
JULY/AUGUST 2002 1094-7167/02/$17.00 © 2002 IEEE 81

A p p l i c a t i o n s

A few years ago, we attended a conference bringing

artificial intelligence researchers and game develop-

ers together. Having just begun enhancing our company’s

suite of AI tools for simulation development, we were ready

to be enlightened. AI researchers were going to offer up the
latest technological advances, while the game developers
were going to wow us with their tried-and-true techniques
for authoring game AI. While the conference was enlight-
ening, what we found most surprising was that game AI
developers almost always implemented their AI from
scratch. Every game was just too unique and so resisted
reuse of existing representation and code. In fact, several
developers openly stated that a general “AI toolkit” couldn’t
even exist. What’s even more surprising is that these opin-
ions were expressed even though much of the work in
game development focuses on creating authoring tools.
Given that most games adopt standard AI techniques that
were solved decades ago, why hasn’t there been a con-
certed effort to create a standard way of articulating AI?

Pessimism aside, research, game, and simulation
communities have shown considerable interest in such
a toolkit. Developers could use this kit to create the AI
in a game quickly without having to start from scratch.
Ideally, the kit would consolidate the existing branches of
work in the field and provide developers easy access to the
fruits of mature research.

For the past couple of years, a small group of us at Stot-
tler Henke Associates, an AI consulting company, have
been working on techniques to write better AI behavior
for simulations and games. We are focusing on a visual
authoring tool that provides a way to quickly synthesize
complex behavior, and are building a corresponding AI
engine to run with a simulation or game. For game
development uses, we see our tool as making the AI
under-standable to game designers and end users, as well
as improving developers’ productivity. This work will also
be useful for simulation developers and subsequently for
analysts, operators, and instructors. Here, we explain
some of our tool’s features and how the AI engine
processes the resulting content.

A new way to view behaviors
Instead of attempting to write a universal AI code base,

we started by looking at what was common to most sim-
ulations and games. One requirement was that our soft-
ware had to be accessible—more accessible than to just
simulation or game developers. We knew that many
game designers, while being perhaps the most creative
part of a development team, did not know how to pro-
gram a computer in the strict sense. However, we felt
that if they could understand the visual representation of
behavior, they could at least modify it, if not author
behavior later with a developer.

About two years ago, we started with a graphical author-
ing tool based on one of our existing authoring tools for a
Navy military simulation for tutoring student tactical-action
officers. In the simulation, students command an Aegis
cruiser and are confronted with realistic (and hostile)
situations. The tool provides a visual way to look at behav-
ior for a single entity but is not wedded to the actual
simulation. The author can define his or her own AI
vocabulary. We used finite-state machines to describe
behavior. FSMs are common to almost all games and
simulations, and we figured this would be a good place
to start because of favorable properties, such as simplic-
ity, compactness, and efficiency. After several
iterations of extensions and reworkings of the visual
interface, we arrived at a much more powerful way of
articulating complex behavior.

However, the authoring tool only creates a description
of behavior—it doesn’t actually implement behavior. For
that, we need a runtime engine that will take the descrip-
tion and make it operational in the game. The engine that
we created had to satisfy three criteria: developers can
easily interface to its API, it runs efficiently, and it is
highly scaleable.

Our current software, BrainFrame, combines both the
authoring tool and the runtime engine (see Figure 1).
The AI author first uses the authoring tool to declare a
basic vocabulary of actions and conditions. A primitive
action could be to jump up or to compute a path from one
location to another. A condition could be, “Is there a threat
nearby?” The authoring tool only declares an entity’s

Putting AI in Entertainment:
An AI Authoring Tool for
Simulation and Games

Daniel Fu and Ryan Houlette, Stottler Henke Associates

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2002 2. REPORT TYPE

3. DATES COVERED
 00-07-2002 to 00-08-2002

4. TITLE AND SUBTITLE
Putting AI in Entertainment: An AI Authoring Tool for Simulation and
Games

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Stottler Henke Associates Inc,951 Mariner’s Island Blvd Suite 300,San
Mateo,CA,94404

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

4

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

capabilities for the behavior editor. For an
entity to compute a path or detect whether
a threat is nearby, it must rely on the Brain-
Frame engine.

BrainFrame uses the action and condition
vocabulary as building blocks to construct

FSMs, called behaviors. Each behavior
consists of actions, conditions, and connec-
tors. A behavior can invoke another behav-
ior; thus, behaviors can be hierarchical and
recursive. Altogether, the behaviors form
the behavior library that the runtime engine

uses. The runtime component then directs
entities in a game. It does so indirectly
through communication with an interface
module between the engine and simulator.
A developer writes computer code in this
interface to operationalize the conditions
and actions. A behavior doesn’t need a
computer code representation because it
ultimately consists of simple actions and
conditions. We’ve found in practice that as
the types of information available to enti-
ties, and their capabilities, become better
known, we will iteratively update the
respective conditions and actions in the
declarations editor and the interface.

The BrainFrame editor
Figure 2 shows a screenshot of the

BrainFrame editor with a behavior built for
a simple Pac-Man game used for demon-
stration purposes. The top-left pane holds a
catalog of the condition and action vocabu-
lary, variables, and a list of defined behav-
iors. The conditions appear under predi-
cates. Whenever the user selects an item,
its definition appears in the top-right pane.
The lower pane is an output pane for behav-
ior compilation and debugging.

Each behavior seen in the right pane of
the editor consists of rectangles, directed
lines, and ovals. Computationally, rectan-
gles correspond to states in an FSM, while
ovals correspond to conditions placed on
state-to-state transitions. Each rectangle
contains a reference to an action or behav-
ior. References to behaviors appear as a
bold, outlined rectangle. Anything appear-
ing in parentheses is a parameter. Condi-
tions are logical formulas that evaluate to
true or false. Numbers on transitions deter-
mine the order of evaluation of conditions.

Three states are of special significance
when interpreting a behavior at runtime. The
current state denotes the action or behavior
the entity is currently carrying out; a behav-
ior can have exactly one current state at a
time. The initial state is simply the rec-
tangle in which the behavior starts. There
can be only one initial state per behavior.
When a final state is reached, we consider
the behavior to have finished (in FSM par-
lance, it has reached an accepting state).

An action appearing in a rectangle will
interact with the game engine through the
interface module. For example, in a game,
a human player might just press the R key
to reload, while the interface would mimic
pressing the same key for the artificial

82 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Figure 2. A screenshot of the BrainFrame editor.

Designer or developer BrainFrame authoring tool BrainFrame engine

Behavior
editor

authoring
tool

Predicate
and action

declarations

Predicate
and action
definitions

Behavior
library

Declarations
editor

Runtime
engine

Interface

Simulator

Figure 1. A diagram of the BrainFrame authoring tool and engine.

entity. An action can also represent a delib-
erative or perceptual activity that has no
direct physical effect on the game world,
such as invoking a path-planning algorithm.
References to behaviors in rectangles are
handled completely within the engine. Ulti-
mately, though, they boil down to primitive
actions.

A behavior’s current state changes accord-
ing to transitions. A transition is a directed
line connecting two states through zero or
more conditions. Each transition has a set
of conditions that, when all evaluate to
true, will change the current state from the
line’s source to its destination.

The states and transitions are the core
computational building blocks we use to
articulate behavior. They are an extension
of FSMs in that states can refer to other
machines and that states and conditions can
refer to operationalized code in the game
interface.

Behaviors in action
As Figure 2 shows, a behavior has a Pac-

Man ghost wait for a game to start, then
alternates between chasing the Pac-Man
and fleeing from it, until the game is over,
at which point the cycle resumes. At the top
is the initial node. It has no action but sets a
local variable (the ghost’s name). When the
game starts (the condition IsPlaying() is true),
the next node resets a path variable newpath.
From there, the ghost stays in this state until
the game world has the ghost outside its
pen, free to move about (IsActive() is true).
There are two possible transitions to either
a chasing behavior or a fleeing behavior.
Let’s say it’s the chasing behavior. The
ghost stays in this state, continually recom-
puting paths toward the Pac-Man. As Fig-
ure 3 shows, the F and T markers denote
forward and trailing intersections around
the Pac-Man that are potential destinations
for a ghost. The lighter lines are paths.
Depending on the ghost’s name, the path
planner will select a forward or trailing
destination. Should the Pac-Man eat a large
“power pill,” then each ghost will transition
to the fleeing behavior. Should a ghost be
eaten, the game takes over and returns the
ghost to its pen in the center of the screen.

The BrainFrame AI engine
To better understand how the BrainFrame’s

AI engine processes behaviors, such as whether
the ghost flees or chases, it is helpful to
remember that behaviors can be hierarchical.

Any rectangle in the editor can refer to another
behavior. When such a state becomes current,
execution passes to that corresponding
behavior’s initial state. Each time this occurs,
an execution frame is pushed onto the execu-
tion stack. The execution frame holds a single
behavior’s state. This includes the behavior’s
name, its current state, and any variable val-
ues. The execution stack maintains the set
of frames; thus, it contains an entity’s entire
execution state. Figure 4 shows such a stack
with frames.

AI engine algorithm
The AI engine processes these stacks

using a two-step iterative algorithm. The
first step is to execute the current action at
the top-most frame.

The second step is to determine the next
action. To do so, the engine examines the
transitions coming out of each frame’s cur-
rent node, starting at the bottom because
higher-level behaviors take precedence. In
this way, if an entity is traveling to a loca-
tion but notices a threat, it can handle it

JULY/AUGUST 2002 computer.org/intelligent 83

Execution frame 3

Execution frame 2

Execution frame contents
1. Behavior name
2. Current state
3. Variable values

Execution frame 1

Execution frame 0

Figure 4. The execution stack containing frames of behaviors.

Figure 3. F’s and T’s show the potential forward or trailing paths of the ghosts
depending on various game states.

immediately by discarding the frames hav-
ing to do with traveling and by processing
a frame to handle the threat. When a transi-
tion has a true condition, the engine discards
the frames above and determines the next
node containing a primitive action. This
determination can cause more frames to be
added on while the current node in the top-
most frame is a behavior. Adding frames
stops when the current node is an action—
not a behavior.

Engine extensions
On the basis of our tests with the popular

simulation games Half-Life and Civiliza-
tion 2, we made four major extensions to
increase the efficacy and expressiveness of
the BrainFrame visual language:

• Global and local variables
• Interrupt transitions
• Shared blackboards
• Polymorphic indexing of behaviors

Global and local variables simply store
values. They can be assigned values from
arbitrary formulas, actions, or conditions.
Global variables are available to all behav-
iors, while local variables can be used only
in a single behavior. Interrupt transitions
temporarily push on a special execution
frame that takes precedence over frames
below it.

Frequently, an entity will need to do some
actions not associated with its primary task.
For example, suppose an entity needs to
notify its teammates of its location every 10
seconds. This need exists no matter what its
current task—be it combat, navigation,
spawning, or whatever. However, sending a
message to teammates shouldn’t derail the
current task by forcing a transition to the
BroadcastLocation action. A better solution is to
create an interrupt transition that will tem-
porarily divert the flow of control toward an
essential behavior. When that behavior is
finished, the flow reverts back.

A shared blackboard is used for broad-
casting location: a way for entities to com-
municate to each other for an AI purpose.
For multiplayer games, we found that some
form of communication is necessary, espe-
cially for command-and-control situations.
We implemented a protocol by which enti-
ties can publish and subscribe to informa-
tion via a virtual blackboard. Even though
we could have implemented this function-
ality separately in the game’s interface, we

felt the need was frequent enough to war-
rant an implementation within the engine.

The last major extension we made was
polymorphism, an object-oriented program-
ming term meaning that a single object can
be interpreted differently depending on the
situation. For BrainFrame, this translates into
a single behavior having more than one defi-
nition. Which definition is invoked depends
on the context. For example, in Pac-Man we
have four ghosts, each with its own personal-
ity: When they pick a destination toward the
Pac-Man, two will predict its future location,
while the other two will move to its past
location, thus closing off avenues for escape.
In this case, the PickDestination behavior has two
definitions, indexed by the ghosts’names.
This indexing makes the behavior conceptu-
ally easier to understand.

Lessons learned
While working on BrainFrame, we

learned that using hierarchical organiza-
tion lets us modularize behavior and ends
up simplifying the process of creating
behavior. Naturally, for more complicated
AIs, we ended up reusing several behav-
iors. The addition of polymorphism for
behavior indexing also let us simplify our
graphs, making them smaller and more
understandable.

We also learned to never underestimate
the vocabulary. It’s easy enough to declare an
action and a condition vocabulary, but imple-
menting them on the game side is difficult.
Once we crawled through the creation of an
initial interface, sprinting toward advanced
behavior was much simpler by comparison.
Subsequent modifications to behavior are

easy; a user can change the behavior defini-
tions using the editor, recompile, and run the
game. At this stage, the AI exhibited by game
entities is limited only by the individual’s
imagination.

Finally, using the engine forces a clean
separation between the AI and game
engines. Or, as we’ve found working on
existing games, our prescribed interface
forced us to clean up the existing code.

Our next step is to incorporate the Brain-
Frame toolkit into a software tool that will
let military planners rapidly create complex
customized war game simulations without
the assistance of a programmer. This tool
will provide a collection of visual editors
allowing the user to specify simulations’
various elements and their interactions; the
user will define entity behaviors in the sim-
ulation using the BrainFrame editor. The
runtime engine will also serve as the under-
lying simulation architecture for this new
tool, executing not only the user-defined
entity behaviors but also the customized
rules of the simulation itself that the system
automatically generates. By using tools
such as these, simulation and game devel-
opers can speed their development time
while empowering designers and end users
to build on their work.

Acknowledgements
Our research is supported in part by Air Force

Research Laboratory grant F30602-00-C-0036.

84 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Daniel Fu is a project researcher at Stottler Henke Associates. He has
a BS in computer science from Cornell University and a PhD in com-
puter science from the University of Chicago. His research interests
include autonomous agents, planning, and simulation. Contact him at
fu@shai.com.

Ryan Houlette is a lead software engineer and project manager at
Stottler Henke Associates. His research interests include intelligent
interfaces, autonomous agents, and automatic generation of simula-
tions and interactive worlds. He holds a BA in computer science from
DePauw University and an MS in computer science (AI specialization)
from Stanford University. Contact him at houlette@shai.com.

