
Java-through-C Compilation: An Enabling Technology for
Java in Embedded Systems

Ankush Varma and Shuvra S. Bhattacharyya
University of Maryland, CollegePark

{ankush,ssb}@eng.umd.edu
Abstract
The Java programming language is acheiving greater accep-

tance in high-end embedded systems such as cellphones and
PDAs. However, current embedded implementations of Java
impose tight constraints on functionality, while requiring signifi-
cant storage space. In addition, they require that a JVM be ported
to each such platform.

We demonstrate the first Java-to-C compilation strategy that is
suitable for a wide range of embedded systems, thereby enabling
broad use of Java on embedded platforms. This strategy removes
many of the constraints on functionality and reduces code size
without sacrificing performance. The compilation framework
described is easily retargetable, and is also applicable to bare-
bones embedded systems with no operating system or JVM.

On an average, we found the size of the generated executables
to be over 25 times smaller than those generated by a cutting-
edge Java-to-native-code compiler, while providing performance
comparable to the best of various Java implementation strategies.

1. Introduction
The Java [1] programming language is a strongly typed, gen-

eral-purpose, concurrent, class-based, object-oriented language.
While it has a number of features that set it apart from other lan-
guages such as C, C++ or Pascal, one of its key characteristics is
its portability.

The “write once, run anywhere” portability of Java is achieved
by compiling the source code into a class file format. A class file
is a byte stream that contains the definition of a single class or
interface. This includes class information and bytecode. Bytecode
is object code that is processed by a program, referred to as the
Java Virtual Machine (JVM) [2], rather than by the hardware pro-
cessor directly.

This portability is based on the implicit assumption that a full-
featured JVM exists for all target platforms. In reality, many
embedded implementations of Java do not support all Java fea-
tures, and use an extremely restricted class library instead of the
Java standard library. This requires applications to be written with
a particular implementation in mind, and leads to significant loss
of portability.

We propose a strategy that is suitable for a wide range of
embedded systems. We compile Java code into platform-specific
C code, which is then converted to an executable by a C compiler.
The JVM overhead of dynamic bytecode-to-machine code con-
version is thus completely eliminated. Static compilation also
allows more aggressive optimization techniques, which lead to
lower code size and higher speed. However, much of the function-

ality is preserved, and the source code of most Java applications
need not be modified to run them on embedded platforms. Stan-
dard Java classes and utilities can be supported to a high degree.

2. Related Work
Various alternative Java implementations have been explored

recently. TurboJ [4] speeds up execution by compiling bytecode
to native code ahead of time, but using a JVM for some functions.
Harissa [5] generates C code from Java, but uses a JVM for
some functionality. The JVM allows Java to be fully supported, at
the cost of increased code size.

Jove [22] is a native compiler targeted at large server/work-
station programs. It creates executables that are aggressively opti-
mized for speed, not for code size, and thus generates relatively
large executables [23].

gcj [8] provides a sophisticated and standardized method for
compiling Java source code or bytecode into native executable
form. It provides a complete runtime environment for Java, and is
a cutting-edge Java-to-native code compiler. Earlier native-code
compilers for Java include Vortex [6] and Caffeine [7].
Commercial Compilers such as Excelsior’s JET [24] are also
available, with generated code sizes similar to those for gcj [25].

Sun’s KVM (K Virtual Machine) [3] is typical of embedded
implementations of Java. It provides reasonable performance and
small code size by tightly restricting functionality. It does not sup-
port floating-point data types, reflection or object finalization
methods, and it places some limitations on threads. It supports a
minimal class library and has a code size (the combined size of the
Virtual Machine and class library) of ~100KB. The small code
size constraint does not allow JIT-compilation. WabaSoft’s Waba
Virtual Machine [20] is another pruned-down Virtual Machine
that supports a strict subset of Java. It excludes long data types,
double data types, support for exceptions and threads. It provides
a small specialized library, so existing programs need to be rewrit-
ten for Waba. The code size of a Waba implementation is
~100KB. Both of these have versions that provide additional
functionality by increasing code size to 300-500KB.

Toba [9] is an elegantly-structured Java-to-C compiler.
Unfortunately, it is built around a large runtime library and does
not attempt to meet the code size constraints of small embedded
systems.

We build on some of the concepts introduced in [9] further,
introducing features and optimizations to create a viable embed-
ded implementation. We show that a C-based optimized compila-
tion strategy can meet the size constraints inherent in embedded
systems and provide performance comparable to the best of other

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
FEB 2004 2. REPORT TYPE

3. DATES COVERED
 00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
Java-through-C Compilation: An Enabling Technology for Java in
Embedded Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Maryland,8400 Baltimore Avenue,College Park,MD,20742

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

implementations without sacrificing Java functionality. The
richly-featured Java libraries can be used instead of stripped-
down versions.

3. Limitations
A C-based static compilation policy removes many of the

restrictions imposed by stripped-down embedded JVMs. In par-
ticular, it allows developers to use any data types or standard
library classes. The restrictions imposed by such a strategy are:
• Dynamic Loading and Reflection are not supported, sim-
ply because the underlying embedded systems do not support
these.

• The generated executable runs as a user process, so appli-
cations that rely on a JVM as a buffer between them and the
platform for security cannot be guaranteed to run correctly.

• Our current implementation does not support threads.
Thread libraries are platform dependant and we favored porta-
bility while making design decisions. There are no theoretical
reasons why Java threads cannot be implemented in a C-based
compilation framework, and compilers such as Toba [9] have
successfully implemented Java threads in C on a Solaris plat-
form.

4. Runtime Data Structures
The Java object model provides a rich set of features to

describe object types and operations. We provide data structures
that provide this functionality within C. This data layout strategy
is a direct adaptation of the strategies used in many virtual
machines, and is similar to that described in Toba [9].

4.1 Naming Conventions
Java allows identifier names to be unlimited strings of unicode

characters, whereas C requires all identifiers to be ASCII charac-
ters of 63 or fewer characters. Further, the name of a Java entity
does not uniquely identify it. A Java class is uniquely identified
by its package and name. Similarly, a Java method is uniquely
described by its class and signature, since Java methods may be
overloaded. To prevent two distinct Java entities from being
mapped to the same C name, we generate C names by removing
characters not permitted in C identifiers, and adding a unique
hash-code prefix. This enables all methods and all classes to share
a global namespace.

4.2 Data and Code Layout
Java primitive types are mapped to primitive C types of the

appropriate size. Java objects are reference types which extend
java.lang.Object. These are translated into C pointer
types. Each reference points to an instance structure in C. The
instance structure contains all instance-specific information (such
as non-static fields), and a pointer to a common class structure.
There is a single class structure corresponding to each class,
which contains three sub-structures: the class descriptor table, the
methods table, and the class variables table.

The class descriptor table contains information needed across
all classes, such as the name of the class, a pointer to the super-
class etc. The major fields of the class descriptor table are shown
in Table 1.

The method table contains pointers to functions that imple-
ment the various methods of the class. The entries for methods
present in the parent class come first, followed by methods
present in this class, and absent in the parent class. The ordering
of methods is maintained from class to subclass. This precise
ordering enables type polymorphism by allowing a class to be
treated as any of its superclasses. This is because the entry corre-
sponding to a given method will occupy the same location in the
class structure of all subclasses of any given class, and its location
will be invariant when a class structure is cast and indexed as the
class structure of a superclass.

The class variable table contains class variables, such as static
fields. Note that all non-static fields are members of the instance
structure, not of the class structure.

4.3 Referencing Objects, Methods and Fields.
References to Java Objects are translated into pointers to the

corresponding instance structures. Method references are
changed into the appropriate function pointers, and field refer-
ences become pointers to fields of the corresponding structure.

The code below shows a sample Java class “Circle”, with an
instance “c”. Examples of C equivalents of references to members
of c are illustrated in Table 2.
public class Circle implements SomeInterface{
//Field
int radius;
// Method.
int getRadius();
// Static method.
static String getType();
// Method from SomeInterface.
void move(int x, int y);
}
...
Circle c;

TABLE 1. Structure of Class Descriptor Table

char* name Character String containing the
name of the class.

int instance_size The number of bytes in instance
structures of this class.

void*

superclass

Pointer to class structure of par-
ent class.

short Array Indicates whether the class is an
array.

void* (*lookup)
(int)

Pointer to function that resolves
polymorphic interface method
invocations at runtime.

short

(*instanceOf)
(void*, long)

Pointer to function that resolves
“instanceof” queries at runtime.

4.4 Arrays
The Java programming language allows dynamically-created

arrays. We treat arrays as special objects. Their class descriptors
can be set at runtime, and all arrays of a given type share the same
class descriptor. Multi-dimensional arrays are treated as arrays of
arrays. C functions and macros were written to implement func-
tionality for array initialization and array access

5. Code Generation
The Java-to-C translation framework is written entirely in

Java. It takes Java class files as input. These contain Java byte-
code, which is a stack-based low-level description, and is not suit-
able for direct translation to C. For analysis of the bytecode, we
make extensive use of Soot [10][11][12], a sophisticated Java
bytecode analysis and optimization framework. Soot allows byte-
code to be transformed into Jimple [13], a typed 3-address inter-
mediate representation designed to simplify analysis and
transformation of Java bytecode. C code is then generated based
on the Jimple representation.

For each class required by the application, the compiler gener-
ates a C file containing all required methods and a header file con-
taining various declarations and type definitions. A makefile
tailored to the target system is also generated for allowing the
platform-specific C compiler to create an executable.

5.1 Interfaces
Type polymorphism arising from class-subclass relationships

is easily resolved via the structure of the method table because
each class (except java.lang.object) has exactly one par-
ent. Java does not allow multiple inheritance. However a class
may implement an arbitrary number of interfaces, as described in
[1]. Calls to methods defined in interfaces may also be polymor-
phic, i.e. there is a set of possible targets of the method call, and a
single statically known target may not exist. Such invocations are
resolved by a per-class lookup method that takes the hashcode of
the interface method called as an argument and returns a pointer to
the appropriate function by performing a runtime table-lookup.

5.2 Exception Handling
Exceptions in Java involve a non-local transfer of control from

the point where the exception occurred to a point that can be spec-
ified by the programmer. An exception is said to be thrown from
the point where it occurred and is said to be caught at the point to
which control is transferred. If an exception cannot be handled
within a procedure, the call stack is unwound until a method is
reached which can handle the exception.

Exception handling in the JVM uses a program counter to keep
track of the point at which an exception was thrown. We emulate
this by using a global exceptional program counter (epc). This is
incremented every time a trap (a range of instructions corre-
sponding to an exception) is entered or exited.

We use the setjmp and longjmp routines to handle the non-
local jumps and call-stack unwinding associated with exception
handling. The appropriate handler for each exception is resolved
via a table-lookup.

5.3 Native Methods and User-Defined Code
Java requires certain native methods, which are methods

implemented in platform-dependent code, typically written in
another programming language such as C.

This compiler allows the user to specify C code for the body of
any native method. At compile-time, this is integrated with the
generated C code, allowing any C native methods to be fully sup-
ported. We created a short C file for the body of each required
native method.

In addition, we also allow user-defined code for non-native
methods. This allows hand-optimization of critical code, or easy
use of specialized I/O and adaptation of standard Java classes to
embedded-system-specific uses. For example, the code for the
method PrintStream.print(boolean)can be defined to
turn an LED on the embedded board on or off, while printing
“true” or “false” to a screen on a desktop. This allows a developer
to specify platform-specific or optimized code for any method.

5.4 Garbage Collection
Java implements automatic garbage collection. Objects no

longer in use are destroyed and memory freed up without any
explicit programming directive. The choice of garbage collection
strategy used is left to the implementation.

Our implementation uses the Boehm-Demers-Weiser conser-
vative garbage collector [15][16]. A conservative collector checks
all allocated memory for potential pointers, and traces the transi-
tive closure of all memory reachable from these pointers. It does
not require type information, and thus memory management is
transparent to the programmer.

6. Code Pruning Strategy
Java classes tend to derive a lot of functionality from other

Java classes, in a highly interlinked manner. The simplest Java

class can require over 250 other classes for execution1. All classes
are subclasses of java.lang.Object. In addition, classes
reference fields and methods in other classes, throw exceptions
(all exceptions are Java classes) and have local variables that may

TABLE 2. C equivalents of Java references

Reference Java Code C Codea

a. Hashcode prefixes to the names of C identifiers are omitted for
clarity.

 field c.radius c->radius

instance
method

c.

getRa-
dius()

c->class

->getRadius(c)

Static
method

c.get-
Type()

c->class

->getType()

Interface
method

c.move(x,y
)

c->class

->lookup(9721)

(c, x, y)

1. This can be seen by running “java -verbose” on a simple
“Hello World” program.

be objects belonging to other classes. C code needs to be gener-
ated for all classes, methods and fields that may be accessed.

Simply translating all classes that are referenced by the main
class into C fails. This is because each of these classes will have
methods or fields that are not used by the main class. These
unnecessary methods and fields can reference additional classes,
so all those classes will also need to be compiled unneccessarily.

A simple solution is to compile all Java library classes into a
library and load the required ones at runtime. This is the approach
used by Toba [9] and gcj [8]. This simplifies compilation and
linking, but increases code size because the size of this library can
be of the order of megabytes, and this may be too costly to imple-
ment on embedded systems.

We make large reductions in code size by analyzing all rele-
vant files, and discarding not only unnecessary classes, but also
unneccessary methods and fields. This leads to generation of
highly optimized C code, which compiles into an executable with
a small footprint.

6.1 Analysis
We use the Soot framework to create a Call Graph of the

application. This is a graph with methods as the nodes, and calls
from one method to another as directed edges.

At first glance, it seems that the transitive closure of the meth-
ods in the main class should represent all methods that can be
called. However, this is not so, because the first time the field or
method of a class is referenced, its class initialization method
[1][2] is also invoked, and this can reference other methods or
fields in turn.

The method call graph also contains an edge from a method to
every possible target of method calls in it. The number of such tar-
gets can be large for polymorphic method calls. A more sophisti-
cated analysis can trim the method call graph by removing some
of the edges corresponding to polymorphic invocations.

We use Variable Type Analysis (VTA) [17][18][19] to perform
this call graph trimming. This analysis computes the possible
runtime types of each variable using a reaching type analysis, and
uses this information to remove spurious edges.

6.2 Computing the Set of Required Entities
From the analysis mentioned above, the set of all possible

required classes, methods and fields (collectively grouped as enti-
ties) can be statically computed. We use a set of rules to determine
which classes are required.

1. A set of compulsory entities is always required. This
includes the System.initializeSystemClass()
method, all methods and fields of the
java.lang.Object class (since it is the global super-
class) and the main method of the main class to be com-
piled.

2. If a method m is required, the following also become
required: the class declaring m, all methods that may pos-
sibly be called by m, all fields accessed in the body of m,
the classes of all local variables and arguments of m, the
classes corresponding to all exceptions that may be caught

or thrown by m, and the method corresponding to m in all
required subclasses of the class declaring m.

3. If a field f is required, the following also become required:
the class declaring f, the class corresponding to the type of
f (if any) and the field corresponding to f in all required
subclasses of the class declaring it.

4. If a class c is required, the following also become
required: all superclasses of c, the class initialization
method of c, and the instance initialization method of c.
Interfaces are treated as classes. A worklist-based algorithm

can be used to add to the set of required entities until no additional
entities can be found by application of these rules. Together, rules
2, 3 and 4 encapsulate all possible dependencies between entities.
This makes the set of required entities self-contained.

6.3 Pruning and Code Generation
The algorithm described above performs a form of inter-proce-

dural dead-code elimination. The code generator generates code
only for required entities. Not only does this remove classes that
are never used, but also methods that are never called and fields
that are never referenced. The code size reduction thus achieved
leads to executables with code footprints within the levels accept-
able for embedded systems.

7. Performance Studies
7.1 Benchmarks

To measure floating-point and arithmetic performance, we
used the Java version of the Linpack benchmark. Linpack is a
collection of subroutines that analyze and solve linear equations
and linear least-squares problems. The benchmark solves a dense
500 x 500 system of linear equations with one right-hand side, Ax
= B. The matrix is generated randomly and the right-hand side is
constructed so the solution has all components equal to one. The
method of solution is based on Gaussian elimination with partial
pivoting. The benchmark score is a number indicative of the
speed at which the system can execute floating point operations.

The Embedded CaffeineMark1 benchmark suite uses 6 tests
to measure various aspects of Java performance. The score for
each test is a number proportional to the number of times the test
was executed divided by the execution time.

The following is a brief description of what each Caffeine-
Mark test does:
• Sieve: The classic sieve of Eratosthenes finds prime num-
bers.

• Loop: Uses sorting and sequence generation to measure
compiler optimization of loops.

• Logic: Tests the speed with which the virtual machine exe-
cutes decision-making instructions.

• Method: Executes recursive function calls to evaluate
method invocation efficiency.

• String: Performs basic string manipulations.

1. Pendragon Software’s CaffeineMark(tm) ver. 3.0 was used. The test
was performed without independent verification by Pendragon Software
and Pendragon Software makes no representations or warranties as to the
result of the test. CaffeineMark is a trademark of Pendragon Software.

• Float: Simulates a 3D rotation of objects around a point.
In addition to these, we also estimate code size by compiling

additional programs that perform extensive tests of specific func-
tionality (HashSets, LinkedLists etc.).

7.2 Methodology
We obtained the benchmark scores for interpreted Java by

using Sun standard JVM with the -Xint flag. Sun Microsys-
tems’ JVM (with default flags) was used as an example of a JIT-
enabled Virtual Machine. GNU gcj was used as an example of a
standard Java-to-native-code compiler. gcj was used with the
flags -fno-bounds-check -fno-store-check -
static -s -O2. These options gave both the smallest and the
fastest static native code. Turning on additional optimization
(upto -O99) did not lead to a significant impact on either perfor-
mance or code size. The C code generated by the Java-to-C com-
piler was compiled with gcc using the flags -O2 -static -
static-libgcc -s -Wall -pedantic, with bounds-
checking turned off. These flags ensure ANSI C compliance, per-
form only basic optimizations and generate a static executable.

The tests were performed on a 1.5GHz Pentium 4 running
Cygwin on Windows 2000. This platform allows us to run the
Java Virtual Machine, gcj, gcc, and the Java-to-C compiler. All
benchmark scores shown are the average of 20 runs.

Our Java-to-C compiler is highly retargetable. C code genera-
tion has been extensively tested for Cygwin on a Windows plat-
form, a Sparc Ultra 5 running Solaris 5.7, and a TMSC320C6711
DSP platform. The latter is an 8-way VLIW, floating-point DSP
running at 200MHz. It provides an example of a target embedded
system on which it has not been possible to run Java code so far,
but on which we were able to run Java applications using a Java-
to-C compilation strategy. The DSP’s C compiler serves as the
back end for compilation of C code to native code. Generated
code ran correctly on the system, and we are now working on
porting the garbage collection library to the platform.

7.3 Results
7.3.1 Performance

The performance of various benchmarks across a number of
possible execution strategies is shown in Figure 1.

We compare the performance of a JVM running interpreted
Java (no JIT), Java on a JIT-enabled JVM, Java-to-native-code
conversion with the gcj front-end to the GNU compiler suite, and
of using C as intermediate language for final compilation to native
code.We see that interpreted Java runs an order of magnitude
slower than any other strategy. This is because a JVM that is run-
ning Java without JIT compilation incurs a recurring overhead of
converting bytecode to machine code. This overhead is reduced
by JVMs using a Just-In-Time compilation strategy, in which
machine code for a method is generated from its bytecode the first
time a method is invoked. gcj performs faster than JIT-compiled
Java (slower on String and Sieve, but faster on the other bench-
marks). The Java-to-C compilation strategy performs the best on
all benchmarks except String. This can readily be remedied by
providing user-defined code for common string operations, but

we omitted such hand-optimization because that would no longer
provide a useful comparison.

7.3.2 Code Size
Typical Java class files are smaller than a few kilobytes in size.

However, a class file requires a JVM and a class library in order to
run. The virtual machine and the core Java classes alone total
around 20 megabytes on both Windows and Solaris.

Extensively pared-down Virtual Machines and class libraries
for embedded systems can be much smaller. Sun Microsystems’
K Virtual Machine and Wabasoft’s Waba both have Virtual
machine and class library sizes that are around 100 kilobytes.
However, these have very basic functionality, such as minimal
library classes and limited arithmetic support. Java is no longer as
portable on these, and applications need to be written with the tar-
get VM in mind. Note that comparison of our Java-to-C approach
with a stripped-down JVM is not an apples-to-apples comparison
because our approach achieves much greater functionality. We
allow direct use of standard Java library classes and data types
throughout these benchmarks, and in most applications. This is
not uniformly permitted by lightweight Java implementations.It is
interesting to compare these with the sizes of stand-alone executa-
bles generated with gcj and the Java-to-C compiler. Both of these
enable much richer functionality in Java to be implemented. We

TABLE 3. Performance improvement of a Java-to-C
implementation over the highest-performing of the other
strategies.

% improvement in performance over next-
best strategy

Linpack 1.73% (over gcj)

Sieve 5.85% (over Java JIT)

Loop 4.35% (over gcj)

Logic 5.94% (over gcj)

String -57.1 (JIT scores higher than Java-to-C)

Float 64.84% (over gcj)

Method 2.2% (over gcj)

Figure 1. Performance for various benchmarks. A higher score
indicates better performance.

0

20000

40000

60000

80000

100000

L
in

pa
ck

Si
ev

e

L
oo

p

L
og

ic

St
ri

ng

F
lo

at

M
et

ho
d

B
en

ch
m

ar
k

Sc
or

e

Interpreted Java java JIT gcj Java-to-C

see that gcj-generated executables are all around 1.3MB, regard-
less of the application. This is because the lack of a pruning algo-

rithm causes a very large part of the library to be linked1. On the
other hand, our Java-to-C approach generates optimized and
pruned C code for all required classes, effectively building a cus-
tom library for each application. This accounts for the signifi-
cantly lower code size of the order of 10-100 kilobytes, which is
small enough for low-end embedded systems.

8. Conclusion and Future Work
We have demonstrated that a C-based static compilation strat-

egy is viable as an embedded implementation for Java.We have
described the first Java implementation that is suitable across a
wide range of embedded systems.

The performance achieved was comparable to a JIT-enabled
JVM while using advanced code-pruning techniques to obtain
code size over 25 times smaller than that with a best-of-class
Java-to-native-code compiler.

This approach is most promising because, as compared to typ-
ical embedded virtual machines, we see that a C-based compila-
tion strategy can remove many of the restrictions on functionality
without an accompanying increase in code size.

Preliminary studies comparing the generated C code with
hand-coded C code have been encouraging. We intend to measure
the performance/code size of generated code, as opposed to hand-

coded C. It would also be interesting to perform performance/size
characterizations of this framework using a class library specifi-
cally targeted for embedded systems.

9. Acknowledgements
This research was supported by the DARPA MoBIES pro-

gram, through U.C. Berkeley.

10. References
[1] James Gosling, Bill Joy, and Guy Steele, “The Java Language Specifi-
cation”, Addison-Wesley, 1996.
[2] Tim Lindholm, and Frank Yellin, “The Java Virtual Machine Specifi-
cation”, Addison-Wesley, 1996.
[3] Sun Microsystems, “Java 2 Platform Micro Edition (J2ME) Technol-
ogy for Creating Mobile Devices”, Sun Microsystems white paper, 2000.
[4] M. Weiss et. al, “TurboJ V1.1.2, Ahead-of-time Java compiler”, The
Open Group Research Institute, Grenoble, France, 1997-1999.
[5] G. Muller and U. Schultz, “Harissa: A hybrid approach to Java execu-
tion”, IEEE Software, pages 44-- 51, March 1999.
[6] J. Dean et. al, “Vortex: An optimizing compiler for object-oriented
languages” ACM SIGPLAN Notices, 31(10):83-- 100, Oct. 1996.
[7] Hsieh et. al., “Java Bytecode to Native Code Translation: The Caffeine
Prototype and Preliminary Results”, MICRO,1996.
[8] “Guide to GNU gcj”, http://gcc.gnu.org/java/index.html.
[9] T. A. Proebsting et. al., “Toba: Java For Applications -- A Way Ahead
of Time (WAT) Compiler”, COOTS, 1997.
[10] Raja Vallee-Rai, “Soot: A Java Bytecode Optimization Framework”,
Master’s Thesis, McGill University, July 2000.
[11] Raja Vallee-Rai et. al, “Soot - a Java bytecode optimization frame-
work”, CASCON, 1999.
[12] R. Vallee-Rai et. al., “Optimizing Java bytecode using the Soot
framework: Is it feasible?”, International Conference on Compiler Con-
struction, LNCS 1781, 2000.
[13] Raja Vallee-Rai and Laurie J. Hendren, “Jimple: Simplifying Java
Bytecode for Analyses and Transformations”, Technical Report, Sable
Group, McGill University, July 1998.
[14] Paul R. Wilson. “Uniprocessor garbage collection techniques”. In
Proc. of International Workshop on Memory Management in the
Springer-Verlag Lecture Notes in Computer Science series., St. Malo,
France, September 1992.
[15] Boehm, H., and M. Weiser, “Garbage Collection in an Uncooperative
Environment”, Software Practice & Experience, September 1988, pp.
807-820.
[16] Boehm, H., “Space Efficient Conservative Garbage Collection”,
PLDI, 1993.
[17] Vijay Sundaresan et. al., “Practical Virtual Method Call Resolution
for Java”, OOPSLA, 2000.
[18] Vijay Sundaresan et. al.,“Practical Virtual Method Call Resolution
for Java”. Sable Technical Report 1999-2, McGill University, April 1999.
[19] Vijay Sundaresan. “Practical Techniques For Virtual Call Resolution
In Java”, Master’s thesis, McGill University, Montreal, Canada, Sep.
1999.
[20] What is Waba?, http://www.wabasoft.com/products.shtml
[21] SuperWaba, THE Java VM for PDAs http://www.superwaba.com.br
[22] Jove:Optimizing Native Compiler for Java technology, http://
www.instantiations.com/jove/product/literature.htm.
[23] Jove Technical FAQ, http://www.instantiations.com/jove/product/
Docs/FAQ.html.
[24] Excelsior JET - Developer’s Perspective, http://www.excelsior-
usa.com/jetdev.html
[25] Excelsior JET Installation Package Size, http://www.excelsior-
usa.com/jetbenchsize14.html1. The size of libgcj.a is 10MB.

TABLE 4. Sizes of generated executables for various
applications. (Kilobytes)

gcj Java-to-C Ratio of code
sizes

Linpack 1371 23 59.6

CaffeineMark 1378 60 23.0

LinkedListTest 1378 52 26.5

HashSetTest 1379 135 10.2

Average 27.3

Figure 2. Sizes of generated executables for various applications.

0
200
400
600
800

1000
1200
1400
1600

Lin
pac

k

Caf
fe

in
e

Lin
ke

dList
Tes

t

Has
hSet

Tes
t

C
o

d
e

S
iz

e
(k

ilo
b

yt
es

)

gcj Java-to-C

	Abstract
	1. Introduction
	2. Related Work
	3. Limitations
	4. Runtime Data Structures
	4.1 Naming Conventions
	4.2 Data and Code Layout
	TABLE 1. Structure of Class Descriptor Table

	4.3 Referencing Objects, Methods and Fields.
	TABLE 2. C equivalents of Java references

	4.4 Arrays

	5. Code Generation
	5.1 Interfaces
	5.2 Exception Handling
	5.3 Native Methods and User-Defined Code
	5.4 Garbage Collection

	6. Code Pruning Strategy
	6.1 Analysis
	6.2 Computing the Set of Required Entities
	1. A set of compulsory entities is always required. This includes the System.initializeSystemClas...
	2. If a method m is required, the following also become required: the class declaring m, all meth...
	3. If a field f is required, the following also become required: the class declaring f, the class...
	4. If a class c is required, the following also become required: all superclasses of c, the class...

	6.3 Pruning and Code Generation

	7. Performance Studies
	7.1 Benchmarks
	7.2 Methodology
	7.3 Results
	7.3.1 Performance
	Figure 1. Performance for various benchmarks. A higher score indicates better performance.
	TABLE 3. Performance improvement of a Java-to-C implementation over the highest-performing of the...

	7.3.2 Code Size
	TABLE 4. Sizes of generated executables for various applications. (Kilobytes)
	Figure 2. Sizes of generated executables for various applications.

	8. Conclusion and Future Work
	9. Acknowledgements
	10. References
	[1] James Gosling, Bill Joy, and Guy Steele, “The Java Language Specification”, Addison-Wesley, 1...
	[2] Tim Lindholm, and Frank Yellin, “The Java Virtual Machine Specification”, Addison-Wesley, 1996.
	[3] Sun Microsystems, “Java 2 Platform Micro Edition (J2ME) Technology for Creating Mobile Device...
	[4] M. Weiss et. al, “TurboJ V1.1.2, Ahead-of-time Java compiler”, The Open Group Research Instit...
	[5] G. Muller and U. Schultz, “Harissa: A hybrid approach to Java execution”, IEEE Software, page...
	[6] J. Dean et. al, “Vortex: An optimizing compiler for object-oriented languages” ACM SIGPLAN No...
	[7] Hsieh et. al., “Java Bytecode to Native Code Translation: The Caffeine Prototype and Prelimin...
	[8] “Guide to GNU gcj”, http://gcc.gnu.org/java/index.html.
	[9] T. A. Proebsting et. al., “Toba: Java For Applications -- A Way Ahead of Time (WAT) Compiler”...
	[10] Raja Vallee-Rai, “Soot: A Java Bytecode Optimization Framework”, Master’s Thesis, McGill Uni...
	[11] Raja Vallee-Rai et. al, “Soot - a Java bytecode optimization framework”, CASCON, 1999.
	[12] R. Vallee-Rai et. al., “Optimizing Java bytecode using the Soot framework: Is it feasible?”,...
	[13] Raja Vallee-Rai and Laurie J. Hendren, “Jimple: Simplifying Java Bytecode for Analyses and T...
	[14] Paul R. Wilson. “Uniprocessor garbage collection techniques”. In Proc. of International Work...
	[15] Boehm, H., and M. Weiser, “Garbage Collection in an Uncooperative Environment”, Software Pra...
	[16] Boehm, H., “Space Efficient Conservative Garbage Collection”, PLDI, 1993.
	[17] Vijay Sundaresan et. al., “Practical Virtual Method Call Resolution for Java”, OOPSLA, 2000.
	[18] Vijay Sundaresan et. al.,“Practical Virtual Method Call Resolution for Java”. Sable Technica...
	[19] Vijay Sundaresan. “Practical Techniques For Virtual Call Resolution In Java”, Master's thesi...
	[20] What is Waba?, http://www.wabasoft.com/products.shtml
	[21] SuperWaba, THE Java VM for PDAs http://www.superwaba.com.br
	[22] Jove:Optimizing Native Compiler for Java technology, http:// www.instantiations.com/jove/pro...
	[23] Jove Technical FAQ, http://www.instantiations.com/jove/product/ Docs/FAQ.html.
	[24] Excelsior JET - Developer's Perspective, http://www.excelsior- usa.com/jetdev.html
	[25] Excelsior JET Installation Package Size, http://www.excelsior- usa.com/jetbenchsize14.html

	Java-through-C Compilation: An Enabling Technology for Java in Embedded Systems
	Ankush Varma and Shuvra S. Bhattacharyya
	University of Maryland, CollegePark
	{ankush,ssb}@eng.umd.edu

	Text2: In Proceedings of the Design Automation and Test in Europe Conference and Exhibition, Designer's Forum, pages 161-167, Paris, France, February 2004.

