In Proceedings of the Design Automation and Test in Europe Conference and
Exhibition, Designer's Forum, pages 161-167, Paris, France, February 2004.

Java-through-C Compilation: An Enabling Technology for
Java in Embedded Systems

Ankush Varma and Shuvra S. Bhattacharyya

University of Maryland, CollegePark
{ankush, ssb} @ng. und. edu

Abstract

The Java programming language is acheiving greater accep-
tance in high-end embedded systems such as cellphones and
PDAs. However, current embedded implementations of Java
impose tight constraints on functionality, while requiring signifi-
cant storage space. In addition, they requirethat a JVM be ported
to each such platform.

We demonstrate the first Java-to-C compilation strategy that is
suitable for awide range of embedded systens, thereby enabling
broad use of Java on embedded platforms. This strategy removes
many of the constraints on functionality and reduces code size
without sacrificing performance. The compilation framework
described is easily retargetable, and is also applicable to bare-
bones embedded systems with no operating systemor JVM.

On an average, we found the size of the generated executables
to be over 25 times smaller than those generated by a cutting-
edge Java-to-native-code compiler, while providing performance
comparableto the best of various Java i mplementation strategies.

1. Introduction

The Java[1] programming language is a strongly typed, gen-
eral-purpose, concurrent, class-based, object-oriented language.
While it has anumber of featuresthat set it apart from other lan-
guages such as C, C++ or Pascd, one of itskey characteristicsis
its portability.

The“write once, run anywhere” portability of Javaisachieved
by compiling the source code into aclassfile format. A classfile
is a byte stream that contains the definition of asingle class or
interface. Thisincludes classinformation and bytecode. Bytecode
is object code that is processed by a program, referred to asthe
Java Mirtual Machine (VM) [2], rather than by the hardware pro-
cessor directly.

This portability is based on theimplicit assumption that afull-
featured VM exists for al target platforms. In reality, many
embedded implementations of Java do not support al Javafea-
tures, and use an extremely restricted classlibrary instead of the
Javastandard library. Thisrequires applicationsto bewritten with
aparticular implementation in mind, and leads to significant loss
of portability.

We propose a strategy that is suitable for a wide range of
embedded systems. We compile Java code into platform-specific
C code, which isthen converted to an executable by a C compiler.
The VM overhead of dynamic bytecode-to-machine code con-
version is thus completely eliminated. Static compilation also
allows more aggressi ve optimi zation techniques, which lead to
lower code sizeand higher speed. However, much of thefunction-

ality is preserved, and the source code of most Java applications
need not be modified to run them on embedded platforms. Stan-
dard Java classes and utilities can be supported to ahigh degree.

2. Related Work

Various aternative Javaimplementations have been explored
recently. Tur boJ [4] speeds up execution by compiling bytecode
to native code ahead of time, but using aJVM for some functions.
Har i ssa [5] generates C code from Java, but usesa VM for
some functionaity. The VM dlows Javato befully supported, at
the cogt of increased code size.

Jove [22] isanative compiler targeted at large server/work-
dtation programs. It creates executablesthat are aggressively opti-
mized for speed, not for code size, and thus generates relatively
large executables[23].

gcj [8] provides a sophidticated and standardized method for
compiling Java source code or bytecode into native executable
form. It provides acomplete runtime environment for Java, and is
a cutting-edge Java-to-native code compiler. Earlier native-code
compilers for Javainclude Vor t ex [6] and Caf f ei ne [7].
Commercial Compilers such as Excelsior’'s JET [24] are also
available, with generated code sizes similar to those for ggj [25].

Sun'sKVM (K Virtual Machine) [3] istypical of embedded
implementations of Java. It provides reasonable performance and
smdl code size by tightly restricting functiondity. It does not sup-
port floating-point data types, reflection or object finalization
methods, and it places some limitations on threads. It supportsa
minimal classlibrary and hasacode s ze (the combined size of the
Virtual Machine and class library) of ~100KB. The small code
Size congtraint does not allow Jl T-compilation. WabaSoft's Waba
Virtual Machine [20] is another pruned-down Virtual Machine
that supports astrict subset of Java. It excludes long data types,
double data types, support for exceptions and threads. It provides
asmall specialized library, so existing programs need to be rewrit-
ten for Waba. The code size of a Waba implementation is
~100KB. Both of these have versions that provide additional
functionality by increasing code size to 300-500K B.

Toba [9] is an elegantly-structured Java-to-C compiler.
Unfortunatdly, it is built around alarge runtime library and does
not attempt to meet the code size congtraints of small embedded
systems.

We build on some of the conceptsintroduced in [9] further,
introducing features and optimizations to create a viable embed-
ded implementation. We show that a C-based optimized compila-
tion strategy can meet the size congtraints inherent in embedded
systems and provide performance comparabl e to the best of other

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
FEB 2004 2 REPORTTYPE 00-00-2004 to 00-00-2004
4. TITLEAND SUBTITLE 5a. CONTRACT NUMBER
Java-through-C Compilation: An Enabling Technology for Javain £b. GRANT NUMBER
Embedded Systems

5¢c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

University of Maryland,8400 Baltimor e Avenue,College Park,MD,20742 | REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF; 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE 6
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

implementations without sacrificing Java functionality. The
richly-featured Java libraries can be used instead of stripped-
down versions.

3. Limitations
A C-based static compilation policy removes many of the

restrictions imposed by stripped-down embedded VMs. In par-
ticular, it allows devel opers to use any data types or standard
library classes. Therestrictionsimposed by such astrategy are:

* Dynamic Loading and Reflection are not supported, sim-
ply because the underlying embedded systems do not support
these.

* The generated executable runs as a user process, so appli-
cations that rely on a VM as a buffer between them and the
platform for security cannot be guaranteed to run correctly.

® Our current implementation does not support threads.
Thread libraries are platform dependant and we favored porta-
bility while making design decisions. There are no theoretical
reasons why Java threads cannot be implemented in a C-based
compilation framework, and compilers such as Toba [9] have
successfully implemented Java threads in C on a Solaris plat-
form.

4. Runtime Data Structures

The Java object model provides arich set of features to
describe object types and operations. We provide data structures
that provide thisfunctiondity within C. This datalayout strategy
is adirect adaptation of the strategies used in many virtual
meachines, and issimilar to that described in Toba[9].

4.1 Naming Conventions

Javadlowsidentifier namesto be unlimited strings of unicode
characters, whereas C requires dl identifiersto be ASCI| charac-
ters of 63 or fewer characters. Further, the name of a Java entity
does not uniquely identify it. A Javaclassis uniquely identified
by its package and name. Similarly, a Java method is uniquely
described by its class and signature, since Java methods may be
overloaded. To prevent two distinct Java entities from being
mapped to the same C name, we generate C names by removing
characters not permitted in C identifiers, and adding a unique
hash-code prefix. Thisenablesal methodsand dl classesto share
aglobd namespace.

4.2 Dataand Code Layout

Java primitive types are mapped to primitive C types of the
appropriate size. Java objects are reference types which extend
j ava. |l ang. Obj ect . These are translated into C pointer
types. Each reference points to an instance structurein C. The
ingtance structure contains dl ingtance-specific information (such
as non-static fields), and a pointer to a common class structure.
There is asingle class structure corresponding to each class,
which containsthree sub-structures: the class descriptor table, the
methods table, and the class variablestable.

The class descriptor table containsinformation needed across
all classes, such as the name of the class, a pointer to the super-
class etc. The mgjor fields of the class descriptor table are shown
inTable 1.

The method table contains pointers to functions that imple-
ment the various methods of the class. The entries for methods
present in the parent class come first, followed by methods
present in this class, and absent in the parent class. The ordering
of methods is maintained from class to subclass. This precise
ordering enables type polymorphism by allowing a classto be
treated as any of its superclasses. Thisis because the entry corre-
sponding to a given method will occupy the same locetion in the
classstructure of al subclasses of any given class, anditslocation
will beinvariant when aclass structureis cast and indexed asthe
class structure of asuperclass.

TABLE 1. Sructureof Class Descriptor Table

char* name Character String containing the

name of the class.

int instance_size The number of bytesin instance

structures of this class.

voi d*
super cl ass

Pointer to class structure of par-
ent class.

Indicates whether the classis an
array.
Pointer to function that resolves

polymorphic interface method
invocations at runtime.

short Array

voi d* (*| ookup)

(int)

short Pointer to function that resolves
(*i nst anceCf) “instanceof” queries at runtime.
(void*, |ong)

The class variable table contains class variables, such as static
fields. Note that all non-static fiel ds are members of the instance
gructure, not of the class structure.

4.3 Referencing Objects, Methods and Fields.
References to Java Objects are trand ated into pointers to the

corresponding instance structures. Method references are

changed into the appropriate function pointers, and field refer-

ences become pointersto fields of the corresponding structure.
The code below shows a sample Javaclass “Circle’, with an

ingtance“c’. Examplesof C equiva ents of referencesto members

of careillugtrated in Table 2.

public class Circle inplenents Sonelnterface{

//Field

int radius;

/1 Met hod.

int getRadius();

// Static nethod.

static String getType();

// Method from Sonel nt erface.

void move(int x, int y);

}

Crcle c;

TABLE 2. C equivalents of Java references

Reference Java Code C Codée?

field c.radius c->radi us

instance C. c->cl ass

method get Ra- - >get Radi us(c)

di us()

Satic c.get- c->cl ass

method Type() - >get Type()

Interface c.move(x,y c->cl ass

method) ->| ookup(9721)
(c. x,y)

a. Hashcode prefixes to the names of C identifiers are omitted for
clarity.
4.4 Arrays

The Java programming language allows dynamically-created
arrays. We treat arrays as specia objects. Their class descriptors
can be set at runtime, and dl arrays of agiven type sharethe same
class descriptor. Multi-dimensiona arrays are trested as array's of
arrays. C functions and macros were written to implement func-
tionality for array initidization and array access
5. Code Generation

The Java-to-C translation framework is written entirely in
Java It takes Java classfiles asinput. These contain Java byte-
code, which isastack-based | ow-level description, and isnot suit-
ablefor direct trandation to C. For analysis of the bytecode, we
make extensive use of Soot [10][11][12], a sophisticated Java
bytecode analysis and optimization framework. Soot alows byte-
code to be transformed into Jimple[13], atyped 3-addressinter-
medi ate representation designed to simplify analysis and
transformation of Java bytecode. C code is then generated based
on the Jmple representation.

For each classrequired by the application, the compiler gener-
atesaCfile containing al required methods and a header file con-
taining various declarations and type definitions. A makefile
tailored to the target system is also generated for alowing the
platform-specific C compiler to create an executable.

5.1 Interfaces

Type polymorphism arising from class-subclass rel ationships
is easily resolved viathe structure of the method table because
each class(except j ava. | ang. obj ect) hasexactly one par-
ent. Java does not allow multiple inheritance. However a class
may implement an arbitrary number of interfaces, as described in
[1]. Cdlsto methods defined in interfaces may also be polymor-
phic, i.e. thereisaset of possible targets of the method call, and a
single staticaly known target may not exist. Such invocations are
resolved by a per-class|ookup method that takes the hashcode of
theinterface method called asan argument and returnsapointer to
the appropriate function by performing a runtime table-lookup.

5.2 Exception Handling

Exceptionsin Javainvolve anon-loca transfer of control from
the point where the exception occurred to apoint that can be spec-
ified by the programmer. An exception is said to be thrown from
the point whereit occurred and is said to be caught &t the point to
which control istransferred. If an exception cannot be handled
within a procedure, the call stack is unwound until a method is
reached which can handle the exception.

Exception handling inthe VM uses aprogram counter to keep
track of the point at which an exception was thrown. We emulate
thisby using aglobal exceptiona program counter (epc). Thisis
incremented every time atrap (arange of instructions corre-
sponding to an exception) isentered or exited.

We use the setjmp and longjmp routines to handle the non-
locd jumps and call-stack unwinding associated with exception
handling. The appropriate handler for each exception is resolved
viaatable-lookup.

5.3 Native Methods and User-Defined Code

Java requires certain native methods, which are methods
implemented in platform-dependent code, typically writtenin
another programming language such as C.

Thiscompiler alowsthe user to specify C codefor the body of
any native method. At compile-time, thisisintegrated with the
generated C code, dlowing any C native methods to be fully sup-
ported. We created a short C file for the body of each required
native method.

In addition, we aso allow user-defined code for non-native
methods. This allows hand-optimization of critical code, or easy
use of specialized 1/0 and adaptation of standard Java classesto
embedded-system-specific uses. For example, the code for the
method Pr i nt St ream pri nt (bool ean) can be defined to
turn an LED on the embedded board on or off, while printing
“true’ or “falsg’ to ascreen on adesktop. Thisalowsadeveloper
to specify platform-specific or optimized code for any method.

5.4 Garbage Collection

Javaimplements automatic garbage collection. Objects no
longer in use are destroyed and memory freed up without any
explicit programming directive. The choice of garbage collection
strategy used isleft to theimplementation.

Our implementation uses the Boehm-Demers-Weiser conser-
vative garbage collector [15][16]. A conservative collector checks
al dlocated memory for potentia pointers, and traces the trans-
tive closure of al memory reachable from these pointers. It does
not require type information, and thus memory management is
transparent to the programmer.

6. Code Pruning Strategy
Java classes tend to derive alot of functionality from other
Java classes, in ahighly interlinked manner. The simplest Java

class can require over 250 other classes for execution®. All classes
aresubclassesof j ava. | ang. Obj ect . Inaddition, classes
reference fields and methods in other classes, throw exceptions
(dl exceptions are Javaclasses) and havelocd variablesthat may

1. Thiscanbeseen by running“j ava -verbose” onasimple
“Hello World” program.

be objects bel onging to other classes. C code needs to be gener-
ated for al classes, methods and fields that may be accessed.

Simply trandating all classesthat are referenced by the main
classinto Cfails. Thisis because each of these classes will have
methods or fields that are not used by the main class. These
unnecessary methods and fields can reference additional classes,
so dl those classes will also need to be compiled unneccessarily.

A smple solution isto compile all Javalibrary classesinto a
library and load the required ones at runtime. Thisisthe gpproach
used by Toba [9] and gcj [8]. This simplifies compilation and
linking, but increases code size because the size of thislibrary can
be of the order of megabytes, and this may betoo costly to imple-
ment on embedded systems.

We make large reductions in code size by analyzing al rele-
vant files, and discarding not only unnecessary classes, but aso
unneccessary methods and fields. Thisleads to generation of
highly optimized C code, which compilesinto an executable with
asmdl| footprint.

6.1 Analysis

We use the Soot framework to create a Call Graph of the
application. Thisisagraph with methods as the nodes, and calls
from one method to another as directed edges.

At firg glance, it ssemsthat the trangtive closure of the meth-
odsin the main class should represent all methods that can be
called. However, thisis not so, because the first timethe field or
method of aclassis referenced, its class initialization method
[1][2] is aso invoked, and this can reference other methods or
fieldsinturn.

The method call graph dso contains an edge from amethod to
every possibletarget of method callsinit. The number of such tar-
gets can belarge for polymorphic method calls. A more sophisti-
cated analysis can trim the method call graph by removing some
of the edges corresponding to polymorphicinvocations.

Weuse Variable Type Analysis (VTA) [17][18][19] to perform
this call graph trimming. This analysis computes the possible
runtime types of each variable using areaching typeanayss, and
uses thisinformation to remove spurious edges.

6.2 Computing the Set of Required Entities

From the analysis mentioned above, the set of all possible
required classes, methods and fields (collectively grouped as enti-
ties) can be statically computed. We useaset of rulesto determine
which classesare required.

1. A set of compulsory entities is always required. This
includes the System initi al i zeSyst entCl ass()
method, al methods and fields of the
j ava. | ang. Qbj ect class(sinceit isthe global super-
class) and the main method of the main class to be com-
piled.

2. If a method m is required, the following also become
required: the class declaring m, all methods that may pos-
sibly be called by m, all fields accessed in the body of m,
the classes of al local variables and arguments of m, the
classes corresponding to all exceptions that may be caught

or thrown by m, and the method corresponding to min all
required subclasses of the class declaring m.

3. If afield fisrequired, the following a so become required:
the class declaring f, the class corresponding to the type of
f (if any) and the field corresponding to f in all required
subclasses of the class declaring it.

4. If a class c is required, the following also become
required: all superclasses of ¢, the class initialization
method of ¢, and the instance initialization method of c.
Interfaces are treated as classes. A worklist-based agorithm

can be used to add to the set of required entitiesuntil no additional

entities can befound by application of these rules. Together, rules

2, 3and 4 encapsulate all possible dependencies between entities.

Thismakesthe set of required entities salf-contained.

6.3 Pruning and Code Generation

The dgorithm described above performsaform of inter-proce-
durd dead-code elimination. The code generator generates code
only for required entities. Not only does this remove classes that
are never used, but also methods that are never called and fields
that are never referenced. The code size reduction thus achieved
leads to executables with code footprints within the level s accept-
ablefor embedded systems.

7. Performance Sudies
7.1 Benchmarks

To measure floating-point and arithmetic performance, we
used the Java version of the Linpack benchmark. Linpack isa
collection of subroutines that analyze and solve linear equations
and linear least-squares problems. The benchmark solves adense
500 x 500 system of linear equationswith one right-hand side, Ax
= B. The matrix is generated randomly and theright-hand sideis
constructed so the solution has al components equal to one. The
method of solution is based on Gaussian elimination with partial
pivoting. The benchmark score is a number indicative of the
speed at which the system can execute floating point operations.

The Embedded CaffeineMar k benchmark suite uses 6 tests
to measure various aspects of Java performance. The score for
each test isanumber proportiona to the number of timesthe test
was executed divided by the execution time.

Thefollowing is abrief description of what each Caffeine-
Mark test does:
® Sieve: The classic sieve of Eratosthenes finds prime num-
bers.
* Loop: Uses sorting and sequence generation to measure
compiler optimization of loops.
* Logic: Tests the speed with which the virtual machine exe-
cutes decision-making instructions.
* Method: Executes recursive function calls to evaluate
method invocation efficiency.
® String: Performs basic string manipulations.

1. Pendragon Software’s CaffeineMark(tm) ver. 3.0 was used. The test
was performed without independent verification by Pendragon Software
and Pendragon Software makes no representations or warranties as to the
result of the test. CaffeineMark is atrademark of Pendragon Software.

* Foat: Simulates a 3D rotation of objects around a point.

In addition to these, we al S0 estimate code size by compiling
additional programsthat perform extensive tests of specific func-
tionality (HashSets, LinkedListsetc.).

7.2 Methodology

We obtained the benchmark scores for interpreted Java by
using Sun standard VM with the - Xi nt flag. Sun Microsys-
tems VM (with default flags) was used as an example of aJIT-
enabled Virtual Machine. GNU gcj was used as an example of a
standard Java-to-native-code compiler. gcj was used with the
flags- f no- bounds- check -fno-store-check -
static -s - 2. Theseoptions gave both the smdlest and the
fastest static native code. Turning on additional optimization
(upto - ®99) did not lead to asignificant impact on ether perfor-
mance or code size. The C code generated by the Javarto-C com-
piler was compiled with gcc usingtheflags- Q2 -static -
static-libgcc -s -Wall -pedanti c, with bounds
checking turned off. Theseflags ensure ANSI C compliance, per-
form only basi ¢ optimizations and generate astatic executable.

The tests were performed on a 1.5GHz Pentium 4 running
Cygwin on Windows 2000. This platform allows us to run the
Java Virtua Machine, gcj, gcc, and the Java-to-C compiler. All
benchmark scores shown arethe average of 20 runs.

Our Java-to-C compiler is highly retargetable. C code genera-
tion has been extensively tested for Cygwin on a Windows plat-
form, aSparc Ultra5 running Solaris 5.7, and a TMSC320C6711
DSP platform. The latter isan 8-way VLIW, floating-point DSP
running a 200MHz. It provides an example of atarget embedded
system on which it has not been possible to run Java code so far,
but on which we were able to run Java applications using a Java-
to-C compilation strategy. The DSP's C compiler serves as the
back end for compilation of C code to native code. Generated
code ran correctly on the system, and we are now working on
porting the garbage collection library to the platform.

7.3 Results
7.3.1 Performance

The performance of various benchmarks across a number of
possible execution strategiesis shown in Figure 1.

We compare the performance of a VM running interpreted
Java (no JIT), Java on a Ji T-enabled VM, Javato-native-code
conversion with the gcj front-end to the GNU compiler suite, and
of using C asintermediate languagefor find compilationto native
code.We see that interpreted Java runs an order of magnitude
dower than any other strategy. Thisisbecausea VM that isrun-
ning Javawithout J'T compilation incurs arecurring overhead of
converting bytecode to machine code. This overhead is reduced
by JVMs using a Just-In-Time compilation strategy, in which
mechine codefor amethod isgenerated fromits bytecodethefirst
time amethod isinvoked. gcj performsfaster than J T-compiled
Java (dlower on Sring and Seve, but faster on the other bench-
marks). The Java-to-C compilation strategy performsthe best on
all benchmarks except Sring. This can readily be remedied by
providing user-defined code for common string operations, but

we omitted such hand-optimi zation because that would no longer
provide auseful comparison.

100000

[} =

§ 80000 | §

~ 600001 B

IS B =

£ 40000 1 B Sl o

S = 5 5 B

& 200001 EN _. EN E EI §I =I
X [} o © =] = Lo
T s 8 ® £ 8 8
c O S B ()| w o]
'J b=

B Interpreted JavaB javaJIT O g¢f B Javato-C

Figure 1. Performance for various benchmarks. A higher score
indicates better performance.

TABLE 3. Performance improvement of a Java-to-C
implementation over the highest-performing of the other
strategies.

% improvement in performance over next-
best strategy

Linpack 1.73% (over gcj)

Sieve 5.85% (over Java JIT)

L oop 4.35% (over gcj)

Logic 5.94% (over gcj)

Sring -57.1 (JIT scores higher than Java-to-C)

Float 64.84% (over ggj)

Method 2.2% (over gcj)

7.3.2 Code Size

Typica Javaclassfilesare smaller than afew kilobytesinsize.
However, aclassfilerequiresaJVM and aclasslibrary in order to
run. The virtual machine and the core Java classes a one total
around 20 megabytes on both Windows and Solaris.

Extensively pared-down Virtud Machines and class libraries
for embedded systems can be much smaller. Sun Microsystems
K Virtual Machine and Wabasoft's Waba both have Virtual
machine and class library sizes that are around 100 kilobytes.
However, these have very basic functionality, such as minimal
library classes and limited arithmetic support. Javaisno longer as
portable on these, and applications need to be written with the tar-
get VM in mind. Note that comparison of our Java-to-C approach
with astripped-down VM is not an apples-to-apples comparison
because our approach achieves much greater functionality. We
allow direct use of standard Java library classes and data types
throughout these benchmarks, and in most applications. Thisis
not uniformly permitted by lightweight Javaimplementations.itis
interesting to compare these with the sizes of stand-al one executa-
bles generated with gcj and the Java-to-C compiler. Both of these
enable much richer functionality in Javato be implemented. We

seethat gcj-generated executables are al around 1.3MB, regard-
less of the gpplication. Thisis becausethe lack of apruning ago-

rithm causes a very large part of thelibrary to belinked. On the
other hand, our Java-to-C approach generates optimized and
pruned C code for all required classes, effectively building acus-
tom library for each application. This accounts for the signifi-
cantly lower code size of the order of 10-100 kilobytes, whichis
small enough for low-end embedded systems.

1600 -
1400
1200 A

400 -

Code Size (kilobytes)
N o '5
o [oNeNe]

o o o O O

O i 6‘\- 6\
) (\Q ss\\Q,\Q é@ é@
W g @ c®
& S
S

EHgcj mJava-to-C

Figure 2. Sizes of generated executablesfor various applications.

TABLE 4. Sizes of generated executablesfor various
applications. (Kilobytes)

acg Java-to-C Ratio of code
sizes
Linpack 1371 23 59.6
CaffeineMark 1378 60 23.0
LinkedListTest 1378 52 26.5
HashSet Test 1379 135 10.2
Average 27.3

8. Conclusion and Future Work

We have demonstrated that a C-based static compilation strat-
egy isviable as an embedded implementation for Java.We have
described the first Javaimplementation that is suitable across a
wide range of embedded systems.

The performance achieved was comparable to a J T-enabled
JVM while using advanced code-pruning techniques to obtain
code size over 25 times smaller than that with a best-of-class
Java-to-native-code compiler.

This gpproach is most promising because, as compared to typ-
ical embedded virtua machines, we see that a C-based compila-
tion strategy can remove many of the restrictions on functionality
without an accompanying increasein codesize.

Preliminary studies comparing the generated C code with
hand-coded C code have been encouraging. We intend to measure
the performance/code size of generated code, as opposed to hand-

1. Thesizeof libgcj.ais 10MB.

coded C. It would aso beinteresting to perform performance/size
characterizations of thisframework using a classlibrary specifi-
cdly targeted for embedded systems.

9. Acknowledgements
This research was supported by the DARPA MoBIES pro-

gram, through U.C. Berkeley.

10. References

[1] James Godling, Bill Joy, and Guy Steele, “The Java Language Specifi-
cation”, Addison-Wesley, 1996.

[2] Tim Lindholm, and Frank Yellin, “The Java Virtual Machine Specifi-
cation”, Addison-Wesley, 1996.

[3] Sun Microsystems, “Java 2 Platform Micro Edition (2ME) Technol -
ogy for Creating Mobile Devices’, Sun Microsystems white paper, 2000.
[4] M. Weiss et. d, “TurboJ V1.1.2, Ahead-of-time Java compiler”, The
Open Group Research Ingtitute, Grenoble, France, 1997-1999.

[5] G Muller and U. Schultz, “Harissa: A hybrid approach to Java execu-
tion”, |IEEE Software, pages 44-- 51, March 1999.

[6] J. Dean et. d, “Vortex: An optimizing compiler for object-oriented
languages” ACM S GPLAN Notices, 31(10):83-- 100, Oct. 1996.

[7] Hsehet. d., “ Java Bytecode to Native Code Trand ation: The Caffeine
Prototype and Preliminary Results’, MICRO,1996.

[8] “Guideto GNU gcj ", http://gcc.gnu.org/javalindex.html.

[9] T. A. Proebsting et. d., “Toba: Java For Applications-- A Way Ahead
of Time (WAT) Compiler”, COOTS 1997.

[10] RgaVdlee-Ral, “ Soot: A Java Bytecode Optimization Framework”,
Master's Thesis, McGill University, July 2000.

[11] RajaValee-Rai et. d, “ Soot - a Java bytecode optimization frame-
work”, CASCON, 1999.

[12] R. Vdlee-Rai et. d., “Optimizing Java bytecode using the Soot
framework: Isit feasible?’, International Conference on Compiler Con-
struction, LNCS 1781, 2000.

[13] RajaVdlee-Ra and Laurie J. Hendren, “ Imple: Smplifying Java
Bytecode for Analyses and Transformations’, Technical Report, Sable
Group, McGill University, July 1998.

[24] Paul R. Wilson. “Uniprocessor garbage collection techniques’. In
Proc. of International Workshop on Memory Management in the
Joringer-\erlag Lecture Notesin Computer Science series., &. Malo,
France, September 1992.

[15] Boehm, H., and M. Weiser, “ Garbage Collection in an Uncooperative
Environment”, Software Practice & Experience, September 1988, pp.
807-820.

[16] Boehm, H., “ Space Efficient Conservative Garbage Collection”,
PLDI, 1993.

[17] Vijay Sundaresan et. a., “ Practical Virtual Method Cdl Resolution
for Java’, OOPS_A, 2000.

[18] Vijay Sundaresan et. al.," Practical Virtua Method Call Resolution
for Java’. Sable Technical Report 1999-2, McGill University, April 1999.
[19] Vijay Sundaresan. “Practica Techniques For Virtua Call Resolution
InJava’, Magter'sthesis, McGill University, Montreal, Canada, Sep.
1999.

[20] What isWaba?, http:/mww.wabasoft.com/products.shtml

[21] SuperWaba, THE Java VM for PDAs http://mww.superwaba.com.br
[22] Jove: Optimizing Native Compiler for Java technology, http://

WwWW.i nstanti ations.convjove/product/literature.htm.

[23] Jove Technical FAQ, http:/mww.instantiati ons.convjove/product/
Docg/FAQ.html.

[24] Excelsior JET - Devel oper’s Per spective, http://www.excelsior-
usa.com/jetdev.html

[25] Excelsior JET Ingtallation Package Sze, http://www.excelsor-
usa.com/jetbenchsizel4.html

	Abstract
	1. Introduction
	2. Related Work
	3. Limitations
	4. Runtime Data Structures
	4.1 Naming Conventions
	4.2 Data and Code Layout
	TABLE 1. Structure of Class Descriptor Table

	4.3 Referencing Objects, Methods and Fields.
	TABLE 2. C equivalents of Java references

	4.4 Arrays

	5. Code Generation
	5.1 Interfaces
	5.2 Exception Handling
	5.3 Native Methods and User-Defined Code
	5.4 Garbage Collection

	6. Code Pruning Strategy
	6.1 Analysis
	6.2 Computing the Set of Required Entities
	1. A set of compulsory entities is always required. This includes the System.initializeSystemClas...
	2. If a method m is required, the following also become required: the class declaring m, all meth...
	3. If a field f is required, the following also become required: the class declaring f, the class...
	4. If a class c is required, the following also become required: all superclasses of c, the class...

	6.3 Pruning and Code Generation

	7. Performance Studies
	7.1 Benchmarks
	7.2 Methodology
	7.3 Results
	7.3.1 Performance
	Figure 1. Performance for various benchmarks. A higher score indicates better performance.
	TABLE 3. Performance improvement of a Java-to-C implementation over the highest-performing of the...

	7.3.2 Code Size
	TABLE 4. Sizes of generated executables for various applications. (Kilobytes)
	Figure 2. Sizes of generated executables for various applications.

	8. Conclusion and Future Work
	9. Acknowledgements
	10. References
	[1] James Gosling, Bill Joy, and Guy Steele, “The Java Language Specification”, Addison-Wesley, 1...
	[2] Tim Lindholm, and Frank Yellin, “The Java Virtual Machine Specification”, Addison-Wesley, 1996.
	[3] Sun Microsystems, “Java 2 Platform Micro Edition (J2ME) Technology for Creating Mobile Device...
	[4] M. Weiss et. al, “TurboJ V1.1.2, Ahead-of-time Java compiler”, The Open Group Research Instit...
	[5] G. Muller and U. Schultz, “Harissa: A hybrid approach to Java execution”, IEEE Software, page...
	[6] J. Dean et. al, “Vortex: An optimizing compiler for object-oriented languages” ACM SIGPLAN No...
	[7] Hsieh et. al., “Java Bytecode to Native Code Translation: The Caffeine Prototype and Prelimin...
	[8] “Guide to GNU gcj”, http://gcc.gnu.org/java/index.html.
	[9] T. A. Proebsting et. al., “Toba: Java For Applications -- A Way Ahead of Time (WAT) Compiler”...
	[10] Raja Vallee-Rai, “Soot: A Java Bytecode Optimization Framework”, Master’s Thesis, McGill Uni...
	[11] Raja Vallee-Rai et. al, “Soot - a Java bytecode optimization framework”, CASCON, 1999.
	[12] R. Vallee-Rai et. al., “Optimizing Java bytecode using the Soot framework: Is it feasible?”,...
	[13] Raja Vallee-Rai and Laurie J. Hendren, “Jimple: Simplifying Java Bytecode for Analyses and T...
	[14] Paul R. Wilson. “Uniprocessor garbage collection techniques”. In Proc. of International Work...
	[15] Boehm, H., and M. Weiser, “Garbage Collection in an Uncooperative Environment”, Software Pra...
	[16] Boehm, H., “Space Efficient Conservative Garbage Collection”, PLDI, 1993.
	[17] Vijay Sundaresan et. al., “Practical Virtual Method Call Resolution for Java”, OOPSLA, 2000.
	[18] Vijay Sundaresan et. al.,“Practical Virtual Method Call Resolution for Java”. Sable Technica...
	[19] Vijay Sundaresan. “Practical Techniques For Virtual Call Resolution In Java”, Master's thesi...
	[20] What is Waba?, http://www.wabasoft.com/products.shtml
	[21] SuperWaba, THE Java VM for PDAs http://www.superwaba.com.br
	[22] Jove:Optimizing Native Compiler for Java technology, http:// www.instantiations.com/jove/pro...
	[23] Jove Technical FAQ, http://www.instantiations.com/jove/product/ Docs/FAQ.html.
	[24] Excelsior JET - Developer's Perspective, http://www.excelsior- usa.com/jetdev.html
	[25] Excelsior JET Installation Package Size, http://www.excelsior- usa.com/jetbenchsize14.html

	Java-through-C Compilation: An Enabling Technology for Java in Embedded Systems
	Ankush Varma and Shuvra S. Bhattacharyya
	University of Maryland, CollegePark
	{ankush,ssb}@eng.umd.edu

	Text2: In Proceedings of the Design Automation and Test in Europe Conference and Exhibition, Designer's Forum, pages 161-167, Paris, France, February 2004.

