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Fast Reconstruction of Subband-Decomposed Progressively-Transmitted Signals �

Hamid Jafarkhani

Nariman Farvardin

Department of Electrical Engineering and

Institute for Systems Research

University of Maryland

College Park, MD 20742

ABSTRACT

In this paper we propose a fast reconstruction method

for a progressive subband-decomposed signal coding sys-

tem. It is shown that unlike the normal approach which

contains a �xed computational complexity, the compu-

tational complexity of the proposed approach is propor-

tional to the number of re�ned coe�cients. Therefore,

using the proposed approach in image coding applica-

tions, we can update the image after receiving each new

coe�cient and create a continuously re�ned perception.

This can be done without any extra computational cost

compared to the normal case where the image is recon-

structed after receiving a prede�ned number of bits.

1.INTRODUCTION

Progressive transmission of signals is a mechanism by
which the encoder's output is transmitted in groups of
bits (packets) and the decoder produces a higher qual-
ity replica of the signal based on receiving each new
packet. Progressive transmission is a desirable feature
in many practical signal transmission situations such as
telebrowsing and database retrieval. Progressive trans-
mission also provides the opportunity for interrupting
transmission when the quality of the received signal has
reached an acceptable level or when the receiver de-
cides that the received signal is of no interest. Likewise,
in applications where the receiver is more interested in
speci�c parts of the signal rather than the entire signal
(e.g., content-based image transmission), a valid ques-
tion is how to transmit and reconstruct a signal with
di�erent levels of quality (distortion) in di�erent tem-
poral or spatial regions. For example, after receiving a

�Prepared in part through collaborative participation in
the Advanced Telecommunications/Information Distribution Re-
search Program (ATIRP) Consortium sponsored by the U.S. Army
Research Laboratory under Cooperative Agreement DAAL01-96-
2-0002 and in part through support received from the National
Institute of Standards and Technology grant 70NANBSH0051.

rough reproduction of a medical image in a telemedicine
application, the radiologist, at the receiver, may want
to highlight a part of the image and request a higher
�delity (or even lossless) replica of only the highlighted
area.

The use of subband decomposition or discrete wavelet
transform (DWT) in image coding systems has received
much attention in recent years [1]-[3]. Not only do these
coding techniques provide good compression results, but
also they are inherently multi-resolution. Recently, sev-
eral rate-scalable subband image coding systems have
been proposed in the literature which provide very good
performances [4, 5, 6, 7].

One of the problems in a wavelet-based progressive
transmission scheme is that the decoder, upon receiving
new bits, has to perform the inverse �ltering operation
to reconstruct the image. The normal approach for do-
ing this is to apply the inverse �lters on the decoded ver-
sions of all wavelet coe�cients to reconstruct a replica
of the image. In this approach, even if one wavelet coef-
�cient is re�ned, the reconstruction complexity will be
the same as in the case when all coe�cients are re�ned.

In a progressive transmission scenario however, at
each step of progression, only some of the wavelet coef-
�cients are re�ned and the other coe�cients remain un-
changed. Therefore, only a portion of the image pixels
will change after receiving the new bits. To reduce the
complexity of reconstruction, one can recompute only
those pixels of the image that need to be changed. Not
only does our proposed scheme provide a fast recon-
struction of the output, but also it can update the out-
put as each wavelet coe�cient arrives and does not need
to wait for receiving all packets before it starts the pro-
cess of reconstruction. This can be done without any
increase in complexity. This feature of our reconstruc-
tion scheme is not limited to progressive transmission
systems and can be used for any packetized bit stream
for on-line reconstruction of the output.
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In Section 2, we propose a new way of reconstruct-
ing the signal which allows for updating only the neces-
sary portions of the signal, instead of reconstructing the
whole thing. The complexity of this new reconstruction
approach is proportional to the number of re�ned coef-
�cients. Section 3 generalizes the approach of Section
2 to a general �lter bank structure for subband recon-
struction and Section 4 contains concluding remarks.

2.ONE LEVEL OF DECOMPOSITION

In signal coding based on the DWT, the input signal is
typically decomposed into two components: (i) a low-

resolution approximation and (ii) a detail signal. This
results in decomposing the input signal into low-pass
and high-pass versions, generally referred to as sub-
bands. Each of the resulting subbands can be further
decomposed using the same approach. In this manner,
the DWT decomposes a given input signal into a num-
ber of frequency bands [2]. At the receiver, the signal
can be reconstructed using appropriate inverse DWT �l-
ters. Fig. 1 shows one level of two-band decomposition
and reconstruction using linear-phase, �nite-impulse re-
sponse �lter banks [3].

In this section, to convey the basic idea behind the
proposed fast reconstruction approach, we limit our-
selves to a one-level decomposition as in Fig. 1 where
the reconstructed output signal can be written as:

y(n) =
PNh

m=�Nh
x0h(n�m)h(m)+PNg

m=�Ng
x0g(n�m)g(m);

(1)

where

x0h(n) =

(
xh(

n
2
) n even

0 n odd
; X 0

h(z) = Xh(z
2);

x0g(n) =

(
xg(

n
2
) n even

0 n odd
; X 0

g(z) = Xg(z
2); (2)

and 2Nh + 1 and 2Ng + 1 are the lengths of the h and
g �lters, respectively.

To simplify the notation, we de�ne xh(a) = xg(a) = 0
if a =2 ZZ. So,

x0i(n) = xi(
n

2
); i = h; g: (3)

Using the above notation, the output can be written as:

y(n) =
PNh

m=�Nh
xh(

n�m
2

)h(m)+PNg
m=�Ng

xg(
n�m
2

)g(m):
(4)

Now, let us consider a progressive transmission scheme
where yl(n), l = 1; 2; � � � ;K, represents the di�erent re-
�nements of the output. The re�nement of the out-
put can be achieved by re�ning the input coe�cients
successively using bil(n) bits/sample to quantize xi(n)
(i = h; g) at level l. The values of bil(n) are de-
�ned by a bit allocation algorithm or are speci�ed in-
herently in the coding system. Note that bil(n) �

bil+1(n) and it is possible { and crucial to note {
that we might have bil(n) = bil+1(n), for some i. We
use xi(n; b

i
1); xi(n; b

i
2); � � � ; xi(n; b

i
K) to represent the de-

coded versions of the subband coe�cients xi(n), at dif-
ferent levels of re�nement (xi(n; b

i
1) is the coarsest rep-

resentation of xi(n) using bi1(n) bits for quantization
and xi(n; b

i
K) is the �nest representation using biK(n)

bits for quantization).

Using the normal method of reconstruction in sub-
band coding systems, for each l = 1; 2; � � � ;K, upon

obtaining xh and xg, the decoder reconstructs the lth

re�nement of the output, yl, according to:

yl(n) =
PNh

m=�Nh
xh(

n�m
2
; bhl )h(m)+PNg

m=�Ng
xg(

n�m
2
; bgl )g(m):

(5)

In other words, given that yl is reconstructed at the
decoder, upon receiving additional bits from which
xh(n; b

h
l+1) and xg(n; b

g
l+1) { the (l + 1)st re�nement of

xh and xg { are obtained, the inverse DWT �lters are
used anew to compute an updated replica of the signal
{ the (l + 1)st re�nement of y.
In this paper, we propose an alternative method

in which we de�ne �yl(n) = yl+1(n) � yl(n) and
�xi(n; b

i
l) = xi(n; b

i
l+1) � xi(n; b

i
l), i = h; g. Clearly,

�yl, l = 1; 2; � � � ;K, can be computed as follows:

�yl(n) =
PNh

m=�Nh
�xh(

n�m
2
; bhl )h(m)+PNg

m=�Ng
�xg(

n�m
2
; bgl )g(m):

(6)

Then, to reconstruct a new re�nement of the signal,
yl+1, it su�ces to use

yl+1(n) = yl(n) + �yl(n): (7)

Now let us consider the complexity implication of this
new approach and its comparison with the normal ap-
proach using (5). If the number of samples of the input
signal (x) is N , then the number of samples in xh and
xg will be

N
2
. If, at each level of re�nement l, we use (5)

to compute yl, it costs L = N
2
(2Nh + 1) + N

2
(2Ng + 1)

multiplications, a quantity which is independent of the
number of re�ned samples. Therefore, after K levels of
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re�nement the computational complexity is KL multi-
plications. Using (6) and (7) to update the output signal
costs 2Ni+1 multiplications per each nonzero �xi coef-
�cient, i = h; g (number of nonzero �xi �

N
2
). If �il

N
2

wavelet coe�cients (xi, i = h; g) are re�ned at the lth

level of re�nement, then the total number of multipli-
cations using (6) and (7) to update the output signal isPK

l=1 �hl
N
2
(2Nh + 1) +

PK
l=1 �gl

N
2
(2Ng + 1). Note that

for large K's,
PK

l=1 �il << K for existing rate-scalable
image coding systems [4, 5, 6, 7] and therefore the com-
plexity of the proposed approach is much less than the
complexity of the normal approach. For example, in the
embedded zerotrees wavelet (EZW) coding approach of
[4], not only are there many insigni�cant coe�cients at
low bit rates which are not transmitted and are assumed
to be zero, but also the signi�cant coe�cients are re�ned
in dominant and subordinate passes (at each pass some
of the \signi�cant" coe�cients remain unchanged).

In addition to reducing the complexity of reconstruc-
tion, using (6) and (7) to reconstruct the output pro-
vides the capability to update the output signal upon
receiving the new re�nement of each wavelet coe�cient,
thus allowing for an on-line update of the output. Typi-
cally, for any signal coding system the output bit stream
is transmitted in the form of packets. Consider a gen-
eral signal coding system (or one level of re�nement of
a progressive system) and assume that the output is
transmitted using M packets. The size of each packet
and thus the value of M depends on the network char-
acteristics. At the receiver, either we should wait to
receive all M packets or we can reconstruct M inter-
mediate versions of the output { one for each newly re-
ceived packet. Using the normal reconstruction formula
(5), results in a delay in the former case and an increase
in computational complexity by a factor of M in the
latter case. Using (6) and (7) to reconstruct the out-
put will provide M intermediate versions of the output
without increasing the complexity or delay. Also, note
that if after receiving a rough reproduction of the signal,
we just need to re�ne a portion of wavelet coe�cients
(corresponding to a spatial location), the computational
cost using (6) and (7) is proportional to the number of
transmitted coe�cients (�lter inputs) and less than the
computational cost of the normal scheme.

To update the output, we need to know the set of
output samples whose values are inuenced by the re-
�nement of each coe�cient. This set depends on the
location of the re�ned coe�cient. Also, the samples
near the boundaries need a special treatment because of

the symmetric extension of the input signal1. Receiv-
ing �xh(k) for the coe�cients su�ciently far from the
boundaries, Nh

2
< k < N�Nh

2
, a�ects only the output

values y(2k + n); n = �Nh;�(Nh � 1); � � � ; Nh. When
the received coe�cient is near the origin, 0 � k � Nh

2
,

the output samples y(n); n = 0; 1; � � � ; Nh + 2k, are af-
fected. For the remaining coe�cients, N�Nh

2
� k < N

2
,

the output values y(2k+ n); n = �Nh; � � � ; N � 2k, are
a�ected. Replacing xh with xg and Nh with Ng provides
the same indices for the �lter g and coe�cients xg.

The same procedure can be applied to more than one-
level of decomposed signals. The two-dimensional (2-D)
extension of the approach is also straightforward when
we use a separable 2-D transform.

3.GENERAL FILTER BANK

In this section, we extend the idea for complexity re-
duction developed in the previous section to general �l-
ter banks. Fig. 2 illustrates a general decomposition
and reconstruction structure using a set of passband
�lters called �lter banks. This structure can be used
to perform linear transformations like the discrete co-
sine transform, lapped orthogonal transform, Laplacian
pyramid, Gabor transform, quadrature mirror �lters,
and DWT [8]. Although there exist \fast implemen-
tations" for many of these transformations, the study
of this general structure is worthy of consideration as
it uni�es the application of our approach for di�erent
transformations and provides a general methodology for
progressive transmission situations. Furthermore, our
approach does not depend on the speci�c transforma-
tion used. In fact, the ratio of the computational com-
plexity of the proposed approach to that of the normal
approach for reconstruction is �xed for any transforma-
tion. So, the choice of the transformation a�ects the
complexity of both approaches in the same manner.

To make the argument more precise, �rst, let us con-
sider the example illustrated in Fig. 3 consisting of three
levels of the two-band structure in Fig. 1. Later, we
generalize our fast reconstruction approach to the �lter
bank shown in Fig. 2. The example in Fig. 3 is equiv-
alent to Fig. 2 when k1 = 2, k2 = 4, k3 = k4 = 8 and
�lters gi and hi, i = 1; 2; 3; 4, are chosen appropriately.
Given �lters h and g in Fig. 3, the corresponding recon-
struction �lters in Fig. 2 can be found. The main equa-
tion governing the relationship between gi, i = 1; 2; 3; 4
and g and h is the equivalence of the two structures in

1To have a smooth boundary after reconstruction, the signal is
symmetrically extended near the boundaries.
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Fig. 4 [8]. Using Fig. 4, one can establish the following
equations relating di�erent �lters in Figs. 2 and 3:

G1(z) = G(z); (8)

G2(z) = G(z2)H(z); (9)

G3(z) = G(z4)H(z2)H(z); (10)

and
G4(z) = H(z4)H(z2)H(z): (11)

Although the reconstruction operation in Figs. 2 and
3 are the same, the number of multiplications in Fig. 2
is more than the number of multiplications in Fig. 3.
Speci�cally the output signal in Fig. 2 can be written
as:

y(n) =
N1X

m=�N1

x01(n�m)g1(m) +

N2X
m=�N2

x02(n�m)g2(m) +

N3X
m=�N3

x03(n�m)g3(m) +

N4X
m=�N4

x04(n�m)g4(m); (12)

where

x01(n) =

(
x1(

n
2
) n even

0 n odd
; X 0

1(z) = X1(z
2);

x02(n) =

(
x2(

n
4
) n = 4k

0 otherwise
; X 0

2(z) = X2(z
4);

x03(n) =

(
x3(

n
8
) n = 8k

0 otherwise
; X 0

3(z) = X3(z
8);

x04(n) =

(
x4(

n
8
) n = 8k

0 otherwise
; X 0

4(z) = X4(z
8); (13)

and 2Ni + 1 is the length of gi and N1 = Ng, N2 =
2Ng +Nh, N3 = 4Ng + 3Nh, and N4 = 7Nh. So, using
all coe�cients to reconstruct the output, we need L1 =
N [2N1+1

2
+ 2N2+1

4
+ 2N3+1

8
+ 2N4+1

8
] multiplications in

Fig. 2 and L2 = N [(2Nh+1)(1
8
+ 1

4
+ 1

2
)+(2Ng+1)(1

8
+

1

4
+ 1

2
)] multiplications in Fig. 3. After computing L1 in

terms of Nh and Ng, we can show that

L1 = N [1+3Ng+3Nh] > L2 = N [
7

4
(Nh+Ng+1)]; (14)

establishing that the number of multiplications corre-
sponding to the implementation of Fig. 3 is less than
that of Fig. 2.

Now, we concentrate on the main issue of this section
and show that an approach similar to what was pro-
posed in Section 2 can be used for the �lter bank shown
in Fig. 2. To simplify the notation, we de�ne xi(a) = 0
if a =2 ZZ. So,

x0i(n) = xi(
n

2i
); i = 1; 2; 3; and x04(n) = x4(

n

8
): (15)

Using the above notation, the output can be written as:

y(n) =
N1X

m=�N1

x1(
n�m

2
)g1(m) +

N2X
m=�N2

x2(
n�m

4
)g2(m) +

N3X
m=�N3

x3(
n�m

8
)g3(m) +

N4X
m=�N4

x4(
n�m

8
)g4(m): (16)

In the normal approach for reconstructing the output
of a progressive transmission scheme, the di�erent lev-
els of re�nement of the output, y1; y2; � � � ; yK , are com-
puted after receiving xi(n; b

i
1); xi(n; b

i
2); � � � ; xi(n; b

i
K) as

follows:

yl(n) =
N1X

m=�N1

x1(
n�m

2
; b1l )g1(m) +

N2X
m=�N2

x2(
n�m

4
; b2l )g2(m) +

N3X
m=�N3

x3(
n�m

8
; b3l )g3(m) +

N4X
m=�N4

x4(
n�m

8
; b4l )g4(m): (17)

As before, we de�ne �yl(n) = yl+1(n) � yl(n) and
�xi(n; b

i
l) = xi(n; b

i
l+1) � xi(n; b

i
l), where �yl; l =

1; 2; � � � ;K; is given by:

�yl(n) =
N1X

m=�N1

�x1(
n�m

2
; b1l )g1(m) +

N2X
m=�N2

�x2(
n�m

4
; b2l )g2(m) +

N3X
m=�N3

�x3(
n�m

8
; b3l )g3(m) +

N4X
m=�N4

�x4(
n�m

8
; b4l )g4(m): (18)

4



Then, given that yl(n) is available at the decoder,
yl+1(n) can be computed by adding �yl(n) to yl(n).
Equation (18) is a generalization of (6) and therefore
provides a fast reconstruction scheme as was discussed
in Section 2.
To update the output, we need to know the list of

output samples which must be updated due to receiving
each coe�cient. Table 1 shows the required updates for
the coe�cients that are su�ciently far from the bound-
aries. The �rst row contains the �lter coe�cients which
are used to update the corresponding outputs in the
second row. To make the details of the reconstruction
scheme more clear, let us provide a numerical example.

3.1.EXAMPLE

Although our scheme works for any scalable transform
coding system, we pick a particular coding system to
show the practical usefulness of our scheme. We use the
EZW approach of [4] for this purpose. In [4], an 8 � 8
wavelet decomposed image has been used to present the
details of the EZW algorithm. We use the same exam-
ple (Table 2) and assume that re�ning each coe�cient
a�ects all output pixels in the same row or column (a
logical assumption on the length of �lters for an 8 � 8
image). The normal reconstruction approach takes 1024
multiplications to create each re�nement of the output.
Without going through the details of the EZW, as it
is shown in [4], the �rst dominant pass results in re-
�ning coe�cients in locations 11, 12, 13, and 54 (the
numbers indicate the row and column indices, respec-
tively). Reconstructing the image using our approach
takes 160 multiplications instead of 1024. The �rst sub-
ordinate pass (the second level of re�nement) re�nes the
same four coe�cients [4] and thus results in the same
amount of computational reduction. The second dom-
inant pass (the third level of re�nement) changes coef-
�cients in locations 21 and 22. Our approach requires
80 multiplications to reconstruct the third image. The
second subordinate pass (the fourth level of re�nement)
re�nes the aforementioned six wavelet coe�cients. To
create the fourth image, our approach requires 240 mul-
tiplications. Therefore, to reconstruct the �rst four im-
ages, the fast scheme needs a total of 640 multiplications
compared to 4096 multiplications. Also, note that since
we have had 16 coe�cient re�nements in the �rst four
passes, we could have reconstructed 16 intermediate im-
ages without any additional computational complexity.
Constructing these 16 images would cost 16384 multipli-
cations using normal wavelet reconstruction formulas.

4.CONCLUSIONS

We have proposed a scheme for fast reconstruction of a
subband-decomposed progressively transmitted signal.
Using the proposed approach, we can update the image
after receiving each new coe�cient and create a contin-
uously re�ned perception without any extra computa-
tional cost (compared to the case that we reconstruct
the image after receiving each packet). In existing scal-
able image coding systems [4]-[7], insigni�cant coe�-
cients remain zero at the decoder for a few steps of re-
�nement. Also, at each step of the re�nement, some
of the coe�cients remain unchanged. Unre�ned coe�-
cients do not add to the computational complexity of
our new approach for reconstructing the image. On the
other hand, the complexity of the normal reconstruction
scheme does not depend on the value of the coe�cients
(or re�nements).

In some applications, after receiving a preliminary
draft of the image, the receiver only needs the upgrade
of a particular portion of the image. Using our proposed
approach, the complexity reduction in this case is equal
to the ratio of the number of pixels in the required area
to the number of pixels in the whole image.

Future work includes the generalization of the scheme
for �lter banks with integer coe�cients which replace
multiplications by binary shifts. 2
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Figure 3: Wavelet Synthesis Filter Bank.

Figure 4: Two Equivalent Structures.

x1(k) g1(�N1) � � � g1(0) � � � g1(N1)
N1

2
< k < N�N1

2
y(2k �N1) � � � y(2k) � � � y(2k +N1)

x2(k) g2(�N2) � � � g2(0) � � � g2(N2)
N2

4
< k < N�N2

4
y(4k �N2) � � � y(4k) � � � y(4k +N2)

x3(k) g3(�N3) � � � g3(0) � � � g3(N3)
N3

8
< k < N�N3

8
y(8k �N3) � � � y(8k) � � � y(8k +N3)

x4(k) g4(�N4) � � � g4(0) � � � g4(N4)
N4

8
< k < N�N4

8
y(8k �N4) � � � y(8k) � � � y(8k +N4)

Table 1: Update Table for Coe�cients Su�ciently Far
from the Boundaries.

63 -34 49 10 7 13 -12 7
-31 23 14 -13 3 4 6 -1
15 14 3 -12 5 -7 3 9
-9 -7 -14 8 4 -2 3 2
-5 9 -1 47 4 6 -2 2
3 0 -3 2 3 -2 0 4
2 -3 6 -4 3 6 3 6
5 11 5 6 0 3 -4 4

Table 2: Example of 3-level wavelet transform of an
image [4].
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