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ABSTRACT

Dataflow has proven to be an attractive computational model for graphical DSP design environ-
ments that support the automatic conversion of hierarchical signal flow diagrams into implementations on
programmable processors. The synchronous dataflow (SDF) model is particularly well-suited to dataflow-
based graphical programming because its restricted semantics offer strong formal properties and signifi-
cant compile-time predictability, while capturing the behavior of a large class of important signal process-
ing applications. When synthesizing software for embedded signal processing applications, critical
constraints arise due to the limited amounts of memory. In this paper, we propose a solution to the problem
of jointly optimizing the code and data size when converting SDF programs into software implementa-
tions.

We consider two approaches. The first is a customization to acyclic graphs of a bottom-up tech-
nique, called pairwise grouping of adjacent nodes (PGAN), that was proposed earlier for general SDF
graphs. We show that our customization to acyclic graphs significantly reduces the complexity of the gen-
eral PGAN algorithm, and we present a formal study of our modified PGAN technique that rigorously
establishes its optimality for a certain class of applications. The second approach that we consider is a top-
down technique, based on a generalized minimum-cut operation, that was introduced recently in [14]. We
present the results of an extensive experimental investigation on the performance of our modified PGAN
technique and the top-down approach and on the trade-offs between them. Based on these results, we con-
clude that these two techniques complement each other, and thus, they should both be incorporated into
SDF-based software implementation environments in which the minimization of memory requirements is
important. We have implemented these algorithms in the Ptolemy software environment [5] at UC Berke-
ley.
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1 Motivation

In this paper, we present efficient techniques to compile graphical DSP programs based on the syn-

chronous dataflow (SDF) model into software implementations that require a minimum amount of memory 

for code and data. Numerous DSP design environments, including a number of commercial tools, support 

SDF or closely related models [11, 12, 15, 16, 17]. In SDF, a program is represented by a directed graph in 

which each vertex (actor) represents a computation, edges specify FIFO communication channels, and 

each actor produces (consumes) a fixed number of data values (tokens) onto (from) each output (input) 

edge per invocation.

A key property of the SDF model is that static schedules can be constructed at compile time. This 

removes the overhead of dynamic scheduling and is thus useful for real-time DSP programs where 

throughput requirements are often severe. Another constraint that programmable DSPs used in embedded 

systems have is the extremely limited amount of on-chip memory. Typically, these processors might only 

have around 1000 bytes of program memory and 1000 bytes of data memory. Off-chip memory is usually 

undesirable because it often entails a speed penalty, increased system cost, and power consumption. Hence, 

it is imperative that the target code fit inside the on-chip memory whenever possible. While the SDF model 

is natural for expressing a large class of multirate signal processing algorithms, care must be taken while 

scheduling to avoid code and data size blowup. This paper considers the following combinatorial optimiza-

tion problem in SDF scheduling: Given an acyclic SDF graph, amongst the set of possible schedules for 

this graph, there is a class of schedules that minimizes code size (in terms of metrics that will be defined 

shortly). We would like to pick those schedules from this code-optimal class that also minimize the data 

memory required for the buffers on the edges connecting the actors. It should be emphasized that we con-

centrate on uniprocessor scheduling in this paper.

Fig. 1 shows a simple SDF graph. This graph contains three actors, labeled ,  and . Each 

edge is annotated with number of tokens produced (consumed) by its source (sink) actor, and the “D” on 

the edge from  to  specifies a unit delay. Given an SDF edge , we denote the source actor and sink 

actor of  by  and , and we denote the delay on  by . Each unit of delay is imple-

mented as an initial token on the edge. Also,  and  respectively denote the number of 

A B C2 1 1 3
Figure 1. A simple SDF graph.
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tokens produced onto  by , and the number of tokens consumed from  by .

A schedule is a sequence of actor firings. We compile a properly-constructed SDF graph by first 

constructing a finite schedule  that fires each actor at least once, does not deadlock, and produces no net 

change in the number of tokens queued on each edge. We call such a schedule a valid schedule. Corre-

sponding to each actor in the schedule , we instantiate a code block that is obtained from a library of pre-

defined actors, and the resulting sequence of code blocks is encapsulated within an infinite loop to generate 

a software implementation of the SDF graph.

SDF graphs for which valid schedules exist are called consistent SDF graphs. In [13], efficient 

algorithms are presented to determine whether or not a given SDF graph  is consistent, and to determine 

the minimum number of times that each actor must be fired in a valid schedule. We represent these mini-

mum numbers of firings by a row vector , indexed by the actors in , and we refer to  as the repe-

titions vector of . We often suppress the subscript if  is understood from context. More precisely, the 

repetitions vector gives the minimum positive integer solution  to the system of balance equations 

, for each edge  in . (1)

A valid schedule is any schedule that does not deadlock, and that invokes each actor  exactly 

 times for some positive integer . This positive integer is called the blocking factor of the valid 

schedule, and it is denoted by  or by , where  is schedule. A schedule that has  is called a 

minimal schedule.

Given an edge  in , we define the total number of samples exchanged on , denoted 

, by

. (2)

Thus,  is total number of tokens produced onto (consumed from)  in any minimal, 

valid schedule for . Note that the equality of the two products in (2) follows from the definition of . 

For Fig. 1, , and . Note that we 

adopt the convention of indexing vectors using functional notation rather than subscripts.

One valid schedule for Fig. 1 is . Note that  is allowed to fire first because of 

the unit delay on the edge . Here, a parenthesized term  specifies  successive firings 

of the “subschedule” , and we may translate such a term into a loop in the target code. Observe 

that this notation naturally accommodates the representation of nested loops. We refer to each parenthe-

sized term  as a schedule loop having iteration count  and iterands . 
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A looped schedule is a finite sequence , represented as , where each 

 is either an actor or a schedule loop. Thus, the “looped” qualification indicates that the schedule in 

question may be expressed in terms of schedule loops. Since a looped schedule is usually executed repeat-

edly, we refer to each  as an iterand of the associated looped schedule. Henceforth in this paper, by a 

“schedule” we mean a “looped schedule.”

A more compact valid schedule for Fig. 1 is . We call this schedule a single 

appearance schedule since it contains only one lexical appearance of each actor. To a good first approxi-

mation, any valid single appearance schedule gives the minimum code space cost for in-line code genera-

tion. This approximation neglects second order affects such as loop overhead and the efficiency of data 

transfers between actors [3].

Given an SDF graph , a valid schedule , and an edge  in , we define  

(we may suppress the subscript if  is understood) to denote the maximum number of tokens that are 

queued on  during an execution of . For example if for Fig. 1,  and 

, then  and . We define 

the buffer memory requirement of a schedule , denoted , by 

, where  is the set of edges in . Thus, 

, and .

In the model of buffering implied by our “buffer memory requirement” measure, each buffer is 

mapped to an independent contiguous block of memory. Although perfectly valid target programs can be 

generated without this restriction, it can be shown that having a separate buffer on each edge is advanta-

geous because it permits full exploitation of the memory savings attainable from nested loops, and it 

accommodates delays without complication [14]. Another advantage of this model is that by favoring the 

generation of nested loops, the model also favors schedules that have lower latency than single appearance 

schedules that are constructed to optimize various alternative cost measures [14]. Combining the analysis 

and techniques that we develop in this paper with methods for sharing storage among multiple buffers is a 

useful direction for further study. Existing techniques for sharing buffers usually do not take the scheduling 

into account; for example, the common buffer sharing strategy of combining liveness analysis and graph 

coloring is used for a given schedule. Also, most existing techniques assume that every buffer being imple-

mented is of the same size. They also do not apply to SDF graphs, where the presence of rate changes com-
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plicates matters further. Fabri [7] has studied schemes for overlaying buffers when the buffer sizes are not 

all identical but even these techniques only apply to a given schedule, and do not attempt to optimize over 

all possible schedules as done in this paper. Finally, as shown in [14], naive techniques for buffer-sharing 

can result in sub-optimal schedules, and can be awkward to implement.

In this paper we address the problem of computing a valid single appearance schedule that mini-

mizes the buffer memory requirement over all valid single appearance schedules. We call such a schedule 

an optimal schedule. From the discussion above, it should be clear that this scheduling problem of mini-

mizing memory requirements even for a single processor is a challenging, non-trivial problem. We focus 

on acyclic graphs. We introduce a customization to acyclic graphs of a bottom-up scheduling technique, 

called pairwise grouping of adjacent nodes (PGAN), that was proposed in an earlier paper [4] for general 

SDF graphs. We call this customization Acyclic PGAN (APGAN). We show that APGAN significantly 

reduces the time and space complexity of the general PGAN algorithm; we rigorously establish that 

APGAN performs optimally for a certain class of SDF graphs; and we give examples of practical applica-

tions that fall within the class of graphs for which APGAN produces optimal results. We present experi-

mental data on practical applications that verifies that our implementation of APGAN performs optimally 

for graphs that fall within the specified class, and suggests that it often performs very well for graphs that 

lie outside the class.

We compare APGAN to a top-down heuristic based on recursively partitioning the input graph 

using a generalized minimum cut operation, which was introduced recently in [14]. This top-down heuris-

tic is called Recursive Partitioning Based on Minimum Cuts (RPMC). We report on an extensive experi-

mental study in which the performance of both scheduling techniques is evaluated on several practical 

applications, and on a diverse collection of complex random graphs. The conclusions that we derive are 

that techniques should be investigated for efficiently combining the methods of RPMC and APGAN, and 

that in the absence of such a combined solution, or of a more powerful alternative solution, both of these 

heuristics should be incorporated into SDF-based DSP prototyping and implementation environments in 

which the minimization of memory requirements is important. An algorithm based on APGAN has in fact 

been implemented by the Alta group at Cadence Design Systems Inc. in their Signal Processing WorkSys-

tem programming environment. We have implemented APGAN and RPMC in the Ptolemy programming 

environment [5] at UC Berkeley and will be making these algorithms available in the next release.

The paper is organized as follows. In Section 2 we first review some graph concepts and establish 

notation that will be used throughout the paper. We then prove some facts about clustering in SDF graphs 

that will be useful in the development of the APGAN algorithm. We also discuss the problem of construct-
5



ing a buffer-optimal loop hierarchy for a given lexical ordering of nodes and present a polynomial-time 

algorithm that computes it optimally. In Section 3 we prove a simple lower bound on the memory require-

ment (called BMLB) of any single appearance schedule for an acyclic SDF graph and in Section 4 we 

describe the APGAN algorithm. In Section 5 we develop a concept called proper clustering. Section 6 

develops one of the main results of this paper; namely, the optimality of APGAN for a particular class of 

SDF graphs. Even though this class appears restrictive at first, it is shown in Section 8 that a wide variety 

of practical systems fall into this class and hence it is a useful class. Section 7 briefly discusses a different 

heuristic that was proposed in [14]; this discussion is given primarily to facilitate the comparison between 

the two heuristics in Section 8. Finally we discuss some related work and present our conclusions.

2 Background

For reference, a glossary of terminology can be found at the end of the paper.

Given a finite set , we denote the number of elements in  by . If  and  are positive inte-

gers, we say that  divides  if  for some positive integer . If the members of  are positive inte-

gers, then by  we mean the largest positive integer that divides all members of .

Precisely speaking, SDF graphs, as we use them in this paper, are directed multigraphs rather than 

directed graphs, since we allow two or more edges to have the same source and sink vertices. However, we 

often ignore this distinction. Thus, when there is no ambiguity, we may refer to an edge  as the ordered 

pair . We frequently represent an SDF graph  by an ordered pair , where  is 

the set of vertices and  is the set of edges. By a subgraph of , we mean the directed graph formed by 

any  and the set of edges . We denote the subgraph associated with 

the vertex subset  by . A connected component of  is a subset  such that 

 is connected, and no subset of  that properly contains  induces a connected subgraph.

Given an SDF graph , actor  is a predecessor of actor  if there is an  such 

that  and , and  is a successor of  if  is a predecessor of . Two actors  

are adjacent if  is a predecessor or successor of , and if  are distinct, then  is an adjacent 

pair. A path in  from  to  is a finite, nonempty sequence  such that each  is a mem-

ber of , , , and , , , 

. If  is a finite sequence of paths such that 

, for , and , for , then we 

define

H H H x y

x y y kx= k H

H( )gcd H

e

e( )src e( )snk,( ) G V E,( ) V

E G

V′ V⊆ e E∈ e( )src e( )snk, V′∈{ }

V′ V′( )subgraph G V′ V⊆

V′( )subgraph V V′

G V E,( )= X Y e E∈

e( )src X= e( )snk Y= X Y Y X X Y,

X Y X Y, X Y,{ }

G X Y e1 e2 … en, , ,( ) ei

E X e1( )src= Y en( )snk= e1( )snk e2( )src= e2( )snk e3( )src= …

en 1–( )snk en( )src= p1 p2 … pk, , ,( )

pi ei 1, ei 2, … ei ni,, , ,( )= 1 i k≤ ≤ ei ni,( )snk ei 1+ 1,( )src= 1 i k 1–( )≤ ≤
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.

Clearly,  is a path from  to . If there is a path from  to 

, then  is an ancestor of , and  is a descendant of . A path that is directed from a vertex to 

itself is a cycle. If  is acyclic, a topological sort for  is an ordering  of the mem-

bers of  such that for each , . 

If  is an SDF edge, then the delayless version of  is an edge  such that  if 

, and if , then  is the edge defined by , , 

and . If  is an SDF graph, then  is delayless if  for all , 

and the delayless version of  is the SDF graph defined by , where 

. In words, the delayless version of  is the graph that results 

from setting the delays on all edges to zero.

A contiguous sequence of actors and schedule loops in a looped schedule  is called a subsched-

ule of . For example, the schedules , , and  are all subsched-

ules of . If  is a subschedule of , then  is contained in , and  is nested in  

if  is contained in  and .

We denote the set of actors that appear in a single appearance schedule  by , and given 

an , we define  to be the number of times that  invokes . Similarly, if  is a 

subschedule of ,  is the number of times that  invokes . For example, if 

, then , and .

We define  to be the number of actors that lexically precede  in the single appear-

ance schedule . Thus, if , then . Also, the lexical ordering 

of a single appearance schedule , denoted , is the sequence of actors  

where , and  for each . Thus, 

. We will apply the following obvious fact about lexical order-

ings.

Fact 1:  If  is a valid single appearance schedule for a delayless SDF graph, then whenever  is an 

ancestor of , we have .

We will also apply the following fact, whose proof can be found in [2].

Fact 2:  Suppose that  is a consistent, connected SDF graph,  is a single appearance sched-

ule for , and  is any positive integer. Then there exists a valid single appearance schedule  for  

p1 p2 … pk, , ,( )〈 〉 e1 1, … e1 n1, e2 1, … e2 n2, … ek 1, … ek n, k
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such that , , and , for each 

.

Suppose that  is a looped schedule for an SDF graph  and  is a set of actors. If we remove 

from  all actors that are not in , and then we repeatedly remove all null loops (loops that have empty 

bodies) until no null loops remain, we obtain another looped schedule, which we call the projection of  

onto , denoted . For example, . 

Clearly,  fully specifies the sequence of token populations occurring on each edge in 

. More precisely, for any , any , and any input edge  of  

contained in , the number of tokens queued on  just before the th invocation of  in  

equals the number of tokens queued on  just before the th invocation of  in an execution of 

. Thus, we have the following fact.

Fact 3:  If  is a valid looped schedule for an SDF graph , and , then 

 is a valid looped schedule for , and 

, for each edge  in .

If  is a subset of actors in a connected, consistent SDF graph , we define 

, and we refer to this quantity as the repetition count of . The subscript 

may be dropped if  is understood from context.

2.1 Clustering
Given a connected, consistent SDF graph , a subset , and an actor , 

clustering  into  means generating the new SDF graph  such that  and 

, where  is a “modification” of the set of edges 

that connect actors in  to actors outside of . If for each  such that  and , 

we define  by

, ,

, , and ;

and similarly, for each  such that  and , we define  by

, 

, , and
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e E∈
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,

then, we can specify  by

.

For each , we say that  corresponds to  and vice versa (  corresponds to ). The graph that 

results from clustering  into  in  is denoted , or simply . Intuitively, an 

invocation of  in  corresponds to an invocation of a minimal valid schedule for 

 in . We say that  is clusterable if  is consistent, and if  is acyclic, we 

say that  introduces a cycle if  contains one or more cycles. Fig. 2 gives an example of 

clustering. Here, edge  corresponds to  (and vice versa), and  corresponds to 

.

The following fact relates the repetitions vector of an SDF graph obtained by clustering a subgraph 

to that of the original SDF graph. The proofs of both parts can be found in [3].

Fact 4:  (a). If  is a connected, consistent SDF graph, , and , 

then , and for each , .

(b). If  is a connected, consistent SDF graph and  is a connected subgraph of 

, then for each , .

Fact 4(a) together with the definition of clustering immediately yields

Fact 5:  If  and  are as in Fact 4(a), then for each edge  in , , where 

 is the edge in  that corresponds to .

2.2 R-schedules
If  is either a schedule loop or a looped schedule, we say that  satisfies the R-condition if one 
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Figure 2. An example of clustering. In (b), we have , where  denotes the 

SDF graph in (a). Here, .
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of the following two conditions holds: (a)  has a single iterand, and this single iterand is an actor, or (b) 

 has exactly two iterands, and these two iterands are schedule loops having coprime iteration counts.

A valid single appearance schedule  is an R-schedule if  satisfies the R-condition, and every 

schedule loop contained in  satisfies the R-condition. The following result on R-schedules is established 

in [2].

Theorem 1: Suppose that  is a consistent SDF graph and  is a valid single appearance 

schedule for . Then there exists an R-schedule  for  such that 

 for all , and .

2.3 Optimally Reparenthesizing a Single Appearance Schedule
In [14], a dynamic programming algorithm is developed that constructs an optimal schedule for a 

well-ordered SDF graph (a graph that has only one topological sort) in  time, where  is the number 

of actors. An adaptation of this technique is also presented for general, delayless, consistent SDF graphs1 

that computes a single appearance schedule that has minimum buffer memory requirement from among the 

single appearance schedules that have a given lexical ordering. We refer to this adaptation as Dynamic 

Programming Post Optimization (DPPO) for single appearance schedules. DPPO can be extended effi-

ciently to handle delays and arbitrary topologies [3]. We refer to the extension that we have developed as 

Generalized DPPO (GDPPO).

GDPPO gives a post-optimization for any scheduler for general SDF graphs that constructs single 

appearance schedules. Applying GDPPO to a single appearance schedule  yields a schedule that has a 

buffer memory requirement that is less than or equal to the buffer memory requirement of every valid sin-

gle appearance schedule that has the same lexical ordering as . In the remainder of this paper, we discuss 

two heuristics for constructing single appearance schedules, and we present an experimental study that 

compares these heuristics — with their schedules post-processed by GDPPO — against each other and 

against randomly generated schedules that are post-processed by GDPPO. To enhance our analysis of these 

heuristics, we first develop a fundamental lower bound on the buffer memory requirement of a single 

appearance schedule.

1. Note that for consistent SDF graphs, delayless implies acyclic, and thus, we are referring here to the class
of consistent, acyclic — but not necessarily well-ordered — SDF graphs such that the delay on each edge is
zero.
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3 A Lower Bound on the Buffer Memory Requirement

Given a consistent SDF graph , there is an efficiently computable upper and lower bound on the 

buffer memory requirement over all valid single appearance schedules. Our lower bound can be derived 

easily by examining a generic two-actor SDF graph, as shown in Fig. 3(a). From the balance equations (see 

(1)), it is easily verified that the repetitions vector for this graph is given by , where 

, and that if , then the only R-schedule for this graph is . From 

Theorem 1 it follows that if , then  is a lower bound for the 

buffer memory requirement of the graph in Fig. 3(a). Similarly, if , then there are exactly two R-

schedules —  and . Since , we obtain  as a lower 

bound for the buffer memory requirement. Thus, given a valid single appearance schedule  for Fig. 3(a), 

we have that

, and

. (3)

Furthermore, if  is an edge in a general SDF graph, we know from Fact 3 that the projec-

tion of a valid schedule  onto , which is a valid schedule for , always satisfies

. (4)

It follows that the lower bound defined by (3) holds whenever  is an edge in a consistent SDF 

G

Figure 3. Examples used to develop the buffer memory lower bound.
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graph ,  is a valid single appearance schedule for , , and 

. We have motivated the following definition.

Definition 1: Given an SDF edge , we define the buffer memory lower bound (BMLB) of , 

denoted , by

, where

.

If  is an SDF graph, then  is called the BMLB of , and a valid single 

appearance schedule  for  that satisfies  for all  is called a 

BMLB schedule for .

In Fig. 1, we see that , and . Thus, a valid single appear-

ance schedule for Fig. 1 is a BMLB schedule if and only if its buffer memory requirement equals . It is 

easily verified that only two R-schedules for Fig. 1 exist — , and ; the 

associated buffer memory requirements are  and , respectively. Thus, a BMLB 

schedule does not exist for Fig. 1.

In contrast, the SDF graph shown in Fig. 4 has a BMLB schedule. This graph results from simply 

interchanging the production and consumption parameters of edge  in Fig. 1. Here, 

, the BMLB values for both edges are again identically equal to , and 

 is a valid single appearance schedule whose buffer memory requirement achieves the sum of 

these BMLB values.

The following fact is a straightforward extension of our development of the BMLB.

Fact 6:  Suppose that  is an SDF graph that consists of two vertices  and  edges 

 directed from  to . Then (a). if  for all , then 
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Figure 4. An SDF graph that has a BMLB schedule.
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 is a BMLB schedule for ; (b) otherwise,  is an optimal 

schedule — that is, it minimizes the buffer memory requirement over all valid single appearance schedules 

— for , and it is a BMLB schedule if and only if  for .

Fact 7:  If  is a connected, consistent, acyclic SDF graph, and  for all 

, then  is a BMLB schedule for the delayless version of  if and only if  is a BMLB schedule for 

.

Proof:  Let  denote the delayless version of . If  is a BMLB schedule for , then  is a valid 

schedule for  that satisfies  for all . It fol-

lows from Definition 1 that  is BMLB schedule for . Similarly, if  a BMLB schedule for , then  is 

a valid schedule for , and . Again, from Defini-

tion 1,  must be a BMLB schedule for . Q.E.D.

A proof of the following fact can be found in [2].

Fact 8:  If  is a connected, consistent SDF graph and  is an edge in , then

.

4 PGAN for Acyclic Graphs

In the original Pairwise Grouping of Adjacent Nodes (PGAN) technique, developed in [4], a clus-

ter hierarchy is constructed by clustering exactly two adjacent vertices at each step. At each clusterization 

step, a pair of adjacent actors is chosen that maximizes  over all clusterable adjacent pairs. 

To check whether or not an adjacent pair is clusterable, PGAN maintains the cluster hierarchy on 

the acyclic precedence graph (APG) [13]. Each vertex of the APG corresponds to an actor invocation, and 

each edge  signifies that at least one token produced by  is consumed by  in a valid schedule. 

PGAN determines whether or not an adjacent pair is clusterable by checking whether or not its consolida-

tion introduces a cycle in the APG. This check is performed efficiently by applying a reachability matrix, 

which indicates for any two APG vertices , whether or not there is a path from  to .

Unfortunately, the cost to compute and store the APG reachability matrix can be prohibitively high 

for some applications [2]. Since a large proportion of DSP applications that are amenable to the SDF 
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model can be represented as acyclic SDF graphs, we propose an adaptation of PGAN to acyclic graphs, 

called Acyclic PGAN (APGAN), that maintains the cluster hierarchy and reachability matrix directly on 

the input SDF graph rather than on the APG.

In an acyclic SDF graph , it is easily verified that a subset  of actors is not clusterable only if 

 introduces a cycle. This condition is easily checked given a reachability matrix for  [2]. Since the 

existence of a cycle in  is not a sufficient condition for  not to be clusterable, the cluster-

izeability test that we apply in APGAN is not exact; it must be viewed as a conservative test. For some 

graphs, this imprecision can prevent APGAN from attaining optimal results [2]. In exchange for some 

degree of suboptimality in these cases, our clusterization test attains a large computational savings over the 

exact test based on the reachability matrix of the APG, and this is our main reason for adopting it.

Fig. 5 illustrates the operation of APGAN. Fig. 5(a) shows the input SDF graph. Here 

, and for ,  represents the th hierarchical actor instan-

tiated by APGAN. Each edge corresponds to a different adjacent pair; the repetition counts of the adjacent 

pairs are given by , and 

. Thus, APGAN will select the one of the three adjacent 

pairs , , or  for its first clusterization step. Examination of the reachability matrix 

yields that  introduces a cycle due to the path , while the other two adjacent pairs 

do not introduce cycles. Thus, APGAN chooses arbitrarily between  and  as the first adja-

cent pair to cluster.

Fig. 5(b) shows the graph that results from clustering  into the hierarchical actor . Here, 

, and  uniquely maximizes  over all adjacent pairs. Since 

 does not introduce a cycle, APGAN selects this adjacent pair for its second clusterization step. 

Fig. 5(c) shows the resulting graph.
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Figure 5. An illustration of APGAN.
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In Fig. 5(c), we have , and thus all three adjacent pairs have . 

Among these, clearly, only  and  do not introduce cycles, so APGAN arbitrarily selects 

among these two to determine the third clusterization pair. Fig. 5(d) shows the graph that results when 

 is chosen. This graph contains only one adjacent pair , and APGAN will consolidate 

this pair in its final clusterization step to obtain the single-vertex graph in Fig. 5(e).

Figs. 5(b-e) specify the sequence of clusterizations performed by APGAN when applied to the 

graph of Fig. 5(a). We define the subgraph corresponding to  to be the subgraph that is clustered in the 

th clusterization step. Thus, for example, the subgraph corresponding to  consists of actors  and 

, and the two edges directed from  to . A valid single appearance schedule for Fig. 5(a) can easily 

be constructed by recursively traversing the hierarchy induced by the subgraphs corresponding to the s. 

We start by constructing a schedule for the top-level subgraph, the subgraph corresponding to . The 

subgraph  corresponding to each  consists of only two actors  and , such that all edges in  are 

directed from  to . Thus, from Fact 6, it is clear how an optimal schedule can easily be constructed for 

the subgraph corresponding to each : if each edge  in  satisfies , then we construct 

the schedule , and otherwise we construct . In Fig. 5, 

This yields the “top-level” schedule  (we suppress loops that have an iteration count of one) for 

the subgraph corresponding to .

Next, we recursively descend one level in cluster hierarchy to the subgraph corresponding to , 

and we obtain the schedule . Since this subgraph contains no hierarchical actors,  is imme-

diately returned as the “flattened” schedule for the subgraph corresponding to . This flattened schedule 

then replaces its corresponding hierarchical actor in the top-level schedule, and the top-level schedule 

becomes .

Next, descending to , we construct the schedule  for the corresponding subgraph. We 

then examine the subgraph corresponding to  to obtain the schedule . Substituting this for , 

the schedule for the subgraph corresponding to  becomes . This gets substituted for  in 

the top-level schedule to yield the schedule  for Fig. 5(a).

From  and Fig. 5(a) it is easily verified that  and , where 

 is the set of edges in Fig. 5(a), are identically equal to , and thus in the execution of APGAN illus-

trated in Fig. 5, a BMLB schedule is constructed. 

As seen in the above example, the APGAN approach, as we have defined it here, does not 
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uniquely specify the sequence of clusterizations that will be performed, and thus, it does not in general, 

result in a unique schedule for a given SDF graph. APGAN together with an unambiguous protocol for 

deciding between adjacent pairs that are tied for the highest repetition count form an APGAN instance, 

which generates a unique schedule for a given graph. For example, one tie-breaking protocol that can be 

used when actors are labelled alphabetically, as in Fig. 5, is to choose that adjacent pair that maximizes the 

sum of the “distances” of the actor labels from the letter “A”. If this protocol is used to break the tie 

between  (“distance sum” is ) and  (distance sum is ) in the first 

clusterization of step of Fig. 5, then  is chosen.

If an efficient data structure is used to maintain the list of pairwise clustering candidates, then it 

can be shown that APGAN instances exist with running times that are .

We say that an adjacent pair is an APGAN candidate if it does not introduce a cycle, and its repe-

tition count is greater than or equal to all other adjacent pairs that do not introduce cycles. Thus, an 

APGAN instance is any algorithm that takes a consistent, acyclic SDF graph as input, repeatedly clusters 

APGAN candidates, and then outputs the schedule corresponding to a recursive traversal of the resulting 

cluster hierarchy. 

In the following two sections, we show that for a consistent, acyclic SDF graph  that has a 

BMLB schedule, and that satisfies  for each , any APGAN instance is guaranteed to 

obtain a BMLB schedule when applied to this graph.

The following fact, which is easily understood from our discussion of the example in Fig. 5, is fun-

damental to developing our result on the optimality of APGAN instances.

Fact 9:  Suppose  is a connected, consistent, acyclic SDF graph such that  for each 

;  is an APGAN instance; and  is the schedule that results when  is applied to . Then 

, where  is the set of edges that are contained in the subgraphs 

corresponding to the hierarchical actors  instantiated by .

For the example of Fig. 5,  is the set of six edges that are enclosed by dashed ovals in Fig. 5(a-

d). It is easily seen that the BMLB values for these edges are , , , , , and . Thus, Fact 9 states 

that the schedule obtained from the sequence of clusterizations shown in Fig. 5 has a buffer memory 

requirement equal to , which we know is correct from the discussion above.

There are two main parts in the development of our optimality result. First, we define a certain 
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class of “proper” clusterizations; we show that for delayless graphs, such clusterizations have the property 

that they do not increase the BMLB values on any edge; and we show that under the assumption that a 

BMLB schedule exists, a clustering operation performed by any APGAN instance is guaranteed to fall in 

the class of proper clusterizations. Then we show that clustering an APGAN candidate cannot transform a 

graph that has a BMLB schedule into a graph that does not have a BMLB schedule. From these three 

developments and Facts 7 and 9, the desired result can be derived easily.

5 Proper Clustering

Definition 2: If  is a connected, consistent SDF graph, and  is an adjacent pair in  that does 

not introduce a cycle, we say that  satisfies the proper clustering condition in  if for each actor 

 that is adjacent to a member of , we have that  divides , for 

each  that  is adjacent to.

In Fig. 5(a) , and  is divisible by 

, , , and , and thus,  satisfies the 

proper clustering condition. Conversely,  is not divisible by , so  does not 

satisfy the proper clustering condition.

The motivation for Definition 2 is given by Theorem 2 below, which establishes that when the 

proper clustering condition is satisfied, clustering  does not change the BMLB on any edge, and 

that when the proper clustering condition is not satisfied, clustering  increases the BMLB on at 

least one edge. Thus, a clustering operation that does not satisfy the proper clustering condition cannot be 

used to derive a BMLB schedule.

To establish Theorem 2, we will use the following simple fact about greatest common divisors, 

which we state here without proof.

Fact 10:  Suppose that  are positive integers. If  divides , then 

; otherwise, .

Theorem 2: Suppose that  is a consistent, connected, delayless SDF graph, and  is a cluster-

able adjacent pair in . If  satisfies the proper clustering condition, then for each edge  in 

, , where  is the edge in  that corresponds to . If 

 does not satisfy the proper clustering condition, then there exists an edge  in  such that 

.

For example, in Fig. 6(a), , , and 
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. Figs. 6(b) and 6(c) respectively show  and 

, where  denotes the graph of Fig. 6(a). In Fig. 6(b), we see that if , 

then , and , while , and thus, . In 

contrast, in Fig. 6(c), we see that if , then , and . 

These observations are consistent with Theorem 2 since  satisfies the proper clustering condition, 

while  does not.

Proof of  Theorem 2: First, suppose that  satisfies the proper clustering condition. Let  be an edge 

in , and let  be the corresponding edge in . If , then , so from Definition 

1, it follows that . 

If , observe that  and , and observe from 

Fact 4(a) that . Thus, since  satis-

fies the proper clustering condition, it follows from Fact 10 that 

. From Facts 5 and 8, we conclude that 

. A symmetric argument can be constructed for the case . Thus, we 

have that  whenever  satisfies the proper clustering condition.

If  does not satisfy the proper clustering condition, then there exists an actor  

that is adjacent to some  such that

 does not divide . (5)

Without loss of generality, suppose that  and  is a predecessor of  (the other possibilities can be 

handled with symmetric arguments). Let  be an edge directed from  to  in , and let  be the corre-

sponding edge (directed from  to ) in . From Fact 4(a), 

, and thus from (5) and Fact 10, it follows 

that . From Facts 5 and 8, we conclude that 
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Figure 6. An example used to illustrate Theorem 2.
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. Q.E.D.

The following lemma establishes that if there is an adjacent pair ,  is a predecessor of , 

that introduces a cycle in a delayless SDF graph that has a BMLB schedule, then there exists an actor 

 that is a predecessor of  and a descendant (recall the distinction between descendant and 

successor) of , such that the repetition count of  is divisible by the repetition count of . 

A simple example is shown in Fig. 7.

Lemma 1: Suppose that  is a connected, delayless, consistent SDF graph that has a BMLB sched-

ule, and  is an edge in  such that  introduces a cycle. Then there exists an actor  in 

 such that  is a predecessor of ,  is a descendant of ; and  

divides .

Proof:  Observe that from Theorem 1, there exists a BMLB schedule  for  that is an R-schedule; since 

 introduces a cycle, there is a path , , from  to ; and 

from Fact 1, . Thus, there exists a 

schedule loop  in , where  and  are schedule loop bodies such that (a) 

 contains , and  contains both  and , or (b)  contains both  and 

, and  contains . Observe that  is simply the innermost schedule loop in  that 

contains , , and .

Without loss of generality, assume that (a) applies — that is, assume that  contains , and 

 contains both  and . Then there is a schedule loop  con-

tained in  such that  contains , and  contains . This is the innermost sched-

ule loop that contains  and , and this loop may be , or it may be nested in 
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Figure 7. An illustration of Lemma 1. Here, ,  is a BMLB schedule, 
and  introduces a cycle. Thus, Lemma 1 guarantees that  divides , 

and this is easily verified from .
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.

Let  be the product of the iteration counts of all schedule loops in  that contain 

. Similarly, let  be the product of all schedule loops contained in  that contain 

. Then, it is easily verified that

, and

.

Since  is a BMLB schedule, we have from Fact 8 that , and 

. Thus,  divides . Further-

more, since the path  originates at , we know that  is a descendant of 

. Q.E.D.

The following corollary to Lemma 1 states that under the hypotheses of Lemma 1 (a BMLB sched-

ule exists and  introduces a cycle), we are guaranteed the existence of an adjacent pair 

 such that  does not introduce a cycle, and the repetition count of 

 divides the repetition count of .

Corollary 1: Assume the hypotheses of Lemma 1. Then, there exists a predecessor  of 

 such that  does not introduce a cycle, and  divides 

.

Proof:  Let  and . From Lemma 1, there exists an adjacent pair  such 

that (a).  divides , and (b). there is a path  from  to . If  intro-

duces a cycle, then again from Lemma 1, we have  such that  divides , 

and there is a path  from  to . Furthermore, , since  implies that  is 

a cycle, and thus that  is not acyclic.

If  introduces a cycle, then from Lemma 1, we have  such that  

divides , and there is a path  from  to . Furthermore , since otherwise 

 is a cycle in ; similarly, , since otherwise  is a cycle. Continuing this 

process, we obtain a sequence of distinct actors . Since the s are distinct and we are 

assuming a finite graph, we cannot continue generating s indefinitely. Thus, eventually, we will arrive 
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at a  such that  does not introduce a cycle. Furthermore, by our construction,  

divides , and for ,  divides . It follows that 

 divides . Q.E.D.

From Corollary 1, we obtain the following theorem, which states that given an APGAN candidate 

in an SDF graph that has a BMLB schedule, no adjacent pair can have higher repetition count.

Theorem 3: Suppose that  is a connected, delayless SDF graph that has a BMLB schedule, and  is 

an APGAN candidate in . Then for all adjacent pairs  in , .

As an example consider Fig. 8(a), and suppose that the SDF parameters on the graph edges are 

such that  is an APGAN candidate — that is,  does not introduce a cycle and maximizes 

 over all adjacent pairs that do not introduce cycles. Since  introduces a cycle, the assump-

tion that  is an APGAN candidate is not sufficient to guarantee that . 

However, Theorem 3 guarantees that under the additional assumption that Fig. 8(a) has a BMLB schedule, 

 is guaranteed not to exceed . 

Fig. 8(b) shows a case where this additional assumption is violated. Here, 

. Clearly, four invocations of  must fire before a single invocation of  can 

fire, and thus for any valid schedule , ; conse-

quently, Fig. 8(b) cannot have a BMLB schedule. It is also easily verified that among the three adjacent 

pairs in Fig. 8(b) that do not introduce cycles,  is the only APGAN candidate, and 

, while . Thus, Theorem 3 does not generally hold if we relax the 

assumption that the graph in question has a BMLB schedule.

Proof of  Theorem 3: (By contraposition.) Suppose that . Then since  is an APGAN candi-

date,  must introduce a cycle. From Corollary 1, there exists an adjacent pair  such that  does not 

introduce a cycle, and  divides . It follows that . Since  does not introduce a 

cycle,  cannot be an APGAN candidate. Q.E.D.
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Figure 8. Examples used to illustrate Theorem 3.
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Lemma 2: Suppose that  is a consistent, connected SDF graph,  is a subset of 

actors such that  is connected, and . Then 

.

Proof:  This result is a straightforward consequence of Fact 4(b). See [2] for details.

The following lemma states that in a connected SDF graph that contains exactly three actors, and 

that has a BMLB schedule, the repetition count can exceed unity for at most one adjacent pair. For exam-

ple, consider the three-actor graph in Fig. 9. Here, , and  is a 

BMLB schedule. The two pairs of adjacent actors  and  have repetition counts of  and 

, respectively. Thus, we see that only one adjacent pair has a repetition count that exceeds unity.

Lemma 3: Suppose that (a).  is a connected, consistent, delayless SDF graph that consists of 

exactly three distinct actors ,  and ; (b).  is a predecessor of ; (c).  is adjacent to ; 

(d). ; and (e).  has a BMLB schedule. Then, .

Proof:  For simplicity, assume that , and that  is a successor of . The other three possible cases 

— ( ,  is a predecessor of ), and ( ,  is a predecessor or successor of ) — can be han-

dled by simple adaptations of this argument. 

Let  be an edge directed from  to , and let  be an edge directed from  to . From The-

orem 1, there exists a BMLB R-schedule  for . Since  contains only three actors,  has exactly two 

R-schedules, and it is easily verified that either  is of the form , or it has the form 

.

If , then , and thus from Fact 8, 

we have that , which implies that . From Assump-

tion (d), it follows that .

Conversely, suppose that . Then 

, so from Fact 8, we have that 
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Figure 9. An illustration of Lemma 3.
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, which implies the desired result. Q.E.D.

The following theorem guarantees that whenever an APGAN instance performs a clustering oper-

ation on a top-level graph that has a BMLB schedule, the adjacent pair selected satisfies the proper cluster-

ing condition in the top-level graph. For example in Fig. 5(a),  and  are APGAN 

candidates, and it is easily verified from the repetitions vector  that both 

of these adjacent pairs satisfy the proper clustering condition in Fig. 5(a). Similarly, for Fig. 5(b) we have 

, and thus  is the only APGAN candidate. Thus, Theorem 4 guar-

antees that  satisfies the proper clustering condition in Fig. 5(b).

Theorem 4: Suppose  is a connected, delayless SDF graph that has a BMLB schedule, and  

is an APGAN candidate in . Then  satisfies the proper clustering condition in .

Proof:  Let  be an actor that is adjacent to some ; let 

, and observe from Fact 3 that  has a BMLB schedule. From Theorem 3, 

, and from Fact 4(b), it follows that . Applying 

Lemma 3 to the three-actor graph , we see that , and thus from Lemma 2,  

divides . Q.E.D.

6 The Optimality of APGAN for a Class of Graphs

In this section, we use the main the results of Section 5 to show that for an acyclic SDF graph 

 that has a BMLB schedule, and that satisfies , for all , any APGAN 

instance is guaranteed to construct a BMLB schedule.

In Section 5, we showed that clustering an adjacent pair that satisfies the proper clustering condi-

tion does not change the BMLB on an edge. However, to derive a BMLB schedule whenever one exists, it 

is not sufficient to simply ensure that each clusterization step selects an adjacent pair that satisfies the 

proper clustering condition. This is because although clustering an adjacent pair that satisfies the proper 

clustering condition preserves the BMLB value on each edge, it does not necessarily preserve the existence 

of a BMLB schedule [2].

Fortunately, the assumption that the adjacent pair being clustered has maximum repetition count is 

sufficient to preserve the existence of a BMLB schedule. This is established by the following theorem.

Theorem 5: Suppose that  is a connected, consistent, delayless SDF graph with ; 
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 has a BMLB schedule; and  is an APGAN candidate in . Then  has a BMLB 

schedule.

Proof:  We assume without loss of generality that  is a predecessor of , and we prove this theorem by 

induction on . Clearly, the theorem holds trivially for , since in this case,  

contains no edges. Now suppose that the theorem holds for , and consider the case 

.

Define , and let  be a BMLB R-schedule for ; the existence of 

such a schedule is guaranteed by Theorem 1. Since  is an R-schedule and ,  is of the form 

.

Now suppose that , and let  denote the connected components of 

. Observe that from Fact 3,  is a BMLB schedule for 

each . Let  denote that connected component that contains  and . Then, since , we can 

apply Theorem 5 with  to obtain a BMLB schedule  for , 

and from Fact 2, we can assume without loss of generality that . Then, it is easily verified 

that  is a BMLB schedule for . A similar argument can be 

applied to establish the existence of a BMLB schedule for  when .

Now suppose that  and , and let  be an edge directed from  

to . Also, let  denote the set of edges in , and for each , let  denote the corresponding 

edge in . Clearly , and thus, since  is a BMLB schedule, we 

have from Fact 8 that . From Theorem 3, it follows that  for all adjacent 

pairs  in . Thus, from Fact 8,

 for all . (6)

Let  be a any topological sort for . Then clearly, 

 is a valid single appearance schedule for , and

(from Fact 5)

(from (6))
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. (from Theorems 2 and 4)

Thus,  is a BMLB schedule for . Q.E.D.

We are now able to establish our result on the optimality of APGAN.

Lemma 4: Suppose that  is a connected, consistent, delayless SDF graph that has a 

BMLB schedule;  is an APGAN instance; and  is the schedule obtained by applying  to . 

Then  is a BMLB schedule for .

Proof:  By definition,  repeatedly clusters APGAN candidates until the top-level graph consists of only 

one actor. From Theorem 4, the first adjacent pair  clustered when  is applied to  satisfies the proper 

clustering condition, and thus from Theorem 5, the top level graph  that results from the first clustering 

operation has a BMLB schedule. Since  has a BMLB schedule we can again apply Theorems 4 and 5 to 

conclude that the second adjacent pair  clustered by  satisfies the proper clustering condition, and that 

the top-level graph  obtained from clustering  in  has a BMLB schedule. Continuing in this man-

ner successively for , where  is the total number of adjacent pairs clustered when  is 

applied to , we conclude that each adjacent pair clustered by  satisfies the proper clustering condition. 

Thus, from Theorem 2, , whenever  and  are corresponding edges associated 

with a clusterization step of . It follows from Fact 9 that , 

and thus  is a BMLB schedule for . Q.E.D.

The following theorem gives our general specification of the optimality of APGAN.

Theorem 6: Suppose that  is a connected, consistent, acyclic SDF graph that has a BMLB 

schedule;  for all ;  is an APGAN instance; and  is the schedule obtained 

by applying  to . Then  is a BMLB schedule for .

Proof:  Let  denote the delayless version of , and let  be the APGAN instance that begins by check-

ing whether or not the input graph  is equal to , applies  to  if , and applies  to  if 

. Thus,  returns  if , and returns  otherwise.

Now, since edge delays do not affect the repetition counts of adjacent pairs, the sequence of adja-

cent pairs in  that are clustered by  when  is a sequence of maximum repetition-count clus-

terizations of . Thus, clearly  is an APGAN instance. From Fact 7, a BMLB schedule exists for , 
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and thus, from Lemma 4 and Fact 7,  must be a BMLB schedule for . But by construction, 

. Q.E.D.

To summarize, the BMLB bound is a lower bound on the amount of buffering required by any 

valid single appearance schedule for an acyclic SDF graph. However, a schedule that meets this lower 

bound may or may not exist. The above theorem says that whenever such a schedule exists, APGAN will 

find it, provided that . If such a schedule does not exist, then there is some schedule that 

minimizes the buffering requirement (and this is greater than the BMLB). However, APGAN will not nec-

essarily find this schedule for such a graph. While the result above is of considerable intellectual interest 

by itself, we will show in Section 8 that there are in fact a large class of practical SDF graphs that fall into 

the class of graphs having BMLB schedules; for this class of graphs, APGAN gives memory-optimal 

schedules.

7 Recursive Partitioning by Minimum Cuts

APGAN constructs a single appearance schedule in a bottom-up fashion by starting with the inner-

most loops and working outward. In [14], we proposed an alternative top-down approach, which we call 

Recursive Partitioning by Minimum Cuts (RPMC), that computes the schedule by recursively partitioning 

the SDF graph in such a way that outer loops are constructed before the inner loops. The partitions are con-

structed by finding the cut (a partition of the set of actors) of the graph across which the minimum amount 

of data is transferred and scheduling the resulting halves recursively. The cut that is produced must have 

the property that all edges that cross the cut have the same direction. This is to ensure that we can schedule 

all actors on the left side of the partition before scheduling any on the right side. In addition, we would also 

like to impose the constraint that the partition that results be fairly evenly sized. This is to increase the pos-

sibility of having gcd’s that are greater than unity for the repetitions of the actors in the subsets produced 

by the partition, thus reducing the buffer memory requirement (see Fact 4). In this section, we give an 

overview of the RPMC technique.

Suppose that  is a connected, consistent SDF graph. A cut of  is a partition of  

into two disjoint sets  and . Define  and  to be the sub-

graphs produced by the cut. The cut is legal if for all edges  crossing the cut (that is all edges that are not 

contained in  nor ), we have  and . Given a 

bounding constant , the cut results in bounded sets if it satisfies , . The weight of 

an edge  is defined as .
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The weight of the cut is the total weight of all the edges crossing the cut. The problem then is to 

find the minimum weight legal cut into bounded sets for the graph with the weights defined as above. 

Since the related problem of finding a minimum cut (not necessarily legal) into bounded sets is NP-com-

plete [8], and the problem of finding an acyclic partition of a graph is NP-complete [8], we believe this 

problem to be NP-complete as well even though we have not discovered a proof. Kernighan and Lin [10] 

devised a heuristic procedure for computing cuts into bounded sets but they considered only undirected 

graphs. Methods based on network flows [6] do not work because the minimum cut given by the max-

flow-min-cut theorem may not be legal and may not be bounded [14]. Hence, we give a heuristic solution 

for finding legal minimum cuts into bounded sets. See [14] for a description and pseudocode specification 

of the heuristic.

RPMC proceeds by partitioning the graph by computing the legal minimum cut and forming the 

schedule , where the schedules  are obtained recursively by partitioning  

and . It can be shown that the running time of RPMC is given by  [14].

The RPMC algorithm is easily extended to efficiently handle nonzero delays. See [14] for details.

8 Experimental Results

Figure 10 shows a practical example of a graph that is in the class of SDF graphs that have a 

BMLB schedule. The graph is an abstraction for a satellite receiver implementation and is taken from [18]. 

The graph is annotated with the produced/consumed numbers wherever they are different from unity. It is 

interesting to note that a shared-buffer implementation of the flat single appearance schedule for this graph 
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Figure 10. SDF abstraction for satellite receiver application from [Ritz95]
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would require a buffer of size 2040 [18] while APGAN generates a BMLB schedule having a total buffer-

ing requirement of 1540 (using a buffer on every edge of-course).

Table 1 shows experimental results on the performance of APGAN and RPMC that we have devel-

oped for several practical examples of acyclic, multirate SDF graphs. The column titled “Average Ran-

dom” represents the average buffer memory requirement obtained by considering 100 random topological 

sorts and applying GDPPO (see Subsection 2.3) to each. The data for APGAN and RPMC also includes the 

effect of GDPPO. The “BMUB” column gives a simple upper bound on the buffer memory requirement. 

This bound is the sum of  taken over all edges.

All of the systems shown below are acyclic graphs. The data for APGAN and RPMC also includes 

the effect of GDPPO. As can be seen, APGAN achieves the BMLB on 5 of the 10 examples, outperform-

ing RPMC in these cases. Particularly interesting are the last three examples in the table, which illustrate 

the performance of the two heuristics as the graph sizes are increased. The graphs represent a symmetric 

tree-structured QMF filterbank with differing depths. APGAN constructs a BMLB schedule for each of 

these systems while RPMC generates schedules that have buffer memory requirements about 1.2 times the 

optimal. Conversely, the third and fourth entries show that RPMC can outperform APGAN significantly on 

graphs that have more irregular rate changes. These graphs represent nonuniform filterbanks with differing 

depths.

Table 1. Performance of the two heuristics on various acyclic graphs.

System BMUB BMLB APGAN RPMC Average 
Random

Graph 
size(nodes/arcs)

Fractional decimation 61 47 47 52 52 26/30

Laplacian pyramid 115 95 99 99 102 12/13

Nonuniform filterbank 
(1/3,2/3 splits, 4 channels)

466 85 137 128 172 27/29

Nonuniform filterbank 
(1/3,2/3 splits, 6 channels)

4853 224 756 589 1025 43/47

QMF nonuniform-tree filterbank 284 154 160 171 177 42/45

QMF filterbank (one-sided tree) 162 102 108 110 112 20/22

QMF analysis only 248 35 35 35 43 26/25

QMF Tree filterbank (4 channels) 84 46 46 55 53 32/34

QMF Tree filterbank (8 channels) 152 78 78 87 93 44/50

QMF Tree filterbank (16 channels) 400 166 166 200 227 92/106

e( )delay e( )TNSE+( )
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Table 2 shows more detailed statistics for the performance of randomly obtained topological sorts. 

The column titled “APGAN < random” represents the percentage of random schedules that had a buffer 

memory requirement greater than that obtained by APGAN. The last two columns give the mean number 

of random schedules needed to outperform these heuristics. A dash indicates that no random schedules 

were found that had a buffer memory requirement lower that obtained by the corresponding heuristic.

While the above results on practical examples are encouraging, we have also tested the heuristics 

on a large number of randomly generated 50-actor SDF graphs. These graphs were sparse, having about 

100 edges on average. Table 3 summarizes the performance of these heuristics, both against each other, 

and against randomly generated schedules. As can be seen, RPMC outperforms APGAN on these random 

graphs almost two-thirds of the time. We choose to compare these heuristics against 2 random schedules 

because measurements of the actual running time on 50-vertex graphs showed that we can construct and 

examine approximately 2 random schedules in the time it takes for either APGAN or RPMC to construct 

its schedule and have it post-optimized by GDPPO. The comparison against 4 random schedules shows 

that in general, the performance of these heuristics goes down if a large number of random schedules are 

inspected. Of course, this also entails a proportionate increase in running time. However, as shown on 

practical examples already, it is unlikely that even picking a large number of schedules randomly will give 

better results than these heuristics since practical graphs usually have a significant amount of structure (as 

opposed to random graphs) that the heuristics can exploit well. Thus, the comparisons against random 

Table 2. Performance of 100 random schedules against the heuristics

Comparison with random schedules 
(100 trials)

APGAN
< 

random

APGAN
= 

random

RPMC
< 

random

RPMC
= 

random 

avg. to 
beat 

APGAN

avg. to 
beat 

RPMC

Fractional decimation 92% 8% 54% 13% ---- 3

Laplacian pyramid 74% 26% 74% 26% ---- ----

Nonunif. filterbank (1/3,2/3 splits, 4, ch.) 100% 0% 100% 0% ---- ----

Nonunif. filterbank (1/3,2/3 splits, 6 ch.) 100% 0% 100% 0% ---- ----

QMF nonuniform-tree filterbank 100% 0% 81% 7% ---- 8

QMF filterbank (1-sided tree) 100% 0% 77% 23% ---- ----

QMF analysis only 99% 1% 99% 1% ---- ----

QMF Tree filterbank (4 channels) 100% 0% 16% 13% ---- 1.4

QMF Tree filterbank (8 channels) 100% 0% 87% 3% ---- 9.1

QMF Tree filterbank (16 channels) 100% 0% 96% 1% ---- 22.3
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graphs give a worst case estimate of the performance we can expect from these heuristics. 

All of our experiments show that APGAN and RPMC complement each other. For the practical 

SDF graphs that we examine, APGAN performs well on graphs that have relatively regular topological 

structures and rate changes, like the uniform QMF filterbanks, and RPMC performs well on graphs that are 

more irregular. Since large random graphs can be expected to consistently have irregular rate changes and 

topologies, the average performance on random graphs of RPMC is better than APGAN by a wide margin 

— although, from the last two rows of Table 3, we see that there is a significant proportion of random 

graphs for which APGAN outperforms RPMC by a margin of over 10%, which suggests that APGAN is a 

useful complement to RPMC even when mostly irregular graphs are encountered. However, the main 

advantage of adopting both APGAN and RPMC as a combined solution arises from complementing the 

strong performance of RPMC on general graphs with the formal properties of APGAN, as specified by 

Theorem 6, and the ability of APGAN to exploit regularity that arises frequently in practical applications.

9 Related Work

In [1], Ade, Lauwereins, and Peperstraete develop upper bounds on the minimum buffer memory 

requirement for certain classes of SDF graphs. Since these bounds attempt to minimize over all valid 

schedules, and since single appearance schedules generally have much larger buffer memory requirements 

than schedules that are optimized for minimum buffer memory only, these bounds cannot consistently give 

Table 3. Performance of the two heuristics on random graphs

RPMC < APGAN 63%

APGAN < RPMC 37%

RPMC < min(2 random) 83%

APGAN < min(2 random) 68%

RPMC < min(4 random) 75%

APGAN < min(4 random) 61%

min(RPMC,APGAN) < min(4 random) 87%

RPMC < APGAN by more than 10% 45%

RPMC < APGAN by more than 20% 35%

APGAN < RPMC by more than 10% 23%

APGAN < RPMC by more than 20% 14%
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close estimates of the minimum buffer memory requirement for single appearance schedules.

In [11], Lauwereins, Wauters, Ade, and Peperstraete present a generalization of SDF called cyclo-

static dataflow. A major advantage of cyclo-static dataflow is that it can eliminate large amounts of token 

traffic arising from the need to generate dummy tokens in corresponding (pure) SDF representations. 

Although cyclostatic dataflow can reduce the amount of buffering for graphs having certain multirate 

actors like explicit downsamplers, it is not clear whether this model can in general be used to get schedules 

that are as compact as single appearance schedules for pure SDF graphs but have lower buffering require-

ments than those arising from the techniques given in this paper.

A linear programming framework for minimizing the memory requirement of a synchronous data-

flow graph in a parallel processing context is explored by Govindarajan and Gao in [9]. Here the goal is to 

minimize the buffer cost without sacrificing throughput.

10 Conclusions

In this paper, we have addressed the problem of constructing a software implementation of an SDF 

graph that requires minimal data memory from among the set of implementations that require minimum 

code size. We have developed a fundamental lower bound, called the BMLB, on the amount of data mem-

ory required for a minimum code size implementation of an SDF graph; we have presented an efficient 

adaptation to acyclic graphs, called APGAN, of the PGAN technique developed in [4]; and we have shown 

that for a certain class of graphs, which includes all delayless graphs, APGAN is guaranteed to achieve the 

BMLB whenever it is achievable. We have presented the results of an extensive experimental study in 

which we evaluate the performance of APGAN and RPMC, a top-down technique developed in [14] that is 

based on recursively applying a generalized minimum-cut operation. Based on this study, we have con-

cluded that APGAN and RPMC complement each other, and thus, techniques should be investigated for 

efficiently combining the methods of APGAN and RPMC, and that in the absence of such a combined 

solution, or of a more powerful alternative solution, both of these heuristics should be incorporated into 

SDF-based DSP prototyping and implementation environments in which the minimization of memory 

requirements is important. A version of APGAN has been implemented by Cadence Design Systems Inc. 

in their Signal Processing Worksystem and we have implemented both of these algorithms in the Ptolemy 

programming environment at UC Berkeley and will be making them available in the next release.

The solutions developed in this paper have focused on acyclic SDF graphs. These techniques can 

be applied in a limited way to general SDF graphs [2]. More thorough techniques for jointly optimizing 
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code and data for general SDF graphs is a topic for further study.
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Glossary

Given an SDF edge , .

Given a subset of actors , .

Blocking factor

For each valid schedule  for a connected SDF graph, there is a positive integer  such 

that  invokes each actor  exactly  times. The constant  is the called the block-

ing factor of .

BMLB Buffer memory lower bound. Given an SDF edge ,  is a lower bound on 

 over all valid single appearance schedules for any consistent SDF 

graph that contains . The BMLB of an SDF graph  is the sum of the BMLB values 

over all edges in . A BMLB schedule for  is a valid single appearance schedule whose 

buffer memory requirement equals the BMLB of .

The SDF graph that results from clustering the subset of actors  in the SDF graph  into 

the actor . We may write  when there is no ambiguity.

GDPPO Generalized dynamic programming post optimization. Applying GDPPO to a single 

appearance schedule  yields a schedule that has a buffer memory requirement that is less 

than or equal to the buffer memory requirement of every valid single appearance schedule 

that has the same lexical ordering as .

Introduces a cycle

A subset of actors  in a connected, consistent, acyclic SDF graph  introduces a cycle if 

 contains one or more cycles.

Denotes the blocking factor of the valid schedule .

Given a valid schedule  and an edge ,  denotes the maximum number 

of tokens that are queued on  during an execution of .

Given a connected, consistent SDF graph  and an actor  in ,  gives the mini-

mum number of times that  must be invoked in a valid schedule for .

Total number of samples exchanged on an SDF edge. Given an SDF edge  in a consistent 

SDF graph, .

η e( ) e η e( ) e( )prod e( )cons
e( )prod e( )cons,{ }( )gcd

---------------------------------------------------------------=
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