaches 15% for 100 MeV and is
S50% for 1 GeV. For electrons, the error is less than - 10% over 10keV- 100 MeV for
radial positions less than 2.5 Re. At the heart of the inner belt the errors are less than
6%.

In the context of a mission to map the inner magnetosphere, in particular protons and
electrons in the inner belt with energies 1.0- 400 MeV and 0.5 - 30 MeV, respectively,
the above results indicate that in-situ flux measurements made by a near-equatorial
satellite with arbitrarily high accuracy in energy and pitch angle could be used to create
particle distribution functions at higher latitudes using standard mapping techniques with
an error of order 10%. With regards to the instrument uncertainties there will be an
amplification of pitch angle measurement error as dictated by Eq. (11). The major
limitation on both energy and angle measurement accuracy will not be the precision of
the resolution but rather the contamination due to both electrons and protons penetrating
shielding, spreading in energy, and arriving at the detector at angles other than the
nominal look angle.

The relatively small mapping error for non-instrumental effects seems a price well worth
paying for the additional spatial coverage provided by near-equatorial orbits compared to
higher inclination orbits more characteristic of a particular operational environment.
Constructing a contamination free instrument to provide sufficient energy and angle
determination at the higher energies for both the in-situ fluxes and consequent mapped
distributions will be the challenge.
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Figure 8a. Estimate of total mapping error for protons as a function of radius along the 0
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GeV are given.
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100 MeV are given.
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