
APGAN and RPMC: Complementary Heuristics for Translating
DSP Block Diagrams into Efficient Software Implementations

Shuvra S. Bhattacharyya, Praveen K. Murthy, and Edward A. Lee

A portion of this research was undertaken as part of the Ptolemy project, which is supported by the
Advanced Research Projects Agency and the U. S. Air Force (under the RASSP program, contract
F33615-93-C-1317), Semiconductor Research Corporation (project 94-DC-008), National Science Foun-
dation (MIP-9201605), Office of Naval Technology (via Naval Research Laboratories), the State of Cali-
fornia MICRO program, and the following companies: Bell Northern Research, Dolby, Hitachi, Mentor
Graphics, Mitsubishi, NEC, Pacific Bell, Philips, Rockwell, Sony, and Synopsys.

S. S. Bhattacharyya is with the Semiconductor Research Laboratory, Hitachi America, Ltd., 201
East Tasman Drive, San Jose, California 95134, USA.

P. K. Murthy and E. A. Lee are with the Dept. of Electrical Engineering and Computer Sciences,
University of California at Berkeley, California 94720, USA.

ABSTRACT

Dataflow has proven to be an attractive computational model for graphical DSP design environ-
ments that support the automatic conversion of hierarchical signal flow diagrams into implementations on
programmable processors. The synchronous dataflow (SDF) model is particularly well-suited to dataflow-
based graphical programming because its restricted semantics offer strong formal properties and signifi-
cant compile-time predictability, while capturing the behavior of a large class of important signal process-
ing applications. When synthesizing software for embedded signal processing applications, critical
constraints arise due to the limited amounts of memory. In this paper, we propose a solution to the problem
of jointly optimizing the code and data size when converting SDF programs into software implementa-
tions.

We consider two approaches. The first is a customization to acyclic graphs of a bottom-up tech-
nique, called pairwise grouping of adjacent nodes (PGAN), that was proposed earlier for general SDF
graphs. We show that our customization to acyclic graphs significantly reduces the complexity of the gen-
eral PGAN algorithm, and we present a formal study of our modified PGAN technique that rigorously
establishes its optimality for a certain class of applications. The second approach that we consider is a top-
down technique, based on a generalized minimum-cut operation, that was introduced recently in [14]. We
present the results of an extensive experimental investigation on the performance of our modified PGAN
technique and the top-down approach and on the trade-offs between them. Based on these results, we con-
clude that these two techniques complement each other, and thus, they should both be incorporated into
SDF-based software implementation environments in which the minimization of memory requirements is
important. We have implemented these algorithms in the Ptolemy software environment [5] at UC Berke-
ley.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JAN 1997 2. REPORT TYPE

3. DATES COVERED
 00-00-1997 to 00-00-1997

4. TITLE AND SUBTITLE
APGAN and RPMC: Complementary Heuristics for Translating DSP
Block Diagrams into Efficient Software Implementations

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of Electrical Engineering and Computer Sciences,University
of California,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

33

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1 Motivation

In this paper, we present efficient techniques to compile graphical DSP programs based on the syn-

chronous dataflow (SDF) model into software implementations that require a minimum amount of memory

for code and data. Numerous DSP design environments, including a number of commercial tools, support

SDF or closely related models [11, 12, 15, 16, 17]. In SDF, a program is represented by a directed graph in

which each vertex (actor) represents a computation, edges specify FIFO communication channels, and

each actor produces (consumes) a fixed number of data values (tokens) onto (from) each output (input)

edge per invocation.

A key property of the SDF model is that static schedules can be constructed at compile time. This

removes the overhead of dynamic scheduling and is thus useful for real-time DSP programs where

throughput requirements are often severe. Another constraint that programmable DSPs used in embedded

systems have is the extremely limited amount of on-chip memory. Typically, these processors might only

have around 1000 bytes of program memory and 1000 bytes of data memory. Off-chip memory is usually

undesirable because it often entails a speed penalty, increased system cost, and power consumption. Hence,

it is imperative that the target code fit inside the on-chip memory whenever possible. While the SDF model

is natural for expressing a large class of multirate signal processing algorithms, care must be taken while

scheduling to avoid code and data size blowup. This paper considers the following combinatorial optimiza-

tion problem in SDF scheduling: Given an acyclic SDF graph, amongst the set of possible schedules for

this graph, there is a class of schedules that minimizes code size (in terms of metrics that will be defined

shortly). We would like to pick those schedules from this code-optimal class that also minimize the data

memory required for the buffers on the edges connecting the actors. It should be emphasized that we con-

centrate on uniprocessor scheduling in this paper.

Fig. 1 shows a simple SDF graph. This graph contains three actors, labeled , and . Each

edge is annotated with number of tokens produced (consumed) by its source (sink) actor, and the “D” on

the edge from to specifies a unit delay. Given an SDF edge , we denote the source actor and sink

actor of by and , and we denote the delay on by . Each unit of delay is imple-

mented as an initial token on the edge. Also, and respectively denote the number of

A B C2 1 1 3
Figure 1. A simple SDF graph.

D

A B C

A B e

e e()src e()snk e e()delay

e()prod e()cons
2

tokens produced onto by , and the number of tokens consumed from by .

A schedule is a sequence of actor firings. We compile a properly-constructed SDF graph by first

constructing a finite schedule that fires each actor at least once, does not deadlock, and produces no net

change in the number of tokens queued on each edge. We call such a schedule a valid schedule. Corre-

sponding to each actor in the schedule , we instantiate a code block that is obtained from a library of pre-

defined actors, and the resulting sequence of code blocks is encapsulated within an infinite loop to generate

a software implementation of the SDF graph.

SDF graphs for which valid schedules exist are called consistent SDF graphs. In [13], efficient

algorithms are presented to determine whether or not a given SDF graph is consistent, and to determine

the minimum number of times that each actor must be fired in a valid schedule. We represent these mini-

mum numbers of firings by a row vector , indexed by the actors in , and we refer to as the repe-

titions vector of . We often suppress the subscript if is understood from context. More precisely, the

repetitions vector gives the minimum positive integer solution to the system of balance equations

, for each edge in . (1)

A valid schedule is any schedule that does not deadlock, and that invokes each actor exactly

 times for some positive integer . This positive integer is called the blocking factor of the valid

schedule, and it is denoted by or by , where is schedule. A schedule that has is called a

minimal schedule.

Given an edge in , we define the total number of samples exchanged on , denoted

, by

. (2)

Thus, is total number of tokens produced onto (consumed from) in any minimal,

valid schedule for . Note that the equality of the two products in (2) follows from the definition of .

For Fig. 1, , and . Note that we

adopt the convention of indexing vectors using functional notation rather than subscripts.

One valid schedule for Fig. 1 is . Note that is allowed to fire first because of

the unit delay on the edge . Here, a parenthesized term specifies successive firings

of the “subschedule” , and we may translate such a term into a loop in the target code. Observe

that this notation naturally accommodates the representation of nested loops. We refer to each parenthe-

sized term as a schedule loop having iteration count and iterands .

e e()src e e()snk

S

S

G

qG G qG

G G

x qG=

x e()src() e()prod x e()snk() e()cons= e G

A

kqG A() k

J J S() S J 1=

e G e

TNSEG e()

TNSEG e() qG e()src() e()prod×≡ qG e()snk() e()cons×=

TNSEG e() e

G qG

q q A B C, ,() 3 6 2, ,()= = A B,()()TNSE B C,()()TNSE 6= =

B 2AB()CA 3B()C B

A B,() nS1S2…Sk() n

S1S2…Sk

nS1S2…Sk() n S1S2…Sk
3

A looped schedule is a finite sequence , represented as , where each

 is either an actor or a schedule loop. Thus, the “looped” qualification indicates that the schedule in

question may be expressed in terms of schedule loops. Since a looped schedule is usually executed repeat-

edly, we refer to each as an iterand of the associated looped schedule. Henceforth in this paper, by a

“schedule” we mean a “looped schedule.”

A more compact valid schedule for Fig. 1 is . We call this schedule a single

appearance schedule since it contains only one lexical appearance of each actor. To a good first approxi-

mation, any valid single appearance schedule gives the minimum code space cost for in-line code genera-

tion. This approximation neglects second order affects such as loop overhead and the efficiency of data

transfers between actors [3].

Given an SDF graph , a valid schedule , and an edge in , we define

(we may suppress the subscript if is understood) to denote the maximum number of tokens that are

queued on during an execution of . For example if for Fig. 1, and

, then and . We define

the buffer memory requirement of a schedule , denoted , by

, where is the set of edges in . Thus,

, and .

In the model of buffering implied by our “buffer memory requirement” measure, each buffer is

mapped to an independent contiguous block of memory. Although perfectly valid target programs can be

generated without this restriction, it can be shown that having a separate buffer on each edge is advanta-

geous because it permits full exploitation of the memory savings attainable from nested loops, and it

accommodates delays without complication [14]. Another advantage of this model is that by favoring the

generation of nested loops, the model also favors schedules that have lower latency than single appearance

schedules that are constructed to optimize various alternative cost measures [14]. Combining the analysis

and techniques that we develop in this paper with methods for sharing storage among multiple buffers is a

useful direction for further study. Existing techniques for sharing buffers usually do not take the scheduling

into account; for example, the common buffer sharing strategy of combining liveness analysis and graph

coloring is used for a given schedule. Also, most existing techniques assume that every buffer being imple-

mented is of the same size. They also do not apply to SDF graphs, where the presence of rate changes com-

V1 V2 … Vk, , ,() V1V2…Vk

Vi

Vi

3A() 2 3B()C()

G S e G max_tokensG e S,()

G

e S S1 3A() 6B() 2C()=

S2 3A 2B()() 2C()= A B,() S1,()max_tokens 7= A B,() S2,()max_tokens 3=

S S()buffer_memory

S()buffer_memory e S,()max_tokens
e E∈
∑= E G

S1()buffer_memory 7 6+ 13= = S2()buffer_memory 3 6+ 9= =
4

plicates matters further. Fabri [7] has studied schemes for overlaying buffers when the buffer sizes are not

all identical but even these techniques only apply to a given schedule, and do not attempt to optimize over

all possible schedules as done in this paper. Finally, as shown in [14], naive techniques for buffer-sharing

can result in sub-optimal schedules, and can be awkward to implement.

In this paper we address the problem of computing a valid single appearance schedule that mini-

mizes the buffer memory requirement over all valid single appearance schedules. We call such a schedule

an optimal schedule. From the discussion above, it should be clear that this scheduling problem of mini-

mizing memory requirements even for a single processor is a challenging, non-trivial problem. We focus

on acyclic graphs. We introduce a customization to acyclic graphs of a bottom-up scheduling technique,

called pairwise grouping of adjacent nodes (PGAN), that was proposed in an earlier paper [4] for general

SDF graphs. We call this customization Acyclic PGAN (APGAN). We show that APGAN significantly

reduces the time and space complexity of the general PGAN algorithm; we rigorously establish that

APGAN performs optimally for a certain class of SDF graphs; and we give examples of practical applica-

tions that fall within the class of graphs for which APGAN produces optimal results. We present experi-

mental data on practical applications that verifies that our implementation of APGAN performs optimally

for graphs that fall within the specified class, and suggests that it often performs very well for graphs that

lie outside the class.

We compare APGAN to a top-down heuristic based on recursively partitioning the input graph

using a generalized minimum cut operation, which was introduced recently in [14]. This top-down heuris-

tic is called Recursive Partitioning Based on Minimum Cuts (RPMC). We report on an extensive experi-

mental study in which the performance of both scheduling techniques is evaluated on several practical

applications, and on a diverse collection of complex random graphs. The conclusions that we derive are

that techniques should be investigated for efficiently combining the methods of RPMC and APGAN, and

that in the absence of such a combined solution, or of a more powerful alternative solution, both of these

heuristics should be incorporated into SDF-based DSP prototyping and implementation environments in

which the minimization of memory requirements is important. An algorithm based on APGAN has in fact

been implemented by the Alta group at Cadence Design Systems Inc. in their Signal Processing WorkSys-

tem programming environment. We have implemented APGAN and RPMC in the Ptolemy programming

environment [5] at UC Berkeley and will be making these algorithms available in the next release.

The paper is organized as follows. In Section 2 we first review some graph concepts and establish

notation that will be used throughout the paper. We then prove some facts about clustering in SDF graphs

that will be useful in the development of the APGAN algorithm. We also discuss the problem of construct-
5

ing a buffer-optimal loop hierarchy for a given lexical ordering of nodes and present a polynomial-time

algorithm that computes it optimally. In Section 3 we prove a simple lower bound on the memory require-

ment (called BMLB) of any single appearance schedule for an acyclic SDF graph and in Section 4 we

describe the APGAN algorithm. In Section 5 we develop a concept called proper clustering. Section 6

develops one of the main results of this paper; namely, the optimality of APGAN for a particular class of

SDF graphs. Even though this class appears restrictive at first, it is shown in Section 8 that a wide variety

of practical systems fall into this class and hence it is a useful class. Section 7 briefly discusses a different

heuristic that was proposed in [14]; this discussion is given primarily to facilitate the comparison between

the two heuristics in Section 8. Finally we discuss some related work and present our conclusions.

2 Background

For reference, a glossary of terminology can be found at the end of the paper.

Given a finite set , we denote the number of elements in by . If and are positive inte-

gers, we say that divides if for some positive integer . If the members of are positive inte-

gers, then by we mean the largest positive integer that divides all members of .

Precisely speaking, SDF graphs, as we use them in this paper, are directed multigraphs rather than

directed graphs, since we allow two or more edges to have the same source and sink vertices. However, we

often ignore this distinction. Thus, when there is no ambiguity, we may refer to an edge as the ordered

pair . We frequently represent an SDF graph by an ordered pair , where is

the set of vertices and is the set of edges. By a subgraph of , we mean the directed graph formed by

any and the set of edges . We denote the subgraph associated with

the vertex subset by . A connected component of is a subset such that

 is connected, and no subset of that properly contains induces a connected subgraph.

Given an SDF graph , actor is a predecessor of actor if there is an such

that and , and is a successor of if is a predecessor of . Two actors

are adjacent if is a predecessor or successor of , and if are distinct, then is an adjacent

pair. A path in from to is a finite, nonempty sequence such that each is a mem-

ber of , , , and , , ,

. If is a finite sequence of paths such that

, for , and , for , then we

define

H H H x y

x y y kx= k H

H()gcd H

e

e()src e()snk,() G V E,() V

E G

V′ V⊆ e E∈ e()src e()snk, V′∈{ }

V′ V′()subgraph G V′ V⊆

V′()subgraph V V′

G V E,()= X Y e E∈

e()src X= e()snk Y= X Y Y X X Y,

X Y X Y, X Y,{ }

G X Y e1 e2 … en, , ,() ei

E X e1()src= Y en()snk= e1()snk e2()src= e2()snk e3()src= …

en 1–()snk en()src= p1 p2 … pk, , ,()

pi ei 1, ei 2, … ei ni,, , ,()= 1 i k≤ ≤ ei ni,()snk ei 1+ 1,()src= 1 i k 1–()≤ ≤
6

.

Clearly, is a path from to . If there is a path from to

, then is an ancestor of , and is a descendant of . A path that is directed from a vertex to

itself is a cycle. If is acyclic, a topological sort for is an ordering of the mem-

bers of such that for each , .

If is an SDF edge, then the delayless version of is an edge such that if

, and if , then is the edge defined by , ,

and . If is an SDF graph, then is delayless if for all ,

and the delayless version of is the SDF graph defined by , where

. In words, the delayless version of is the graph that results

from setting the delays on all edges to zero.

A contiguous sequence of actors and schedule loops in a looped schedule is called a subsched-

ule of . For example, the schedules , , and are all subsched-

ules of . If is a subschedule of , then is contained in , and is nested in

if is contained in and .

We denote the set of actors that appear in a single appearance schedule by , and given

an , we define to be the number of times that invokes . Similarly, if is a

subschedule of , is the number of times that invokes . For example, if

, then , and .

We define to be the number of actors that lexically precede in the single appear-

ance schedule . Thus, if , then . Also, the lexical ordering

of a single appearance schedule , denoted , is the sequence of actors

where , and for each . Thus,

. We will apply the following obvious fact about lexical order-

ings.

Fact 1: If is a valid single appearance schedule for a delayless SDF graph, then whenever is an

ancestor of , we have .

We will also apply the following fact, whose proof can be found in [2].

Fact 2: Suppose that is a consistent, connected SDF graph, is a single appearance sched-

ule for , and is any positive integer. Then there exists a valid single appearance schedule for

p1 p2 … pk, , ,()〈 〉 e1 1, … e1 n1, e2 1, … e2 n2, … ek 1, … ek n, k
, , , , , , , , ,()≡

p1 p2 … pk, , ,()〈 〉 e1 1,()src ek n, k
()snk X V∈

Y V∈ X Y Y X

G V E,() v1 v2 … v V, , ,()

V e E∈ e()src vi=() e()snk vj=()and() i j<()⇒

e e e′ e′ e=

e()delay 0= e()delay 0≠ e′ e′()src e()src= e′()snk e()snk=

e′()delay 0= G V E,()= G e()delay 0= e E∈

G V E′,()

E′ the delayless version of e e E∈{ }= G

S

S 3AB()C 2D 3AB()C() 4E() 2D 3AB()C()

4E() 2D 3AB()C() S0 S S0 S S0 S

S0 S S0 S≠

S S()actors

A S()actors∈ A S,()inv S A S0

S S0 S,()inv S S0

S 2 3B 2CD()()() 5E()= E S,()inv 5= 2CD() S,()inv 6=

X S,()position X

S S 2 3B() 5C()() 7A()= A S,()position 2=

S S()lexorder A1 A2 … An, , ,()

A1 A2 … An, , ,{ } S()actors= Ai S,()position i 1–= i

2 3B() 5C()() 7A()()lexorder B C A, ,()=

S X

Y X S,()position Y S,()position<

G V E,()= S

G k S′ G
7

such that , , and , for each

.

Suppose that is a looped schedule for an SDF graph and is a set of actors. If we remove

from all actors that are not in , and then we repeatedly remove all null loops (loops that have empty

bodies) until no null loops remain, we obtain another looped schedule, which we call the projection of

onto , denoted . For example, .

Clearly, fully specifies the sequence of token populations occurring on each edge in

. More precisely, for any , any , and any input edge of

contained in , the number of tokens queued on just before the th invocation of in

equals the number of tokens queued on just before the th invocation of in an execution of

. Thus, we have the following fact.

Fact 3: If is a valid looped schedule for an SDF graph , and , then

 is a valid looped schedule for , and

, for each edge in .

If is a subset of actors in a connected, consistent SDF graph , we define

, and we refer to this quantity as the repetition count of . The subscript

may be dropped if is understood from context.

2.1 Clustering
Given a connected, consistent SDF graph , a subset , and an actor ,

clustering into means generating the new SDF graph such that and

, where is a “modification” of the set of edges

that connect actors in to actors outside of . If for each such that and ,

we define by

, ,

, , and ;

and similarly, for each such that and , we define by

,

, , and

J S′() k= S′()lexorder S()lexorder= e S′,()max_tokens e S,()max_tokens≤

e E∈

S G Z

S Z

S

Z S Z,()projection 2 2B() 5A()() A C,{ },()projection 2 5A()()=

S Z,()projection

Z()subgraph A Z∈ i 1 2 … A S,()inv, , ,{ }∈ e A

Z()subgraph e i A S

e i A

S Z,()projection

S G V E,()= Z V⊆

S Z,()projection Z()subgraph

e S Z,()projection,()max_tokens e S,()max_tokens= e Z()subgraph

Z G

ρG Z() qG A() A Z∈{ }()gcd≡ Z

G

G V E,()= Z V⊆ Ω V∉

Z Ω V′ E′,() V′ V Z Ω{ }+–=

E′ E e e()src Z∈() e()snk Z∈()or{ }() E∗+–= E∗

Z Z e E∈ e()src Z∈ e()snk Z∉

e′

e′()src Ω= e′()snk e()snk=

e′()delay e()delay= e′()prod e()prod qG e()src() ρG Z()⁄()×= e′()cons e()cons=

e E∈ e()snk Z∈ e()src Z∉ e′

e′()src e()src= e′()snk Ω=

e′()delay e()delay= e′()prod e()prod=
8

,

then, we can specify by

.

For each , we say that corresponds to and vice versa (corresponds to). The graph that

results from clustering into in is denoted , or simply . Intuitively, an

invocation of in corresponds to an invocation of a minimal valid schedule for

 in . We say that is clusterable if is consistent, and if is acyclic, we

say that introduces a cycle if contains one or more cycles. Fig. 2 gives an example of

clustering. Here, edge corresponds to (and vice versa), and corresponds to

.

The following fact relates the repetitions vector of an SDF graph obtained by clustering a subgraph

to that of the original SDF graph. The proofs of both parts can be found in [3].

Fact 4: (a). If is a connected, consistent SDF graph, , and ,

then , and for each , .

(b). If is a connected, consistent SDF graph and is a connected subgraph of

, then for each , .

Fact 4(a) together with the definition of clustering immediately yields

Fact 5: If and are as in Fact 4(a), then for each edge in , , where

 is the edge in that corresponds to .

2.2 R-schedules
If is either a schedule loop or a looped schedule, we say that satisfies the R-condition if one

e′()cons e()cons qG e()snk() ρG Z()⁄()×=

E∗

E∗ e′ e()src Z∈ e()snk Z∉and() e()snk Z∈ e()src Z∉and()or{ }=

e′ E∗∈ e′ e e e′

Z Ω G clusterG Z Ω,() cluster Z()

Ω clusterG Z Ω,()

Z()subgraph G Z clusterG Z Ω,() G

Z clusterG Z Ω,()

Figure 2. An example of clustering. In (b), we have , where denotes the

SDF graph in (a). Here, .

clusterG B C,{ } Ω,() G

qG A B C D, , ,() 3 30 20 2, , ,()=

D Ω A10 2 3 10
(b)

D C B10 1 6 10 (a)A14

D Ω,() D C,() Ω A,()

B A,()

G V E,()= Z V⊆ G′ clusterG Z Ω,()=

qG′ Ω() ρG Z()= A V Z–()∈ qG′ A() qG A()=

G G′ V′ E′,()=

G A V′∈ qG′ A() qG A() ρG V′()⁄=

G G′ e G′ TNSEG′ e() TNSEG e′()=

e′ G e

Λ Λ
9

of the following two conditions holds: (a) has a single iterand, and this single iterand is an actor, or (b)

 has exactly two iterands, and these two iterands are schedule loops having coprime iteration counts.

A valid single appearance schedule is an R-schedule if satisfies the R-condition, and every

schedule loop contained in satisfies the R-condition. The following result on R-schedules is established

in [2].

Theorem 1: Suppose that is a consistent SDF graph and is a valid single appearance

schedule for . Then there exists an R-schedule for such that

 for all , and .

2.3 Optimally Reparenthesizing a Single Appearance Schedule
In [14], a dynamic programming algorithm is developed that constructs an optimal schedule for a

well-ordered SDF graph (a graph that has only one topological sort) in time, where is the number

of actors. An adaptation of this technique is also presented for general, delayless, consistent SDF graphs1

that computes a single appearance schedule that has minimum buffer memory requirement from among the

single appearance schedules that have a given lexical ordering. We refer to this adaptation as Dynamic

Programming Post Optimization (DPPO) for single appearance schedules. DPPO can be extended effi-

ciently to handle delays and arbitrary topologies [3]. We refer to the extension that we have developed as

Generalized DPPO (GDPPO).

GDPPO gives a post-optimization for any scheduler for general SDF graphs that constructs single

appearance schedules. Applying GDPPO to a single appearance schedule yields a schedule that has a

buffer memory requirement that is less than or equal to the buffer memory requirement of every valid sin-

gle appearance schedule that has the same lexical ordering as . In the remainder of this paper, we discuss

two heuristics for constructing single appearance schedules, and we present an experimental study that

compares these heuristics — with their schedules post-processed by GDPPO — against each other and

against randomly generated schedules that are post-processed by GDPPO. To enhance our analysis of these

heuristics, we first develop a fundamental lower bound on the buffer memory requirement of a single

appearance schedule.

1. Note that for consistent SDF graphs, delayless implies acyclic, and thus, we are referring here to the class
of consistent, acyclic — but not necessarily well-ordered — SDF graphs such that the delay on each edge is
zero.

Λ

Λ

S S

S

G V E,()= S

S SR S

e SR,()max_tokens e S,()max_tokens≤ e E∈ SR()lexorder S()lexorder=

O v3() v

S

S

10

3 A Lower Bound on the Buffer Memory Requirement

Given a consistent SDF graph , there is an efficiently computable upper and lower bound on the

buffer memory requirement over all valid single appearance schedules. Our lower bound can be derived

easily by examining a generic two-actor SDF graph, as shown in Fig. 3(a). From the balance equations (see

(1)), it is easily verified that the repetitions vector for this graph is given by , where

, and that if , then the only R-schedule for this graph is . From

Theorem 1 it follows that if , then is a lower bound for the

buffer memory requirement of the graph in Fig. 3(a). Similarly, if , then there are exactly two R-

schedules — and . Since , we obtain as a lower

bound for the buffer memory requirement. Thus, given a valid single appearance schedule for Fig. 3(a),

we have that

, and

. (3)

Furthermore, if is an edge in a general SDF graph, we know from Fact 3 that the projec-

tion of a valid schedule onto , which is a valid schedule for , always satisfies

. (4)

It follows that the lower bound defined by (3) holds whenever is an edge in a consistent SDF

G

Figure 3. Examples used to develop the buffer memory lower bound.

A BA Bp qdD

2 3

32
n2D

n1D

(a) (b)

A B,()q q
g
--- p

g
---, 

 =

g p q,{ }()gcd≡ d pq
g

------< S1
q
g
---A 
  p

g
---B 
 =

d pq
g

------< A B,() S1,()max_tokens pq
g

------ d+ 
 =

d pq
g

------≥

S1 S2
p
g
---B 
  q

g
---A 
 = A B,() S2,()max_tokens d= d

S

d pq
g

------< 
  A B,() S,()max_tokens pq

g
------ d+ 
 ≥ 

 ⇒

d pq
g

------≥ 
  A B,() S,()max_tokens d≥()⇒

A B,()

S A B,{ } A B,{ }()subgraph

A B,() S A B,{ },()projection,()max_tokens A B,() S,()max_tokens=

A B,()
11

graph , is a valid single appearance schedule for , , and

. We have motivated the following definition.

Definition 1: Given an SDF edge , we define the buffer memory lower bound (BMLB) of ,

denoted , by

, where

.

If is an SDF graph, then is called the BMLB of , and a valid single

appearance schedule for that satisfies for all is called a

BMLB schedule for .

In Fig. 1, we see that , and . Thus, a valid single appear-

ance schedule for Fig. 1 is a BMLB schedule if and only if its buffer memory requirement equals . It is

easily verified that only two R-schedules for Fig. 1 exist — , and ; the

associated buffer memory requirements are and , respectively. Thus, a BMLB

schedule does not exist for Fig. 1.

In contrast, the SDF graph shown in Fig. 4 has a BMLB schedule. This graph results from simply

interchanging the production and consumption parameters of edge in Fig. 1. Here,

, the BMLB values for both edges are again identically equal to , and

 is a valid single appearance schedule whose buffer memory requirement achieves the sum of

these BMLB values.

The following fact is a straightforward extension of our development of the BMLB.

Fact 6: Suppose that is an SDF graph that consists of two vertices and edges

 directed from to . Then (a). if for all , then

G S G A B,()()prod p=() A B,()()cons q=(),

g p q,{ }()gcd=

e e

e()BMLB

e()BMLB
η e() e()delay+() if e()delay η e()<()

e()delay() if e()delay η e()≥()



=

η e() e()prod e()cons
e()prod e()cons,{ }()gcd

---=

G V E,()= e()BMLB
e E∈
∑ 

 
 

G

S G e S,()max_tokens e()BMLB= e E∈

G

A B,()()BMLB 3= B C,()()BMLB 3=

6

3A 2B()() 2C() 3A() 2 3B()C()

3 6+ 9= 7 3+ 10=

Figure 4. An SDF graph that has a BMLB schedule.

A B C2 1 3 1D

B C,()

A B C, ,()q 1 2 6, ,()= 3

A 2B 3C()()

G A B, n 1≥

e1 e2 … en, , , A B ei()delay η ei()≥ i 1 2 … n, , ,{ }∈
12

 is a BMLB schedule for ; (b) otherwise, is an optimal

schedule — that is, it minimizes the buffer memory requirement over all valid single appearance schedules

— for , and it is a BMLB schedule if and only if for .

Fact 7: If is a connected, consistent, acyclic SDF graph, and for all

, then is a BMLB schedule for the delayless version of if and only if is a BMLB schedule for

.

Proof: Let denote the delayless version of . If is a BMLB schedule for , then is a valid

schedule for that satisfies for all . It fol-

lows from Definition 1 that is BMLB schedule for . Similarly, if a BMLB schedule for , then is

a valid schedule for , and . Again, from Defini-

tion 1, must be a BMLB schedule for . Q.E.D.

A proof of the following fact can be found in [2].

Fact 8: If is a connected, consistent SDF graph and is an edge in , then

.

4 PGAN for Acyclic Graphs

In the original Pairwise Grouping of Adjacent Nodes (PGAN) technique, developed in [4], a clus-

ter hierarchy is constructed by clustering exactly two adjacent vertices at each step. At each clusterization

step, a pair of adjacent actors is chosen that maximizes over all clusterable adjacent pairs.

To check whether or not an adjacent pair is clusterable, PGAN maintains the cluster hierarchy on

the acyclic precedence graph (APG) [13]. Each vertex of the APG corresponds to an actor invocation, and

each edge signifies that at least one token produced by is consumed by in a valid schedule.

PGAN determines whether or not an adjacent pair is clusterable by checking whether or not its consolida-

tion introduces a cycle in the APG. This check is performed efficiently by applying a reachability matrix,

which indicates for any two APG vertices , whether or not there is a path from to .

Unfortunately, the cost to compute and store the APG reachability matrix can be prohibitively high

for some applications [2]. Since a large proportion of DSP applications that are amenable to the SDF

qG B()B() qG A()A() G qG A()A() qG B()B()

G ei()delay η ei()< 1 i n≤ ≤

G V E,()= e()delay η e()<

e E∈ S G S

G

G′ G S G′ S

G max_tokensG e S,() max_tokensG′ e S,() e()delay+= e E∈

S G S G S

G′ max_tokensG′ e S,() max_tokensG e S,() e()delay–=

S G′

G e G

η e()
TNSEG e()

ρG e()src e()snk,{ }()
---=

ρ

x y,() x y

x y, x y
13

model can be represented as acyclic SDF graphs, we propose an adaptation of PGAN to acyclic graphs,

called Acyclic PGAN (APGAN), that maintains the cluster hierarchy and reachability matrix directly on

the input SDF graph rather than on the APG.

In an acyclic SDF graph , it is easily verified that a subset of actors is not clusterable only if

 introduces a cycle. This condition is easily checked given a reachability matrix for [2]. Since the

existence of a cycle in is not a sufficient condition for not to be clusterable, the cluster-

izeability test that we apply in APGAN is not exact; it must be viewed as a conservative test. For some

graphs, this imprecision can prevent APGAN from attaining optimal results [2]. In exchange for some

degree of suboptimality in these cases, our clusterization test attains a large computational savings over the

exact test based on the reachability matrix of the APG, and this is our main reason for adopting it.

Fig. 5 illustrates the operation of APGAN. Fig. 5(a) shows the input SDF graph. Here

, and for , represents the th hierarchical actor instan-

tiated by APGAN. Each edge corresponds to a different adjacent pair; the repetition counts of the adjacent

pairs are given by , and

. Thus, APGAN will select the one of the three adjacent

pairs , , or for its first clusterization step. Examination of the reachability matrix

yields that introduces a cycle due to the path , while the other two adjacent pairs

do not introduce cycles. Thus, APGAN chooses arbitrarily between and as the first adja-

cent pair to cluster.

Fig. 5(b) shows the graph that results from clustering into the hierarchical actor . Here,

, and uniquely maximizes over all adjacent pairs. Since

 does not introduce a cycle, APGAN selects this adjacent pair for its second clusterization step.

Fig. 5(c) shows the resulting graph.

G Z

Z G

clusterG Z Ω,() Z

A

C

D

B

E

1

3

2

3
21

5

4

2 10

1

2

C

D

Ω1

E

3

215

4

2 10

1

2

6

D

Ω2

E

10

4

2 10

1

2

Ω2

Ω3

10

20

1

2

Ω4

(a) (b) (c) (d) (e)

Figure 5. An illustration of APGAN.

A B C D E, , , ,()q 6 2 4 5 1, , , ,()= i 1 2 3 4, , ,= Ωi i

ρ A B,{ }() ρ A C,{ }() ρ B C,{ }() 2= = =

ρ C D,{ }() ρ E D,{ }() ρ B E,{ }() 1= = =

A B,{ } A C,{ } B C,{ }

A C,{ } A B,() B C,(),()

A B,{ } B C,{ }

A B,{ } Ω1

Ω1 C D E, , ,()q 2 4 5 1, , ,()= Ω1 C,{ } ρ

Ω1 C,{ }
14

In Fig. 5(c), we have , and thus all three adjacent pairs have .

Among these, clearly, only and do not introduce cycles, so APGAN arbitrarily selects

among these two to determine the third clusterization pair. Fig. 5(d) shows the graph that results when

 is chosen. This graph contains only one adjacent pair , and APGAN will consolidate

this pair in its final clusterization step to obtain the single-vertex graph in Fig. 5(e).

Figs. 5(b-e) specify the sequence of clusterizations performed by APGAN when applied to the

graph of Fig. 5(a). We define the subgraph corresponding to to be the subgraph that is clustered in the

th clusterization step. Thus, for example, the subgraph corresponding to consists of actors and

, and the two edges directed from to . A valid single appearance schedule for Fig. 5(a) can easily

be constructed by recursively traversing the hierarchy induced by the subgraphs corresponding to the s.

We start by constructing a schedule for the top-level subgraph, the subgraph corresponding to . The

subgraph corresponding to each consists of only two actors and , such that all edges in are

directed from to . Thus, from Fact 6, it is clear how an optimal schedule can easily be constructed for

the subgraph corresponding to each : if each edge in satisfies , then we construct

the schedule , and otherwise we construct . In Fig. 5,

This yields the “top-level” schedule (we suppress loops that have an iteration count of one) for

the subgraph corresponding to .

Next, we recursively descend one level in cluster hierarchy to the subgraph corresponding to ,

and we obtain the schedule . Since this subgraph contains no hierarchical actors, is imme-

diately returned as the “flattened” schedule for the subgraph corresponding to . This flattened schedule

then replaces its corresponding hierarchical actor in the top-level schedule, and the top-level schedule

becomes .

Next, descending to , we construct the schedule for the corresponding subgraph. We

then examine the subgraph corresponding to to obtain the schedule . Substituting this for ,

the schedule for the subgraph corresponding to becomes . This gets substituted for in

the top-level schedule to yield the schedule for Fig. 5(a).

From and Fig. 5(a) it is easily verified that and , where

 is the set of edges in Fig. 5(a), are identically equal to , and thus in the execution of APGAN illus-

trated in Fig. 5, a BMLB schedule is constructed.

As seen in the above example, the APGAN approach, as we have defined it here, does not

Ω2 D E, ,()q 2 5 1, ,()= ρ 1=

Ω2 E,{ } E D,{ }

E D,{ } Ω2 Ω3,{ }

Ωi

i Ω2 Ω1

C Ω1 C

Ωi

Ω4

Gi Ωi Xi Yi Gi

Xi Yi

Ωi e Gi e()delay η e()≥

qGi
Yi()Yi() qGi

Xi()Xi() qGi
Xi()Xi() qGi

Yi()Yi()

2Ω2()Ω3

Ω4

Ω3

5D()E 5D()E

Ω3

2Ω2() 5D()E

Ω2 Ω1 2C()

Ω1 3A()B Ω1

Ω2 3A()B 2C() Ω2

Sp 2 3A()B 2C()() 5D()E≡

Sp Sp()buffer_memory e()BMLB
e E∈
∑ 

 
 

E 43
15

uniquely specify the sequence of clusterizations that will be performed, and thus, it does not in general,

result in a unique schedule for a given SDF graph. APGAN together with an unambiguous protocol for

deciding between adjacent pairs that are tied for the highest repetition count form an APGAN instance,

which generates a unique schedule for a given graph. For example, one tie-breaking protocol that can be

used when actors are labelled alphabetically, as in Fig. 5, is to choose that adjacent pair that maximizes the

sum of the “distances” of the actor labels from the letter “A”. If this protocol is used to break the tie

between (“distance sum” is) and (distance sum is) in the first

clusterization of step of Fig. 5, then is chosen.

If an efficient data structure is used to maintain the list of pairwise clustering candidates, then it

can be shown that APGAN instances exist with running times that are .

We say that an adjacent pair is an APGAN candidate if it does not introduce a cycle, and its repe-

tition count is greater than or equal to all other adjacent pairs that do not introduce cycles. Thus, an

APGAN instance is any algorithm that takes a consistent, acyclic SDF graph as input, repeatedly clusters

APGAN candidates, and then outputs the schedule corresponding to a recursive traversal of the resulting

cluster hierarchy.

In the following two sections, we show that for a consistent, acyclic SDF graph that has a

BMLB schedule, and that satisfies for each , any APGAN instance is guaranteed to

obtain a BMLB schedule when applied to this graph.

The following fact, which is easily understood from our discussion of the example in Fig. 5, is fun-

damental to developing our result on the optimality of APGAN instances.

Fact 9: Suppose is a connected, consistent, acyclic SDF graph such that for each

; is an APGAN instance; and is the schedule that results when is applied to . Then

, where is the set of edges that are contained in the subgraphs

corresponding to the hierarchical actors instantiated by .

For the example of Fig. 5, is the set of six edges that are enclosed by dashed ovals in Fig. 5(a-

d). It is easily seen that the BMLB values for these edges are , , , , , and . Thus, Fact 9 states

that the schedule obtained from the sequence of clusterizations shown in Fig. 5 has a buffer memory

requirement equal to , which we know is correct from the discussion above.

There are two main parts in the development of our optimality result. First, we define a certain

A B,{ } 0 1+ 1= B C,{ } 1 2+ 3=

B C,{ }

O V2E()

V E,()

e() η e()<delay e E∈

G e() η e()<delay

e E∈ P S P G

S()buffer_memory e′()BMLB
e′ EΩ∈
∑= EΩ

Ωi{ } P

EΩ

3 6 2 10 2 20

3 6 2 10 2 20+ + + + + 43=
16

class of “proper” clusterizations; we show that for delayless graphs, such clusterizations have the property

that they do not increase the BMLB values on any edge; and we show that under the assumption that a

BMLB schedule exists, a clustering operation performed by any APGAN instance is guaranteed to fall in

the class of proper clusterizations. Then we show that clustering an APGAN candidate cannot transform a

graph that has a BMLB schedule into a graph that does not have a BMLB schedule. From these three

developments and Facts 7 and 9, the desired result can be derived easily.

5 Proper Clustering

Definition 2: If is a connected, consistent SDF graph, and is an adjacent pair in that does

not introduce a cycle, we say that satisfies the proper clustering condition in if for each actor

 that is adjacent to a member of , we have that divides , for

each that is adjacent to.

In Fig. 5(a) , and is divisible by

, , , and , and thus, satisfies the

proper clustering condition. Conversely, is not divisible by , so does not

satisfy the proper clustering condition.

The motivation for Definition 2 is given by Theorem 2 below, which establishes that when the

proper clustering condition is satisfied, clustering does not change the BMLB on any edge, and

that when the proper clustering condition is not satisfied, clustering increases the BMLB on at

least one edge. Thus, a clustering operation that does not satisfy the proper clustering condition cannot be

used to derive a BMLB schedule.

To establish Theorem 2, we will use the following simple fact about greatest common divisors,

which we state here without proof.

Fact 10: Suppose that are positive integers. If divides , then

; otherwise, .

Theorem 2: Suppose that is a consistent, connected, delayless SDF graph, and is a cluster-

able adjacent pair in . If satisfies the proper clustering condition, then for each edge in

, , where is the edge in that corresponds to . If

 does not satisfy the proper clustering condition, then there exists an edge in such that

.

For example, in Fig. 6(a), , , and

G X Y,{ } G

X Y,{ } G

Z X Y,{ }∉ X Y,{ } ρ Z P,{ }() ρ X Y,{ }()

P X Y,{ }∈ Z

A B C D E, , , ,()q 6 2 4 5 1, , , ,()= ρ B C,{ }() 2=

ρ A C,{ }() 2= ρ A B,{ }() 2= ρ C D,{ }() 1= ρ B E,{ }() 1= B C,{ }

ρ B E,{ }() ρ B C,{ }() B E,{ }

X Y,{ }

X Y,{ }

a b c, , a b,{ }()gcd a c,{ }()gcd

a b c, ,{ }()gcd a b,{ }()gcd= a b c, ,{ }()gcd a b,{ }()gcd<

G X Y,{ }

G X Y,{ } e

Gc clusterG X Y,{ }()≡ e′()BMLB e()BMLB= e′ G e

X Y,{ } e Gc

e′()BMLB e()BMLB<

A B,()()BMLB 2= B C,()()BMLB 3=
17

. Figs. 6(b) and 6(c) respectively show and

, where denotes the graph of Fig. 6(a). In Fig. 6(b), we see that if ,

then , and , while , and thus, . In

contrast, in Fig. 6(c), we see that if , then , and .

These observations are consistent with Theorem 2 since satisfies the proper clustering condition,

while does not.

Proof of Theorem 2: First, suppose that satisfies the proper clustering condition. Let be an edge

in , and let be the corresponding edge in . If , then , so from Definition

1, it follows that .

If , observe that and , and observe from

Fact 4(a) that . Thus, since satis-

fies the proper clustering condition, it follows from Fact 10 that

. From Facts 5 and 8, we conclude that

. A symmetric argument can be constructed for the case . Thus, we

have that whenever satisfies the proper clustering condition.

If does not satisfy the proper clustering condition, then there exists an actor

that is adjacent to some such that

 does not divide . (5)

Without loss of generality, suppose that and is a predecessor of (the other possibilities can be

handled with symmetric arguments). Let be an edge directed from to in , and let be the corre-

sponding edge (directed from to) in . From Fact 4(a),

, and thus from (5) and Fact 10, it follows

that . From Facts 5 and 8, we conclude that

A B C, ,()q 1 2 6, ,()=

Ω C6 1

(a) (c)
A Ω2 1A B C2 1 3 1

(b)

Figure 6. An example used to illustrate Theorem 2.

clusterG A B,{ } Ω,()

clusterG B C,{ } Ω,() G e′ B C,()=

e Ω C,()= e()BMLB 6= e′()BMLB 3= e()BMLB e′()BMLB>

e′ A B,()= e A Ω,()= e()BMLB e′()BMLB 2= =

B C,{ }

A B,{ }

X Y,{ } e

Gc e′ G e()src e()snk, Ω≠ e′ e=

e()BMLB e′()BMLB=

e()src Ω= e()snk e′()snk= e′()src X Y,{ }∈

ρGc
e()src e()snk,{ }() qG X() qG Y() qG e()snk(), ,{ }()gcd= X Y,{ }

ρGc
e()src e()snk,{ }() ρG e′()src e′()snk,{ }()=

e()BMLB e′()BMLB= e()snk Ω=()

e()BMLB e′()BMLB= X Y,{ }

X Y,{ } Z X Y,{ }∉

P X Y,{ }∈

ρG Z P,{ }() ρG X Y,{ }()

P X= X Z

e′ X Z G e

Ω Z Gc

ρGc
e()src e()snk,{ }() qG X() qG Y() qG e()snk(), ,{ }()gcd=

ρGc
e()src e()snk,{ }() ρG e′()src e′()snk,{ }()<
18

. Q.E.D.

The following lemma establishes that if there is an adjacent pair , is a predecessor of ,

that introduces a cycle in a delayless SDF graph that has a BMLB schedule, then there exists an actor

 that is a predecessor of and a descendant (recall the distinction between descendant and

successor) of , such that the repetition count of is divisible by the repetition count of .

A simple example is shown in Fig. 7.

Lemma 1: Suppose that is a connected, delayless, consistent SDF graph that has a BMLB sched-

ule, and is an edge in such that introduces a cycle. Then there exists an actor in

 such that is a predecessor of , is a descendant of ; and

divides .

Proof: Observe that from Theorem 1, there exists a BMLB schedule for that is an R-schedule; since

 introduces a cycle, there is a path , , from to ; and

from Fact 1, . Thus, there exists a

schedule loop in , where and are schedule loop bodies such that (a)

 contains , and contains both and , or (b) contains both and

, and contains . Observe that is simply the innermost schedule loop in that

contains , , and .

Without loss of generality, assume that (a) applies — that is, assume that contains , and

 contains both and . Then there is a schedule loop con-

tained in such that contains , and contains . This is the innermost sched-

ule loop that contains and , and this loop may be , or it may be nested in

e() e′()BMLB>BMLB

X Y,{ } X Y

V X Y,{ }∉ Y

X V Y,{ } X Y,{ }

X

Y

V

Figure 7. An illustration of Lemma 1. Here, , is a BMLB schedule,
and introduces a cycle. Thus, Lemma 1 guarantees that divides ,

and this is easily verified from .

q V X Y, ,() 2 1 2, ,()= X 2VY()

X Y,{ } ρ X Y,{ }() ρ V Y,{ }()

q

2

1

2
1

1
1

G

e G e()src e()snk,{ } V

G V e()snk V e()src ρG e()src e()snk,{ }()

ρG V e()snk,{ }()

SR G

e()src e()snk,{ }() e1 e2 … en, , ,() n 2≥ e()src e()snk

e()src SR,()position en()src SR,()position e()snk SR,()position< <

L i0 i1B1() i2B2()()= 1SR() B1 B2

B1 e()src B2 en()src e()snk B1 e()src

en()src B2 e()snk L 1SR()

e()src en()src e()snk

B1 e()src

B2 en()src e()snk L′ i0′ i1′B1′() i2′B2′()()=

i2B2() B1′ en()src B2′ e()snk

en()src e()snk i2B2()
19

.

Let be the product of the iteration counts of all schedule loops in that contain

. Similarly, let be the product of all schedule loops contained in that contain

. Then, it is easily verified that

, and

.

Since is a BMLB schedule, we have from Fact 8 that , and

. Thus, divides . Further-

more, since the path originates at , we know that is a descendant of

. Q.E.D.

The following corollary to Lemma 1 states that under the hypotheses of Lemma 1 (a BMLB sched-

ule exists and introduces a cycle), we are guaranteed the existence of an adjacent pair

 such that does not introduce a cycle, and the repetition count of

 divides the repetition count of .

Corollary 1: Assume the hypotheses of Lemma 1. Then, there exists a predecessor of

 such that does not introduce a cycle, and divides

.

Proof: Let and . From Lemma 1, there exists an adjacent pair such

that (a). divides , and (b). there is a path from to . If intro-

duces a cycle, then again from Lemma 1, we have such that divides ,

and there is a path from to . Furthermore, , since implies that is

a cycle, and thus that is not acyclic.

If introduces a cycle, then from Lemma 1, we have such that

divides , and there is a path from to . Furthermore , since otherwise

 is a cycle in ; similarly, , since otherwise is a cycle. Continuing this

process, we obtain a sequence of distinct actors . Since the s are distinct and we are

assuming a finite graph, we cannot continue generating s indefinitely. Thus, eventually, we will arrive

i2B2()

I 1SR()

i1B1() i2B2() I′ i2B2()

i1′B1′() i2′B2′()

e SR,()max_tokens qG e()src() e()prod I⁄ e()TNSE I⁄= =

en SR,()max_tokens qG en()src() en()prod() II′()⁄ en()TNSE II′()⁄= =

SR ρG e()src e()snk,{ }() I=

ρG en()src e()snk,{ }() II′= ρG e()src e()snk,{ }() ρG en()src e()snk,{ }()

e1 e2 … en, , ,() e()src en()src

e()src

e()src e()snk,{ }

V e()snk,{ } V e()snk,{ }

e()src e()snk,{ } V e()snk,{ }

V e()src≠

e()snk V e()snk,{ } ρ e()src e()snk,{ }()

ρ V e()snk,{ }()

X e()src= Y e()snk= W1 Y,{ }

ρ X Y,{ }() ρ W1 Y,{ }() p1 X W1 W1 Y,{ }

W2 Y,{ } ρ W1 Y,{ }() ρ W2 Y,{ }()

p2 W1 W2 W2 X≠ W2 X=() p1 p2,()〈 〉

G

W2 Y,{ }() W3 Y,{ }() ρ W2 Y,{ }()

ρ W3 Y,{ }() p3 W2 W3 W3 X≠

p1 p2 p3, ,()〈 〉 G W3 W1≠ p2 p3,()〈 〉

W1 W2 …, ,() Wi

Wi
20

at a such that does not introduce a cycle. Furthermore, by our construction,

divides , and for , divides . It follows that

 divides . Q.E.D.

From Corollary 1, we obtain the following theorem, which states that given an APGAN candidate

in an SDF graph that has a BMLB schedule, no adjacent pair can have higher repetition count.

Theorem 3: Suppose that is a connected, delayless SDF graph that has a BMLB schedule, and is

an APGAN candidate in . Then for all adjacent pairs in , .

As an example consider Fig. 8(a), and suppose that the SDF parameters on the graph edges are

such that is an APGAN candidate — that is, does not introduce a cycle and maximizes

 over all adjacent pairs that do not introduce cycles. Since introduces a cycle, the assump-

tion that is an APGAN candidate is not sufficient to guarantee that .

However, Theorem 3 guarantees that under the additional assumption that Fig. 8(a) has a BMLB schedule,

 is guaranteed not to exceed .

Fig. 8(b) shows a case where this additional assumption is violated. Here,

. Clearly, four invocations of must fire before a single invocation of can

fire, and thus for any valid schedule , ; conse-

quently, Fig. 8(b) cannot have a BMLB schedule. It is also easily verified that among the three adjacent

pairs in Fig. 8(b) that do not introduce cycles, is the only APGAN candidate, and

, while . Thus, Theorem 3 does not generally hold if we relax the

assumption that the graph in question has a BMLB schedule.

Proof of Theorem 3: (By contraposition.) Suppose that . Then since is an APGAN candi-

date, must introduce a cycle. From Corollary 1, there exists an adjacent pair such that does not

introduce a cycle, and divides . It follows that . Since does not introduce a

cycle, cannot be an APGAN candidate. Q.E.D.

Wn Wn Y,{ }() ρ X Y,{ }()

ρ W1 Y,{ }() i 1 2 … n 1–(), , ,{ }∈ ρ Wi Y,{ }() ρ Wi 1+ Y,{ }()

ρ X Y,{ }() ρ Wn Y,{ }()

G p

G p′ G ρ p() ρ p′()≥

Figure 8. Examples used to illustrate Theorem 3.

A

B

C

D

A

B

C

D

2

1

1

1

4

8

1

2
(b)(a)

A B,{ }() A B,{ }()

ρ *() B C,{ }()

A B,{ }() ρ B C,{ }() ρ A B,{ }()≤

ρ B C,{ }() ρ A B,{ }()

q A B C D, , ,() 2 4 8 1, , ,()= B C

S B C,() S,()max_tokens 4 2×≥ 8 B C,()()BMLB>=

A B,{ }

ρ B C,{ }() 4=() ρ A B,{ }() 2=

ρ p′() ρ p()> p

p′ p″ p″

ρ p′() ρ p″() ρ p″() ρ p()> p″

p

21

Lemma 2: Suppose that is a consistent, connected SDF graph, is a subset of

actors such that is connected, and . Then

.

Proof: This result is a straightforward consequence of Fact 4(b). See [2] for details.

The following lemma states that in a connected SDF graph that contains exactly three actors, and

that has a BMLB schedule, the repetition count can exceed unity for at most one adjacent pair. For exam-

ple, consider the three-actor graph in Fig. 9. Here, , and is a

BMLB schedule. The two pairs of adjacent actors and have repetition counts of and

, respectively. Thus, we see that only one adjacent pair has a repetition count that exceeds unity.

Lemma 3: Suppose that (a). is a connected, consistent, delayless SDF graph that consists of

exactly three distinct actors , and ; (b). is a predecessor of ; (c). is adjacent to ;

(d). ; and (e). has a BMLB schedule. Then, .

Proof: For simplicity, assume that , and that is a successor of . The other three possible cases

— (, is a predecessor of), and (, is a predecessor or successor of) — can be han-

dled by simple adaptations of this argument.

Let be an edge directed from to , and let be an edge directed from to . From The-

orem 1, there exists a BMLB R-schedule for . Since contains only three actors, has exactly two

R-schedules, and it is easily verified that either is of the form , or it has the form

.

If , then , and thus from Fact 8,

we have that , which implies that . From Assump-

tion (d), it follows that .

Conversely, suppose that . Then

, so from Fact 8, we have that

G V E,()= R V⊆

C R()subgraph≡ X Y Z, , R∈

qC X() qC Y(),{ }()gcd qC Y() qC Z(),{ }()gcddivides()⇒

qG X() qG Y(),{ }()gcd qG Y() qG Z(),{ }()gcddivides()

A B C1 3 3 2
Figure 9. An illustration of Lemma 3.

q A B C, ,() 6 2 3, ,()= 2 3A()B() 3C()

A B,{ } B C,{ } 2

1

G

X Y Z X Y Z P X Y,{ }∈

ρG X Y,{ }() ρG P Z,{ }()≥ G ρG P Z,{ }() 1=

P Y= Z Y

P Y= Z Y P X= Z X

exy X Y eyz Y Z

SR G G G

SR i1X() i2 i3Y() i4Z()()

j1 j2X() j3Y()() j4Z()

SR i1X() i2 i3Y() i4Z()()= exy SR,()max_tokens exy()TNSE=

exy()TNSE exy()TNSE ρ X Y,{ }()⁄= ρ X Y,{ }() 1=

ρ Y Z,{ }() 1=

SR j1 j2X() j3Y()() j4Z()=

eyz SR,()max_tokens eyz()TNSE=
22

, which implies the desired result. Q.E.D.

The following theorem guarantees that whenever an APGAN instance performs a clustering oper-

ation on a top-level graph that has a BMLB schedule, the adjacent pair selected satisfies the proper cluster-

ing condition in the top-level graph. For example in Fig. 5(a), and are APGAN

candidates, and it is easily verified from the repetitions vector that both

of these adjacent pairs satisfy the proper clustering condition in Fig. 5(a). Similarly, for Fig. 5(b) we have

, and thus is the only APGAN candidate. Thus, Theorem 4 guar-

antees that satisfies the proper clustering condition in Fig. 5(b).

Theorem 4: Suppose is a connected, delayless SDF graph that has a BMLB schedule, and

is an APGAN candidate in . Then satisfies the proper clustering condition in .

Proof: Let be an actor that is adjacent to some ; let

, and observe from Fact 3 that has a BMLB schedule. From Theorem 3,

, and from Fact 4(b), it follows that . Applying

Lemma 3 to the three-actor graph , we see that , and thus from Lemma 2,

divides . Q.E.D.

6 The Optimality of APGAN for a Class of Graphs

In this section, we use the main the results of Section 5 to show that for an acyclic SDF graph

 that has a BMLB schedule, and that satisfies , for all , any APGAN

instance is guaranteed to construct a BMLB schedule.

In Section 5, we showed that clustering an adjacent pair that satisfies the proper clustering condi-

tion does not change the BMLB on an edge. However, to derive a BMLB schedule whenever one exists, it

is not sufficient to simply ensure that each clusterization step selects an adjacent pair that satisfies the

proper clustering condition. This is because although clustering an adjacent pair that satisfies the proper

clustering condition preserves the BMLB value on each edge, it does not necessarily preserve the existence

of a BMLB schedule [2].

Fortunately, the assumption that the adjacent pair being clustered has maximum repetition count is

sufficient to preserve the existence of a BMLB schedule. This is established by the following theorem.

Theorem 5: Suppose that is a connected, consistent, delayless SDF graph with ;

eyz()TNSE eyz()TNSE ρ Y Z,{ }()⁄=

A B,{ } B C,{ }

A B C D E, , , ,()q 6 2 4 5 1, , , ,()=

Ω1 C D E, , ,()q 2 4 5 1, , ,()= Ω1 C,{ }

Ω1 C,{ }

G X Y,{ }

G X Y,{ } G

Z X Y,{ }∉ P X Y,{ }∈

C X Y Z, ,{ }()subgraph= C

ρG Z P,{ }() ρG X Y,{ }()≤ ρC Z P,{ }() ρC X Y,{ }()≤

C ρC Z P,{ }() 1= ρG Z P,{ }()

ρG X Y,{ }()

V E,() e()delay η e()< e E∈

G V E,()= V 1>
23

 has a BMLB schedule; and is an APGAN candidate in . Then has a BMLB

schedule.

Proof: We assume without loss of generality that is a predecessor of , and we prove this theorem by

induction on . Clearly, the theorem holds trivially for , since in this case,

contains no edges. Now suppose that the theorem holds for , and consider the case

.

Define , and let be a BMLB R-schedule for ; the existence of

such a schedule is guaranteed by Theorem 1. Since is an R-schedule and , is of the form

.

Now suppose that , and let denote the connected components of

. Observe that from Fact 3, is a BMLB schedule for

each . Let denote that connected component that contains and . Then, since , we can

apply Theorem 5 with to obtain a BMLB schedule for ,

and from Fact 2, we can assume without loss of generality that . Then, it is easily verified

that is a BMLB schedule for . A similar argument can be

applied to establish the existence of a BMLB schedule for when .

Now suppose that and , and let be an edge directed from

to . Also, let denote the set of edges in , and for each , let denote the corresponding

edge in . Clearly , and thus, since is a BMLB schedule, we

have from Fact 8 that . From Theorem 3, it follows that for all adjacent

pairs in . Thus, from Fact 8,

 for all . (6)

Let be a any topological sort for . Then clearly,

 is a valid single appearance schedule for , and

(from Fact 5)

(from (6))

G X Y,{ } G clusterG X Y,{ }()

X Y

V V 2= clusterG X Y,{ }()

V 2 3 … k, , ,=

V k 1+()=

Gc clusterG X Y,{ } Ω,()= SR G

SR V 2> SR

i1B1() i2B2()

X Y, B1()actors∈ C1 C2 … Cn, , ,

B1()actors()subgraph Si i1B1() Ci,()projection=

Ci Cj X Y Cj k≤

V Cj= S∗ X Y,{ } Cj()subgraph,()cluster

J S∗() J Sj()=

S1S2…Sj 1– S∗Sj 1+ Sj 2+ …Sn i2B2() Gc

Gc X Y, B2()actors∈

X B1()actors∈ Y B2()actors∈ exy X

Y Ec Gc e Ec∈ e′

G exy SR,()max_tokens TNSE exy()= SR

ρG X Y,{ }() 1= ρG X′ Y′,{ } 1=

X′ Y′,{ } G

e′()BMLB TNSEG e′()= e′ E∈

X1 X2 … Xn, , ,() Gc

Sc qGc
X1()() qGc

X2()()… qGc
Xn()()= Gc

Sc()buffer_memory TNSEGc
e()

e Ec∈
∑=

TNSEG e′()
e Ec∈
∑=

e′()BMLB
e Ec∈
∑=
24

. (from Theorems 2 and 4)

Thus, is a BMLB schedule for . Q.E.D.

We are now able to establish our result on the optimality of APGAN.

Lemma 4: Suppose that is a connected, consistent, delayless SDF graph that has a

BMLB schedule; is an APGAN instance; and is the schedule obtained by applying to .

Then is a BMLB schedule for .

Proof: By definition, repeatedly clusters APGAN candidates until the top-level graph consists of only

one actor. From Theorem 4, the first adjacent pair clustered when is applied to satisfies the proper

clustering condition, and thus from Theorem 5, the top level graph that results from the first clustering

operation has a BMLB schedule. Since has a BMLB schedule we can again apply Theorems 4 and 5 to

conclude that the second adjacent pair clustered by satisfies the proper clustering condition, and that

the top-level graph obtained from clustering in has a BMLB schedule. Continuing in this man-

ner successively for , where is the total number of adjacent pairs clustered when is

applied to , we conclude that each adjacent pair clustered by satisfies the proper clustering condition.

Thus, from Theorem 2, , whenever and are corresponding edges associated

with a clusterization step of . It follows from Fact 9 that ,

and thus is a BMLB schedule for . Q.E.D.

The following theorem gives our general specification of the optimality of APGAN.

Theorem 6: Suppose that is a connected, consistent, acyclic SDF graph that has a BMLB

schedule; for all ; is an APGAN instance; and is the schedule obtained

by applying to . Then is a BMLB schedule for .

Proof: Let denote the delayless version of , and let be the APGAN instance that begins by check-

ing whether or not the input graph is equal to , applies to if , and applies to if

. Thus, returns if , and returns otherwise.

Now, since edge delays do not affect the repetition counts of adjacent pairs, the sequence of adja-

cent pairs in that are clustered by when is a sequence of maximum repetition-count clus-

terizations of . Thus, clearly is an APGAN instance. From Fact 7, a BMLB schedule exists for ,

e()BMLB
e Ec∈
∑=

Sc Gc

G V E,()=

P SP G() P G

SP G() G

P

p1 P G

T1

T1

p2 P

T2 p2 T1

p3 p4 … pn, , , n P

G P

e′()BMLB e()BMLB= e′ e

P SP G()()buffer_memory e()BMLB
e E∈
∑=

SP G() G

G V E,()=

e()delay η e()< e E∈ P SP G()

P G SP G() G

G′ G P′

GI G′ P G GI G′= P GI

GI G′≠ P′ SP G() GI G′= SP GI()

G P′ GI G′=

G′ P′ G′
25

and thus, from Lemma 4 and Fact 7, must be a BMLB schedule for . But by construction,

. Q.E.D.

To summarize, the BMLB bound is a lower bound on the amount of buffering required by any

valid single appearance schedule for an acyclic SDF graph. However, a schedule that meets this lower

bound may or may not exist. The above theorem says that whenever such a schedule exists, APGAN will

find it, provided that . If such a schedule does not exist, then there is some schedule that

minimizes the buffering requirement (and this is greater than the BMLB). However, APGAN will not nec-

essarily find this schedule for such a graph. While the result above is of considerable intellectual interest

by itself, we will show in Section 8 that there are in fact a large class of practical SDF graphs that fall into

the class of graphs having BMLB schedules; for this class of graphs, APGAN gives memory-optimal

schedules.

7 Recursive Partitioning by Minimum Cuts

APGAN constructs a single appearance schedule in a bottom-up fashion by starting with the inner-

most loops and working outward. In [14], we proposed an alternative top-down approach, which we call

Recursive Partitioning by Minimum Cuts (RPMC), that computes the schedule by recursively partitioning

the SDF graph in such a way that outer loops are constructed before the inner loops. The partitions are con-

structed by finding the cut (a partition of the set of actors) of the graph across which the minimum amount

of data is transferred and scheduling the resulting halves recursively. The cut that is produced must have

the property that all edges that cross the cut have the same direction. This is to ensure that we can schedule

all actors on the left side of the partition before scheduling any on the right side. In addition, we would also

like to impose the constraint that the partition that results be fairly evenly sized. This is to increase the pos-

sibility of having gcd’s that are greater than unity for the repetitions of the actors in the subsets produced

by the partition, thus reducing the buffer memory requirement (see Fact 4). In this section, we give an

overview of the RPMC technique.

Suppose that is a connected, consistent SDF graph. A cut of is a partition of

into two disjoint sets and . Define and to be the sub-

graphs produced by the cut. The cut is legal if for all edges crossing the cut (that is all edges that are not

contained in nor), we have and . Given a

bounding constant , the cut results in bounded sets if it satisfies , . The weight of

an edge is defined as .

SP′ G′() G

SP′ G′() SP G()=

e() η e()<delay

G V E,()= G V

VL VR GL VL()subgraph= GR VR()subgraph=

e

VL()subgraph VR()subgraph e()src VL∈ e()snk VR∈

K V≤ VR K≤ VL K≤

e w e() e()TNSE=
26

The weight of the cut is the total weight of all the edges crossing the cut. The problem then is to

find the minimum weight legal cut into bounded sets for the graph with the weights defined as above.

Since the related problem of finding a minimum cut (not necessarily legal) into bounded sets is NP-com-

plete [8], and the problem of finding an acyclic partition of a graph is NP-complete [8], we believe this

problem to be NP-complete as well even though we have not discovered a proof. Kernighan and Lin [10]

devised a heuristic procedure for computing cuts into bounded sets but they considered only undirected

graphs. Methods based on network flows [6] do not work because the minimum cut given by the max-

flow-min-cut theorem may not be legal and may not be bounded [14]. Hence, we give a heuristic solution

for finding legal minimum cuts into bounded sets. See [14] for a description and pseudocode specification

of the heuristic.

RPMC proceeds by partitioning the graph by computing the legal minimum cut and forming the

schedule , where the schedules are obtained recursively by partitioning

and . It can be shown that the running time of RPMC is given by [14].

The RPMC algorithm is easily extended to efficiently handle nonzero delays. See [14] for details.

8 Experimental Results

Figure 10 shows a practical example of a graph that is in the class of SDF graphs that have a

BMLB schedule. The graph is an abstraction for a satellite receiver implementation and is taken from [18].

The graph is annotated with the produced/consumed numbers wherever they are different from unity. It is

interesting to note that a shared-buffer implementation of the flat single appearance schedule for this graph

ρ VL()SL() ρ VR()SR() SL SR, GL

GR O V 3()

A

D E

B C

F K G

HL

M

N J I

P

S
UV

R

Q

W

T

4

4

11

11

10

10

11
11

10

11

11

10

240240

240 240

240
240

N

Figure 10. SDF abstraction for satellite receiver application from [Ritz95]
27

would require a buffer of size 2040 [18] while APGAN generates a BMLB schedule having a total buffer-

ing requirement of 1540 (using a buffer on every edge of-course).

Table 1 shows experimental results on the performance of APGAN and RPMC that we have devel-

oped for several practical examples of acyclic, multirate SDF graphs. The column titled “Average Ran-

dom” represents the average buffer memory requirement obtained by considering 100 random topological

sorts and applying GDPPO (see Subsection 2.3) to each. The data for APGAN and RPMC also includes the

effect of GDPPO. The “BMUB” column gives a simple upper bound on the buffer memory requirement.

This bound is the sum of taken over all edges.

All of the systems shown below are acyclic graphs. The data for APGAN and RPMC also includes

the effect of GDPPO. As can be seen, APGAN achieves the BMLB on 5 of the 10 examples, outperform-

ing RPMC in these cases. Particularly interesting are the last three examples in the table, which illustrate

the performance of the two heuristics as the graph sizes are increased. The graphs represent a symmetric

tree-structured QMF filterbank with differing depths. APGAN constructs a BMLB schedule for each of

these systems while RPMC generates schedules that have buffer memory requirements about 1.2 times the

optimal. Conversely, the third and fourth entries show that RPMC can outperform APGAN significantly on

graphs that have more irregular rate changes. These graphs represent nonuniform filterbanks with differing

depths.

Table 1. Performance of the two heuristics on various acyclic graphs.

System BMUB BMLB APGAN RPMC Average
Random

Graph
size(nodes/arcs)

Fractional decimation 61 47 47 52 52 26/30

Laplacian pyramid 115 95 99 99 102 12/13

Nonuniform filterbank
(1/3,2/3 splits, 4 channels)

466 85 137 128 172 27/29

Nonuniform filterbank
(1/3,2/3 splits, 6 channels)

4853 224 756 589 1025 43/47

QMF nonuniform-tree filterbank 284 154 160 171 177 42/45

QMF filterbank (one-sided tree) 162 102 108 110 112 20/22

QMF analysis only 248 35 35 35 43 26/25

QMF Tree filterbank (4 channels) 84 46 46 55 53 32/34

QMF Tree filterbank (8 channels) 152 78 78 87 93 44/50

QMF Tree filterbank (16 channels) 400 166 166 200 227 92/106

e()delay e()TNSE+()
28

Table 2 shows more detailed statistics for the performance of randomly obtained topological sorts.

The column titled “APGAN < random” represents the percentage of random schedules that had a buffer

memory requirement greater than that obtained by APGAN. The last two columns give the mean number

of random schedules needed to outperform these heuristics. A dash indicates that no random schedules

were found that had a buffer memory requirement lower that obtained by the corresponding heuristic.

While the above results on practical examples are encouraging, we have also tested the heuristics

on a large number of randomly generated 50-actor SDF graphs. These graphs were sparse, having about

100 edges on average. Table 3 summarizes the performance of these heuristics, both against each other,

and against randomly generated schedules. As can be seen, RPMC outperforms APGAN on these random

graphs almost two-thirds of the time. We choose to compare these heuristics against 2 random schedules

because measurements of the actual running time on 50-vertex graphs showed that we can construct and

examine approximately 2 random schedules in the time it takes for either APGAN or RPMC to construct

its schedule and have it post-optimized by GDPPO. The comparison against 4 random schedules shows

that in general, the performance of these heuristics goes down if a large number of random schedules are

inspected. Of course, this also entails a proportionate increase in running time. However, as shown on

practical examples already, it is unlikely that even picking a large number of schedules randomly will give

better results than these heuristics since practical graphs usually have a significant amount of structure (as

opposed to random graphs) that the heuristics can exploit well. Thus, the comparisons against random

Table 2. Performance of 100 random schedules against the heuristics

Comparison with random schedules
(100 trials)

APGAN
<

random

APGAN
=

random

RPMC
<

random

RPMC
=

random

avg. to
beat

APGAN

avg. to
beat

RPMC

Fractional decimation 92% 8% 54% 13% ---- 3

Laplacian pyramid 74% 26% 74% 26% ---- ----

Nonunif. filterbank (1/3,2/3 splits, 4, ch.) 100% 0% 100% 0% ---- ----

Nonunif. filterbank (1/3,2/3 splits, 6 ch.) 100% 0% 100% 0% ---- ----

QMF nonuniform-tree filterbank 100% 0% 81% 7% ---- 8

QMF filterbank (1-sided tree) 100% 0% 77% 23% ---- ----

QMF analysis only 99% 1% 99% 1% ---- ----

QMF Tree filterbank (4 channels) 100% 0% 16% 13% ---- 1.4

QMF Tree filterbank (8 channels) 100% 0% 87% 3% ---- 9.1

QMF Tree filterbank (16 channels) 100% 0% 96% 1% ---- 22.3
29

graphs give a worst case estimate of the performance we can expect from these heuristics.

All of our experiments show that APGAN and RPMC complement each other. For the practical

SDF graphs that we examine, APGAN performs well on graphs that have relatively regular topological

structures and rate changes, like the uniform QMF filterbanks, and RPMC performs well on graphs that are

more irregular. Since large random graphs can be expected to consistently have irregular rate changes and

topologies, the average performance on random graphs of RPMC is better than APGAN by a wide margin

— although, from the last two rows of Table 3, we see that there is a significant proportion of random

graphs for which APGAN outperforms RPMC by a margin of over 10%, which suggests that APGAN is a

useful complement to RPMC even when mostly irregular graphs are encountered. However, the main

advantage of adopting both APGAN and RPMC as a combined solution arises from complementing the

strong performance of RPMC on general graphs with the formal properties of APGAN, as specified by

Theorem 6, and the ability of APGAN to exploit regularity that arises frequently in practical applications.

9 Related Work

In [1], Ade, Lauwereins, and Peperstraete develop upper bounds on the minimum buffer memory

requirement for certain classes of SDF graphs. Since these bounds attempt to minimize over all valid

schedules, and since single appearance schedules generally have much larger buffer memory requirements

than schedules that are optimized for minimum buffer memory only, these bounds cannot consistently give

Table 3. Performance of the two heuristics on random graphs

RPMC < APGAN 63%

APGAN < RPMC 37%

RPMC < min(2 random) 83%

APGAN < min(2 random) 68%

RPMC < min(4 random) 75%

APGAN < min(4 random) 61%

min(RPMC,APGAN) < min(4 random) 87%

RPMC < APGAN by more than 10% 45%

RPMC < APGAN by more than 20% 35%

APGAN < RPMC by more than 10% 23%

APGAN < RPMC by more than 20% 14%
30

close estimates of the minimum buffer memory requirement for single appearance schedules.

In [11], Lauwereins, Wauters, Ade, and Peperstraete present a generalization of SDF called cyclo-

static dataflow. A major advantage of cyclo-static dataflow is that it can eliminate large amounts of token

traffic arising from the need to generate dummy tokens in corresponding (pure) SDF representations.

Although cyclostatic dataflow can reduce the amount of buffering for graphs having certain multirate

actors like explicit downsamplers, it is not clear whether this model can in general be used to get schedules

that are as compact as single appearance schedules for pure SDF graphs but have lower buffering require-

ments than those arising from the techniques given in this paper.

A linear programming framework for minimizing the memory requirement of a synchronous data-

flow graph in a parallel processing context is explored by Govindarajan and Gao in [9]. Here the goal is to

minimize the buffer cost without sacrificing throughput.

10 Conclusions

In this paper, we have addressed the problem of constructing a software implementation of an SDF

graph that requires minimal data memory from among the set of implementations that require minimum

code size. We have developed a fundamental lower bound, called the BMLB, on the amount of data mem-

ory required for a minimum code size implementation of an SDF graph; we have presented an efficient

adaptation to acyclic graphs, called APGAN, of the PGAN technique developed in [4]; and we have shown

that for a certain class of graphs, which includes all delayless graphs, APGAN is guaranteed to achieve the

BMLB whenever it is achievable. We have presented the results of an extensive experimental study in

which we evaluate the performance of APGAN and RPMC, a top-down technique developed in [14] that is

based on recursively applying a generalized minimum-cut operation. Based on this study, we have con-

cluded that APGAN and RPMC complement each other, and thus, techniques should be investigated for

efficiently combining the methods of APGAN and RPMC, and that in the absence of such a combined

solution, or of a more powerful alternative solution, both of these heuristics should be incorporated into

SDF-based DSP prototyping and implementation environments in which the minimization of memory

requirements is important. A version of APGAN has been implemented by Cadence Design Systems Inc.

in their Signal Processing Worksystem and we have implemented both of these algorithms in the Ptolemy

programming environment at UC Berkeley and will be making them available in the next release.

The solutions developed in this paper have focused on acyclic SDF graphs. These techniques can

be applied in a limited way to general SDF graphs [2]. More thorough techniques for jointly optimizing
31

code and data for general SDF graphs is a topic for further study.

References

[1] M. Ade, R. Lauwereins, J. A. Peperstraete, “Buffer Memory Requirements in DSP Applications,” IEEE Wkshp.
on Rapid System Prototyping, June, 1994.
[2] S. S. Bhattacharyya, P. K. Murthy, E. A. Lee, “Two Complementary Heuristics for Translating Graphical DSP
Programs into Minimum Memory Software Implementations,” Memorandum UCB/ERL M95/3, Electronics
Research Laboratory, University of California at Berkeley, Jan., 1995. WWW URL: http://ptolemy.eecs.berkeley.edu/
papers/PganRpmcDppo/.
[3] S. S. Bhattacharyya, P. K. Murthy, E. A. Lee, Software Synthesis from Dataflow Graphs, Kluwer Academic Pub-
lishers, Norwell MA, 1996.
[4] S. S. Bhattacharyya, E. A. Lee, “Scheduling Synchronous Dataflow Graphs for Efficient Looping,” Jo. of VLSI
Signal Processing, Dec., 1993.
[5] JJ. Buck, S. Ha, E. A. Lee, D. G. Messerschmitt, “Ptolemy: a Framework for Simulating and Prototyping Hetero-
geneous Systems”, International Journal of Computer Simulation, Jan. 1995.
[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to Algorithms, McGraw-Hill, 1990.
[7] J. Fabri, Automatic Storage Optimization, UMI Research Press, 1982.
[8] M. R. Garey, D. S. Johnson, Computers and Intractability-A guide to the theory of NP-completeness, Freeman,
1979.
[9] R. Govindarajan, G. R. Gao, P. Desai, “Minimizing Memory Requirements in Rate-Optimal Schedules,” Proc. of
the Intl. Conf. on Application Specific Array Processors, San Francisco, Aug., 1994.
[10] B. W. Kernighan, S. Lin, “An Efficient Heuristic Procedure for Partitioning Graphs,” Bell System Technical
Journal, Feb., 1970.
[11] R. Lauwereins, P. Wauters, M. Ade, J. A. Peperstraete, “Geometric Parallelism and Cyclo-Static Dataflow in
GRAPE-II,” IEEE Wkshp. on Rapid System Prototyping, June, 1994.
[12] E. A. Lee, W. H. Ho, E. Goei, J. Bier, S. S. Bhattacharyya, “Gabriel: A Design Environment for DSP,” IEEE
Trans. on Acoustics, Speech, and Signal Processing, Nov., 1989.
[13] E. A. Lee, D. G. Messerschmitt, “Static Scheduling of Synchronous Dataflow Programs for Digital Signal Pro-
cessing,” IEEE Trans. on Computers, Feb., 1987.
[14] P. K. Murthy, S. S. Bhattacharyya, E. A. Lee, “Combined Code and Data Minimization for Synchronous Data-
flow Programs”, Memorandum UCB/ERL M94/93, Electronics Research Laboratory, University of California at Ber-
keley, Nov., 1994, WWW URL: http://ptolemy.eecs.berkeley.edu/papers/jointCodeDataMinimize/.
[15] D. R. O’Hallaron, The Assign Parallel Program Generator, Memorandum CMU-CS-91-141, School of Com-
puter Science, Carnegie Mellon University, May, 1991.
[16] J. Pino, S. Ha, E. A. Lee, J. T. Buck, “Software Synthesis for DSP Using Ptolemy,” invited paper in Jo. of VLSI
Signal Processing, Jan., 1995.
[17] S. Ritz, S. Pankert, and H. Meyr, “High Level Software Synthesis for Signal Processing Systems,” Proc. of the
Intl. Conf. on Application Specific Array Processors, Aug., 1992.
[18] S. Ritz, M. Willems, H. Meyr, “Scheduling for Optimum Data Memory Compaction in Block Diagram Oriented
Software Synthesis,” Proceedings of the ICASSP 95, Detroit, Michigan, May 1995.
32

Glossary

Given an SDF edge , .

Given a subset of actors , .

Blocking factor

For each valid schedule for a connected SDF graph, there is a positive integer such

that invokes each actor exactly times. The constant is the called the block-

ing factor of .

BMLB Buffer memory lower bound. Given an SDF edge , is a lower bound on

 over all valid single appearance schedules for any consistent SDF

graph that contains . The BMLB of an SDF graph is the sum of the BMLB values

over all edges in . A BMLB schedule for is a valid single appearance schedule whose

buffer memory requirement equals the BMLB of .

The SDF graph that results from clustering the subset of actors in the SDF graph into

the actor . We may write when there is no ambiguity.

GDPPO Generalized dynamic programming post optimization. Applying GDPPO to a single

appearance schedule yields a schedule that has a buffer memory requirement that is less

than or equal to the buffer memory requirement of every valid single appearance schedule

that has the same lexical ordering as .

Introduces a cycle

A subset of actors in a connected, consistent, acyclic SDF graph introduces a cycle if

 contains one or more cycles.

Denotes the blocking factor of the valid schedule .

Given a valid schedule and an edge , denotes the maximum number

of tokens that are queued on during an execution of .

Given a connected, consistent SDF graph and an actor in , gives the mini-

mum number of times that must be invoked in a valid schedule for .

Total number of samples exchanged on an SDF edge. Given an SDF edge in a consistent

SDF graph, .

η e() e η e() e()prod e()cons
e()prod e()cons,{ }()gcd

---=

ρ Z() Z ρ Z() A()q A Z∈()gcd=

S J

S A J A()q J

S

e e()BMLB

e S,()max_tokens

e G

G G

G

clusterG Z Ω,()

Z G

Ω clusterG Z()

S

S

Z G

clusterG Z()

J S() S

max_tokens e S,()

S e max_tokens e S,()

e S

q G A G q A()

A G

TNSE e() e

TNSE e() q e()src() e()prod=
33

	1 Motivation
	2 Background
	2.1 Clustering
	2.2 R-schedules
	2.3 Optimally Reparenthesizing a Single Appearance Schedule

	3 A Lower Bound on the Buffer Memory Requirement
	4 PGAN for Acyclic Graphs
	5 Proper Clustering
	6 The Optimality of APGAN for a Class of Graphs
	7 Recursive Partitioning by Minimum Cuts
	8 Experimental Results
	9 Related Work
	10 Conclusions
	Glossary

	annot: In Journal of Design Automation for Embedded Systems.
pp. 33–60. January 1997.

