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Abstract  

A Stress Gradient Failure Theory for Textile Structural Composites  
 

Ryan Karkkainen and Bhavani Sankar 

University of Florida, Gainesville, Florida 

May 2006 

Micromechanical methods for stiffness and strength prediction are presented, the 

results of which have led to an effective failure theory for prediction of strength.  

Methods to account for analysis of multi-layer textile composites are also developed.  

This allows simulation of a single representative volume element (RVE) to be applicable 

to a layup of an arbitrary number of layers, eliminating the need for further material 

characterization.  Thus a practical tool for failure analysis and design of a plain weave 

textile composite has been developed.  These methods are then readily adaptable to any 

textile microarchitecture of interest.   

A micromechanical analysis of the RVE of a plain-weave textile composite has 

been performed using the finite element method.  Stress gradient effects are investigated, 

and it is assumed that the stress state is not uniform across the RVE.  This is unlike most 

models, which start with the premise that an RVE is subjected to a uniform stress or 

strain.  For textile geometries, non-uniform stress considerations are important, as the 

size of a textile RVE will typically be several orders of magnitude larger than that of a 

unidirectional RVE.  The stress state is defined in terms of the well-known laminate 

theory force and moment resultants [N] and [M].  Structural stiffness coefficients 

viii 



analogous to the [A], [B], [D] matrices are defined, and these are computed directly using 

the Direct Micromechanics Method (DMM), rather than making estimations based upon 

homogenized properties.   

Based upon these results, a robust 27-term quadratic failure criterion has been 

developed to predict failure under general loading conditions.  For multi-layer analysis, 

the methods are adapted via three techniques: direct simulation of a multi-layer 

composite, an adjustment of the data output from single-layer FEM simulation, and an 

adjustment of the quadratic failure theory (without the requirement of determining a new 

set of failure coefficients).  The adjusted single-layer data analysis and the adjusted 

quadratic failure criterion show 5.2% and 5.5% error over a variety of test cases. 

The entire body of work is then applied to several practical examples of strength 

prediction to illustrate their implementation.  In many cases, comparisons to conventional 

methods show marked improvements. 
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CHAPTER 1 
INTRODUCTION 

Though composites in general are not a new material, continuing advancements in 

constituent materials, manufacturing techniques, and microstructures require that 

considerable amounts of research be devoted to the study of composite mechanics.  The 

associated knowledge base is much smaller when compared to more conventional 

materials, such as metals or ceramics.  Composites have yet to be absorbed into 

widespread use across multiple industries, limiting their economy and familiarity.  Much 

remains to be developed in the way of design methodologies and effective employment in 

optimized structural applications.   

By far the two most commonly employed and studied composite materials are 

randomly oriented chopped-fiber composites, as well as laminated polymer composites 

with embedded unidirectional carbon, glass, or Kevlar fibers.  Such composites have 

received a great amount of treatment in the literature, and much exists in the way of stress 

analysis techniques, and effective prediction of stiffness, fatigue life, strength, and other 

such mechanical analyses.   

Textile composites are a subgroup of composite materials that are formed by the 

weaving or braiding of bundles of fibers (called tows or yarns), which are resin-

impregnated and cured into a finished component.  Though heavily adapted, in some 

sense they draw upon traditional textile weaving processes and fabrication machines such 

as mandrels and looms, akin to those of the textile clothing industries.  Much of the 

terminology of structural textile composites draws upon this classical sense as well.   

1 
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The value of textile composites stems from many advantages, such as speed and 

ease of manufacture of even complex components, consequent economy compared to 

other composite materials, and out-of-plane reinforcement that is not seen in traditional 

laminated composites.  Further, textile composites do not lose the classically valued 

advantage that composite materials possess over their metal or traditional counterparts, in 

that textile composites have an inherent capacity for the material itself to be adapted to 

the mechanical needs of the design.  This is to say that the strength and stiffness of the 

material can be oriented in needed directions, and no material weight is wasted in 

providing reinforcement in unnecessary directions.  For a conventional laminated 

composite, this is accomplished by oriented stacking of layers of unidirectional resin-

impregnated fibers, such that fibers are aligned with any preferred loading axes.  A textile 

composite may also be so adapted by several methods, such as unbalanced weaves.  The 

woven fiber tows in a preferred direction may be larger (containing more constituent 

fibers per tow) than in other directions.  Also, an extremely diverse set of woven or 

braided patterns may be employed, from a simple 2D plain weave to an eight-harness 

satin weave or a 3D orthogonal weave pattern, any of which may exhibit a useful bias in 

orientation of material properties.  Figure 1-1 through Figure 1-3 [1] illustrate some of 

the more common of these patterns.   

The economy of textile composites arises mainly from the fact that manufacturing 

processes can be highly automated and rapidly accomplished on loom and mandrel type 

machinery.  This can lead to easier and quicker manufacture of a finished product, though 

curing times may still represent a weak link in the potential speed of manufacture. 
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Figure 1-1. A Schematic Illustration of Several Common Weave Patterns Employed with 
Textile Composites.  A Box Indicating the Unit Cell Borders the Smallest 
Repeatable Geometry Element for Each Pattern. 

 

Figure 1-2. A Schematic Illustration of Several Common Braid Patterns Employed with 
Textile Composites.  A Box Indicating the Unit Cell Borders the Smallest 
Repeatable Geometry Element for Each Pattern. 
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Figure 1-3. A Schematic Illustration of Several Common 3D Weave Patterns Employed 
with Textile Composites. 

The out-of-plane reinforcement provided by textile composites comes by virtue of 

the fact that the constituent weave patterns lead inherently to undulation and interlacing 

of the woven fiber tows, which become oriented out of plane.  A 2D weave will typically 

exhibit tow undulation varying from 0 to 15 degrees out of plane.  A 3D weave such as 

an orthogonal interlock may actually have fiber tows directly aligned in the out of plane 

direction. 

Naturally, there are also several tradeoffs and disadvantages associated with 

laminated and textile composites.  The most significant added disadvantage that textile 

composites possess may be the increased complexity of mechanical analysis.  This is 

directly owing to the undulation inherent to the weave or braid patterns, the complexity 

of microstructure, as well as the multiscale nature of the textile microstructure.  The fiber 

tows woven together and embedded in a bulk polymer matrix are the most representative 

 



5 

microstructure, but the tows themselves have an inherent microstructure of aligned fibers 

and intra-tow polymer matrix.   

Given this increased complexity of analysis, there are several outstanding issues 

with regards to textile composites.  One of the most important issues, and the issue which 

is to be addressed in the current body of research, is a robust model for prediction of 

strength.   

Current failure theories are generally developed for unidirectional composites and 

do not capture the unique characteristics of textile composites.  Though these theories 

may to some extent be applied in an adapted form to the analysis of textile composites, 

many inherent simplifying assumptions will no longer apply, and in general such 

techniques will not be suitable to the increased complexity intrinsic to textile geometry.  

Even at the micro scale, textile composites maintain a relatively complicated 

microstructure.  Even under simple loading conditions, a textile microstress state will be 

shown to be quite complex, and elastic constants are non-uniform due to the waviness of 

a woven fiber tow.  Laminate analysis, property homogenization, and other common 

approaches will no longer apply.  Thus, current designs of textile structures will not be 

optimized for maximum damage resistance and light-weight.   

Conventional micromechanical models for textile composites assume that the state 

of stress is uniform over a distance comparable to the dimensions of the representative 

volume element (RVE).  However, due to complexity of the weave geometry, the size of 

the RVE in textile composites can be large compared to structural dimensions.  In such 

cases, severe non-uniformities in the stress state will exist, and conventional models may 

fail.  Such stress gradients also exist when the load is applied over a very small region, as 
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in static contact or foreign object impact loading, and when there are stress concentration 

effects such as open holes in a structure.   

Although micromechanical models have been successfully employed in predicting 

thermo-elastic constants of fiber-reinforced composite materials, their use for strength 

prediction in multiaxial loading conditions is not practical, as computational analysis 

must be performed in each loading case.  Thus phenomenological failure criteria are still 

the predominant choice for design in industry.  There are three major types of 

engineering failure criteria for unidirectional composite materials: maximum stress 

criterion, maximum strain criterion, and quadratic interaction criterion, such as the Tsai-

Hill and Tsai-Wu failure theories [2].   

Most of the micromechanical modeling work done thus far has focused on 

predicting thermo-mechanical properties [3-6].  To facilitate the use of textile composites 

in lightweight structures, it is required to have a lucid understanding of failure 

mechanisms, and design engineers must have an accurate and practical model for 

prediction of failure stress.  Most of the current analytical and numerical methodologies 

developed to characterize textile composites [7-14] assume that the textile is a 

homogeneous material at the macroscopic scale.   

Finite element analysis of initial failure of a plain weave composite [10] has shown 

that failure due to inter-tow normal stresses are the predominant mode of failure, and 

there is generally little or no damage volume of the bulk matrix between tows.  This work 

is extended to a thorough investigation of progressive failure analysis under axial 

extension using several different property knockdown schemes.  This has shown stiffness 

losses on the order of 40% after initial failure.  More recently this work has been 
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extended to include the capability for more detailed stress fields in the RVE under 

investigation [15], and techniques have been developed to minimize required 

computation times by employing boundary conditions based on thorough exploitation of 

symmetry and periodicity of RVE geometry [16]. 

The Binary Model [17, 18] allows for quick and efficient analysis of any textile 

weave of interest.  It has been shown to provide for accurate prediction of stiffness 

properties.  Further, it is robust and readily adaptable to provide insight into effects of 

alteration of parameters such as tow waviness, tow misalignment, varying weave 

architectures, etc.  This technique does not yield a detailed map of RVE stress fields or 

allow for cross-sectional variation of tow geometry, as the fiber tow is simulated as an 

embedded 1-D line element with representative material properties.  Thus some micro-

level detail is lost to provide for computational efficiency and macro-level representation. 

The Mosaic Model and its adaptations [7, 19, 20] represent a textile composite 

RVE as a collection of homogenized blocks, each with unidirectional composite or 

matrix properties.  These blocks are then assembled to represent the weave geometry 

under consideration.  In this way, classical laminate plate theory can be used to determine 

the global stiffness matrix of the RVE.  For macroscopically homogeneous load cases, 

good agreement has been shown with experimental data, including three-dimensional 

weave geometries.   

Effective prediction of compressive strength of braided textile composites using a 

detailed FEM micromechanical model has been performed [21], which shows good 

comparison to experimental results in a parallel study [22].  A detailed 3D solid model 

was formed to exactly model a 2D triaxially braided composite RVE.  Biaxial loading is 
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considered in both the experimental and computational analyses.  Buckling analysis has 

been performed, and the effects of tow waviness and microarchitecture on the 

compressive strength are shown. 

For uniaxially loaded textile composites, consistent but optimistic strength 

estimates have been made by comparing the strength of fiber tows with the predicted 

stresses in the fiber yarns that are aligned with the loading axis [23-25].  The off-axis 

tows are given little consideration, without much effect on the outcome, as they play little 

part in such uniaxial loading cases.  Multi-axial loading presents an obvious escalation in 

modeling complexity.  The failure envelope for combined transverse tension and in-plane 

shear has been presented as an ellipse [26], according to quadratic strength rules 

developed for unidirectional composites.  Further, proposals for multiaxial loadings 

submit that axial strain in the textile geometry should be compared to a critical value of 

tow strain, analogous to a first-ply failure criterion for unidirectional composites [27].   

A previous study [28] extended a method, known as the Direct Micromechanics 

Method [29] (DMM), to develop failure envelopes for a plain-weave textile composite 

under plane stress in terms of applied macroscopic stresses.  In this study, it was assumed 

that the state of stress is uniform across the RVE.  The micro scale stresses within the 

RVE were computed using finite element methods.  The relation between the average 

macrostress and macrostrains provides the constitutive relations for the idealized 

homogeneous material.  The microstresses are used to predict the failure of the yarn or 

matrix, which in turn translates to failure of the textile composite.   

In the current research, micromechanical finite element analysis is performed to 

determine the constitutive relations and failure envelope for a plain-weave graphite/epoxy 
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textile composite.  The model is based upon the analysis of an RVE, which is subjected to 

force and moment resultants of classical laminate theory.  Thus there is no assumption 

about the uniformity of an applied load or strain, as any load can be represented by a 

combination of force and moment resultants.  The micro-scale stresses within the RVE 

are computed using the finite element method.  The relation between the average 

macrostress and macrostrains provides the constitutive relations for the material.  Thus 

constitutive characterization matrices [A], [B], [D] are found directly from 

micromechanics.  The microstresses are also used to predict the failure of the yarn or 

matrix, which in turn translates to failure of the textile composite.  Using the DMM, the 

failure envelope is developed for in-plane force resultants, with and without applied 

moment resultants.  No currently accepted failure criteria exist that may be used 

explicitly for the analysis of textile composites.  Thus the methods and results employed 

herein are used to develop phenomenological failure criteria for textile composites. The 

results are compared to conventional methods that are not specifically developed for the 

analysis of textile composites, as a basis for evaluation. 

 

 

 



CHAPTER 2 
APPROACH 

Micromechanical finite element analysis is performed to determine the constitutive 

relations and failure envelope for a plain-weave graphite/epoxy textile composite.  The 

model is based upon the analysis of an RVE, which is subjected to force and moment 

resultants of classical laminate theory.  Thus there is no assumption about the uniformity 

of an applied load or strain, as any load can be represented by a combination of force and 

moment resultants.  The micro-scale stresses within the RVE are computed using the 

finite element method.  The relation between the average macrostress and macrostrains 

provides the constitutive relations for the material.  Thus constitutive characterization 

matrices [A], [B], [D] are found directly from micromechanics.  The microstresses are 

also used to predict the failure of the yarn or matrix, which in turn translates to failure of 

the textile composite. 

Finite Element Micromechanical Method 

In the current study, stress gradient effects are investigated, and it is assumed that 

the stress state is not uniform across the RVE.  This represents an extension of the 

micromechanical models used to predict the strength of textile composites [28-32].  The 

stress state is defined in terms of the well-known laminate theory load matrices [N] and 

[M] which describe force and moment resultants.  Furthermore, structural stiffness 

coefficients analogous to the [A], [B], [D] matrices are defined.  In this approach, these 

structural stiffness coefficients are computed directly from the micromechanical models, 

rather than making estimations based upon the homogeneous Young’s modulus and plate 

10 
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thickness.  Accordingly, individual unit strains and unit curvatures can be applied to the 

micromechanical finite element model, and the resulting deformations are used to define 

the stiffness coefficient matrices.  Conventional models essentially neglect the presence 

of [M] terms that result from non-uniformity or gradients in applied force resultants, thus 

assuming a uniform stress state for which only the [N] matrix is populated.  The 

additional analysis of the [M] term includes information about the distribution, or 

gradient, of a non-uniform load.  This can greatly increase the ability of a failure model to 

accurately predict failure for load cases in which such effects may well be predominant, 

such as in thin plates, concentrated loading, or impact loading.   

The significance of including the analysis of moment terms is further illustrated in 

Figure 2-1.  The moment term describes the distribution, not only the magnitude, of 

applied loading.  Depending on the stress state of an RVE, an analysis incorporating 

stress gradient effects and inclusion of the consideration of applied moment could be of 

critical importance.  In Figure 2-1a, the force resultant (N) is non-zero, but the uniform 

loading results in zero moment resultant (M).  However, in load cases such as Figure 2-1b 

and 2-1c, the non-uniformity of applied loading leads directly to an appreciable moment 

term, which must be included in the analysis.  In fact, in some cases it is possible that the 

net force resultant is zero while the effective moment resultant is non-zero, in which case 

conventional analysis techniques cannot be employed. 

The present micromechanical analysis of a plain-weave textile composite is 

performed by analyzing the representative volume element (RVE) using the finite 

element method.  A typical weave-architecture has been selected and this RVE is detailed 

in Table 2-1 and also in Figure 2-2.  This architecture was chosen from a literature source  
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Figure 2-1. Example Load Cases to Illustrate the Importance of Including Moment Terms 
in the Analysis of a Textile RVE.  Distributed Loads across the Large 
Dimensions of a Textile RVE Will Produce Bending Moments That Must Be 
Incorporated into Stiffness and Strength Prediction.   

[33] that provided a complete and detailed description of the needed geometrical 

parameters, such as those shown in Table 2-1.  Given parameters are representative of 

microarchitectures as experimentally observed via SEM or standard microscope.   

 Total fiber volume fraction, given these dimensions, will be 25%, incorporating 

the fact that the resin-impregnated tow itself has a fiber volume fraction of 65% (this is 

calculated directly from ABAQUS software, which yields element volumes as outputs, 

thus the volume of all matrix elements can be compared to the volume of all tow 

elements).  Though this volume fraction may seem low for structural uses, it can be 

representative of many significant low-load, impact-resistant applications, such as 

automotive lightweight body panels.   

Table 2-1:  RVE Dimensions 
Dimension a , b c p t w 
Length (mm) 1.68 0.254 0.84 0.066 0.70 

 

 



13 

 

Figure 2-2:  RVE Geometry of a Plain Weave Textile Composite 

It should be noted that a number of parameters are required to exactly specify the 

textile geometry.  These specifications will have a significant effect on micromechanical 

modeling.  Consequently, care should be taken when comparing the results of various 

studies that the textile geometries under comparison are truly equivalent. 

In order to evaluate the stiffness and strength properties of the textile weave under 

consideration, the DMM is essentially employed as an analytical “laboratory” that 

quickly and effectively replaces physical testing and experimental procedures.  Though 

experimental verification always provides a baseline of veracity to FEM analysis, this 

procedure effectively overcomes the limitations of physical apparatus.  Furthermore, as 

will be shown later, this allows for a dense population of analysis points; thus a failure 

envelope may be quickly and fully constructed with a large number of data points, and 

there is no need for interpolation of limited discrete experimental data points.  Also, 

results achieved from the DMM are completely three-dimensional stress or strain fields. 

Thus, the results can be visualized throughout the thickness of the specimen.  This 

overcomes the limitations inherent to physical application of experimental stress analysis 

techniques, which are labor-intensive and generally limited to surface visualizations.   
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Specification of relative displacements on opposite faces of the RVE can represent 

any general macro deformation under investigation.  Displacements are applied using 

periodic boundary conditions.  The periodic displacement boundary conditions isolate the 

mechanical effects of application of unit strains or curvatures, and ensure the 

repeatability of deformations.  Thus, the RVE is not only repeatable as a representative 

geometry, but is also mechanically repeatable in that each RVE has an identical response 

to strains and curvatures regardless of the location of that RVE in a textile plate or 

component, for example 
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To ensure continuity of microstresses and compatibility of displacements across an 

RVE, periodic traction and displacement boundary conditions must be employed.  A 

macroscopically homogeneous deformation can be represented as 
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The derivation of the periodic boundary condition for unit curvature is presented 

below, and further examples are presented in the appendix. 

The periodic displacement boundary condition corresponding to unit curvature 

along the x-axis (κx) will be derived.  All other curvatures will be zero.  Curvatures are 

defined as follows 
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The periodic displacement boundary condition will be derived from the definition 

of curvature along the x-axis (κx).  Integrating once with respect to x yields 

)(yfx
x
w

+=
∂
∂

−            (2.4) 

where f (y) is an arbitrary function of y.  Differentiation of this expression with respect to 

y, together with the requirement that κxy is set as zero, indicates that 

2

( ) 0xy
w f y

x y
κ ∂ ′= − = =

∂ ∂
          (2.5) 

Due to the above expression, f(y) must therefore be a constant, since κxy = 0.  

Furthermore, this constant must be zero due to the specification that slope at the origin is 

zero, such that 
0

0
x

w
x =

∂
=

∂
 Next, Equation 2.4 is integrated with respect to x, giving rise to 

the following expression and an arbitrary function h(y) 

)(
2

2

yhxw +=−            (2.6) 

Now coordinate values for opposite faces of the RVE (see Figure 2-2) may be 

substituted into Equation 2.6 

)(),,0(
)(),,( 2

2
1

yhzyw
yhazyaw

=

+−=
          (2.7) 

These are then subtracted from each other, eliminating the unknown h(y), and 

effectively prescribing the relative displacement on opposite faces that can be used to 

apply unit curvature. 

 2
2
1),,0(),,( azywzyaw −=−                      (2.8) 
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However, a further boundary condition is required to remove the transverse shear 

forces that will be present due to the application of this displacement.  In this way, the 

mechanical effect of curvature is isolated.  Thus the requirement is that transverse shear 

strain is zero, which is defined as 

 0=
∂
∂

+
∂
∂

=
x
w

z
u

zxγ                       (2.9) 

This can be rearranged as below, and the value of slope w
x

∂
∂

 is known from 

Equation 2.4 above (where the arbitrary function has been shown to be zero).  

x
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∂           (2.10) 

Similar to the above procedure, this expression can then be integrated with respect 

to z, evaluated with coordinate values of opposite faces, which are then subtracted from 

each other to specify the relative displacement that must be proscribed. 

czxu +=           (2.11) 

zazyuzyau =− ),,0(),,(         (2.12) 

The periodic boundary conditions as shown in Equations 2.8 and 2.12 must be 

simultaneously applied to isolate the effects of an applied unit-curvature.  

 In order to satisfy equilibrium, traction boundary conditions are applied to ensure 

equal and opposite forces on opposite faces of the RVE.  The traction boundary 

conditions for traction forces on the lateral faces of the RVE are 
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In the Direct Micromechanics Method (DMM), the RVE is subjected to 

macroscopic force and moment resultants, which are related to macroscopic strain and 

curvature according to 
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Thus the constitutive matrices must be evaluated to determine this correlation.  

Once this has been determined, a macroscopic deformation can be applied using an FEM 

code.  In this way, the FEM results for stress in each element yield the microstresses 

resulting from an applied force or moment resultant. 

The RVE is subjected to independent macroscopic unit deformations in order to 

evaluate the stiffness matrices of Equation 2.14.  In each of the six cases shown in Table 

2-2 below, a single unit strain or unit curvature is applied, and all other deformation 

terms are set to zero, and the appropriate periodic boundary conditions are applied.   

The four-node linear tetragonal elements in the commercial ABAQUS (Standard) 

FEM software package were used to model the yarn and matrix for all cases.  An h-

refinement convergence study was performed in which analysis was performed for a 

progressively finer mesh of four-node linear tetragonal elements.  For several reasons, the 

final mesh chosen employs 68,730 such elements. 

Table 2-2: Periodic Displacement Boundary Conditions 
  u(a,y)- 

u(0,y) 
v(a,y)- 
v(0,y) 

w(a,y)- 
w(0,y) 

u(x,b)- 
u(x,0) 

v(x,b)- 
v(x,0) 

w(x,b)- 
w(x,0) 

1 εx
M = 1 a 0 0 0 0 0 

2 εy
M = 1 0 0 0 0 b 0 

3 γxy
M = 1 0 a/2 0 b/2 0 0 

4 κx
M = 1 az 0 -a2/2 0 0 0 

5 κy
M = 1 0 0 0 0 bz -b2/2 

6 κxy
M = 1 0 az/2 -ay/2 bz/2 0 -bx/2 
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This mesh refinement is significantly beyond the point of numerical convergence 

for which output element stresses can be assured to be accurate.  This also allows for a 

mesh that accurately covers the “corners” of an ellipsoidal tow cross-section without 

sacrificing element quality in such regions.  Furthermore, a refined mesh can capture the 

intricacies of stress contours and stress gradients expected to be seen through the RVE.  

Note that the shared nodes are employed between each tow and its surrounding interstitial 

matrix.  There are no tow-tow shared nodes, thus tows are not bound to each other, but 

only to the interstitial matrix.  As a final note on the character and quality of mesh 

employed in this analysis, the following quality assurance metrics are indicated:  fewer 

than 0.1% of elements have an interior angle less than 20 degrees, fewer than 0.3% have 

an interior angle greater than 120 degrees, and less than 0.2% have an aspect ratio greater 

than 3 (the average aspect ratio is 1.66).   

The FEM results for each element yield the microstresses resulting from an applied 

macro-level strain and curvature.  The corresponding macro-level force and moment 

resultants in each case can be computed by averaging the microstresses over the entire 

volume of the RVE 

( ) ee
ijabij VN ∑= σ1                                                                                       (2.15) 

( ) ee
ijabij VzM ∑= σ1                                                                                       (2.16) 

where e denotes summation over all elements in the FE model of the RVE, Ve is the 

volume of the eth element, and a and b are the dimensions of the RVE as shown in Figure 

2-2. 

Thus the constitutive matrices of Equation 2.14 can be found by independently 

evaluating the six cases shown in Table 2-2, in tandem with Equations 2.15 and 2.16.  By 
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applying the appropriate displacements according to Table 2-2 which correspond to a 

given unit strain or curvature case, the stiffness coefficients in a column corresponding to 

the non-zero strain can be evaluated directly from the force and moment resultant values 

as calculated from the finite element micro stresses via Equations 2.15 and 2.16.  Thus 

the six load cases completely describe the six columns of the [A], [B], [D] matrix.   

This information having been determined, one is then able to evaluate the 

microstress field resulting from general loading cases via the following steps:  Step 1) 

Relate applied force and moment resultants to applied macro strain and curvature via the 

[A], [B], [D] matrices and Equation 2.14,   Step 2) Apply this macro strain and curvature 

to the RVE using an FEM code,  and Step 3) The element stresses from FEM results yield 

the microstress field in the yarn and matrix.  The present study assumes there are no 

residual stresses or pre-stresses in the composite.  The significance of residual stresses 

would depend on the particular cure cycle employed in manufacturing the composite, as 

well as upon the weave pattern under investigation.  For a plain-weave textile, it would 

be expected that residual pre-stresses would affect the “center point” of the failure 

envelope, given that 1) symmetry of microarchitecture would lead to a level of symmetry 

of residual stresses, and 2) pre-stresses shift, rather than shrink, an existing failure 

envelope as the applied loads can either add to or be offset by the residual stresses.  The 

magnitude of residual stresses could conceivably reach on the order of 10% of the failure 

strength. 

Direct Micromechanics Method for Failure Analysis 

The method described above can be used to predict strength by comparing the 

computed microstresses in each element against failure criteria for the constituent yarn 

and matrix of the textile composite.  Interface failure is not considered in the current 
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study, but will be incorporated into future work.  The microstresses in each element can 

be extrapolated from the preliminary RVE analysis (described above) of each of the six 

linearly independent macrostrain components.  The microstress state for a general applied 

force or moment resultant is obtained by superposing multiples of the results from the 

unit macrostrain analysis 

{ }
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



= M

M
ee F

κ
ε

σ ][                                                                                       (2.17) 

Where the 6×6 matrix [Fe] contains the microstress in each element resulting from 

the unit strain and curvature analysis.  For example, the microstress σy in the RVE for εx0 

=0.05 and κy= 0.003 m-1 is calculated as σy =0.05F21+0.003F25. 

Failure is checked on an element-by-element basis, and the failure criterion of each 

element can be selected appropriately based upon whether it is a yarn or matrix element.  

It is assumed that the entire textile composite has failed, even if only one of the yarn or 

matrix elements has failed.  Although this may be considered conservative, it is 

realistically representative of the initial failure of the composite. 

 

Figure 2-3:  Flowchart for Failure Analysis Using the Direct Micromechanics Method 
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For the isotropic matrix elements, the Maximum Principal Stress criterion is used to 

evaluate element failure.  For fiber tow elements, the Tsai-Wu failure criterion is used.  

This criterion is more suitable to the orthotropic nature of the fiber tow, which is 

essentially a unidirectional composite at the micro level.  Microstresses in the yarn are 

transformed to local coordinates tangent to the path of the yarn and compared to strength 

coefficients for a unidirectional composite, using the Tsai-Wu criterion.   

A flow chart that describes the DMM procedure is shown in Figure 2-3.  Failure 

envelopes are generated by first selecting a macrostress state to investigate.  Then the 

macrostrains and curvatures resulting from this applied loading are calculated from 

Equation 2.14.  The resulting stress field for the entire RVE is then calculated by 

Equation 2.17, based on the scaled superposition of the results from FEM analysis of the 

unit load cases shown in Table 2-2.  Failure is then checked in each element against a 

given failure criterion.  This cycle is then repeated while progressively increasing a 

selected force or moment resultant and holding all others constant until an element level 

failure criterion is exceeded.  If a particular failure criterion is exceeded, the element and 

the RVE are considered to have failed, which then defines the threshold of the failure 

envelope at a given point.  Thus failure envelopes for the textile composite can be 

generated in various force and moment resultant spaces.  The scope of the current study 

considers analysis of in-plane force and moment resultants [N] and [M], though the 

methods are applicable to any general loading conditions. 

Phenomenological Failure Criteria 

In addition to being used to determine failure of the fiber tow or the matrix phase at 

the element or micro level, the Tsai-Wu phenomenological failure criterion is used as a 

basis for comparison to the DMM for the macroscopic failure of the textile composite.  
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Since the Tsai-Wu criterion was formulated in terms of stresses, an adapted form of this 

criterion in terms of applied force resultants is used. 

12 2112
2

66
2

22
2

11 =+++++ yxyxxyyx NFNFNNFNFNFNF                                 (2.18) 

Employment of this criterion essentially represents fitting an ellipse of Tsai-Wu 

form to the DMM failure data. The failure coefficients (Fij) that appear in Equation 2.18 

are based on failure data from the DMM.  These parameters are based on the failure 

strength of the material under various loading conditions, and are typically determined by 

conducting physical tests on the specimen.  For example, in order to obtain F11 and F1, a 

load of Nx is applied, and all other stresses are set to zero.  Then Equation 2.18 reduces to 

11
2

11 =+ xx NFNF                                                                                        (2.19)  

Since the DMM has been used to determine the maximum uniaxial tensile and 

compressive force resultant, each of which satisfy Equation 2.19, these two independent 

equations can be solved for F11 and F1 

)()( 11
1 CT XXF −=                                                                                       (2.20) 

)(
1

11 CT XXF =                                                                                                   (2.21) 

where XT and XC are the failure values of Nx for tension and compression, respectively. 

Using similar procedures, strength coefficients F22, F2, and F66 are evaluated.  The 

resulting values are as follows 
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In the above equations Y and S are the strengths in terms of the force resultants Ny 

and Nxy, and C and T denote compression and tension, respectively. In the literature, there 

exist many proposed methods for determining an appropriate F12.  In this study, the 

coefficient F12 is determined by subjecting the unit-cell to a state of biaxial stress such 

that Nx = Ny while Nxy=0, and then determining the maximum value of applied Nx = Ny = 

Nmax.  The resulting coefficient takes the following form 

( ) ( )[ max21
2
max22112
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12 1

2
1 NFFNFF

N
F +−+−= ]                                                (2.25) 

Please note that for Equations 2.18 through 2.25, strength values must be in terms 

of force resultants (N), as noted in the nomenclature. This is different from the textbook 

definition of the Tsai-Wu failure theory, which is in terms of stresses.  Also note that, as 

will be discussed later, the Tsai-Wu failure theory includes no provision for the 

incorporation of applied moment resultants into the prediction of failure.   

 The Maximum Stress Theory is another failure theory to which the results of the 

DMM may be compared.  Simply stated, failure occurs when any single stress component 

exceeds an allowable level.     
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 And similarly, the Maximum Strain failure theory states that failure occurs when 

any single mid-plane strain component exceeds an allowable level. 
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For example, the limiting mid-plane strain in a given direction is 

i

t
N

i E
e

max

=           (2.28) 

The bounds of the Maximum Strain Theory failure envelope take the shape of a 

parallelogram whose sides are defined by lines of the form 

Txxyy SNN +=ν          (2.29) 

As was mentioned regarding the Tsai-Wu failure theory, the Maximum Stress and 

Maximum Strain theories were developed in terms of applied stresses, thus adapted forms 

of these criteria in terms of applied force resultants are used.  Again, currently there is no 

provision for the incorporation of applied moments into the prediction of failure. 

 

 



CHAPTER 3 
STIFFNESS AND STRENGTH DETERMINATION 

Using the DMM procedure as detailed in Chapter 2, the failure envelope for a plain 

weave textile composite is developed for in-plane force resultants, with and without 

applied moment resultants.  No currently accepted failure criteria exist that may be used 

explicitly for the analysis of textile composites.  Thus the methods and results employed 

herein are used to develop phenomenological failure criteria for textile composites. The 

results are compared to conventional failure envelopes that are not specifically developed 

for the analysis of textile composites, as a basis for evaluation.   

Stiffness Properties 

The fiber tow was assumed to have material properties of a unidirectional 

composite (weave geometry is taken into account in the finite element model), in this 

case AS/3501 graphite-epoxy. 

The constitutive matrices relating macroscopic force and moment resultants to 

strains and curvatures were found using the aforementioned procedures and are found to 

be 
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The character of the constitutive matrices is analogous to an orthotropic stiffness 

matrix with identical elastic constants in the material principal directions (also referred to 

as a tetragonal stiffness matrix).  Flexural stiffness values of the [D] matrix may seem 

slightly low, but it should be noted that the RVE under consideration is relatively thin at 

0.254 mm.  Also note that although the zero terms in the above matrices were not 

identically zero, they were several orders of magnitude below comparable matrix terms, 

and thus have been neglected with little or no effect on end results. 

The above constitutive matrices have been calculated directly from the 

micromechanics model without any assumptions on the deformation of the composite 

such as plane sections remain plane etc. as in traditional plate theories.  The results are 

quite different from commonly employed approximations.  From classical laminate 

theory, a plane stiffness matrix is calculated from homogenized continuum stiffness 

properties (the familiar E, G, and ν).  The flexural stiffness matrix [D] is then calculated 

from this homogenized stiffness and the thickness of the textile RVE.  By comparison to 

the direct micromechanics results of the DMM, these methods will misrepresent flexural 

stiffness values D11, D12, and D66 by as much as factors of 2.9, 1.1, and 0.7 respectively.  

The DMM results imply that there is no consistent relation between in-plane and flexural 

properties, although the two properties are related. 

 In-plane axial and shear stiffness values (E, G) are calculated directly from the [A] 

matrix.  Compared to the bare properties [34] of the constituent fiber tows (Table 3-1), 

stiffness is lower by an order of magnitude.  But it must be noted that the textile 

composite under consideration here has on overall volume fraction of 25%, whereas the 

tow properties of Table 3-1 reflect the 65% volume fraction as seen within the tow itself.     
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As a basis for comparison, the in-plane homogenized stiffness properties are 

presented in Table 3-2, as calculated directly from the [A] and [D] matrices above.  

Flexural moduli, which represent the bending stiffness of the textile composite, are also 

presented in Table 3-2 and are calculated from the relations shown in Equation 3.2 

through Equation 3.5. 
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Flexural moduli are material-dependent properties, but are strongly geometry-

dependent as well.    Similarly to what is seen for the in-plane stiffness, the flexural 

stiffness is shown to be much lower than the constituent tow properties, for the relatively 

thin plate under consideration here.  The bending properties are strongly influenced by 

the plate thickness and the weave architecture. 

Table 3-1:  Fiber Tow and Matrix Material Properties 
Material E1 (GPa) E2 (GPa) G12 (GPa) ν12 

AS/3501 Graphite/Epoxy  
(65% Fiber Volume) 138 9.0 6.9 0.30 

3501 Matrix 3.5 3.5 1.3 0.35 
 
Table 3-2:  Stiffness Properties for Plain Weave Textile Plate  

Ex = Ey  (GPa) Gxy  (GPa) νxy In-Plane 
Properties 16.0 0.71 0.13 

Efx = Efy (GPa) Gfxy (GPa) νfxy Flexural 
Properties 5.0 0.88 0.33 
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Strength Properties 

Table 3-3 [34] shows the textbook values for failure strengths of the yarn and 

matrix materials.  The subscripts “L” and “T” refer to the longitudinal and transverse 

directions, respectively.  The superscripts “+” and “-” refer to tensile and compressive 

strength.  These were used with the Tsai-Wu failure criterion to determine failure of the 

yarn at the micro level within an element. 

Figure 3-1 shows a comparison of the DMM failure envelope for the plain weave 

graphite/3501 textile composite with several common failure theories: the Tsai-Wu, 

Maximum Stress, and Maximum Strain failure theories.  Failure envelopes are shown in 

the plane of biaxial force resultants with no applied moment present.  Since the DMM is 

used to define the macro level failure strength, all theories share the same uniaxial 

strengths and are fit to these points.   

For the most part, the Maximum Stress Theory is much more conservative than all 

other theories.  However, it is less conservative in Quadrants II and IV, since this failure 

theory does not account for the interaction of biaxial stresses.  The Maximum Strain and 

Tsai-Wu failure theories compare more closely to the DMM failure envelope, especially 

the latter. 

For zero applied moment (Figure 3-1), the DMM failure envelope follows closely 

with the form of a Tsai-Wu failure envelope.  For the most part, the initial failure mode is 

transverse failure of the fiber tows.  However, at the extremes of the major axis of the 

Table 3-3:  Fiber Tow and Matrix Failure Strength Properties (MPa) 
 SL

(+) SL
(-) ST

(+) ST
(-) SLT 

3501 / Graphite  
Tow 1448 1172 48.3 60 62.1 

3501 Matrix 70 70 70 70 70 

 



29 

 

Figure 3-1:  Comparison of DMM Failure Envelopes with Common Failure Theories.  
Adapted Forms of the Tsai-Wu, Maximum Strain, and Maximum Stress 
Failure Theories are Shown.  Since the DMM is Used to Define the Macro 
Level Failure Strength, all Theories Share the Same Uniaxial Strengths and 
are Fit to these Points.   

failure envelope (the outer corners of quadrants I and III), the initial failure mode 

transitions to failure of the matrix material.  Thus the DMM failure envelope is cut short 

at the ends (compared to the failure envelope that would exist if matrix failure were not 

considered) and is squared-off in these regions and resembles the maximum failure stress 

(force resultant) criterion.  The DMM envelope is more conservative than the Tsai-Wu 

type criterion in quadrant I, and slightly less conservative in quadrant III.   

Though failure loads are not generally reported in terms of force and moment 

resultants, a translation of the failure envelope force resultant values to traditional stress 

values shows that strength magnitudes are reasonable based upon comparison to literature 
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and supplier-reported values for this material, geometry, and the relatively low fiber 

volume fraction (25%).  Since the yarn takes much of the load, the matrix does not begin 

to fail until a much higher load than its bare tensile strength.  Although the strength value 

is a fraction of the pure tow strength, the woven tow is not completely aligned in the 

loading directions.  Some of the tow is curved into the thickness direction, thus providing 

through-thickness reinforcement.  Furthermore, after initial transverse failure of the fiber 

tow (indicative of the introduction of intra-tow micro-cracking), the structure will still 

maintain load-bearing capacity, though stress concentrations will begin to build up and 

part integrity will be degraded.  Also note that, due to symmetry of the textile RVE about 

the x- and y- axes, the failure envelope exhibits this symmetry as well.      

The effect of an added moment Mx on the failure envelope is shown in Figure 3-2 

with the applied moment Mx equal to half the critical value that would cause failure if it 

were the only applied load.  The figure also includes results from Figure 3-1, the DMM 

results and quadratic failure envelope for the case of zero applied bending moment.  

There is no Tsai-Wu, Maximum Stress, or Maximum Strain failure envelope to include 

applied moment resultants, as these theories are not developed to include such load types.  

As has been mentioned, strength estimates will be somewhat conservative given that 

failure is defined as failure of a single element that surpasses the maximum allowable 

microstress, but this presents a realistic definition of initial failure.   

Continuing to inspect Figure 3-2, an applied moment in the x-direction has the 

expectable effect of shrinking the failure envelope in regions where tensile applied loads 

dominate.  However, when only compressive loads are applied, an applied moment can 

actually increase the in-plane load capacity by offsetting some of the compressive stress 
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with bending-induced tension.  The magnitude of this load-capacity increase is limited, 

however, by the eventual failure of the matrix.  As with the case of pure in-plane loading, 

the failure envelope at the outer corner of quadrant III is dominated by matrix failure.  

The effects of applied moment on the failure envelope of the plain weave textile 

represents the importance of the consideration of stress gradients, or load non-

uniformities.  The appreciable difference that arises suggests that such consideration 

could be critical to the successful design or optimization of a textile structural 

component.   

Failure Envelopes
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Figure 3-2:  Effect of Bending Moment on the Failure Envelope.  The Overall Envelope 
Decreases Significantly in Size.  The Tsai-Wu Failure Ellipse is Unaltered 
when Moment is Applied, as the Theory Includes No Provision for this Load 
Type.   

The effect of changing the failure theory used to define failure of a tow element at 

the micro (elemental) level is shown in Figure 3-3.  The DMM can easily be modified to 

employ any appropriate failure criterion for the constituent phases at the 
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micromechanical level.  Here, the Maximum Stress Failure Theory (MSFT) is used to 

replace the Tsai-Wu failure theory to determine first-element failure for the fiber tows.  

Though the overall character of the failure envelope is unchanged, the effect is quite 

significant in that the failure envelope becomes roughly half as conservative.  It should be 

noted that, even in the case of simple uniaxial macro applied loads, the micro stress field 

that results is fully three-dimensional and non-homogeneous across the RVE.  Thus, 

especially for the orthotropic fiber tows, a failure theory that includes multi-dimensional 

stress interaction effects (such as Tsai-Wu) should be more appropriate. 
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Figure 3-3:  Effect of Micro-Level Tow Failure Theory on the DMM Failure Envelope.  
A Comparison is Shown between the Original DMM Using the Tsai-Wu 
Theory to Analyze Failure of a Tow Element and an Altered DMM in which 
the MSFT is Used 

As mentioned earlier, we have assumed that the entire textile composite has failed, 

even if only one of the yarn or matrix elements has failed.  It is possible to change the 
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definition of failure by stating that failure is considered to have occurred when 1% of the 

total number of elements have failed.  Figure 3-4 shows the effect of changing the 

definition of failure and consequently the macro failure envelope.  Note that failure points 

are shown in the plane of uniaxial applied force and moment resultants, in order to 

illustrate these effects under different loading types.  About a 30% increase in maximum 

allowable force or moment resultant results from changing the definition of initial failure.  

This is shown to present the possibility of a more stochastic or a less conservative 

approach to determining the point at which initial failure occurs, thus only a few points 

are presented. 
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Figure 3-4:  Effect of Changing the Definition of Micro-Level Failure on the Failure 
Envelope.  The Allowable Force or Moment is Shown to Increase by 30% if 
Failure is Defined as the Point at which 1% of Elements Have Exceeded 
Failure Criterion, as Compared to the Point at which One Single Element Has 
Failed. 
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Figure 3-5:  Stress Contours for Plain-Weave Fiber Tows in Uniaxial Extension.  
Detailed Microstress Field Results from the DMM Provide Valuable Insight 
into the Mechanical Response of an RVE under Any Loading Condition.  Tow 
Elements or Matrix Elements Can Be Isolated to Provide Further Detail.   

Microstress Field Contour Plots 

Detailed stress-field contour plots are one output of the DMM that provide great 

insight into the failure modes and points of maximum stress in the RVE.  Tow or matrix 

portions of the RVE can be isolated for individual scrutiny.  Figure 3-5 shows the stress 

field for the plain-weave fiber tows in uniaxial tension.  Most of the load in this case is 

taken by the fiber tows aligned in the loading direction.  However, the failure mode is 

transverse failure of the cross-axis tows, as the strength is much lower in this direction.  

Tows aligned in the direction of loading tend to be pulled straight as load is applied.  This 

has the secondary effect of applying bending to the cross-axis tows, creating significant 

bending stresses.  The maximum stress levels in this micro stress field tend to occur 

around the matrix pockets between tows, which tend to act as a micromechanical stress 

concentration.  Similar inspection of the stress field in the matrix surrounding the fiber 
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tows (not shown here) shows that the maximum stress tends to occur along the relatively 

sharp edges of the lenticular fiber tows, which again tend to act as a micromechanical 

geometrical stress concentration. 

Further stress contour plots illustrating results and capabilities of the DMM show 

the RVE behavior in shear and bending load cases.  For unit bending load cases, it is 

shown that the majority of the load is again taken by the fiber tows along the direction of 

curvature.  Furthermore, just as there is a transition from tension to compression across 

the RVE in bending, a rapid stress gradient from tension to compression can be seen in an 

individual fiber tow.  This again suggests the importance of the consideration of stress 

gradients in the micromechanical characterization of a textile RVE.   

Inspection of Failure Envelopes in Additional Stress Spaces 

Based on an extension of the results presented also in [28] and shown earlier in 

Figure 3-2, failure envelopes in the space of Nx - Ny - Mx (a practical and useful failure 

space which illustrates the limits of biaxial loading and the importance of consideration 

of stress gradients across an RVE) are seen to be characteristically elliptical in nature.  

This is due to the prevalence of stress interaction effects, as well as the symmetry of the 

plain weave geometry under analysis. 

Figure 3-6 shows the discrete failure points as determined from the DMM for cases 

of biaxial loading with constant applied moments of 0, 0.3, 0.5, and 0.8 times the critical 

moment that would cause failure if it were the only load present.  Phenomenologically, it 

can be seen that the failure envelopes become smaller as a larger moment (stress 

gradient) is applied.  An applied moment has the expectable effect of shrinking the failure 

envelope, though in limited regions it has been seen that the complexity of the 

superposed stress fields may have an offsetting or beneficial effect.   
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Figure 3-6:  DMM Failure Envelopes for Biaxial Loading with Multiple Constant 
Moment Resultants.  For Illustration, an Ellipse is Fit to Each Data Set Using 
a Least-Squares Method. 

Also shown in this figure are elliptical fits to each failure envelope, which were 

computed by a Matlab based routine that was used to determine a least squares fit to 

the DMM data points.  Regular analytical trends in these failure envelopes lead directly 

to the development of failure prediction methods which will be detailed in Chapter 4. 

In general, failure envelopes in spaces other than those shown in Figure 3-6 will not 

necessarily be elliptical in nature, as has been observed for cases including shear, twist, 

and multiple moment loading terms.  Figures 3-7 and 3-8 show failure envelopes in 

spaces of Mx - My - Mxy and Nx - Mx - Nxy respectively.  Discrete points represent the 

failure envelopes as determined by the DMM.   

Figure 3-7 isolates the relative effect of moment resultants, or stress gradients, of 

varying types on the failure envelope, as well as the interaction of multiple moments.  

Each envelope is mapped out with a constant applied twist Mxy.   
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  Figure 3-7:  DMM Failure Envelopes for Biaxial Bending with Constant Applied 
Twisting Moment. 

Figure 3-8:  DMM Failure Envelopes with Force and Moment Resultants for Constant 
Applied Shear.  
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 The overall character of Figure 3-7 is in some ways similar to that of Figure 3-6, 

in tha

he 

inant 

rovides a visualization of the effect 

of the

 not seen 

Design of Experimental Verification 

A procedure is sugg te the differences 

betwe

.  

t the failure envelope symmetry reflects the symmetry of geometry and loading.  

Further, the strength limits in quadrants II and IV are lower due to stress interactions.  

Whereas for biaxial loading, strength is decreased when stresses act in the direction of t

natural tendency of Poisson effects, in bending the strength is decreased when biaxial 

bending acts in the direction of the natural tendency of anticlastic curvature.  As is 

generally seen in all failure analyses that have been performed in this study, the dom

mode of failure is transverse failure of the fiber tow. 

The Nx - Mx - Nxy failure envelope (Figure 3-8) p

 magnitude of stress gradient, or loading non-uniformity, for a given force resultant.  

Each envelope is drawn for constant in-plane shear to further incorporate the effects of 

multiple loading types.  The envelope is symmetric about the x-axis due to the 

mechanical equality of positive or negative bending moment.  This symmetry is

about the y-axis since the carbon-epoxy plain weave responds differently when in tension 

or compression. 

ested here which may be used to illustra

en DMM and conventional failure points (a point which will also be visited in 

Chapter 5).  Figure 3-9 shows a schematic representation of an off-axis test specimen

This specimen can be used under uniaxial tension to investigate different stress states.  

The orientation angle (θ) represents the angle of the principal material axes of the plain-

weave with respect to specimen bounds. 
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Figure 3-9:  Schematic of the Specimen for Off-Axis Uniaxial Testing.  
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Figure 3-10:  Critical Force Resultant under Uniaxial Loading as Calculated via Various 
Failure Theories.   

Figure 3-10 shows a comparison of the maximum allowable force resultant Nx that 

may be applied, as calculated via the DMM, Tsai-Wu Failure Theory, and the Maximum 

Stress Theory, for various orientation angles.  Data collected for tests performed at 0.08 

radians (4.5 degrees) will produce data that should illustrate the greatest disparity 
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between DMM and the Tsai-Wu Failure Theory.  At this point, the DMM predicts a 

failure load 17% less conservative than Tsai-Wu.  Thus this can serve as an effective 

illustration to compare and contrast the two theories.  Similarly, tests performed for a 

0.31 radians (17.8 degrees) specimen will provide a comparison point most useful to 

investigate differences between predictions from DMM vs. Max Stress failure theories.  

At this point, the DMM predicts failure levels 32% more conservative. 

Chapter Summary 

By analysis of the microstresses developed in a representative volume element 

(RVE), the Direct Micromechanics Method (DMM) has been used to construct failure 

envelopes for a plain weave carbon/epoxy textile composite in plane stress.  To allow for 

the accommodation of stress gradients, or non-uniform applied loads, micromechanical 

analysis had been performed in terms of classical laminate theory force and moment 

resultants [N], [M] and constitutive matrices [A], [B], [D].  The predicted values of the 

stiffness matrices and ultimate strength values compare well to expectable magnitudes.  

The DMM failure envelope was shown to be largely elliptical of the form of a Tsai-Wu 

failure criterion and dominated by transverse fiber tow failure.  But in cases of large 

biaxial tension or biaxial compression loads, the DMM failure envelope compared to the 

form of the Maximum Stress Criterion, and matrix failure was the mode of initial failure.  

The presence of applied moment resultants [M], as would exist in cases of non-uniform 

load across the RVE, was shown to have a significant effect on the failure envelope.  

Thus its consideration, not covered in conventional failure models, can be critical.   

The diversity of the failure spaces seen here is a harbinger of the further need to 

develop analytical methods to predict failure without pre-knowledge of the nature of the 

failure envelope.  This will be discussed in Chapter 4. 

 



CHAPTER 4 
PREDICTION OF FAILURE ENVELOPES 

The current chapter presents methods for utilizing the results presented in Chapter 

3 to develop a failure criterion for textile composites.  Using the DMM, the failure 

envelope is developed for in-plane force resultants, with and without moment resultants.  

No currently accepted failure criteria exist that may be used explicitly for the analysis of 

textile composites, or which include this ability to account for stress gradients at the 

micromechanical level.  Thus the methods and results employed herein are used to 

develop phenomenological failure criteria for textile composites.  Based on the DMM 

results, two methods are presented which may be used to predict failure of a textile 

composite.  The first is a parametric method based on prediction of regular trends in the 

failure envelopes of a given 3D stress space.  The second method represents the 

formulation of a 27-term quadratic failure equation that can be evaluated to determine 

failure of the textile under any general force and moment resultants.   

A Parametric Approach to Predicting Failure Envelopes for a Given Stress Space 

Referring again to the results of Figure 3-6, the observation is repeated that, 

phenomenologically, the failure envelopes become smaller as a larger moment (stress 

gradient) is applied.  An applied moment has the expectable effect of shrinking the failure 

envelope, though in limited regions it has been seen that the complexity of the 

superposed stress fields may have an offsetting or beneficial effect.   

 Analytically, it can be seen that there are definite trends in the axes and placement 

of the failure ellipses.  Failure ellipses were then characterized with parameters such as 

41 
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major axis length, minor axis length, ellipse axis orientation angle, and the ellipse center 

point.  Any general ellipse in (x, y) space can be represented by the expression 
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           (4.1) 

where θ is the orientation angle of the major axis of the ellipse with respect to the x-axis, 

uo and vo are the coordinates of the ellipse center point, a is half the major axis length, 

and b is half the minor axis length.  For each failure ellipse shown in Figure 3-6, these 

parameters were then plotted as functions of the moment applied for each case, in order 

to inspect parametric trends.   

For example, Figures 4-1 and 4-2 show the major and minor axis length of several 

Nx - Ny - Mx failure envelopes plotted against the moment resultant Mx applied in each 

case.  A limited number of fitting cases were used, in order to reserve an adequate 

number of test cases and to prevent over-fitting of the trends.   

 

Figure 4-1: Effect of Applied Moment Resultant on the Major Axis of Elliptical Failure 
Envelopes. 
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Figure 4-2: Effect of Applied Moment Resultant on the Minor Axis of Elliptical Failure 
Envelopes. 

 

Figure 4-3: Effect of Applied Moment Resultant on the Center Point Coordinates (uo , vo) 
of Elliptical Failure Envelopes. 

As mentioned earlier and as seen in these above figures, a larger applied moment 

with a given failure envelope has the effect of shrinking the envelope’s major and minor 
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axes.  These trends were regular enough to be closely approximated with a polynomial 

trend line.  At the critical moment, the ellipse axes lengths become zero, as a load 

sufficient for failure is already applied, and no additional force resultants may be applied.   

In addition to shrinking the failure envelope, larger applied moments also tend to 

cause a small but significant shift in the center point of the failure ellipse.  This is caused 

by the fact that an applied moment is still a directional loading, and thus produces a 

directional bias in the location of the failure envelope.  These trends were also plotted 

(Figure 4-3) and approximated with polynomial trend lines.  Ellipse orientation angle (θ ) 

was found to be nearly constant, thus no trend plot is shown.   

Based on the above, an elliptical failure envelope of the form of Equation 4.1 can 

be predicted by evaluating the expressions for ellipse parameters in terms of applied 

moment resultant, as shown below 
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Thus any general Nx - Ny - Mx failure envelope can be predicted with the above 

procedure and expressions.  For several test cases, a failure ellipse is predicted and 
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compared to discrete failure points as calculated directly from the DMM.  These 

comparisons are shown in Figure 4-4 and Figure 4-5.  The average deviation between the 

failure envelope predicted from the parametric curve fitting as compared with the direct 

results of micromechanical modeling was less than 2%.   

The greatest value of this parametric approach to predicting failure is that it 

provides good insight into the exact nature of the failure space under consideration.  

Further, the results are quite accurate and could be useful for design purposes.  However, 

the load cases are limited, and the methods presented here would have to be extended if 

more than three simultaneous loads were to be applied and analyzed. 

 

Figure 4-4:  Failure Envelopes Predicted with the Parametric Approach as Compared to 
DMM Results (Applied Moment Resultant of 0.65 Critical Moment) 
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Figure 4-5:  Failure Envelopes Predicted with the Parametric Approach as Compared to 
DMM Results (Applied Moment Resultant of 0.9 Critical Moment) 

Development of a Quadratic Failure Criterion to Predict Failure for General 
Loading 

In order to bind together the failure spaces, which can be quite different in nature, 

as can be seen in Figure 3-6 through Figure 3-8, methods of the previous section will not 

be readily applicable.  Therefore, development of an additional analytical method 

becomes necessary.  Further, an analytical approach to binding the results of multiple 

failure envelopes as calculated via the DMM, along with the capacity to accommodate 

any general plate loading condition has a practical value.  Given the quadratic interactive 

nature of the stress state in determination of failure, an expression of the below form has 

been developed to predict failure. 

1=+ iijiij FDFFC         (4.4) 

where Fi represent general load terms (Nx Ny Nxy Mx My Mxy) , and Cij or Di represent 27 

failure coefficients such that Equation 4.4 defines failure when its magnitude exceeds 1. 
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Failure coefficients Cij and Di can be solved given a sufficient amount of known 

failure points or failure envelopes.  However, Equation 4.4 is numerically ill-conditioned 

given the great disparity in the magnitude of Nij and Mij loads which will cause failure.  

These values will differ by many orders of magnitude when typical units are utilized (Pa-

m and Pa-m2).  This makes accurate solution of failure coefficients impossible when both 

such load types are present.  Thus, Equation 4.4 must be defined in terms of Fi terms that 

are normalized with respect to a critical Nmax or Mmax that would cause failure if it were 

the only load present.   

 Coefficients Cii and Di can be solved by evaluating Equation 4.4 with a load of Fi 

and setting all other loads at zero.  For example, in order to obtain C11 and D1 a load of F1 

= Nx is applied, all others are set to zero, and Equation 4.4 reduces to 

11
2

11 =+ xx NDNC         (4.5) 

Since the DMM has been used to determine the maximum tensile and compressive 

allowable Nx, each of which must satisfy Equation 4.5, two independent equations are 

generated which can be simultaneously solved to yield C11 and D1.  Note that, as 

mentioned earlier, loads have been normalized for numerical robustness (in this case, Nx / 

Nx,critical ).  The Nx,critical  for the plain weave carbon-epoxy in this study was found to be 

6.40 x 103 Pa-m ; this was used to normalize all force resultant terms.  The Mx,critical  used 

to normalize all moment resultant terms was 1.85 × 10-4 Pa-m2.  A complete table of 

strength values for the carbon-epoxy plain weave textile composite is shown in Table 4-1. 

Remaining coefficients Cij can be solved by evaluating Equation 4.4 with the 

maximum possible Fi = Fj as determined by the DMM results.  All other loads are set to 

zero.  This reduction in terms, along with knowledge of previously determined 
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Table 4-1:  Strength Values for Independent Load Conditions 
 Strength (+) Strength (-) 
Nx 6.40e3 Pa-m 5.86e3 Pa-m 
Ny 6.40e3 Pa-m 5.86e3 Pa-m 
Nxy 2.11e3 Pa-m 2.11e3 Pa-m 
Mx 1.85e-4 Pa-m2 1.85e-4 Pa-m2 
My 1.85e-4 Pa-m2 1.85e-4 Pa-m2 
Mxy 1.06e-4 Pa-m2 1.06e-4 Pa-m2 

 

coefficients Cii and Di, allows for the solution of all remaining coefficients.  For example, 

C14 can be determined by applying the maximum possible F1 and F4 such that 
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The failure coefficient is then solved from Equation 4.4 as 
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The full results of the above procedures are shown in Table 4-2 and Table 4-3 below.  

Note that coefficients D3 through D6 are equal to zero since positive and negative failure 

values are the same for any shear or moment loads.   

For complete evaluation of the 27 failure coefficients, it will generally not be 

necessary to complete 27 separate physical or simulated experimental evaluations.  

Exploitation of geometry can lead to a significant reduction.  The plain weave under 

investigation requires 13 evaluations to determine all coefficients, and more complicated 

weaves will still often exhibit symmetry such that only this amount is required.  For the 

most general case, 27 evaluations may be required.  Twelve involve a single load Fi both 

in tension and compression.  Fifteen evaluations will be needed that involve every 

combination of two loads applied equally (as normalized) until failure.  These 27 

evaluations may be performed either by physical experiment or simulated via the DMM. 
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Table 4-2:  Normalized Failure Coefficients Cij for Quadratic Failure Equation. 
(Coefficient Cmn is in mth Row and nth Column) 
 n = 1 2 3 4 5 6 

m = 1 1.02 -0.81 2.45 0.15 0.15 -0.09 
2  1.02 2.45 0.15 0.15 -0.09 
3   9.29 0.15 0.15 -1.28 
4    1.00 -0.65 0.29 
5     1.00 0.29 
6      3.05 

 

Table 4-3:  Normalized Failure Coefficients Di for Quadratic Failure Equation 
D1 -0.011 
D2 -0.011 
D3 0.000 
D4 0.000 
D5 0.000 
D6 0.000 

 

 

Figure 4-6:  DMM Failure Envelopes for Biaxial Bending with Constant Applied 
Twisting Moment as Compared to the Quadratic Failure Theory Predictions. 

Referring to Figures 4-6 and 4-7, the failure spaces calculated via the DMM and 

previously shown in Figures 3-7 and 3-8 are compared to the elliptical curves labeled 
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QFT, which represent the failure envelopes as predicted by the quadratic failure theory of 

Equation 4.4.  The overall agreement in such test cases is seen to be quite suitable, but as 

seen in Figure 4-6, there will be “corners” or portions of the 6D failure space that will be 

missed with the essentially 6D ellipse space of the quadratic failure theory.  In general, 

the QFT predictions tend to be conservative in areas of disagreement. 

 

Figure 4-7:  DMM Failure Envelopes with Force and Moment Resultants for Constant 
Applied Shear as Compared to the Quadratic Failure Theory Predictions. 

For further comparison and to incorporate more complex loading conditions, 

several test cases were computed to determine the difference in solutions computed from 

Equation 4.4 as compared to the results of the DMM.  In general, Fi may be populated by 

as many as 6 terms from among (Nx Ny Nxy Mx My Mxy).  For cases in which 1, 2, or 3 terms 

are populated, the solution is accurate to within a few percent.  For test cases in which 4, 

5, or 6 terms are populated, the average error was seen to be 9.3%, and several example 

test cases are tabulated below.  Care was taken to select a broad spectrum of cases such 
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that both positive and negative values are employed, and multiple load ratios and load 

types are employed.  Load ratios (α) are shown to characterize the test cases, defined as 

1F
Fi

i =α           (4.8) 

By maintaining the same load ratios, all predicted failure loads will maintain a single 

ratio with respect to DMM failure points.  Thus one ratio can characterize the congruence 

of these two solutions.  A ratio of one will imply complete agreement between the two 

solutions.  A ratio less than one indicates a conservative failure prediction, and a ratio 

greater than one implies the converse.  Tables 4-4 through 4-6 summarize the results. 

Table 4-4:  Comparison of Quadratic Failure Equation Predictions with DMM Results.  
Test Cases Include 4 Populated Load Terms Fi 

 F1 F2 F3 F4 F5 F6 
α 1.00 0.00 0.92 6.67E-08 0.00 6.67E-08 
DMM 1.20E+03 0.00E+00 1.10E+03 8.00E-05 0.00E+00 8.00E-05 
Quadratic 
Theory  1.12E+03 0.00E+00 1.02E+03 7.44E-05 0.00E+00 7.44E-05 
Ratio 0.93      
       

α 1.00 1.83 0.00 6.67E-08 0.00 6.67E-08 
DMM 1.20E+03 2.20E+03 0.00E+00 8.00E-05 0.00E+00 8.00E-05 
Quadratic 
Theory  1.24E+03 2.27E+03 0.00E+00 8.24E-05 0.00E+00 8.24E-05 
Ratio 1.03      
       

α 1.00E+00 -0.87 0.00 3.91E-08 -1.40E-08 0.00 

DMM -2.30E+03 2.00E+03 0.00E+00 
-9.00E-
05 3.23E-05 0.00E+00 

Quadratic 
Theory -2.55E+03 2.22E+03 0.00E+00 

-9.99E-
05 3.59E-05 0.00E+00 

Ratio 1.11      
       

α 1.00 0.40 0.00 1.80E-08 -6.46E-09 0.00 

DMM -5.00E+03 -2.00E+03 0.00E+00 
-9.00E-
05 3.23E-05 0.00E+00 

Quadratic 
Theory -5.50E+03 -2.20E+03 0.00E+00 

-9.90E-
05 3.55E-05 0.00E+00 

Ratio 1.1      
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α 1.00 -0.50 0.00 
-1.61E-
08 -8.08E-09 0.00 

DMM -4.00E+03 2.00E+03 0.00E+00 6.45E-05 3.23E-05 0.00E+00 
Quadratic 
Theory -3.72E+03 9.30E+02 1.53E+03 6.51E-05 6.51E-05 7.44E-05 
Ratio 0.93      

 

Table 4-5:  Comparison of Quadratic Failure Equation Predictions with DMM Results.  
Test Cases Include 5 Populated Load Terms Fi 

 F1 F2 F3 F4 F5 F6 
α 1.00 1.00 1.00 6.25E-08 0.00 6.67E-08 
DMM 1.20E+03 1.20E+03 1.20E+03 7.50E-05 0.00E+00 8.00E-05 
Quadratic 
Theory 1.04E+03 1.04E+03 1.04E+03 6.53E-05 0.00E+00 6.96E-05 
Ratio 0.87      
       
α 1.00 1.67 1.20 4.67E-08 5.33E-08 0.00 
DMM 1.50E+03 2.50E+03 1.80E+03 7.00E-05 8.00E-05 0.00E+00 
Quadratic 
Theory 1.32E+03 2.20E+03 1.58E+03 6.16E-05 7.04E-05 0.00E+00 
Ratio 0.88      
       

α 1.00 -1.33 -1.07 
-4.67E-
08 3.33E-08 0.00 

DMM -1.50E+03 2.00E+03 1.60E+03 7.00E-05 -5.00E-05 0.00E+00 
Quadratic 
Theory -1.32E+03 1.76E+03 1.41E+03 6.16E-05 -4.40E-05 0.00E+00 
Ratio 0.88      
       

α 1.00 1.33 1.00 
-3.33E-
08 2.67E-08 0.00 

DMM -1.50E+03 -2.00E+03 -1.50E+03 5.00E-05 -4.00E-05 0.00E+00 
Quadratic 
Theory -1.32E+03 -1.76E+03 -1.32E+03 4.40E-05 -3.52E-05 0.00E+00 
Ratio 0.88      
       
α 1.00 -0.45 0.45 2.27E-08 0.00 3.18E-08 

DMM -2.20E+03 1.00E+03 -1.00E+03 
-5.00E-
05 0.00E+00 -7.00E-05 

Quadratic 
Theory -2.16E+03 9.80E+02 -9.80E+02 

-4.90E-
05 0.00E+00 -6.86E-05 

Ratio 0.98      
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Table 4-6:  Comparison of Quadratic Failure Equation Predictions with DMM Results.  
Test Cases Include 6 (Fully Populated) Load Terms Fi 

 F1 F2 F3 F4 F5 F6 
α 1.00 -1.00 1.00 4.00E-08 4.00E-08 2.00E-08 
DMM 1.49E+03 -1.49E+03 1.49E+03 5.96E-05 5.96E-05 2.98E-05 
Quadratic 
Theory 1.28E+03 -1.28E+03 1.28E+03 5.13E-05 5.13E-05 2.56E-05 
Ratio 0.86      
       
α 1.00 1.00 0.52 1.33E-08 1.33E-08 1.33E-08 
DMM 3.00E+03 3.00E+03 1.55E+03 4.00E-05 4.00E-05 4.00E-05 
Quadratic 
Theory 2.61E+03 2.61E+03 1.35E+03 3.48E-05 3.48E-05 3.48E-05 
Ratio 0.87      
       
α 1.00 -0.73 -0.33 -1.33E-08 1.33E-08 1.33E-08 
DMM -3.00E+03 2.20E+03 1.00E+03 4.00E-05 -4.00E-05 -4.00E-05 
Quadratic 
Theory -2.85E+03 2.09E+03 9.50E+02 3.80E-05 -3.80E-05 -3.80E-05 
Ratio 0.95      
       
α 1.00 -0.67 0.67 -2.67E-08 5.33E-08 -3.33E-08 
DMM -1.50E+03 1.00E+03 -1.00E+03 4.00E-05 -8.00E-05 5.00E-05 
Quadratic 
Theory -1.44E+03 9.60E+02 -9.60E+02 3.84E-05 -7.68E-05 4.80E-05 
Ratio 0.96      
       
α 1.00 0.59 0.88 3.53E-08 3.53E-08 4.71E-08 
DMM -1.70E+03 -1.00E+03 -1.50E+03 -6.00E-05 -6.00E-05 -8.00E-05 
Quadratic 
Theory -1.45E+03 -8.50E+02 -1.28E+03 -5.10E-05 -5.10E-05 -6.80E-05 
Ratio 0.85      

 

Optimization of Failure Coefficients 

The failure coefficients of Table 4-2 and 4-3 have been obtained from procedures 

designed to be compatible with physical experiments.  However, further accuracy may be 

obtained through analytical methods to optimize the coefficients.  The DMM has shown 

that for this particular weave pattern, a failure theory of the form of Equation 4.4 is an 

effective predictor of strength in multiple failure spaces, and that its inclusion of moment 
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resultants at the micro level represents a critical consideration.  After this groundwork, 

the failure coefficients may be found from the above procedure either by using the DMM 

or physical testing, or by employing a least-squares routine which calculates the failure 

coefficients that maximize the accuracy of the obtained solution.   

To this end, the Matlab subroutine “lsqnonlin” has been employed.  The 

coefficients of Table 4-2 and 4-3 are supplied to the routine, which was then limited to its 

perturbation of each coefficient by a factor of ± 10%.  This represents an optimization 

which is constrained to maintain some proximity to the physically interpretable constants 

of Table 4-2 and 4-3.  Further perturbation could be allowed, with a danger of overfitting, 

but this initial study is presented to elucidate the opportunity for further optimization.  As 

fitting data, the 15 above test cases were provided, in addition to the data from the 27 

tests used to fit failure coefficients by the previous procedure, for a total of 42 fit-points.  

Resulting coefficients as determined by the optimization algorithm are shown in Table 4-

7 and Table 4-8.  Significant reduction was shown in the minimization of the error of the 

objective function of Equation 4.4.  Over the 15 test cases of Table 4-4 through 4-6, 

which previously exhibited an average error of 9.3%, the optimized failure coefficients 

reduce error to 7.7% over these cases.  Note that average error is calculated as the 

absolute value of deviation from a perfect prediction.    

Table 4-7:  Optimized Failure Coefficients Cij for Quadratic Failure Equation. 
(Coefficient Cmn is in mth Row and nth Column) 
 n = 1 2 3 4 5 6 

m = 1 1.115 -0.891 2.205 0.135 0.135 -0.099 
2  1.029 2.205 0.135 0.135 -0.099 
3   8.361 0.135 0.135 -1.408 
4    0.9 -0.715 0.261 
5     0.9 0.261 
6      2.745 
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Table 4-8:  Optimized Failure Coefficients Di for Quadratic Failure Equation 
D1 -0.0121 
D2 -0.099 
D3 0 
D4 0 
D5 0 
D6 0 

 

 Table 4-9:  Data to Indicate Results of Coefficient Optimization 
 Q-1 Q-1 (Q-1)2 (Q-1)2 

index Normalized Force or Moment Resultants Fi standard optim standard optim 
1 0.1875 0 0.17188 0.43243 0 0.43243 0.11964 -0.0063 0.01431373 3.96887E-05

2 -0.35938 0.3125 0 -0.48649 0.17459 0 -0.03526 -0.0351 0.00124341 0.00123208

3 0.1875 0.34375 0 0.43243 0 0.43243 -0.07631 -0.01636 0.00582322 0.000267584

4 -0.78125 -0.3125 0 -0.48649 0.17459 0 -0.09002 -0.07669 0.00810414 0.005881816

5 -0.625 0.3125 0 0.34865 0.17459 0 -0.25237 -0.2142 0.06369062 0.04588164

6 0.28125 0.15625 0.25781 0.37838 0.37838 0.43243 0.73672 0.52306 0.54275636 0.273591764

7 -0.23438 0.15625 -0.15625 0.21622 -0.43243 0.27027 -0.06791 -0.01178 0.00461177 0.000138721

8 0.46875 0.46875 0.24219 0.21622 0.21622 0.21622 0.58519 0.43468 0.34244734 0.188946702

9 -0.26563 -0.15625 -0.23438 -0.32432 -0.32432 -0.43243 0.53185 0.34624 0.28286442 0.119882138

10 -0.46875 0.34375 0.15625 0.21622 -0.21622 -0.21622 -0.03722 -0.03568 0.0013854 0.001272706

11 0.1875 0.1875 0.1875 0.40541 0 0.43243 0.13935 0.096473 0.01941842 0.00930704

12 -0.23438 -0.3125 -0.23438 0.27027 -0.21622 0 0.078115 -0.01175 0.00610195 0.000138039

13 0.23438 0.39063 0.28125 0.37838 0.43243 0 0.063019 0.045837 0.00397139 0.002101031

14 -0.34375 0.15625 -0.15625 -0.27027 0 -0.37838 -0.03917 -0.01162 0.00153437 0.000135048

15 -0.23438 0.3125 0.25 0.37838 -0.27027 0 0.13059 0.064909 0.01705375 0.004213178

16 1 0 0 0 0 0 0.009 0.1029 0.000081 0.01058841

17 0 1 0 0 0 0 0.009 0.0195 0.000081 0.00038025

18 0 0 0 1 0 0 1.00E-07 -0.1 1E-14 0.01 

19 0 0 0 0 1 0 1.00E-07 -0.1 1E-14 0.01 

20 0 0 0.32813 0 0 0 0.000217 -0.0998 4.7228E-08 0.009960838

21 0 0 0 0 0 0.57297 0.001309 -0.09882 1.7135E-06 0.009765788

22 0 0 0 1.1892 1.1892 0 0.00913 0.05343 8.3357E-05 0.002854765

23 0.25312 0 0.25312 0 0 0 -0.01852 -0.02546 0.00034306 0.000648364

24 0 0.25312 0.25312 0 0 0 -0.01852 -0.02596 0.00034306 0.000673714

25 0 0 0 0.46486 0 0.46486 -0.00621 -0.01559 3.86E-05 0.00024311

26 0 0 0 0 0.46486 0.46486 -0.00621 -0.01559 3.86E-05 0.00024311

27 0.51 0 0 0 0 0.51 0.029588 -0.02794 0.00087545 0.000780364

28 0 0.51 0 0 0 0.51 0.029588 -0.04908 0.00087545 0.002408552

29 0.66 0 0 0.66 0 0 -0.0062 -0.07145 3.845E-05 0.005104531

30 0 0.66 0 0.66 0 0 -0.0062 -0.10728 3.845E-05 0.011508998

31 0 0 0.32 0 0 0.32 0.013254 -0.00692 0.00017567 4.79515E-05

32 0.66 0 0 0 0.66 0 -0.0062 -0.07145 3.845E-05 0.005104531

33 0 0.66 0 0 0.66 0 -0.0062 -0.10728 3.845E-05 0.011508998
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34 0 0 0.66 0.66 0 0 -0.00092 0.15173 8.4839E-07 0.023021993

35 0 0 0.66 0 0.66 0 -0.00092 0.15173 8.4839E-07 0.023021993

36 1.58 1.58 0 0 0 0 9.80E-07 0.013 9.604E-13 0.000169 

37 -0.91 0 0 0 0 0 8.80E-07 0.0072 7.744E-13 0.00005184

38 0 -0.91 0 0 0 0 8.80E-07 0.001404 7.744E-13 1.97122E-06

39 0 0 -0.328 0 0 0 0.000217 -0.0998 4.7228E-08 0.009960838

40 0 0 0 -1 0 0 1.00E-07 -0.1 1E-14 0.01 

41 0 0 0 0 -1 0 1.00E-07 -0.1 1E-14 0.01 

42 0 0 0 0 0 -0.573 0.001309 -0.09882 1.7135E-06 0.009765788

        Sum 1.31841456 0.830844875

           

        rms error 0.17717455 0.140648572

 

Table 4-9 indicates the output of the coefficient optimization routine.  The first column 

simply indexes each of the 42 load cases used for fitting.  This is followed by columns 

indicating the normalized force and moment resultants in each case.  As before, force 

resultants are normalized with the critical Nx in tension, and moment resultants are 

normalized with respect to critical Mx.  The next two columns display the evaluation of 

the quantity (Q-1) for each load case (where “Q” is the calculation of Equation 4.4, which 

should ideally produce unity at failure) as evaluated with standard or optimized failure 

coefficients.  These columns would then display zero for a completely accurate 

evaluation.  The final two columns display the square of this error, which is then summed 

and divided by 42, the square root of which then yields the indicated rms error.  The 

optimization produces a significant improvement which, as has been mentioned, yields to 

an improvement in accuracy of predicted test cases.    

Chapter Summary 

Based upon failure envelopes constructed by analysis of the microstresses 

developed in a representative volume element (RVE), two alternate methods for 

predicting failure envelopes of a plain-weave textile composite have been developed.  
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The previously developed Direct Micromechanics Method (DMM) has been used to 

construct failure envelopes for a plain weave carbon/epoxy textile composite in plane 

stress.  To allow for the accommodation of stress gradients, micromechanical analysis 

had been performed in terms of classical laminate theory force and moment resultants 

[N], [M] and constitutive matrices [A], [B], [D].  A parametric ellipse-fitting scheme 

which accurately predicts trends in failure envelopes for a given failure space has been 

developed by analysis of failure ellipse parameters.  This method for predicting failure 

envelopes was found to agree with DMM results to within a few percent.  A second 

method involves development of a 27-term quadratic failure criterion to predict failure 

under general loading conditions.  The quadratic failure criterion was found to agree with 

DMM results within an average deviation of 9.3%, but the method is more robust in 

terms of its ability to predict failure from more complex loading cases. 

 

 



CHAPTER 5 
MULTI-LAYER ANALYSIS 

The methods of the previous chapters involve characterization of the stiffness and 

strength of a single RVE, or a single-layer plain weave textile composite.  When multiple 

layers are present, the layer properties will remain the same, but the stiffness and strength 

of the overall composite will change.  To develop a fully general failure theory, these 

methods must be adapted to accommodate a textile composite of an arbitrary number of 

layers.  This can be predicted through direct simulation of a layup to directly determine 

stiffness properties.  This will yield accurate results, but creating a new FEM model for 

each new layup is highly impractical.  Thus, the single layer characterization methods 

must be adapted to predict the properties of a layup of an arbitrary number of layers.  

This allows material characterization simulations of a single RVE to be applicable to a 

layup of an arbitrary number of layers, eliminating the need for further material 

characterization.  Thus a practical tool for failure analysis and design of a plain weave 

textile composite has been developed.   

These previous methods are adapted via three multi-layer analysis techniques: 

direct simulation of a multi-layer composite (which provides an accurate basis for 

comparison), an adjustment of the data output from single-layer FEM simulation, and 

implementation of the quadratic failure theory (without the requirement of determining a 

new set of failure coefficients).  Failure points have been predicted for a variety of load 

cases. 

58 
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The entire body of work is then applied to several practical examples of strength 

prediction to illustrate their implementation.  The results are compared to conventional 

methods utilizing common failure theories not specifically developed for textile 

composites.  Design of a dual-layer textile plate under uniform pressure is considered, for 

several geometries and width-to-thickness ratios.  Also shown is a test case of a pressure 

vessel in which stress-gradients are less prevalent.  Results are shown in terms of the 

maximum allowable pressure, as well as comparison of point-by-point factor of safety 

values.  

Stiffness Prediction of Multi-Layer Textile Composites 

 A direct simulation of the behavior of a dual layer composite has been performed.  

The single RVE is replaced with two stacked RVE’s which simulate the dual-layer textile 

composite.  Using the procedures of Chapter 2, 6 unit strain and curvature cases have 

again been carried out to directly determine the mechanical response.  Then macro level 

force and moment resultants can be computed, and the constitutive matrices are 

determined.  Referring back to Chapter 3, a single layer of the plain weave textile under 

consideration will exhibit the following the following constitutive matrices 
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Now for a two-layer textile, the constitutive matrices, as determined from a two-layer 

model utilizing the DMM, are seen to be 
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The in-plane properties of the [A] stiffness matrix remain effectively unchanged; 

the doubling in value of this matrix is a bookkeeping artifact commensurate with the fact 

that there is twice as much material present with two layers, as compared to one.  The 

same is true in part for the bending stiffness [D] as well.  However, bending properties 

are affected by the moment of inertia of the material that is present.  For the two-layer 

plain-weave under investigation, this represents an approximately 10-fold increase in 

bending stiffness per layer, or an overall 20-fold increase in bending stiffness for both 

layers collectively.  The same amount of material present will have higher bending 

stiffness the further it is from the neutral axis of bending.  Consequently, bending 

stiffness follows a relationship analogous to the Parallel Axis Theorem, which governs 

the increased moment of inertia of an area of material that is moved away from the 

bending axis.  These expressions that govern the overall stiffness of a multi-layer textile 

can be represented as 

SL
ij

DL
ij AA 2=                        (5.3) 

)(2 2dADD SL
ij

SL
ij

DL
ij +=                       (5.4) 

where the superscripts DL and SL represent “double layer” or “single layer” properties, 

and d represents the distance from the center of a layer to the bending axis.  Similar 

results have been shown in [35] for textile composites under flexure.  From this 
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expression, the double layer stiffness matrices (Equation 5.2) can effectively be 

calculated with knowledge only of the single layer stiffness properties (Equation 5.1).  

This can be extrapolated to a material of an arbitrary number of layers (N), once the 

DMM has been used to characterize a layer (n) or one RVE.  Equation 5.5 and Equation 

5.6 may be used to evaluate the stiffness matrices and no further analysis is needed. 

n
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                        (5.5) 
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                      (5.6) 

Strength Prediction of Multi-Layer Textile Composites 

Once stiffness has been determined by the methods of the previous section, strength 

of a multi-layer textile may be determined.  The following three sub-sections describe the 

various modeling approaches used to analyze laminated plain weave composite structures 

and comparison of various methodologies in modeling the strength of textile composites.  

For clarity, the various approaches are summarized in Table 5-1. 

Table 5-1:  Summary of the Various Methods Employed in Multi-Layer Strength 
Analysis 

Method Acronym Summary 
Direct Micromechanics 
Method 

DMM Method of chapter 2, used to characterize 
strength and stiffness of an RVE 

Dual Layer Direct 
Micromechanics Method 

DDMM Direct simulation of two stacked RVE’s, 
used to characterize multiple layers 

Adapted Direct 
Micromechanics Method 
for Dual Layer Analysis 

ADMM Method to adapt data output from the DMM 
to obtain multiple layer strength prediction 

Quadratic Failure Theory QFT Method for implementing the quadratic 
failure theory introduced in chapter 4 
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Direct FEM Simulation of Multi-Layer Textile Composites Using the DMM for 
Failure Analysis (“DDMM”) 

The same methods described above for single layer strength prediction can be used 

for direct simulation of a two layer RVE.  This direct simulation paints an accurate 

picture of the load capacity of a multilayer textile, at the expense of model preparation 

and calculation time.  As the methods for the DDMM approach are essentially the same 

as the DMM described in Chapter 2, with a dual-layer RVE in place of the single RVE, 

the details are not repeated.  The two sections to follow then describe two methods based 

upon these results (ADMM and QFT) which can be used to predict strength of a textile 

composite of an arbitrary number of layers without having to employ direct FEM 

simulation. 

 Through the DDMM, it is seen that, as also seen for stiffness properties, the in-

plane strength properties do not change.  The critical force resultant doubles as a result of 

the doubling of material present, but otherwise the load capacity is unchanged.     

         (5.7) SL
critij

DL
critij NN ,, 2=

Here the subscript crit denotes the critical load that is the maximum allowable when all 

other loads are zero (or the strength for each individual load type Nij).  As previously 

seen, the superscripts DL and SL represent associations with single-layer or dual-layer 

properties, respectively.   

 The strength under bending will change significantly for the two-layer textile.  As 

a direct consequence of increased bending stiffness, the critical applied moment is seen to 

increase tenfold.   

         (5.8) SL
critij

DL
critij MM ,, 10≈
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Note that this relationship will depend on the thickness of each layer, and thus is an 

observation specific to this RVE micro geometry (conversely, Equation 5.7 will be true 

for comparing single and double layer properties for any thickness). 

The DDMM serves as a check upon which a more generalized approach may be 

developed, which can predict for an arbitrary number of layers under arbitrary load 

conditions with mixed load types (not simply mono-loading cases of one critical force or 

moment resultant).   

Adaptation of the Single Layer DMM Results to Predict Strength for Multi-Layer 
Textile Composites (“ADMM”) 

This method for taking the results of single layer material characterization and 

analysis and using them for multi-layer strength prediction involves adapting the results 

of single layer FEM analysis directly from the DMM.  Thus only one material 

characterization is needed (single layer) to predict strength for any number of layers. 

In general, using the DMM, the stress field from an applied load is calculated by 

determining the resultant strains and curvatures, then superposing scaled multiples of the 

single-layer stress field resulting from each unit strain or curvature.  In the case of a 

single layer under bending, the sole “stress source” is the resulting curvature, thus the 

resulting stress field can be calculated by scaling the stress field from a single layer under 

unit curvature.  Now in the case of two layers under bending, this stress source of 

curvature is still present, but there is an additional stress source that must be accounted 

for.  Normal strains will result from the layer offset from the axis of bending.  Thus 

scaled multiples of these unit strain cases must also be applied to find the total stress field 

for a multi-layer textile under bending.   
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Figure 5-1:  Schematic Illustration of the Single-Layer Strain and Curvature Stress Fields 
(As Found via the DMM) That Must Be Superposed in Calculation of the 
Total Stresses Resulting from Multi-Layer Bending 

As detailed in classical laminate theory [34], the magnitude of the normal strain in offset 

layers will be directly proportional to the curvature (κ) that is present and the distance 

from the layer midplane to the bending axis (d).    

          (5.9) ijij dκε ±=

This strain will be tensile or compressive (positive or negative) depending on the position 

of the layer with respect to the bending axis.   

 The failure envelope for any force and moment resultants can be determined using 

the above procedure.  To briefly illustrate the procedure, consider a two-layer textile 

under bending, with an x-curvature of 0.5 and a layer thickness of 0.2.  Then the total 

stress field is found by superposing scaled multiples of the stress fields resulting from 

unit strain (σij
ε=1) and curvature (σij

κ=1) cases 
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where the “±” indicates that the stress field in the tensile layer will be calculated as the 

sum of the two terms in each equation, and conversely, stress in the compressive layer 

will be calculated as the difference of the two stress fields.   

As detailed earlier, failure from the total stress field in each layer is then checked 

on an element-by-element basis to determine overall failure of the composite.  Proveout 

and comparisons of this method will be shown after the next section.    

Implementation of the Quadratic Failure Theory to Predict Strength for Multi-
Layer Textile Composites (“QFT”) 

The previously developed 27-term quadratic failure theory for textile composites, 

as determined from the single-layer DMM, can be implemented to predict failure for a 

multi-layer specimen.  Once the original failure coefficients have been determined, no 

further FEM or experimental analysis will be needed.  Implementation of this procedure 

is accomplished by adjusting the force and moment resultants applied to the multi-layer 

specimen to reflect the true stress state in each layer, on a layer-by-layer basis.  First, the 

mid-plane multi-layer strain and curvature are calculated from the applied macro-level 

force and moment resultant, along with the constitutive matrix representing the double-

layer (DL) material properties. 
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The dual-layer midplane strain must now be modified to represent the actual strain state 

in each layer.  

   ε         (5.12) ijoij dκε ±=
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Note that in plate analysis, mid-plane curvature and layer-level curvature will always be 

the same, as curvature is always constant through-thickness for a given layup, regardless 

of thickness or number of layers (although strains may show variation).   

The layer-level force and moment resultant are then calculated using this 

modified strain from Equation 5.12, along with the single layer (SL) constitutive matrix. 

       (5.13) 
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The adjusted force and moment resultants capture what is seen in each layer offset from 

the bending axis.  These are then directly input to the quadratic failure theory of Equation 

4.4 with coefficients as per Table 4-2 and 4-3 (as developed from one layer or RVE).  

Failure analyses are performed independently in each layer.  This is to say that, the single 

layer force and moment resultants for each layer must be independently calculated input 

to the quadratic failure theory (computations which can still be automated).  Note that, 

via the above procedure, a pure moment resultant applied to the two-layer composite will 

correspond to both a force and moment resultant in each layer.      

Comparison of the Results of Multi-Layer Failure Analysis Methods 

Several cases are now presented which illustrate the relative effectiveness of the 

multi-layer analysis methods shown in the preceding sections of this chapter.  Direct 

FEM simulation provides the most accurate prediction of the stress field and failure 

envelope of the multi-layer textile.  Thus the two techniques for predicting failure of a 

multi-layer composite without additional material characterization tests can be compared 

to this in order to estimate their accuracy.   

One method of comparison is to look directly at the predicted stress field under 

several loading conditions.  However, these point-by-point (or element-by-element) 
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comparisons prove to be not the most effective summarization of accuracy.  Comparison 

of a few points can yield an inaccurate sample of results that appear to differ greatly, 

even if the majority of the stress field compares quite closely.  However, comparison of 

the calculated stresses at many (or all) points and taking an average accuracy is not 

necessarily the best metric either, as standard deviation could potentially be large.  Thus, 

certain portions of the stress field might be predicted very well, whereas certain portions 

might not be accurately predicted.  In this case, an average of point-by-point stress 

deviation might appear small, but in fact such situation should not be considered as an 

accurate prediction.  Furthermore, some predicted stress components at a given point 

might compare well to direct simulation, whereas other components do not, which opens 

the door for further ambiguity.  This having been said, in general, in a point-by-point 

comparison, it has been observed that predicted stress fields generally show an average 

accuracy on the order of 90% with roughly 10% standard deviation for the two prediction 

methods (ADMM and QFT) as compared to direct simulation (DDMM).   

Comparison of predicted failure points (the maximum allowable force and moment 

resultants under combined loading) proves to be the best and most germane method of 

comparing the multiple prediction methods.  To this end, failure has been predicted for a 

variety of load cases based on the data from the direct simulation of the DDMM.  The 

results of the ADMM and the QFT are then compared to this.  Both methods are shown to 

compare well to the DDMM results, though use of the QFT is computationally faster and 

more practical once failure coefficients have been determined.  Table 5-2 and Table 5-3 

below show a comparison of the various methods to calculate failure for a multi-layer 

textile.  As in Chapter 4, load cases are shown in terms of a Load Ratio (α) defined as 
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1F
Fi

i =α           (5.14) 

As introduced in Chapter 4, by maintaining the same load ratios, all predicted failure 

loads will maintain a single ratio with respect to DDMM failure points.  Thus one ratio 

can characterize the congruence of these solutions.  A ratio of one will imply complete 

agreement.  A ratio less than one indicates a conservative failure prediction, and a ratio 

greater than one implies a non-conservative prediction.   

The last two failure prediction comparisons of Table 5-3 are shown in different 

terms in order to employ a more effective normalization which accommodates the 

incongruity of the magnitude of force resultants and moment resultants.  In these two 

cases, failure points are found for which 

A
M

A
N criticriti ,, =         (5.15) 

for an unknown value A at failure.  The first case, indicated by a (+) in Table 5-2, is the 

solution for failure in the tensile layer, in which the applied moment generates tensile 

forces that accelerate failure.  The second case, indicated by a (-) , is the solution for 

failure in the compressive layer, in which case the applied moment offsets applied tensile 

force resultants.  This approach also essentially solves for the factor by which load 

capacity changes when the additional load is applied.  In other words, an A of 0.48 in the 

compressive layer implies that twice as much force resultant may be applied to the 

compressive layer before failure, when compared to the failure load under no applied 

moment.  Conversely, in the tensile layer, the A of 2.01 indicates that the additional load 

Mx accelerates failure such that the allowable Nx is halved (this becomes the limiting case 

for ultimate failure). 
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Table 5-2:  Example Load Cases to Determine the Accuracy of Multi-Layer Analysis 
Methods.  Accuracy is Indicated by a Ratio as Compared to DDMM Results. 

 DDMM ADMM Accuracy QFT Accuracy 
α      
      
1 1.35E+04 1.31E+04 0.97 1.30E+04 0.96 
0 0 0  0  
0 0 0  0  
0 0 0  0  
0 0 0  0  
0 0 0  0  
      
1 1.91E+04 2.01E+04 1.05 2.02E+04 1.06 
1 1.91E+04 2.01E+04  2.02E+04  
0 0 0  0  
0 0 0  0  
0 0 0  0  
0 0 0  0  
      
0 0 0  0  
0 0 0  0  
1 4.23E+03 4.14E+03 0.98 4.18E+03 0.99 
0 0 0  0  
0 0 0  0  
0 0 0  0  
      
1 3.73E+03 3.52E+03 0.94 3.42E+03 0.92 
1 3.73E+03 3.52E+03  3.42E+03  
1 3.73E+03 3.52E+03  3.42E+03  
0 0 0  0  
0 0 0  0  
0 0 0  0  

 

The Adjusted DMM and the Adjusted QFT show 5.2% and 5.5% error, respectively over 

these load cases.  Most often, this error is conservative in comparison to the direct FEM 

simulation.   
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Table 5-3:  Further Example Load Cases (Including Moment Resultants) to Determine 
the Accuracy of Multi-Layer Analysis Methods.  Accuracy is Indicated by a 
Ratio as Compared to DDMM Results. 

 DDMM ADMM Accuracy QFT Accuracy 
α      
      
0      
0      
0      
1 1.68E-03 1.60E-03 0.95 1.54E-03 0.92 
0      
0      
      
0      
0      
0      
1 2.59E-03 2.67E-03 1.03 2.72E-03 1.05 
1 2.59E-03 2.67E-03  2.72E-03  
0      
      

N/A (+) 2.01 2.08 1.03 1.9 0.95 
0      
0      

M/A 2.01 2.08  1.9 0.95 
0      
0      
      

N/A (-) 0.48 0.44 0.92 0.42 0.88 
0      
0      

M/A 0.48 0.44  0.42 0.88 
0      
0      

 

Practical Examples to Illustrate Strength Prediction of a Two-Layer Textile 
Composite Plate  

 In order to show the application of the preceding failure prediction approaches to 

practical examples, design of a two-layer plain weave-textile plate is considered.  Also 

shown is an example of a closed-end thin-walled pressure vessel.  Classical analysis 
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procedures are employed to determine the loads that are then input to the various failure 

analysis techniques.   

As shown in Figure 5-2, a uniform pressure is applied to a simply-supported plate.  

Three different plate sizes, as shown in Table 5-4, are considered to explore the different 

mechanical regimes of varying width-to-thickness ratios and to consider a square versus 

rectangular geometry.  Plate Theory [36] is employed to determine the loads at each point 

in the plate, which are then checked for failure.   

Once moments and curvatures (per unit pressure) have been determined from 

SDPT, failure in the plate is analyzed via several methods.  From this, the maximum 

allowable pressure can be determined, and results for each method are compared.  The 

most reliable method is direct simulation through the DDMM.  This again provides a 

basis of comparison for the remaining methods.   

 

Figure 5-2:  Schematic of the Simply Supported Textile Plate under Uniform Pressure  

Table 5-4:  Geometry of the Simply Supported Textile Plate under Uniform Pressure 
 a b t 

Case 1 0.102 m 0.102 m 0.508 mm 
Case 2 0.0102 m 0.0102 m 0.508 mm 
Case 3 0.102 m 0.051 m 0.508 mm 
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The second method represents a conventional approach, which employs failure 

analysis methods not developed for textile composites, and for which stress gradients are 

not considered.  Classical analysis techniques are used to find strains and stresses, which 

are compared to a conventional failure theory.  The third method is the Quadratic Failure 

Theory developed in Chapter 4.  The fourth method is the aforementioned ADMM.  For 

each case, the plate is discretized into a 21 by 21 point grid of points that are each 

checked for failure (441 total points).   

The conventional method is accomplished by determining the curvature per unit 

pressure at each point via the SDPT.  Strain is then determined by Equation 5.12 as per 

classical laminated plate theory.  Stress is calculated by approximating a stiffness matrix 

[Q] from the [A] matrix, that was determined via the DMM as indicated by Equation 

5.16, and multiplying by the corresponding strain.  It should be noted that this in itself an 

represent an improvement over conventional methods, as a stiffness matrix would 

generally be calculated from homogenized material properties or estimations rather than 

from direct simulation or experiment.  (However, unlike bending properties, these 

methods can often be acceptable for in-plane stiffness properties). 

εεσ AtQ ≈=          (5.16) 

in which t is the thickness of a layer and A represents the in-plane stiffness matrix of a 

layer.  This stress can then be compared to a maximum allowable stress via the Tsai-Wu 

Failure Theory (for which failure coefficients can be found via the DMM or experimental 

methods).   

The procedures for the direct simulation (DDMM) as well as the QFT and ADMM 

methods have been detailed above, which is not repeated.  In these cases, the maximum 
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allowable moment per unit pressure is found, and the maximum allowable pressure can 

then be compared.  Note that in the direct two-layer DDMM, the stress field in both 

layers is treated as a whole, thus failure is not calculated per layer.  

 Tables 5-5 through 5-7 below tabulate the maximum allowable pressure for each 

of the three geometries under consideration, for each of the four prediction methods.  The 

critical pressure for the compressive as well as tensile side (limiting case) of the plate in 

bending are shown.  The relative accuracy of prediction is indicated as a ratio with 

respect to the DDMM direct simulation.  A ratio greater than one indicates a non-

conservative prediction. 

Table 5-5:  Maximum Pressure for the Textile Plate of Figure 5-2 with the Case 1 
Geometry of Table 5-14 as Predicted from Various Multi-Layer Analysis 
Methods  

Case 1 
(a = b , a/t = 200) 

 

pmax (+) 
(kPa) 

pmax (-) 
(kPa) Ratio/DDMM 

DDMM 19.5 n/a - 
Conventional 24.0 27.0 1.23 
QFT 20.5 22.7 1.05 
ADMM 20.1 22.3 1.03 
 

Table 5-6:  Maximum Pressure for the Textile Plate of Figure 5-2 with the Case 2 
Geometry of Table 5-14 as Predicted from Various Multi-Layer Analysis 
Methods 

Case 2 
(a = b , a/t = 20) 

 

pmax (+) 
(kPa) 

pmax (-) 
(kPa) Ratio/DDMM 

DDMM 135.3 n/a - 
Conventional 169.1 189.2 1.25 
QFT 142.1 154.8 1.05 
ADMM 139.4 153.5 1.03 
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Table 5-7:  Maximum Pressure for the Textile Plate of Figure 5-2 with the Case 2 
Geometry of Table 5-14 as Predicted from Various Multi-Layer Analysis 
Methods 

Case 3 
(a/b = 2, a/t = 200) 

 

pmax (+) 
(kPa) 

pmax (-) 
(kPa) Ratio/DDMM 

DDMM 34.7 n/a - 
Conventional 40.6 45.5 1.17 
QFT 32.6 36.2 0.94 
ADMM 33.7 37.1 0.97 
 

For all three cases, the QFT and ADMM represent a significant improvement over 

the conventional approach.  This is due to the presence of significant stress gradients 

across the thickness dimension of the RVE (as accounted for with the moment resultant 

matrix), contrary to common isostrain assumptions used in textile micromechanics or 

failure theory development.  The relative accuracy of conventional methods increases 

somewhat for Case 3.  The disparity between the conventional and DMM-based 

approaches, which include consideration of stress gradients, will diminish as the relative 

presence of stress gradients diminish with respect to other loads present.   

 In general, the ADMM will be more accurate than the QFT, as the QFT is an 

approximation method which is slightly further removed from the developmental data.  

Though both methods involve multi-layer approximations, the QFT must also 

approximate the DMM stress field data.  For Case 1 versus Case 2, the agreement of the 

two mutli-layer analysis methods (ADMM or QFT) with the direct FEM simulation is 

similar, for both mechanical regimes.  Although the low aspect ratio plate is naturally 

able to withstand a much higher pressure, prediction accuracies are similar.  These 

predictions are both non-conservative, though Tables 5-2 and 5-3 have shown that this is 

not generally true.  For Case 3, these methods are conservative compared to the DDMM.  
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In this case, at the failure point, there is a different load ratio (Mx = 2My, rather than the 

Mx = My of Case 1 and 2), thus a different portion of the failure space is being predicted.   

As most often seen in the results of Chapter 3, the initial failure mode for these 

design cases is transverse failure of the fiber tow, beginning in the tensile layer.  This 

represents a fiber pull-apart initiation, or an intra-tow matrix cracking.  For the unbiased 

(Mx = My) biaxial bending of Cases 1 and 2, failure initiates in both fiber tows, as the 

transverse stresses will be equal for both tows.     

 Tables 5-8 through 5-11 below further elucidate the failure initiation of the design 

cases by illustrating the Factor of Safety (ratio of allowable pressure with respect to the 

failure point) at several points on the plate.  Only one quarter-section of the plates is 

considered, due to the symmetry of the plates and of the resulting stress field.  The 

bottom-rightmost cell represents the plate center.  Position is defined as a fraction of the 

total width dimension, such that a position of (0.5,0.5) represents the center of the plate.  

Although the maximum allowable pressure will differ, the difference in the distribution 

of factor of safety in Case 1 and 2 will be negligible and is thus co-tabulated.   

Case by case, both the QFT and conventional methods yield a similar distribution 

of factor of safety, although the QFT shows a greater variation in the center-to-edge 

Table 5-8:  Case 1 and 2 Factor of Safety Across the Plate as Determined via the 
Conventional Approach 

Position 0 0.09 0.18 0.27 0.36 0.43 0.5 
0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

0.09 ∞ 4.81 3.03 2.50 2.28 2.20 2.24 
0.18 ∞ 3.03 2.31 1.86 1.68 1.30 1.62 
0.27 ∞ 2.50 1.86 1.58 1.40 1.33 1.32 
0.36 ∞ 2.28 1.68 1.40 1.25 1.18 1.16 
0.43 ∞ 2.20 1.60 1.33 1.18 1.10 1.07 
0.5 ∞ 2.24 1.62 1.32 1.16 1.07 1.00 
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Table 5-9:  Case 1 and 2 Factor of Safety Across the Plate as Determined via the QFT 
Position 0 0.09 0.18 0.27 0.36 0.43 0.5 

0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
0.09 ∞ 7.99 4.81 3.81 3.36 3.04 3.07 
0.18 ∞ 4.81 3.03 2.31 1.99 1.71 1.75 
0.27 ∞ 3.81 2.31 1.86 1.58 1.35 1.33 
0.36 ∞ 3.36 1.99 1.58 1.40 1.18 1.14 
0.43 ∞ 3.04 1.71 1.35 1.18 1.10 1.06 
0.5 ∞ 3.07 1.75 1.33 1.14 1.06 1.00 

 
Table 5-10:  Case 3 Factor of Safety Across the Plate as Determined via the Conventional 

Approach 
Position 0 0.09 0.18 0.27 0.36 0.43 0.5 

0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
0.09 ∞ 6.74 4.04 3.16 2.77 2.48 2.49 
0.18 ∞ 4.80 2.72 2.05 1.75 1.51 1.49 
0.27 ∞ 4.12 2.30 1.71 1.44 1.21 1.17 
0.36 ∞ 3.94 2.17 1.59 1.33 1.10 1.05 
0.43 ∞ 3.88 2.13 1.56 1.29 1.06 1.00 
0.5 ∞ 3.99 2.18 1.58 1.30 1.06 1.00 

 
Table 5-11:  Case 3 Factor of Safety Across the Plate as Determined via the QFT 

Position 0 0.09 0.18 0.27 0.36 0.43 0.5 
0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

0.09 ∞ 6.90 4.15 3.25 2.85 2.55 2.57 
0.18 ∞ 4.86 2.77 2.09 1.79 1.55 1.53 
0.27 ∞ 4.14 2.32 1.73 1.46 1.24 1.20 
0.36 ∞ 3.92 2.17 1.60 1.34 1.12 1.07 
0.43 ∞ 3.83 2.11 1.55 1.29 1.06 1.01 
0.5 ∞ 3.90 2.14 1.56 1.29 1.06 1.00 

 

magnitude of factor of safety.  Note that factor of safety rises to infinity in the topmost 

row and leftmost column which represent the simply-supported edge of the plate, as the 

bending moment and curvature are theoretically zero here.  Also note that the maximum 

pressure to which each factor of safety is normalized will be different for the different 

prediction methods.  Along any “radial” path from center to edge of the plates, factor of 

safety is seen to be nearly inversely proportional to grid position.  This trend remains for 

all calculation methods, over all geometry cases.   
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In contrast to the design of a textile plate under uniform pressure, there are other 

common design cases for which there would be no improvement in accuracy in 

employing the QFT or ADMM rather than conventional methods.  For example, in 

designing a thin-walled pressure vessel (see Figure 5-3 and Table 5-12), a biaxial stress 

state with negligible stress gradients will exist.  In this case, conventional methods will 

predict similar maximum allowable pressure when compared to the QFT or ADMM.   

Stresses and stress distributions are found from basic pressure vessel theory [37].  

Force resultants and moment resultants (which result from a slight radial stress 

distribution and will be quite small) can then be easily calculated from this result.  Note 

that since there is no curvature, the multi-layer analysis ADMM and adjustments to the 

QFT inputs (as detailed in previous sections) will not be needed.  Thus, this example 

serves as a comparison of the DDMM simulation and the QFT, contrasted to 

conventional methods, for a test case in which stress gradients are small.  Results for this 

design case are shown in Table 5-13 below. 

 

 

 

 

 

 

Figure 5-3:  Schematic of the Dual-Layer Textile Pressure Vessel 

Table 5-12:  Geometry of the Textile Pressure Vessel 
 radius (r) thickness (t) 

Case 4 10.2 mm 0.508 mm 
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Table 5-13: Maximum Pressure for the Textile Pressure Vessel of Figure 5-3 with the 
Geometry of Table 5-12 as Predicted from Various Multi-Layer Analysis 
Methods  

Case 4 
(r/t = 20) 

 

pmax  
(MPa) Ratio/DDMM 

DDMM 1.89 - 
Conventional 1.93 1.02 
QFT 1.86 0.98 

 

As expected, it is seen that predicted maximum allowable pressures are similar for 

all methods.  Although there are stress gradients along the radial direction, the variation is 

relatively small, thus the moment resultant that is present will be nearly negligible.  These 

results will hold true for any thin-walled pressure vessel.   

Chapter Summary 

 For analysis of textile composites of an arbitrary number of layers, the methods of 

previous chapters have been adapted.  Through the results direct FEM simulation, 

stiffness of a multi-layer textile has been shown to be governed through an expression 

similar in form to that of the Parallel Axis Theorem.  For the plain-weave textile under 

investigation, this represents a roughly 20-fold increase in stiffness when thickness is 

increased from one to two layers.  For strength prediction, two analysis methods have 

been presented, again based upon and presented in comparison to the results of direct 

FEM simulation.  The adapted single layer Direct Micromechanics Method (ADMM) is 

based upon a correction to the stress field as determined by the DMM (see Chapter 3) 

commensurate with the layer-by-layer strains which result from the offset from the axis 

of bending.  A method for employing the quadratic failure theory (QFT, see Chapter 4) 

has also been developed.  Without the need to modify the single-layer failure coefficients, 
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the inputs to the QFT are adapted to represent the true strain and curvature in each layer 

that is offset from the bending axis.  Both the ADMM and QFT methods have been 

shown to predict multi-layer failure within roughly 5% accuracy.   

Several simple but significant design cases have been presented as a practical 

application of the methods presented in this dissertation.  Multi-layer failure prediction 

methods have been shown to be sufficiently accurate, and the importance of the 

consideration of stress gradients in a common design situation is shown. 

 

 



CHAPTER 6 
CONCLUSIONS AND FUTURE WORK 

In this paper, robust methods have been developed for predicting stiffness and 

strength of multi-layer textile composites, with techniques designed to address the 

difficulties that arise when considering a textile microstructure.  Currently existing failure 

criteria for composite materials are generally developed for and based upon usage with 

unidirectional composite laminates.  Though these theories may to some extent be 

applied in an adapted form to the analysis of textile composites, as has been shown 

herein, many inherent simplifying assumptions no longer apply.  Given the increased 

complexity of analysis of textile composites, there are several outstanding issues with 

regards to textile composites that have been addressed in this research.  One of the most 

important issues addressed here is a robust model for prediction of strength.  Though 

much attention has been given to the prediction of stiffness, little work has focused upon 

strength prediction for textile composites.   

Additionally, conventional micromechanical models for textile composites assume 

that the state of stress is uniform over a distance comparable to the dimensions of the 

representative volume element (RVE).  However, due to complexity of the weave 

geometry, the size of the RVE in textile composites can be large compared to structural 

dimensions.  In such cases, severe non-uniformities in the stress state will exist, which 

conventional models do not account for.  Methods for including the consideration of 

stress gradients have been developed, and the importance of such considerations has been 

demonstrated.   

80 
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Stiffness properties have been predicted for a plain-weave textile composite.  The 

results indicate good agreement with expected values from literature and material 

supplier data.  The constitutive matrices have been calculated directly from the 

micromechanics model without any assumptions as in traditional plate theories.  The 

results are quite different from commonly employed approximations.  By comparison to 

the direct micromechanics results of the DMM, conventional methods will misrepresent 

flexural stiffness values D11, D12, and D66 by as much as factors of 2.9, 1.1, and 0.7 

respectively.  The DMM results imply that there is no consistent relation between in-

plane and flexural properties, although the two properties are related. 

Failure envelopes have been presented and the comparisons to and improvements 

over conventional methods have been shown.  Under relatively simple loading conditions 

in which no stress gradients are present across the RVE, the DMM failure envelope was 

shown to compare most closely with the Tsai-Wu Failure Theory.  The Maximum Stress 

Failure Theory and Maximum Strain Failure Theory were less close in comparison.  Fiber 

pull-apart or failure of the transverse fiber tows was shown to be the dominant mode of 

failure.  In limited instances of large biaxial stresses, failure of the interstitial matrix was 

seen to be the mode of initial failure.   

 Further failure envelopes have been presented which illustrate the importance of 

consideration of stress gradients, and the inability of conventional failure models to 

account for this load type.  In these cases, traditional failure prediction methods can 

greatly overpredict the failure envelope.  The presence of applied moment resultants [M], 

as would exist in cases of non-uniform load across the RVE, was shown to have a 
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significant effect on the failure envelope.  Thus its consideration, not covered in 

conventional failure models, can be critical.    

Based upon failure envelopes constructed by analysis of the microstresses 

developed in a representative volume element (RVE), alternate methods for predicting 

failure envelopes of a plain-weave textile composite have been developed.  A parametric 

ellipse-fitting scheme which accurately predicts trends in failure envelopes for a given 

failure space has been developed by analysis of failure ellipse parameters.  This method 

for predicting failure envelopes was found to agree with DMM results to within a few 

percent.  However, it is impractical in its implementation, and is limited to consideration 

of one particular failure space in which only three concurrent force or moment resultants 

may be considered at once.  The method is useful for a solid visualization and lends itself 

to a firm understanding of simpler load cases.  A second method involves development of 

a 27-term quadratic failure criterion to predict failure under general loading conditions.  

The quadratic failure criterion was found to agree with DMM results within an average 

deviation of 9.3%, but the method is more robust in terms of its ability to predict failure 

from more complex loading cases. 

The methods thusfar have been further modified to accommodate analysis of textile 

composites of an arbitrary number of layers.  Stiffness of a multi-layer textile has been 

shown to be governed through an expression similar in form to that of the Parallel Axis 

Theorem.  For strength prediction, two analysis methods have been presented.  The 

adapted single layer Direct Micromechanics Method (ADMM) is based upon a correction 

to the stress field as determined by the DMM.  A method for employing the quadratic 

failure theory (QFT) has also been developed.  Both the ADMM and QFT methods have 
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been shown to predict multi-layer failure within roughly 5% accuracy.  This adaptation 

thus allows for methods for the accurate prediction of strength of a multi-layer textile 

with a minimum of characterization requirements based upon micromechanics of a single 

RVE.   

Finally, several design cases have been presented as a practical application of the 

methods presented in this dissertation.  Multi-layer failure prediction methods have been 

shown to be sufficiently accurate, and the importance of the consideration of stress 

gradients in a common design situation is shown.  For a simple design case of a two layer 

textile pressure vessel, a state of biaxial force resultant with negligible stress gradients 

exists.  In this case, the OFT and conventional methods predict a similar allowable 

pressure.  In consideration of the design of several textile plates of varying geometries 

under uniform pressure, significant stress gradients exist.  Conventional methods will 

overpredict allowable pressures by 17% to 25%, whereas the DMM based QFT method 

will predict strength within 5% to 6% accuracy. 

 

Several suggestions are offered here for potential future work that may be 

completed to extend the current body of work, both in terms of further development and 

in terms of useful application.  

Incorporating a model of progressive failure represents one potential issue for 

future consideration.  After initial failure, a component may still retain some stiffness and 

load bearing capacity.  Continued loading leads to a progressive property loss as more 

and more of the constituent material becomes degraded.  This can be simulated within the 

finite element micromechanical model by redefinition of the stiffness matrix (or 
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redefinition of material properties) after single element failures.  The simulation is then 

rerun, and additional element stiffness matrices are appropriately recalculated as 

additional element failures occur. 

Incorporation of thermal stresses and investigation of the coefficient of thermal 

expansion is another potential avenue for further development of the failure modeling.  

Due to mismatches between the coefficient of thermal expansion of constituent materials, 

thermal stresses can build up during manufacture or during operation.  This makes 

inclusion of such effects critical to the accuracy of a strength prediction model.  

Furthermore, textile composites have been shown to perform well compared to other 

composites at cryogenic temperatures.  Thus investigation of such thermal effects should 

be of considerable interest.  

In the current work, the plain-weave architecture has been used to develop and 

demonstrate an effective micromechanical methodology and failure theory for textile 

composites.  The same methods can easily be used to investigate the mechanical behavior 

of other textile weave or braid patterns.  In these cases, the RVE will be larger and more 

complicated, but the DMM approach remains the same.  Further, given that other 

architectures are geometrically larger, it stands to reason that the importance of stress 

gradient effects as presented herein will be of even greater importance.   

The DMM could also be employed to perform a parametric study of the effect of 

weave architecture and geometry on mechanical behavior.  For example, successive 

characterizations of the same weave type with varying two spacing, or tow undulation, 

etc. could provide a useful insight into the effect these parameters have on the stiffness 
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and strength properties of a textile composite.  This could also potentially lead to the 

ability to optimize the microarchitecture to a specific application.

 



APPENDIX 
PERIODIC BOUNDARY CONDITIONS 

The derivation of periodic boundary conditions for unit extension and unit shear is 

presented here.  Unit curvature has been presented in the text in Chapter 2. 

Unit Extension 

From the definition of strain, and utilizing integration 
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