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Abstract

Though the semantics of non-monotonic logic programming has been studied exten-
sively, relatively little work has been done on operational aspects of of these semantics.
In this paper, we develop techniques to compute the well-founded model of a logic
program. We describe a prototype implementation and show, based on experimental
results, that our technique is more efficient than the standard alternating fixpoint com-
putation. Subsequently, we develop techniques to compute the set of all stable models
of a deductive database. These techniques first compute the well-founded semantics
and then use an intelligent branch and bound strategy to compute the stable models.

We report on our implementation, as well as on experiments that we have conducted
on the efficiency of our approach. '
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1 Introduction

In the past several years, the problem of representing negative information in logic programs
and deductive databases! has been intensely studied. However, most of this work has
concentrated on the declarative aspects of negation in logic programming — in particular,
the focus has been on developing declarative semantics that are applicable to all, or at least
a wide variety of logic programs, and which possess various epistemologically satisfying
properties. An important research area that has been left relatively untouched is that of
developing operational semantics and implementation techniques for logic programs that
contain negation. It is only in the past year that a number of researchers have started
working on this endeavor.

The primary contribution of this paper is the design and implementation of a bottom-up
algorithm to compute:

o the well-founded model of a logic program [35]

o the set of stable models of a logic program [13]

The algorithm for computing the well-founded model is based on the observation that Fit-
ting’s Kripke-Kleene semantics for logic programming is “sound”, but not complete w.r.t.
well-founded semantics (WEFS, for short). It is sound in the sense that if Fitting’s Kripke-
Kleene semantics assigns either true or false to a ground atom, WFS makes the same assign-
- ment. However, WFS may assign true/false to some atoms that are assigned “unknown” by
Fitting’s semantics. Our procedure first computes Fitting’s Kripke-Kleene semantics (using
an optimized version of Fitting’s ®p operator) and simultaneously “compacts” the program
by deleting parts of the program. It then applies an optimized version of the alternating fix-
point procedure(34, 11, 4] to the compacted program. Our alternating procedure compacts
the (already compacted) program further at each step. It is well-known[34, 4, 11] that the
alternating fixpoint procedure (without compaction) can compute the well-founded seman-
tics. Experiments show that in practice, our procedure of first computing the Kripke-Kleene
semantics and simultaneously compacting the program, and subsequently performing the al-
ternating fixpoint computation with compaction, is much faster, than the naive alternating
computation.

The algorithm for computation of stable models is of particular interest because stable
models may be computed by first computing the well-founded model of the program and
then using an intelligent branch and bound strategy. Intuitively, the search for stable
models may be viewed as taking the atoms assigned “unknown” by the WFS, and making
a true/false assignment to some of these atoms. This corresponds to the “branch”ing step.
Two aspects are key to the success of branch and bound: first, the selection of atom(s)
on which to branch plays a key role, and secondly, an efficient strategy to prune branches
of the search tree needs to be found. We develop an algorithm based on branch and
bound, for generating stable models. The algorithm has been implemented — we report
on experimental results reflecting the efficiency of both the algorithm, as well as numerous
optimizations present in the algorithm.

!Throughout this paper, we will consider only deductive databases, i.e. logic programs without function
symbols.



There has been some debate in the deductive database community on whether top-down
or bottom-up techniques should be used for query processing. Ullman [33], Zaniolo and
the LDL group [31], Warren [38] and several others (like Bancilhon, Beeri, Ramakrishnan,
etc.) have all argued that bottom-up computation leads to greater computational efficiency.
The research reported here yields bottom-up compilation techniques for non-monotonic
deductive databases.

The techniques we develop here are intended to be used primarily on those parts of a deduc-
tive database where fast run-time performance is expected and almost no time is available
for performing deduction at run-time (for domains where deduction may be performed at
run-time, techniques like those of [39, 14] may be used). An example of a concrete domain
where this kind of database support is critically needed is control systems (e.g. plant mon-
itoring systems, weapons guidance systems, avionics systems, etc.). The role of intelligent
knowledge-based support for real-time control systems has been emphasized by the con-
trol systems community in [1] as a result of a joint IEEE-IFAC project on new directions
for control theory. Kohn and Nerode (cf. their invited paper at the 1992 IEEE Sympo-
sium on Computer-Aided Control Systems Design [20, 21]) and independently, Caines [7]
have argued that logic programming and deductive database support is critically needed
for intelligent control applications.

The organization of this paper is as follows: Section 2 contains basic preliminaries, and
sets out the required notation. A detailed discussion of the technique for computing well-
founded semantics is contained in Section 3. Section 4 contains a detailed description of the
branch and bound technique for computing stable models. Section 5 contains details about
the implemented system, methods for storing stable models and the well-founded model,
as well as the results of detailed experiments documenting the behavior of our system.
Section 6 includes a description of future work on this project, as well as a comparison with
works of other authors. Proofs are contained in the appeadix.

2 Preliminaries

In this section, we quickly recapitulate the basic definitions of the stable and well-founded
semantics for logic programs. We assume that readers are familiar with the basic ideas of
constants, predicates, atoms, literals, Herbrand interpretations?, clauses, and logic programs
[22]. We assume that we have an underlying function-free first order language L containing
only finitely many constant and predicate symbols. The Herbrand base of L is denoted by
Br. In many cases, we will abuse notation and use Bp to denote the Herbrand Base of the
language generated by the constant and predicate symbols occurring in P.

Definition 1 Suppose P is a negation-free logic program. We may associate with P, an
operator Tp that maps interpretations to interpretations. If I is an interpretation; T'»(1) is
the interpretation {4 € B, | A «— B1 &...& B, is a ground instance of a clause in P and
{B1,...,Bn} C I}.

2Throughout this paper, we will use the words “interpretation” and “model” to mean “Herbrand inter-
pretation” and “Herbrand model”, respectively. Recall that an Herbrand interpretation is simply a set of
ground atoms of the language in question.



The set of all Herbrand interpretations of the language L is a complete lattice under the
ordering of subset inclusion. For any negation-free logic program P, Tp is known to be a
monotone and continuous function on the complete lattice of interpretations.

Definition 2 If f: L — L is a map from a complete lattice L to L, then the upward and
downward iterations of f are defined as follows:

f10=1 flo0=T
fra=f(ft(e-1) fle=f(fl(a-1))
frA=Upaf18 flA=NpaflB

where a is a successor ordinal whose immediate predecessor is (a — 1), and A is a limit
ordinal. L and T are the bottom, and top elements, respectively, of the complete lattice L.
U and 1M are the “least upper bound” and “greatest lower bound” operators, respectively,
on L.

In the context of logic programming, the lattice L is the set of of all interpretations. L is
the empty interpretation, while T is the Herbrand Base of our underlying language. LI and
M are union, and intersection, respectively. We now define the Gelfond-Lifschitz transform
which forms the basis of both the well-founded semantics and the stable model semantics
for logic programs (cf. [4, 34]).

Definition 3 Suppose P is a logic program and I C By. The Gelfond-Lifschitz transfor-
mation of P, denoted P!, is the logic program defined as follows:
A« B &...& B,, n>0,is a clause in P iff there exists a clause
A—Bi &...&B, &-D:i&---&-D,,
(m > 0)in P such that I N {Dy,...,Dn} = 0. Nothing else is in P!. Thus, P/ is a

negation-free logic program.

Given a program P and an Herbrand interpretation I, we may define an operator, Fp,
associated with P, as follows: Fp(I) = Tpr T w, i.e. Fp(I)is the least Herbrand model of
the negation free logic program PI.

Definition 4 (Gelfond and Lifschitz) I is a stable model of P iff I = Fp(I).

Proposition 1 (van Gelder [34], Baral and Subrahmanian[3]) Let P be any logic program.
Then Fp is anti-monotone, i.e. if [y C I, then Fp(Iz) C Fp(l1). Consequently, F3, the
function that applies Fp twice is monotonic. |

We use the notation wis_true(P) to denote the set of ground atoms true in the well-founded
semantics of a logic program P. Likewise, wfs_false(P) denotes the set of ground atoms
false in the well-founded semantics of P.

Proposition 2 (Baral and Subrahmanidn[4]) Let P be any logic program. Then:

6



1. A € wis_true(P) iff A € ip(F2) and
2. A € wis_false(P) iff 4 ¢ gfp(F3).

(Here, Ifp(F2) denotes the least fixpoint of F3 and gfp(F2) denotes the greatest fixpoint of
F2). , ' n

Note that as F2 is a monotonic function on a complete lattice, it is always guaranteed to
possess a least-fixpoint. Note that if Fp has a fixpoint I, then I is a fixpoint of F3, but the
converse is not necessarily true.

Example 1 Suppose P is the program consisting of the single clause

p(—-— —|p.

Note that Fp(0) = {p} and Fp({p}) = 0. Hence, Fp has no fixpoint (and hence no stable
model). However, § is a fixpoint of F because

FA(0) = Fp(Fp(9)) = Fr({p}) = 0.

In a similar vein, {p} is also a fixpoint of F3.

3 Computation of Well-Founded Semantics

Suppose P is a logic program. Qur algorithms work with fully instantiated programs®. Qur
method for computing this set may be divided into three broad stages (cf. Figure 1).

e In the Monotonic Iteration stage (MI-stage, for short), we mimic the upward iter-
ation of Fitting’s ®p operator [10] and iteratively build up a set of ground atoms,
denoted mi_true(P), which are known to be true, and a set mi_false(P) of ground
atoms known to be false. However, there is one key difference from Fitting’s operator
that has a significant impact on efficiency: in addition to mimicing these iterations,
the program P undergoes repeated simplification, resulting, in the limit, in a target
program mi_target(P) that is usually considerably simpler than P. In practice, the
monotonic iteration phase is efficient (cf. Experiment 5.3.1) when compared to the
alternating fixpoint computation strategy described in [34, 4].

e In the Gelfond-Lifschitz Oscillation stage (GLO-stage, for short), we use the simpli-
fied program mi target(P) produced by the MI-stage, and (recursively) oscillate by -
applying an optimized version of the Gelfond-Lifschitz transform. Each step of the

$We will argue later (Experiment 5.3.6), based both upon experimental results and theoretical results,
that when computing stable models and well-founded semantics, grounding is not as great a problem as
it may appear on first sight. However, further research is needed to ameliorate this problem. Nerode and
Subrahmanian [28] have one solution to the problem which involves performing a limited amount of deduction
at run-time. It appears [28] that there is a trade-off involved: by grounding at compile-time, it is possible
to avoid deduction at run-time, thus improving run-time efficiency. By not grounding at compile-time (and
hence saving space), one has to perform some deduction at run-time, thus reducing run-time efficiency.
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Fig. 1. Architecture of the WFS Computation Module

recursion builds up the set glo_true(P) of ground atoms identified to be true in the
GLO-stage, and the set glo_false( P) of atoms identified to be false in the GLO-stage.
There are two key differences which distinguish this method from the alternating

fixpoint strategy described in [34, 4]:

— First, the GLO-stage applies only to mi_target(P) which is usually significantly
smaller than P in size (cf. Section 5.3.2). The alternating fixpoint approach

would use the program, P, which is usually much larger than mi_target(P).

— Second, the alternating fixpoint approach [34, 4] would proceed as follows: it
would hold mi_target(P) fixed and start with Ip = . Given I;, where j > 1, it

would construct I, as follows:

(a) it would transform mi_target(P) w.r.t. I; according to the Gelfond-Lifschitz

transform.

(b) it would then set I;yy to the least Herbrand model of the negation-free

program G(mi._target(P),I;) obtained in (a) above.
The iteration would stop when we find a k such that Iy = Ix4s.

Our approach adopts a different point of view. We will not hold mi_target(P)
fixed. As the sequence Iy, I1,... is constructed, we will keep changing the pro-
gram to update previously obtained information. These changes in the program
will cause the program to grow “smaller and smaller,” thus leading to greater

efficiency in computing the least Herbrand model (cf. Experiment 5.3.3).

Furthermore, at any given point in time, we will not transform the program
w.r.t. I;, but always w.r.t. the empty-set. This can be implemented much faster
because all one needs to do is to ignore all negative literals that occur in clause
bodies. Both these optimizations play a significant role in reducing the time

required to compute the well-founded semantics (cf. Experiment 5.3.1).



~ In the Combination stage (C-stage, for short), we combine the results of the previ-
ous two stages (i.e. the sets mi-true(P), mifalse(P), glo_true(P), glo_false(P))
in a sound and complete manner.

Before proceeding to formally describe the details of the three-stage approach, we present
a simple example to illustrate the approach, and help to fix intuitions.

Example 2 Consider the very simple program containing the following nine clauses:

D q (1)
r (2)
-r&s ' 3)
—q (4)

t (5)

(6)
v (7)
v (8)
s (9)

8 8 & o~ »u 3 &
TTTTrTTTTOT

MI-stage: The first thing to observe about this program is that ¢ is in wfs_true(P) by virtue
of Clause 6 and hence, so is s, by virtue of Clause 5. Thus, these two clauses may be deleted
once it is realized that s,¢ € wfs_true(P). But once it is known that s,¢ € wis_true(P),
Clause 9 can be deleted as s is surely true, and similarly, s can be deleted from the body
of Clause 3. In effect, then, u € wfs_false(P) as there is no clause left at this point with u
in the head. The MI-stage mimics this kind of reasoning and leads to the computation of
the following sets: mi_true(P) = {s,t} and mi false(P) = {u}, and the simplified target
program mi_target(P) below:

mi_target(P)

- (10)
A C (1)
g «— - _ (12)
roe— g (13)
v o~ v ' (14)
w o~ - (15)

mi_target(P) is constructed in such a way that no atoms in either mi_true(P) or mi_false(P)
occur, either positively or negatively, anywhere in mi_target(P).

GLO-stage: In this stage, we first realize that no atoms in mi_true(P) U mi false(P)
occur in mi_target(P). We ignore P and work with mi_target(P), and first set Iy = §
and glo_true(mi.target(P)) = glo_false(mi_target(P)) = ). We then compute the least
~ model of the Gelfond-Lifschitz transformed program (mi-target(P))%, and denote this
least model by I;. (mi-target(P))% is the program:

9



G(mi_target(P), I)

(16)
(17)
(18)
(19)
v (20)
(21)
The least model of this program is I = {p,¢,r,w}. The Herbrand Base of mi_target(P)
= {p,q,r,v,w}. As I; = {v}, it follows that v MUST be false, and hence, we can add
v to glo_false(mi_target(P)). At this point, we can use this information to simplify
mi_target(P); as v must be false according to the WFS, Clause 14 can be deleted from

mi_target(P) and -v can be deleted from the body of Clause 15. Hence mi_target(P)
now becomes the program glo_simp,(P) shown below:

(ST TN Y - T~

rrT1r1rt1

w

glo_simp, (P)
p (22)
R (23)
g « -r (24)
T — g (25)

Recursively calling the Gelfond-Lifschitz transform w.r.t. this program yields the sets
mi_true(glo_simp,(P)) = mi_false(glo.simp,(P)) = §. Thus, the GLO-stage returns, as
its final output, the set glo_false(mi_target(P)) = {v} of atoms that “false” according to
WE'S, and glo_true(mi_target(P)) = {w} as the set of “true” atoms.

C-stage: At this stage, we simply combine the sets of true and false atoms returned by the
MI-stage and the GLO-stage to get, as final output, the sets

wis_true(P) = {s,t} U {w} = {s,t,w}and
wis_false(P) = {u} U {v} = {u,v}.
The atoms p, ¢, r are all assigned “unknown” by WFS. |

3.1 The Monotone Iteration Module

In this section, we describe the technical details of the monotone iteration module. We will
describe the precise working of the module, and prove that the output generated by this
module is a sound, but not complete, method for computing the well-founded semantics.
Completeness will be achieved once the output of this module is sent to, and processed by,
the GLO-module and the combination module.

A three-valued interpretation I of a first order language L is any map from By to the set
of truth values {t,f,u}. In the sequel, we will assume that the reader is familiar with the
notion of satisfaction in Kleene’s three-valued logic [15, 10}.

10



Definition 5 (Fitting [10]) Let P be a logic program. We associate with P, an operator,
®p, that maps 3-valued interpretations to 3-valued interpretations. ®p is specified as

follows:
(t if there is a clause C in grd(P)

such that A is the head of C and
such that I satisfies the body of C.
f if, for every clause C in grd(P)
having A as the head, it is the
case that I satisfies ~Body
where Body is the body of C.
u otherwise.

op(I)(A) =

\

Given any logic program P, Fitting [10] shows that the $p operator is monotonic, but not
necessarily continuous. It is easy to verify that for function-free logic programs, Fitting’s
operator is continuous. Fitting suggests that a ground atom A should be considered to be
true (resp. false) iff the least fixpoint, denoted ifp(®p), of ®p, assigns t (resp. f) to A.
If neither of these situations holds, then A is assigned the truth value “unknown”. Three-
valued interpretations are ordered using the ordering < which is defined as follows: I; < I
iff for every ground atom A, either I;(A4) = L, or I;(A) = Ix(A). The set of three-valued
interpretations is a complete lower semilattice [10], and hence, as shown in [10}, the operator
®p is guaranteed to possess a unique least fixpoint.

When performing an upward iteration of Fitting’s operator, the program P is held constant.
In our approach, at each step of the upward iteration, we modify the program P* so that
the modified program is smaller, in terms of the number of occurrences of literals, than P.

Definition 6 Suppose P is a ground program, and I is a three-valued interpretation. The
modified version of P w.r.t. I is a ground logic program, denoted mod(P,I) obtained as
follows:

1. if A occurs in the head of a clause C' € P and I(A) # u, then delete clause C from P.

2. if A occurs positively in the Body of a clause C € P and I(A) = f, then delete clause
C from P.

3. if A occurs positively in the body of a clause C € P and I(A) = t, then delete A from
the body of clause C.

4. if A occurs negatively in the body of a clause C' € P and I(A) = t, then delete clause
C from P.

5. if A occurs negatively in the body of a clause C' € P and I(A) = f, then delete -4
from the body of clause C.

The resulting program is denoted by mod(P, I).

*When implementing, we modify a copy of the program P.

11



We use mod(P,I) in the computation of p(®p) in the following way: initially, we set Fp
to P (the program under consideration). We then proceed to compute ®p(ly) where Io
assigns u to all ground atoms. ®p(lp) will make some atoms true, some atoms false, and
leave others unknown. The atoms that are made true (resp. false) will stay true (resp.
false) in Ifp(®p) because ®p is monotone w.r.t. the < ordering. Suppose 4 is an atom
that is made true in this process. Then the truth value of A'is “fixed” in the sense that
Ifp(®p) = t. Consequently, any clause in P with A in the head can be safely deleted as it
has nothing new to contribute. Likewise, any clause with = A occurring in the body can also
be deleted because it can have nothing to contribute either (the body will stay false in all
further iterations). If A occurs positively in the body of C, then we can delete A from the
body. Symmetric transformations occur if A’s truth value had been fixed to f instead of t.
The following definition formalizes this informal strategy of pruning P iteratively (the word
pruning is used because either whole clauses are deleted, or individual literals are deleted).

Definition 7 (Pruning Iteration) Let P be a logic program, and let L be the interpretation
that assigns u to all ground atoms in the language £. We define two sequences, called the
interpretation-sequence (I-sequence, for short) and a program-sequence (P-sequence, for
short) as follows:

Ip=_1
Py=P
(74 1) case:

I;11(A) = @p;(I;)(A) if I;(A) = L and I;(A) otherwise.
Piy1 = mod(P;, I).

As all programs dealt with in this paper are deductive databases, it is easy to see that there
is a minimal integer n such that I, = I,y and P, = Pn41. Hence, given any program P,
there is a unique I-sequence Ip,...,I, and a unique P-sequence Fy,..., P, associated with
P. The following result is straightforward.

Lemma 1 Suppose P is a logic program, and Iy, ..., I, is the I-sequence associated with
P If1<j<k<n,then I[; X I. n

Theorem 1 (Soundness of Pruning Iteration w.r.t. WFS) Let P be a logic program, and
let Io,..., I, and Fp,..., P, be the I-sequence and P-sequence associated with P. Then:

1. (Soundness w.r.t. Fitting’s Semantics) I, = Ifp(®p).

2. for all atoms A4, if I,(A) = t then A € wis_true(P), i.e. A is true according to the
well-founded semantics for P.

3. for all atoms A, if I,,(A) = f then A € wis_false(P), i.e. A is false according to the
well-founded semantics for P. n

The MI-stage is not complete w.r.t. the well-founded semantics, as can be easily seen by
the following example:.

12



Example 3 Consider the single clause program P below:
a < a.

The well-founded semantics for P assigns f to a; however, the set mi_false(P) generated
by the MI-module does not contain a. n

As a final remark on the computation of WFS, we observe that if the truth value of a
ground atom A is determined, during the MI-stage, to be either t or f, then the atom A is
completely eliminated from the target program mi_target(P).

Lemma 2 (1) Suppose lfp(®@p)(A) # u. Then A does not occur either positively or nega-
tively in mi_target(P).

(2) Suppose ifp(®p)(A) = u. Then there exists a clause C in mi_target(P) having A as
the head and such that at least one literal in the body of C is assigned the truth value u
by fp(®p). [

Before proceeding to a detailed description of the GLO-stage, we draw the reader’s attention
to Figure 1 and the computation of stable models. The idea is that if we want to eventually
compute the stable models of a deductive database P, we first compute the well-founded
semantics of P and simultaneously generate a “small” program (denoted glo_simp(P) in
Figure 1) which is then piped to the branch and bound procedure that computes stable
models. Thus, we need to be sure that the transformation performed during the WFS
computation module do not compromise the stable models in any way. The following
lemmas are needed to establish this property. '

Lemma 3 Suppose P is a logic program and A is a ground atom which is assigned t by
the well-founded semantics of P. Let @ be the program obtained from P by:

1. Deleting all clauses in P with head A and
2. Deleting all clauses in P with =4 in the body and

3. Deleting positive occurrences of A from the body of any clause in which it occurs.

Then: A two-valued interpretation I is a stable model of Q iff I U {A} is a stable model of
P. |

The following lemma is the analog of Lemma 3 for the negative case. Its proof is similar to
that of Lemma 3.

Lemma 4 Suppose P is a logic program and A is a ground atom which is assigned f by
the well-founded semantics of P. Let § be the program obtained from P by:

1. Deleting all clauses in P with head A and

2. Deleting all clauses in P with A occurring positively in the body and
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3. Deleting negative occurrences of A from the body of any clause in which it occurs.
Then: A two-valued interpretation I is a stable model of @ iff I is a stable model of P. W

The above two lemmas jointly indicate that as long as the three valued interpretation I
is “sound” w.r.t. the well-founded semantics (in the sense that whenever I assigns false
to an atom A, then A € wfs_true(P) and whenever I assigns true to an atom B, then
B ¢ wifs_true(P)), then P’s stable models may be obtained from those of mod(P,I) by
appending the true atoms in I to the stable models of mod(P, I).

3.2 The Gelfond-Lifschitz Oscillation Module

As seen in Example 3, the MI-stage alone is not complete w.r.t. WFS computation. How-
ever, it is sound w.r.t. WFS computation. The Gelfond-Lifschitz Oscillation (GLO, for
short) stage performs some further computations with a view to computing that part of
the WFS which is not already computed in the MI-stage. The GLO-module takes as input,
the program mi_target(P) produced by the monotone iteration module. It then performs
an alternating fixpoint-like computation (cf. [34, 4]). However, there are a few significant
differences which allow our strategy to be much more efficient (cf. Experiment 5.3.1) than
the ordinary alternating fixpoint computation strategy. The first difference is that un-
like the alternating fixpoint computation, our GLO-procedure only applies to the program
mi_target(P) which is usually much smaller than the program P. Secondly, as we perform
the oscillation, we continue pruning the program, so that at each stage, the oscillation steps
are applied to “smaller and smaller” programs. This causes the oscillation to be much more
efficient than otherwise (cf. Experiment 5.3.3).

If we look carefully at the well-founded semantics, the iterations of the Fp operator exhibit
the following behavior (this behavior has been observed by Baral and Subrahmanian [3, 4]
and Fitting [11] and van Gelder [34]): the interpretations at even levels of the oscillation
form a monotonically increasing sequence, and gradually build up, in the limit, the set
wis_true(P):

FY@)C FE@)C...CFE@)C...

The odd levels of the oscillation form a monotonically decreasing sequence and gradually
build up the complement of the set wis_false(P):

FH(0)2 FR(0)2 ... 2 FFH(0)2...
In other words, the sequence,
FEO)C FE@) C...C FFH@)C...
is a monotonically increasing sequence, and in the limit, it constructs the set wis_false(P).

Thus, when we apply Fp first to the empty set and compute F}((), we know that all atoms

in F}(0) are false. Hence, we can use this information to transform the program P. In the
next stage, when we apply Fp to FA(0), we know that all atoms in the set F3(0) are true.
We may use this information to transform the program. Thus, at odd levels, we should
transform the program P according to what was learned to be false, while at even levels,
we should transform the program under consideration according to what has been learned
to be true. These intuitions are formalized in the following definitions.
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Definition 8 (Transformation Strategy) Given a program P, and a two-valued interpreta-
tion I, we now define a transformation of P w.r.t. I°. This transformation depends on one
extra parameter, called pos or neg.

trans(P,I,neg) is defined as follows:

1. if A ¢ I, and A occurs in the head of a clause C' € P, then delete C from P.

2. if A ¢ I, and A occurs positively in the body of a clause C € P, then delete C' from
P.

3.if A ¢ I, and A occurs negatively in the body of a clause C € P, then delete all
occurrences of ~A from the body of C.

trans(P, I, pos) is defined as follows:

1. if A € I and A occurs in the head of a clause C € P, then delete C' from P.

2. if A € T and A occurs negatively in the body of a clause C € P, then delete C from
P. '

3.if A € I and A occurs positively in the body of a clause C € P, then delete all
occurrences of A from the body of C.

Definition 9 (Pruning Oscillation) Suppose P is a logic program. Define the GL O-iteration
of P as four sequences:

o a sequence of two-valued interpretations Io,...,In,...

¢ a sequence of programs Ppy,..., Py,...
e a sequence of sets of true atoms glo_truey,...,glo_true,,... and
¢ a sequence of sets of false atoms glo_false,,...,glofalse,,....

These sequences are constructed as follows:

j=0

Iy=0
Ph=P
glo_true; =

glo_false, = §

Il = FPO(IO)
Py = trans( Py, I1,neg)
glo_true; =0

5Unlike Section 3.1 where we modified programs using three-valued interpretations, the transformation
strategy described here uses two-valued interpretations.
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glofalse; = (Bp, — I)

LFor even j, 7 > (ﬂ

liy2 = Fpy, (i)

Pjyo = trans(Pjt1, Ljyo, pos)
glo_true,,, = glo_true; U [;;,
glo false,,, = glo_false;

For odd j, j > 1|

Iiya = Fpyy: (Ij41)

Pjig = trans(Pjy1, 42, neg)

glo_true; , = glo_true;

glo false; , = glo_false; U (Bp;,, — Ij+2)

Note that the above definition simultaneously defines both the sequence of interpretations
and the sequence of programs. It is well-defined because, each I; is defined in terms of
P;_y,I;_; for j > 0. Likewise, each P; is defined in terms of I; and P;_y; as I; is defined
in terms of P;_q,I;_1, this does not lead to any circularity. Similar comments apply to
glo_true; and glo_false;.

In order to better illustrate pruning oscillations, we return to Example 2.

Example 4 Consider the program P of example 2. We focus upon mi_target(P) which
consists of clauses ( 10)—( 15). Our sequence of I’s and P’s is built as follows:

1.
2.

6.
7.

Iy = 0.
Py = {10,11,12,13,14, 15}.

. glo_falsey = glo_truey = 0.
. Iy = Fp,(lo) = {p, ¢, 7, w}. Note that v ¢ I.

. Thus, Py = trans(Py, {p, q,r,w},neg). There are two clauses in Py containing occur-

rences of v — clause 14 and clause 15. Clause 14 gets deleted, while v gets deleted
from the body of clause 15. Thus, P; consists now of clauses

p o« (26)
P (27)
g < - (28)
T o~ g (29)
W (30)

glo_false, = I; = {v}, and glo_true, = §.

The next stage is the construction of I, = Fp, (I;) which is equal to {w}.
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8. P, isnow set to trans( Py, {w}, pos). Computing trans( Py, {w}, pos)leads to Clause 30
being deleted from P;. Therefore, P, consists of clauses ( 26)—( 29).

9. At this stage, glo_false, = glo_false,, but glo_true, = {w}.
10. The next stage is the construction of I3 = Fp,([;) which is equal to {p,¢,7}.

11. P is now set to trans(Py, {p,q,7},neg). No clauses are deleted nor modified in this
step, and we have P; = P;.

12. glo_false; = glo_false, U I3 = {v}. Note, in particular, that complement of I3 is
w.r.t. the Herbrand Base of P,, and hence, I3 = §.

13. The next stage is the construction of Iy = Fp,(I3) which is equal to 0.
14. Py is now set to trans(Ps,, pos) and leads to no change.

15. The values of both glo_false, and glo_true, are the same as the values of glo_false,
and glo_true; respectively. As there are no changes in the values of both glo_true;
and glo_true,, we may terminate construction of the sequence. |

The alternating fixpoint approach [34, 4] allows us to stop constructing our sequence(s)
as soon as we find the smallest n such that glo_true, = glo_true, ;. It turns out that
in this case, glo_true, = Hp(F2) = wfs_true(P) and that glofalse,; = gfp(F3) =
wis_false(P). The equality Ifp(F2) = wis_true(P) has been proved in [4], as has the equal-
ity gfp(F3) = wis_false(P). What remain to be established are the equalities glo_true, =
Ifp(F2) and glo_true, ; = gfp(F7). We show this below.

Theorem 2 Suppose P is a logic program. Then, for all even integers ¢, it is the case that

1. wfs_true(P) = wis_true(P;) U glo_true;(P) and
2. wfs_false(P) = wfs_false(P;) U glo_false;(P) u

Part (1) of Theorem 2 says that to compute wfs_true(P), we can perform pruning oscilla-
tions for i stages. At the end of these i stages, we have a set glo_true;( P) of ground atoms,
and a “pruned” program P;. wfs_true(P) may be obtained by computing wis_true(P;)
and then adding all the atoms in glo_true;(P) to this set. Part (2) of the theorem is similar.
Theorem 2 has, as an important corollary, the following result:

Corollary 1 (van Gelder [34], Baral and Subrahmanian[4]) Suppose P is a logic program.
Then wis_true(P) = glo_true(P) and wis_false(P) = glo_false(P). n

Though the above corollary says that the GLO-module alone is sufficient to compute the
well-founded semantics of any program P, it turns out that using the GLO-oscillation
on a program P is relatively inefficient (cf. Experiments 5.3.1 and 5.3.3). Instead,
it is computationally faster, in practice, to run the MI-module first on program F, and
generate the sets mi_true(P) and mi_false(P) and the modified program mi_target(P).
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mi_target(P) is usually much “smaller” than P (cf. Experiment 5.3.2); applying the GLO
module on mi_target(P) leads to the computation of the sets glo_true(mi_target(P))
and glo_false(mi_target(P)) which may then be combined using the combination module
below.

3.3 The Combination Module

The combination module takes as input, the sets mi_true(P) and mi_false(P) returned by

the monotone iteration module, and the sets glo_true(mi_target(P)) and glo_false(mi_target(P))
returned by the GLO-module. It returns, as output, the set mi_true(P) U glo_true(mi.target(P))
of “true” atoms, and mifalse(P) U glo_false(mi-target(P)) of “false” atoms. The fol-

lowing result now follows immediately from Theorem 2 and Corollary 1.

Theorem 3 Let P be any logic program. Then:

1. wfs_true(P) = mi_true(P) U glo_true(mi_target(P))
2. wis_false(P) = mi_false(P) U glo_false(mi_target(P)) ]

Given a logic program P, once the MI-module, GLO-module and the combination modules
have been executed, the sets wfs_true(P) and the sets wfs_false(P) are fully computed.
A simplified version, glo_simp(mi_target(P)), of P is also computed. This simplified
program is now fed into the stable model computation module (described below).

4 Computation of Stable Semantics

It is well-known [34, 4] that the well-founded model approximates the stable models of a
logic program in the following sense: for any logic program, P, and for any stable model,
M, of P:

o wis_true(P) C M, i.e. the set of ground atoms true in the well-founded semantics of
P is a subset of the set of atoms true in M and

o wis_false(P) C (Bp — M), i.e. the set of ground atoms false in the well-founded
semantics of P is a subset of the set of atoms false in M.

4.1 Informal Description of Branch and Bound Algorithm
Given a logic program P, we compute its stable models as follows:

1. First, we compute the well-founded semantics of P using the procedure outlined in the
preceding section. The WFS computation module (cf. Figure 1) returns the following:
the sets wis_true(P) and wfs_false(P), as well as the program glo_simp(P), which
is a simplified version of mi_target(F). glo_simp(F) is the final element F,, of the
sequence Py, ..., P, specified in Definition 9. (As we are only dealing with deductive
databases, there must exist an integer n such that P, = Fryq).
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L= ((P,0,0,Bp)); (* Bp is the Herbrand Base of P *) (1)

S = {; (* S is the set of stable models obtained so far *) (2)
while (L # 0) do (3)
select the first node @ = (¢, 7, F,U) from list L; (4)
Remove @ from L; (5)

if there is no Ty € 5 such that Ty C T then (6)
Select ground atom A from U; (M

Q@ =(¢~,T~,F~,U") where (8)

¢~ is ¢ modified by =4 and (9)

T~ is T U the set of atoms true in WFS(¢™) and (10)

F~is F U {A} U the set of atoms false in WFS(g™) and (11)

U~ is theset (U —{A}) — (T~ U F7) (12)

if T~ is not a superset of any Tp € S then (13)

if @~ is consistent then (14)

if U~ =0 then (15)

add T~ to S (16)

else append @~ to the end of list L; (17)

Qt = (¢r,TT, F*,Ut) where (18)

gt is ¢ modified by A and ' (19)
TtisT U {A}U the set of atoms true in WFS(¢™) and (20)

Ftis FU the set of atoms false in WFS(g*) and (21)

Ut is the set (U — {A}) - (T* U FY) (22)

if T is not a superset of any Tp € S then (23)

if @ is consistent then (24)

if Ut =0 then (25)

add T* to § (26)

else append @t to the end of list L; (27)

end while (28)
return S; ' (29)

Fig. 2: Branch and Bound Algorithm for Computing Stable Models

2. Our branch and bound algorithm for computing stable models takes glo_simp(P) as
input, and returns the set, S, of all stable models of glo_simp(P) as output.

3. The set of stable models of the original program P is then {wis_true(P) U I|I € S}.

An important point to note is that the program, P, whose stable models we wish to com-
pute should not be fed directly to the branch and bound algorithm (doing so may lead to
incorrect results). Only glo_simp(P) may be fed to the branch and bound algorithm. The
example below illustrates the working of the algorithm. Formal definitions are given after
the example.

Example 5 Suppose ¢ = glo_simp(P) is the program:

a «— b (31)
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(¢, {}{}:{a;b,c})

Vw

- Tl

(475 {bsc},{a},{}) (g%, {a,c}, {0}, {})

terminates as “unknown” terminates as “unknown”
set 1s empty. eet is empty.

Fig. 3.Branch and Bound Example

b « -a ) (32)
c « a (33)
c «— b (34)

All the atoms a, b, ¢ are “unknown” according to the well-founded semantics. In our branch
and bound algorithm, we process this program as follows: we first initialize the list S (of
stable models found thus far) to () and we have a list L containing one node ~ the 4-tuple

Q = (glo_simp(P), @, @, {a7 b, C})

L points to a list of nodes that are yet to be processed. The four-tuple consists of the
program to be processed, atoms assumed to be true, atoms assumed to be false, and atoms
currently “unknown”. We select an atom that is unknown (let us say we select ¢) and
branch by assigning either false or true to a. How best to select an atom from the set of
currently “unknown” atoms is a significant problem; one method of doing so is described in
Section 4.3. Figure 3 shows the branching process once the atom a has been chosen as the
atom on which to branch. The left branch assumes a to be false, the right branch assumes
a to be true.

In the left branch, which assumes @ to be false, we replace occurrences of a (positive and
negative) in the body of clauses in glo_simp(P) as follows: If @ occurs positively in the
body of a clause, replace it by false, and if a occurs negatively in the body of a clause, then
delete that negative occurrence of ¢ from the body. This leads to a new node consisting of

e ¢ : the modified program — in this case, it consists of the clauses:

a « -b (35)
b « (36)
¢ «— false (37)
c — b (38)
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A recursive call is made to the WFS computation algorithm. The set of atoms true
in the well-founded semantics of this new program is {b,c} and the set of atoms false
in the well-founded semantics of this new program is {a}.

e T~: The true atoms consist of the true atoms from the parent node (@ in this case) plus
the atoms determined to be true in the well-founded semantics of the new program.
Hence, the set of true atoms in the new node is {b,c}.

e F~: The false atoms consist of the false atoms from the parent node (§ in this case)
plus the atoms determined to be false in the well-founded semantics of the new pro-
gram. Hence, the set of false atoms in the new node is {a}.

o U~: The set of unknown atoms in the new node is is ¢ (all atoms’ truth values have
been “fixed” as above). '

We then check if T~ is a superset of anything in S. It is not. Furthermore, we observe
that 7= N F~ = {, i.e. the assumption that a is false has not led to inconsistency.

Finally, we observe that nothing is now unknown, i.e. U~ is empty. Hence, all atoms
have been assigned truth values, and no inconsistency results. Consequently, we know
that T~ is stable, and we add it to S. (Had U~ been non-empty, we would have
added the tuple (¢~, 7, F~,U~) to the list L.)

In the right branch, which assumes a to be true, we delete positive occurrences of a in clause
bodies, and replace occurrences of —a in clause bodies by false. This leads to a new node
consisting of:

¢ ¢*: The modified program consisting of the clauses

@ — -b (39)
b «— false (40)
c « (41)
c «— b (42)

When the well-founded computation module is called with this program as input, the
set {c} is determined to be true and {b} is determined to be false.

o T*: Consists of the assumption, a, and ¢, and hence is the set {a,c}.
e F+: Consists of {b}
o U*: This set is empty.

We then check if Tt is a superset of something in . It is not. Furthermore, T+ N F+ =0
and hence, there is no inconsistency. Furthermore, U7 is empty. Consequently, we add 7'+

to S.

At this point, L contains no nodes, and we are done. S contains the two stable models of
this program {a,c} and {b,c}. [
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4.2 Formal Properties of Branch and Bound Algorithm

In this section, we develop the formal theory of computing stable models using the branch
and bound strategy of Figure 2. As can be observed by a cursory glance at the algorithm of
Figure 2, various expressions used in the description need to be formally defined. The first
is the concept of what expressions like “¢g~ is ¢ modified by ~A” and “¢T is ¢ modified by
A” mean. These modifications are similar, but not identical to, the transformation strategy
given in Definition 8.

Definition 10 Suppose ¢ is a logic program, and A is a ground atom. The result of
modifying ¢ w.r.t. =A, denoted CH(q,~A), is the logic program obtained as follows:

1. If A occurs in the body of a clause in ¢, then A is replaced by the atom false.

2. If =4 occurs in the body of a clause in ¢, then that occurrence of A is deleted.

The result of modifying ¢ w.r.t. A, denoted CH(g, A) is the logic program obtained as
follows:
1. If A occurs in the body of a clause in ¢, then —A is replaced by the atom false.

2. If A occurs in the body of a clause in ¢, then that occurrence of A is deleted.

We assume that the proposition false is an artificial atom that is not considered (for ease
of presentation) to occur in the Herbrand Base of the program. The key difference between
the modification mod(—, —) and CH(~, ) is that the latter never causes any clause to be
deleted and never affects the head of any clause.

Definition 11 Suppose T is a binary tree. The root of T is said to be a level I node. If N
is a level ¢ node, and N’ is a child of N, then N’ is said to be a level (i + 1) node.

If T contains finitely many nodes, then the height of T" is defined to be

max {level(N)| N € T}.

Definition 12 Suppose P is a logic program. Let Bp be the Herbrand Base of P, and
let ai,...,a, be an enumeration of Bp. The abstract computation tree, denoted ACT(P),
associated with P and the enumeration ordering as,...,a, is a full binary tree of height
(n + 1) defined as follows:

1. The root of ACT(P) is labeled with
(P,0,0, Bp).
2. If N is a level 7 node in ACT(P) labeled with (q,T, F,U),and ¢ < n then NV has two

children, N~ and N*t. The link from N to N~ is labeled with —a;, and the link from
N to NT is labeled with q;.
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3. The label of N~ is
(q_7T-’ F—’ U—)
where:

(a) ¢~ = CH(y, a;)
(b) T~ =T U wis_true(glo_simp(CH(q, ~a;)))
(c) F~ = F U wis_false(glo_simp(CH(g, ~a;)))
(U =U-{ai} UT~ U F7)
4. The label of Nt is
(¢t, T+, F+,U%)
where:

(2) ¢* = CH(g, @)

(b) T* =T U wis_true(glosimp(CH(qg, a;)))
(¢) F* = F U wis_false(glo_simp(CH(q, a;)))
(d) Ut =U~{a} U T+ U FT)

Pruning Strategy. The abstract computation tree associated with a program P is, in general,
very large. The reason for this is that ACT(P) is of height ||Bp|| + 1 where ||Bp|| is the
number of ground atoms in the language being considered. Thus, as ACT(P) is a full
binary tree, it contains (2U1B2II+1) — 1) nodes: a potentially very large number. The stable
model algorl’chm as envisaged in Figure 2, would attempt to alleviate this problem by the
following methods:

1. First, given a logic program P, we would call the branch and bound algorithm with
the program glo_simp(P) which is typically much smaller than P and has a much
smaller Herbrand Base. In other words, we would study the abstract computation
tree ACT(glo_simp(P)) as opposed to ACT(P). This reduces the number of nodes

from (2MB#IHY) — 1) to (2”]9g10.sim1;>(f’)”"'1 — 1). In practice the size of the program
glo_simp(P) as compared to the size of P is very small indeed.

2. Second, many branches in ACT(glo_simp(P)) can be pruned away. If N is a node
with label @ = (¢, T, F, U) such that T' N F # @ then Q is said to be inconsistent and
the left and right subtrees are pruned away via the if-tests in lines 14 and 24 of the
branch and bound algorithm.

3. Third, further pruning can be done based upon the set U. As soon as a node’s label
has an empty U-component, there is no need to expand that node any further, so it
is pruned in lines 15 and 25 of the algorithm.

4. Fourthly, it is not difficult to see that if we consider any branch in ACT(P), the
T-components of the nodes in this branch are monotonically increasing as we get
further away from the root, i.e. if Ny,..., Ny is the branch in question, and T; is the
T-component of the label of node z, then

Ty CT C
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Furthermore, Marek and Truszczynski [25] have shown that every stable model I of
a logic program P is minimal in the sense that no strict subset J C I can be a stable
model of P. Consequently, if we already know when, exploring a particular branch,
that I is a stable model, and if we find that 7; is a label in that branch such that
I C T}, then we can prune away all subtrees rooted at node N;. This is done in lines
13 and 23 of the branch and bound algorithm.

5. Fifth, the specification of ACT(P) is non-deterministic in the sense that there are
many possible ways of selecting which atom to branch on. A judicious choice of the
atoms on which to branch on may well lead to:

(a) the set of “unknown” atoms being quickly disposed of and/or
(b) pruning of a subtree below the current node.

Given a logic program P, and an enumeration ay, ..., a, of the Herbrand base of P, we use
PRUNE_ACT(P) to denote the tree obtained by pruning ACT(P) as much as possible
using conditions (1)—(4) above.

Definition 13 Suppose P is a logic program. Let LEAF(glo_simp(P)) denote the set

{T'| there exists a leaf node in PRUNE_ACT(glo_simp(P)) having, as its
label, (¢, 7T, F,0) such that T N F = @}.

Let MIN_LEAF(glo_simp(P)) be the set of all C-minima] elements of LEAF(glo_simp(P)).

In other words, LEAF(glo_simp(P)) is simply the set of all T-components of the labels of
consistent leaves of PRUN E_ACT(glosimp(P)). Similarly, MIN_LEAF(glo_simp(P))

is the set of minimal elements of LEAF(glo_simp(P)). The following example shows the
tree PRUN E_ACT(P), and how stable models may be generated.

Example 6 Consider a program P containing the following clauses:
a «— =b
b « -a
c «— a
¢c «— b

Figure 4 shows the tree PRUN E_ACT(P) corresponding to this program P. Note that in
this case, P = glo_simp(P).

If one looks carefully at this figure, the strategy to select a literal is c,b,a. In other words,
branching at the root is based on ¢, branching at level 1 nodes is based on b. It turns out
that we never need to branch on a.

Suppose we choose, instead, to consider selection of the branch literals to occur in the order

b,a,c. In that case, Figure 5 shows the tree PRUN E_ACT(P). One will observe that using
shis selection order causes PRRUN E_ACT(FP) to contain fewer nodes. Hence, this ordering
is preferable to the ordering ¢, b,a. Section 4.3 provides an outline of how to make such
selections a priori.
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(P1,0,

{c},{a,b})

-b b
(P3,{a,c}, (P4,{b,c},
{6, ¢}, 0) {a,c},0)
Inconsistent Inconsistent

(P27 {c}’ 07
{e,0})

(P5,{a,c}
{63,0)

(P6,{b,c},
{a},0)

Stable
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Fig. 4 The (Pruned) Tree ACT(P) for Example 4

Using Selection Ordering c,b,a

(£,0,0,{a,b,c})

(PT,{a,c}, {b},0)

Stable

(P8,{b,c},{a},0)

Stable

Fig. 5 The (Pruned) Tree ACT(P) for Example 5
Using Selection Ordering b,a,c
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Note that once a specific literal ordering is given, the abstract (un-pruned) computation
tree ACT(P) is uniquely determined. Strictly speaking, the depth of ACT(P) remains
the same irrespective of the specified literal ordering because technically, ACT(P) contains
branching nodes for all atoms. The effect of pruning is to cut down ACT(P) by refusing to
branch on nodes that are either: ‘

Ay

1. completely determined, i.e. the node’s label is of the form (g, T, F, 0) or
2. subsumed, i.e. T' D I for some I that is already known to be stable, or

3. inconsistent, i.e. T N F = {.

The following result is straightforward and is of great utility in proving the soundness and
completeness of the branch and bound algorithm.

Lemma 5 Suppose P is a logic program and A is a ground atom. Then:

1. If A is “unknown” according to WFS, then there exists a clause C' € glo_simp(P)
with A in the head such that

(a) some literal L in the body of C is “unknown” according to WFS and

(b) there is no clause C’ € glo_simp(P) such that all literals in the body of C’ are
true in WFS.

2. If A occurs (positively or negatively) either in the head or in the body of any clause
in glo_simp(P), then A is assigned f by WFS.

Note that the branch and bound algorithm should not be applied directly to a deductive
database P. It works only after P has been converted to glo_simp(P) — if applied di-
rectly to P, incorrect results may be obtained. The reason why the branch and bound
algorithm should not be directly applied to P is that all atoms occurring in glo_simp(P)
are “unknown” according to the well-founded semantics of glo_simp(P). It is precisely
to preserve this property that the programs occurring in labels of nodes are of the form
glo_simp(CH(g, +a)) rather than just CH(q, £a).

Theorem 4 [ is a stable model of glo_simp(P) iff I € MIN_.LEAF(glosimp(FP)). ™

Before proceeding to prove the soundness and completeness of our branch and bound algo-
rithm in Theorem 5 below, a number of technical lemmas need to be established.

Lemma 6 The branch and bound algorithm generates the nodes of PRUNE_ACT(P) in
pre-order (cf. Knuth {16]). n

Corollary 2 (Termination of Branch and Bound Algorithm) The branch and bound algo-
rithm always terminates. [ |

Corollary 3 The branch and bound algorithm generates the nodes in LEAF(glo_simp(P))
in left to right order. u
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Lemma 7 If N and N’ are nodes of PRUN E_ACT(P) with labels (¢, 7, F,U) and (¢/, T/, F', U"),
respectively, and if N is to the left of N’, then 7" ¢ T. |

Theorem 5 (Soundness and Completeness of Branch and Bound Algorithm) When called
with glo_simp(P) as input, the Branch and Bound Algorithm returns as output, the set
MIN_LEAF(glo_simp(P)) which is identical to the set of stable models of glo_simp(P).
|

4.3 Intelligent Branching

As described earlier (cf. Example 6), the selection of atorms on which to branch makes a sig-
nificant difference in the height of PRUN E_ACT(P). We describe below, a simple method-
ology for selecting atoms on which to branch which, in practice, causes PRUN E_ACT(P)
to be relatively “small.” We will heavily use the “dependency graph” of Apt, Blair and
Walker[2] for this purpose.

Definition 14 The graph associated with a logic program P is defined as follows:

¢ The nodes of the graph are the ground atoms in our underlying language and

e There is a (directed) edge from A to B if there is a clause in grd(P) with A in the
head such that B occurs either positively or negatively in the body.

Definition 15 Suppose P is alogic program. A ground atom A is said to depend on ground
atom B iff there is a path of length 0 or more from A to B in the dependency graph of P.

Apt, Blair and Walker[2] use the above dependency graph (together with a labeling of the
edges) to develop a notion of stratification. We will use this graph in a different way. It is
well known [2] that “depends on” is a reflexive and transitive relation. Using the “depends
on” relationship, we will build a quotient algebra in the usual way.

e given a ground atom A, the equivalence class of A, denoted ||A]| is the set {B|Bis a
ground atom such that A depends on B and B depends on A}.

¢ We define an ordering, denoted <, on equivalence classes as follows: ||A|| < ||B|| iff
there exists an atom a € ||A|| and an atom b € ||B}| such that b depends upon a.

It is not difficult to see that the relation < on equivalence classes is a partial ordering.

Example 7 Consider the program of Example 6. Here, the equivalence classes are:

lall = {a,0}
llell = {e}

In particular, ||b]| = {|a||. It is easy to see that {a,b} d {c}. The reason is that ¢ depends
on a.
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In fact, it is not difficult to see that if ||A]| and ||B|| are equivalence classes such that
|A]] < || B||, then every atom in B must depend on every atom in A.

Given a logic program P, we may use the ordering < on the equivalence classes defined
above to list the equivalence classes in “layers.” This can be done as follows: define Eq to
be the set of all J-minimal equivalence classes of P. For ¢ > 0, define E;1; to be the set of
all <-minimal members of the set

{llAl14 € BL} - |J E;.

i<

Example 8 Continuing with the program of example 6 and example 7, we note that:

E, = {{e,0}}
E;r = {{c}}

Intelligent Branching Strategy. The strategy for selecting atoms on which to branch may
now be described as follows: Suppose N is the node we are currently attempting to branch
from, and the label of N is (¢, T, F, U). An atom a € U is selected for branching iff ||a|| € E;
implies that there is no ground atom b € U such that ||b]| € E; where j < 1.

In other words, the candidates for branching are picked from the “lowest” possible levels
of the Eg, Ey,... hierarchy. Thus, in the case of the root of the tree associated with the
program example 6 and example 7, we would choose to branch on either a or b instead of
choosing to branch on ¢. This leads to a “shorter” tree.

Experiment 5.3.5 reports on some experiments that we have run to determine the value of
intelligent branching.

5 Implementation and Experimentation

All the components of Figure 1 (éxcept for the update module) as well as the entire branch
and bound procedure and the procedure for selecting atoms have been implemented in a
prototype compiler.

The prototype compiler is written in C running under the Unix environment on a Dec-2100
workstation. It has roughly 6200 lines of C code implementing the pruning iteration strategy
described in Sections 3.1, the transformation strategy, the pruning oscillation described in
Section 3.2, the branch and bound procedure of Section 4, and the intelligent branching
strategy of Section 4.3.

In the rest of this section, we present some small examples showing the working of our
implementation, as well as results of detailed experimentation on larger examples.
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5.1 Sample Programs
5.1.1 The (Locally Stratified) Missile Example

The anti-tank missile knowledge base is shown in Figure 6. It contains rules on what kind
of missile should be fired at different types of tanks. Five types of tanks are within the
scope of this example: The M-1 and M-60 tanks (which are friendly) and the T-72,T-78
and T-80 (which are enemy tanks). Each tank is in one of three classes cl,c2,¢3. As far
as tanks in class ¢l are concerned, the best anti-tank missile to use is the Tow-1, followed
by the Tow-2, with the Tow-3 being the least effective. For tanks in class ¢2, the Tow-1 is
the best (and the others are not really best, but are better than nothing). For class ¢3, the
Tow-3 is most effective followed by the Tow-2. Finally, the rules on what to fire say the
following: “If the enemy tank is approaching, but is not attacking, then choose the best
anti-tank missile to use and fire it. On the other hand, if the enemy tank is attacking, then
choose an effective anti-tank missile (even if it is not the best) and fire it.” These rules on
what to fire make sense because if the enemy tank is firing at the autonomous agent that is
using our knowledge base, then there really may be no time to choose the best; it may be
better to fire something effective. The CPU times taken by our implementation are given
below®: :

Well-Founded Model: 237 milliseconds
Set of Stable Models: 243 milliseconds

In contrast, the times taken by Prolog are:

Compile-Time for Prolog;: 761 milliseconds
Consult-Time for Prolog;: 281 milliseconds

Note that in contrast, the entire-time to compute the well-founded model is 237 milliseconds.
This time is considerably smaller than the corresponding consult/compile times for Prolog.

At run-time queries in our framework are processed using a standard relational query mod-
ule, and hence, to process the query “Find the set of all (X,Y) such that fire(X,Y) is true
in the well-founded model” is encoded as a standard relational query. This can be done
very fast in practice.

5.1.2 The Plant Control Example

Figure 7 contains a logic program that describes a small knowledge base that may be
used in plant control situations. It describes the status of a plant (or a part of a plant)
based on certain temperature (warm,hot,melting) and pressure (high,low) readings of three
components cl, c¢2,c3. The plant status may, at any given point of time, be either normal,

6 All times reported here include the total time taken to read the logic program under consideration, to
compute the well-founded semantics (or set of stable models, as appropriate), as well as the time taken to
write, as output, the well-founded model (or set of stable models, as appropriate). In the case of Prolog,
timings were obtained using the statistics predicate.
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fire(M,X) :-
fire(M,X)

best(towl,X) :
best(tow3,X) :
best(tow2,X) :

“attacking(X), approaching(X),missile(M), best(M,X), “friend(X).
:- attacking(X), effective(M,X), available(M).
best(towl,X) :
best(tow2,X) :
best(tow3,X) :

c1(X), effective(towl,X), available(towl).

c1(X), effective(tow2,X), available(tow2), best(towl,X).
c1(X), effective(tow3,X), available(tow3), best(towl,X),
“best (tow2,X).

c2(X), effective(towi,X), available(towl).

c¢3(X), effective(tow3,X), available(tow3).

¢3(X), effective(tow2,X), available(tow2), best(tow3,X).

missile(towl).
missile(tow2).
missile(tow3).
available(towl).
available(tow3).
friend(mi).
friend(mé0).
attacking(t72).
approaching(t72).
approaching(t80) .

effective(towl,t72).
effective(tow2,t72).
effective(towl,t80).
effective(tow3,t80).
effective(tow3,t78).

c1(t72).
c2(t80).
c3(t78).

Fig. 6: Missile Example
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status(X,danger) :- temp(X,melting).

status(X,danger) :- pressure(X,low).

status(X,warning) :- temp(X,hot), pressure(X,high).
status(X,normal) :- “status(X,danger), “status(X,warning), component(X).
shutdown(plant) :- status(X,danger).

sound_alarm(X) :- status(X,warning), “shutdown(plant).
pressure(ci,high).

pressure(c2,high).

pressure(c3,low).

temp(cl,warm).

temp(c2,hot) .

temp (c3,melting).

component(cl).

component (c2) .

component (c3) .

Figure 7: Plant Control Example

warning, or danger. Each component may itself sound an alarm if it is malfunctioning.
Again, this example constitutes a locally stratified logic program [29]. The times taken by
our implementation are given below:

Well-Founded Model: 68 milliseconds
Set of Stable Models: 73 milliseconds

In contrast, the times taken by Prolog are:

Compile-Time for Prolog 465 milliseconds
Consult-Time for Prolog 210 milliseconds

As in the case of the missile example, the times reported here for Prolog are significantly
larger than the corresponding times for our well-founded and stable model computations.

5.1.3 The (Non-Locally Stratified) Animal Example

The missile example and the plant control example are both locally stratified logic programs.
Consequently, they have a unique stable model which coincides with the well-founded model
of the program. Figure 8 below shows a non-locally stratified logic program that describes
some animals and their eating properties. This program has eight stable models. The times
taken by our implementation are given below:

Well-Founded Model: 340 milliseconds
Set of Stable Models: 384 milliseconds

31



In contrast, the time taken by Prolog is given below:

1054 milliseconds
445 millisgconds

Compile-Time for Prolog
Consult-Time for Prolog

As in the case of the missile and plant control examples, the times reported here for Prolog
are significantly larger than the corresponding times for our well-founded and stable model
computations.

5.2 Storage and Access of Models

One reason why deductive databases are elegant is because they can be developed much
more quickly: when creating a relational database, the database creator(s) must insert all
tuples in each relation, one by one, into the database. This method of creating a relational
database is consequently error-prone. Deductive databases, on the other hand, can be
created much more quickly than relational database because instead of inserting all tuples,
one by one, into a relational, the presence of a tuple in a relation may be implied by a rule
in the database. A second advantage is that deductive databases use up less storage space
than relational databases. Both these advantages (rapid database creation, lower storage
requirements) are offset by the fact that at run-time, query processing takes much longer
than in the relational model.

When (parts of) a database is used to provide support, in real-time, to a real-time con-
trol system, the run-time, resolution-based theorem proving approach used by deductive
databases is infeasible in practice. Hence, our proposal is that those parts of a database
that are expected to provide such support be compiled into a relational database format.
After a deductive database is compiled, the model(s) of interest (well-founded/stable) are
stored in relational format so that queries against the deductive database can be answered .
by checking with the stored model(s). (In the next two subsections, we show how to store
and access the well-founded model, as well as the set of stable models.)

In other words, we are proposing a trade-off: by compiling those parts of a deductive
database that need to provide intelligent real-time support, we retain the advantage of
rapid database creation (as the creator of the database still proceeds in the same way as for
deductive DBs), but lose the advantage of lower storage requirements. In return, we gain
the advantage of rapid query-processing at run-time. These trade-offs may be summed up
in the following table.

[ Criterion | Relational | Deductive | Our [
Database Creation Time Slow Fast Fast
Error-prone | Fewer Errors | Fewer Errors
Storage Requirements High Much Smaller High
Run-Time Efficiency High Poor High

Some important advantages of storing the well-founded model and the set of stable models

in a relational format are:
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swim(X) :- is_fish(X).

swim(X) :- is_mammal(X), lives_in_sea(X).
swim(X) :- is_bird(X), has_webbed_feet(X).
lives_in_sea(X) :- is_fish(X), ~ab_fish(X).
lives_in_sea(X) :- is_whale(X).

flys(X) :- is_bird(X), ~ab_bird(X).
flys(X) :- is_mammal(X), has_wings(X).
has_wings(X) :- has_feathers(X).
has_webbed_feet(X) :- is_duck(X).
has_feathers(X) :- is_bird(X).

has_eggs(X) :- is_fish(X).

has_eggs(X) :- is_bird(X).

lives_on_land(X) :- is_mammal(X), ~ab_mammal(X).
lives_on_land(X) :- is_bird(X).
carnivore(X) :- has_fangs(X), is_mammal(X).

carnivore(X) :- is_fish(X), large._mouth(X).
herbivore(X) :- is_fish(X), small_mouth(X).

herbivore(X) :- has_molars(X), is_mammal(X).
has_fangs(X) :- is_cat(X).

has_molars(X) :- is_cow(X).

has_fins(X) :- lives_in_sea(x), “ab_sea_creature(X).

large_mouth(X) :- is_whale(X).
small_mouth(X) :- is_cat(X).
large_mouth(X) :- “small_mouth(X).
small_mouth(X) :- “large_mouth(X).
eats(X,Y) :- lives_together(X,Y), carnivore(X), herbivore(Y).
eats(X,Y) :- is_cat(X), is_bird(Y).

lives_together(X,Y) :- flys(X), flys(Y).
lives_together(X,Y) :- lives_on_land(X), lives_on_land(Y).
lives_together(X,Y) :- lives_in_sea(X), lives_in_sea(Y).
is_whale(moby_dick).

is_cat(garfield).

is_bird(tweety).

is_duck(donald). -
is_platypus(pogo).

ab_bird(tweety).

ab_mammal(X) :- is_platypus(X).

is_mammal(X) :- is_platypus(X).

ab_sea_creature(X) :- is_whale(X).

Fig. 8: Animal Example
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o At run-time, queries are processed by executing standard relational operations like
PROJECTs, JOINs, and SELECTs. This is usually much faster than doing resolution
theorem-proving at run-time.

¢ At run-time, the user may interact directly with the database using a standard re-
lational query language like SQL. Such languages are typically more expressive than
PROLOG’s run-time query language, and allow the easy expression, and processing,
of aggregate queries like “What is the average salary of secretaries in this company
?” which are hard to process in PROLOG.

e Techniques for storing large amounts of relational data on auxiliary storage are well-
developed. The US Census Bureau’s database is on the order of 15 Gigabytes.

5.2.1 Well-Founded Models

For each n-ary predicate symbol p, there is a corresponding relation:
p(truthval, fieldy, ..., field,).

In practice, for most logic programs, the set of ground atoms that are assigned the truth
value “unknown” is relatively small. Hence, we may store either

1. wis_true(P) and (Bp — (wfs_true(P) U wis_false(P)) or
2. wis_false(P) and (Bp — (wis_true(P) U wis_false(P)).

The truthval field contains either t or f or u. If representation (1) above is used, then
we store all the “true” ground atoms and all the ground atoms that receive the truth
value “unknown”. We will illustrate below, how representation (1) is used to store the
well-founded model of the missile example.

The missile example contains the relations fire, best, missile, available, friend,attacking,
approaching, effective, c1,c2,c3. For each of these relations, we create a table. Consider the
relation best. best is a binary predicate; hence, we store it as a ternary relation — the extra
argument is for the truthval field. In representation (1), we store all the “true” ground
atoms and all the ground atoms that receive the truth value “unknown”. The following
table is the storage table for the relation best:

” truthval l Missile | Tank ]|

t towl t72
t tow3 t78
t towl t80

As this is a locally stratified program, the well-founded model is “total” in the sense that
nothing is “unknown” in the well-founded model. On the other hand, the animal example
does contain atoms that are “unknown” according to the well-founded semantics. For
example, the atoms

large_mouth(platypus), small mouth(platypus)
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are unknown. The table below shows how the (unary) relation large_mouth is stored as a
2-column relational table.

“ truthvall Animal ”

t moby.dick
u tweely

u donald
u pogo

Note that as gar field does not occur in the second column of the above table, we know
that large_mouth(gar field) is false.

5.2.2 Set of Stable Models

As a deductive database may have multiple stable models, we now present a technique for
storing multiple stable models’. One advantage of our storage method is that at run-time,
the user can specify whether he is interested in the truth of a query in all stable models
or in some. We will show below how to use SQL to find all answers to queries such as “Is
p(X) & ¢(X) true in some stable model?” and “Is p(X) & ¢(X) true in all stable models?”

A straightforward Way to store an atom p(ai,...,a,) is to use a relation p whose schema
is:

p(modelnumber, field,, ..., field,).

The problem with this simple way is the classical one of normalization [32]. For instance, if
the same atom appears in more than one stable model, many problems such as unnecessary
duplication arise. Thus, a more appropriate way of storage is as follows:

p(tupleid, fieldy, ..., field,)
model(number, tupleid).

The relation model is used to specify the stable models and which tuples are in them. For
example, the set of all rows of the form (2, tupleid) in the model relation specifies the tuple-
ids of all tuples in stable model number 2. As tuple-ids are unique, they refer to a specific
ground atom. Thus, tuple-id 27 refers to a specific row in a specific relational table.

The following example shows an SQL query that retrieves all answers that are true in some
stable model of the deductive database being considered.

Example 9 Suppose p and g are two unary predicates in our deductive database. The
following SQL query finds all answers X such that p(X)&¢q(X)is true in some stable model.

"For applications that only consider the intersection of all stable models, it suffices to store the intersection
in the following way. To store an n-ary atom p(ai,...,as), we can use a relation p whose schema is simply:
p(fields, ..., fields). Then querying the deductive database is exactly the same as querying a conventional
relational database.
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select p.field1
from p, q
where p.fieldl = g.fieldl
and exists
( select number
from model M1, model M2
where M1.number = M2.number
and M1.tupleid = p.tupleid
and M2.tupleid = q.tupleid )

5.3 Experimental Results

We have conducted a number of experiments testing the efficiency of our prototype compiler.
First of all, we have experimented with the programs considered in the literature (e.g.
[34]). These include definite, stratified, locally-stratified, as well as non-locally stratified
programs. Our prototype compiler handles all those programs correctly, and given the
relatively small sizes of those programs, our compiler finishes all computations very rapidly.
Unless otherwise stated, the computation times of our prototype compiler presented below
include all computations ® including the total time taken to: read a (ground) program,
perform the MI-stage and GLO-stage computations and output the results. In cases where
stable models are considered, the time to execute the branch and bound procedure is also
included.

Though we have experimented with a number of alternative examples, we will only report
here on experiments conducted with the “win-move” example of van Gelder [34]. These
results are representative of our other results. The “win-move” example consists of the
single rule

win(X) « move(X,Y)& ~win(Y)

together with a set of facts of the form move(—, —). This set of facts represents a directed
graph (which we call the “game graph”) representing the moves in a game. We ran an
extensive set of experiments with the win-move example. In our experimentation, we varied
the number of nodes in the game graph from 50 to 100 in steps of 10. Once the number
of nodes was fixed, we randomly generated edges between these nodes. We generated 60 to
200 edges, in steps of 20. Once both the number of nodes and the number of arcs was fixed,
we generated 75 sets of edges. In other words, once the number of nodes and number of arcs
was fixed, 75 different extensional databases containing move predicates were generated.
Each of these was run 8 times to average out variations in timing. In total, we ran

6 x 8 x75x8=28,800

logic programs altogether to get these readings.

8The Unix utility program profile is used to record computation times.
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5.3.1 Our Approach vs. Alternating Approach to WFS Computation

The main aim of this experiment was to determine how our approach compared with the
alternating approach as described by van Gelder [34]. We wished to compare the rate
at which performance in both approaches degraded as the programs got larger in size (in
terms of having more constants and more clauses in them). Qur approach consists of running
the (ground version of) a program P through the MI, GLO, and C-modules described in
Figure 1. The naive alternating approach would run the entire program through the GLO
module alone.

Figure 9 shows how our approach performed vis-a-vis the alternating fixpoint approach.
The z-axis specifies the number of nodes. The dotted lines denote the times taken by our
approach when the number of arcs in the graph differ. Thus, for example, the dotted line
marked n = 100 denotes the time taken by our approach when the number of nodes varies
from 50 to 100. The bold lines denote the times taken by the alternating approach. The
y-axis denotes time in milliseconds.

Two conclusions may be drawn from the graph of Figure 9.

o The first is that our approach takes considerably less time than the alternating ap-
proach. For each value of n, the dotted line representing our approach is completely
below the bold line (for the alternating approach) that is marked with the same value
of n.

o The second conclusion that may be drawn is that our approach degrades at a lower
degree than does the alternating approach. Why ? Consider the slopes of the lines
involved (take, for example, the dotted line n = 100 and the bold line n = 100). The
slope of the dotted line is smaller than the corresponding slope for the bold line.

The second conclusion is further reinforced by the graph of Figure 9 which compares the
time taken by our procedure with the time taken by the alternating procedure.

5.3.2 Size of mi.target(P) compared to the Size of P

Figure 10 below shows the number of clauses in mi_target(P) as the number of nodes
(represented by constants in P) in the game graph is increased. The graph is plotted on
a logarithmic scale which means that a linear downward slope on the log-scale means an
exponential downward slope on an ordinary scale. As Figure 10 shows, for each of the
values of n (the number of arcs) in the game-graph, there is a clear downward slope on
the log-scale graph, showing that in practice, the effect of pruning iterations causes the
size of mi_target(P) to decrease exponentially as a function of the number of constants.
This means that pruning iterations have a more and more significant impact on the size of
mi_target(P) as the number of constants gets larger.
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5.3.3 Effect of Prunihg Oscillation

Finally, we ran experiments to verify the effectiveness of pruning oscillations. Figure 11
shows that alternating fixpoint computation with pruning oscillations is an improvement
on the naive alternating fixpoint computation. In the figure, the dashed lines denote the
time-lines for the computation using pruning oscillations, while the bold lines denote the
times taken for the naive alternating fixpoint computations. However, simply performing
alternating fixpoint computation with pruning oscillations does not produce the best results.

Figure 11 shows also that our approach of first processing P through the MI-module simpli-
fies the program, producing mi_target(P) and the sets mi_true(P) and and mi_false(P).
Subsequently executing the GLO-program on mi_target(P) leads to better results than
executing the GLO-program on the larger program P.

5.3.4 Stable Model Computation

Figure 12 shows the total time taken to compute all the stable models of a logic program
using our approach. As can be seen from the graph, the performance of our procedure did
not appear to explode exponentially as a function of the number of nodes in the game graph.
Beyond that, the results indicate that the time taken to compute stable models increases
as a function of n.

5.3.5 The Impact of Intelligent Branching

In order to determine the effect of intelligent branching, we conducted experiments with two
programs. The two programs both had non-trivial dependency graph structures. In both
cases, we increased the number of constants while keeping the number of rules constant.

Program 1. This program consisted of the rules shown below.

21(X) < v1(X),wl(X).
22(X) « (X)), w2(X).
23(X) « v2(X),wl(X).
24(X) « v2(X),w2(X).
p1(X) <« s(X).
v2(X) «~ tX).
wl(X) « p(X).
w2(X) «— ¢(X).

X)) « -s(X).

s(X) « =i(X).

p(X) «~ -g(X).

o(X) — ~p(X).

The above set of rules was augmented by adding facts of the form y(—) where y is a unary
predicate symbol. The predicate y was used solely to introduce constant symbols in the
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language. This program has 4™ stable models where n is the number of constants in our
language. The table below shows the results of using the naive branch and bound strategy
as opposed to the intelligent branching strategy. It is clear that the intelligent branching
significantly speeds up the computation. All times given below are in milliseconds. The
times reported below include the times taken to construct the dependency graph associated
with a program, and to compute the sets Eg, E4, ... described in Section 4.3.

|| Number of Constants 1 |2 [3 4 | 5 i
Naive Branch and Bound 101 | 637 | 3165 | 16744 | 129186
Intelligent Branch and Bound | 43 | 262 | 1413 | 9431 | 95766
Number of Stable Models 4 16 | 64 256 1024

Program 2. This program consisted of the rules shown below.

s(X) « p(X),qX).
s(X) « p(X),r(X).
s(X) « ¢(X),r(X).
pX) = -g(X).
g(X) <« -r(X).
r(X) « -p(X).

As before, the above set of rules was augmented by adding facts of the form y(—) where y
is a unary predicate symbol. The predicate y was used solely to introduce constant symbols
in the language. The program has no stable models at all, and hence, both the naive
branch and bound strategy, as well as the intelligent branching strategy need to search
almost the whole of ACT(P). The table below shows the results of using the naive branch
and bound strategy as opposed to the intelligent branching strategy. It is clear that the
intelligent branching significantly speeds up the computation. All CPU times given below
are in milliseconds.

” Number of Constants l Without Intelligent Branching ] With Intelligent Branching ”

5 105 54
10 224 117
15 346 198
20 482 303
25 668 431
30 873 586
35 1117 755
40 1379 : 972
45 1691 1203
50 2008 1475

On programs that generated dependency graphs with little or no structure, we found that
the effect of intelligent branching was relatively minor.
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5.3.6 The Impact of Grounding

Figure 13 plots the ratio of the time taken to ground a program, as compared to the total
time taken to compute the well-founded semantics of the program (including the time taken
to ground the program). In all cases, it can be seen that:

¢ the time taken to ground the program is less than half the total time taken to compute
the well-founded semantics and

e as n increases, the time taken to ground the program becomes an increasingly small
percentage of the total time.

Exactly the same conclusions may be drawn when we plot the ratio of the time taken to
ground a program, as compared to the total time taken to compute the set of stable models
of the program (which includes the time taken to ground the program). Figure 14 shows
this graph.

There is a theoretical explanation for why grounding is not such a major problem. Suppose
b is a fired integer representing an upper bound on the number of distinct variable symbols
that are allowed to occur in a clause. Almost no logic program that we have seen in practice
contains clauses having more than, say, 10-12 distinct variables in it. In such a case, the
total number of ground clauses of a logic program P is bounded above by k X c® where & is
the number of clauses in P, and cis the number of constants in P. This is a polynomial-time
expression when b is fixed in advance.

Almost all work (cf. Ullman [32], Vardi [37]) on complexity of deductive database (“data-
complexity” and “expression-complexity”) make similar assumptions. The standard as-
sumption is that predicates are of bounded arity, i.e. we assume a priori that there is a
fixed upper bound, by, that bounds the arity of any predicate allowed to occur in a program.
Thus, when statements like “Query answering in definite datalog programs can be can be
answered in polynomial time” are made, they implicitly make the bounded arity assump-
tion. Without this assumption, it is not difficult to show that definite (i.e. negation-free)
datalog programs lead to EXPTIME-completeness [37].

6 Discussion

Though it is now almost five years since the development of the well-founded semantics and
stable semantics, relatively little work has been done on implementing these alternative
semantics. To our knowledge, this is the first work which shows precisely how to compute
the stable semantics by using computation of the well-founded semantics as a first step.

Computation of well-founded semantics of logic programs has been studied by Kemp et.
al. [14] and Warren [8, 39]. Kemp et. al. show how, given a query @ to a logic program

P, and a sideways information passing strategy® §, it is possible to create a new program

®See [14] for an explanation of this expression
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Magic(P, S, Q). More importantly, this new program has the same well-founded semantics
as the original program P, and has a particular syntactic form. Kemp et. al.[14] show
how the query @ may be answered w.r.t. the new program Magic(P,S,Q). Warren[39]
shows how to construct a Prolog meta-interpreter for the well-founded semantics based on
OLDT-resolution. Warren’s technique uses a table to tabulate previously solved goals — this
avoids redundant computation. Chen and Warren [8] extend the work in [39] and develop
a sound and complete technique for computing WFS called XOLDTNF-resolution.

The main difference between our work and that of Warren and Kemp et. al. is that our
compilation technique is query-independent, while in their case, the query plays a key role
in transforming the program P. Thus, our technique may be applied at compile-time, and
hence is more suitable in situations where very quick run-time responses are desired: in
our overall architecture, run-time query evaluation is done by a standard run-time query
language implementation. In contrast, the methods of Kemp et. al. are query-dependent,
and hence, the work of creating Magic(P, S,Q) is done after the query Q has been asked,
i.e. at run-time.

Another advantage of computing the well-founded semantics at compile-time and storing it
in a relational format is that more expressive queries, such as aggregate queries, need not
be specially developed for this purpose. Furthermore, standard techniques developed by
relational database researchers for run-time query optimization may now be used. On the
other hand, aggregate query processing techniques need to be specifically developed for the
magic set approach [36, 30]. These techniques involve deduction at run-time.

A disadvantage of our approach vis-a-vis the approach of Kemp et. al. is that we do more
work at compile-time, and as we are storing the well-founded model, we have larger space
requirements. A lot of work has been done by the relational database community on storing
very large databases on auxiliary storage. For instance, the US Census Bureau’s database
is approximately 15 Gigabytes in size. NASA’s EOS database (Earth Observing System)
is approximately 10'® bytes in size. Hence, we believe that storage is not such a major
problem. It is possible that a suitable trade-off between the two approaches is desirable
in a full-fledged working system: use our approach to compile those parts of the database
involving predicates that require “rapid” run-time responses, and use the Kemp. et. al.
approach to handle other predicates.

To summarize, we believe that those parts of a database involving “real-time” predicates
(cf. Maler, Manna and Pnueli [23]) need to be processed at compile-time using techniques
such as ours. Those parts of a database that do not involve real-time predicates do not need
to be pre-processed, and in such cases, the techniques of Kemp. et. al. [14] and Warren
[39] are perhaps more appropriate.

This work is part of the LOPS (“Logic and Optimization for Problem Solving”) project
between Cornell, Maryland and Intermetrics, Inc. The overall goal of the project is to
develop intelligent support for real-time control systems. Kohn and Nerode (cf. their
invited paper at the 1992 IEEE Symposium on Computer-Aided Control Systems Design
[20, 21]) have argued that logic programming and deductive database support is critically
needed for intelligent control applications. The point has been argued independently by
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Kohn [17, 18, 19]. The techniques reported here are intended to be used on that part of a
deductive database where fast run-time performance is expected and no time is available
for performing deduction at run-time. Techniques such as those of Kemp et. al. [14] and
Warren [39] are appropriate on those parts of the database where this is not required (thus
leading to storage gains).

7 Concluding Remarks

Though non-monotonic modes of negation have been studied extensively in deductive databases
and logic programming, relatively little work has been done on the computation and im-
plementation of non-monotonic semantics. In this paper, we take a first step towards
developing a compiled approach for computing the

¢ well-founded model of non-monotonic deductive databases and

¢ the set of stable models of non-monotonic deductive databases.

We believe that the desired run-time performance of different parts of a deductive database
system is likely to vary. A database system that interacts with a real-time control system,
for instance, is likely to contain predicates, some of which need to be processed in real-
time, others which do not need to be processed particularly rapidly, and still others that
fall between these two extremes. Those parts of the database that deal with “real-time”
predicates need to be pre-compiled in advance. Run-time efficiency compromises are not
an option in such cases. In such cases, the fastest known technology for run-time query
processing is the relational database scheme. We suggest, therefore, that the part of a
database dealing with predicates whose run-time responses are of critical importance, be
completely compiled in advance. One way of doing such compilation is described in this
paper when the desired semantics is the well-founded semantics/stable model semantics.
Future research will concentrate on the development of the update module shown in Fig-
ure 1, and the development of optimal representations (in relational format) for storing the
well-founded model and/or the set of stable models. The update module must not only re-
compute the new well-founded model (or new set of stable models) when an update occurs,
but also update the relational representation of the well-founded model (resp. set of stable
models). We plan to study these topics.
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Appendix: Proofs of Theorems and Lemmas

Proof of Theorem 1.

(1) Suppose I,(A) = lfp(®p). Then there exists a smallest integer k < n such that Ix(A) =
Ifp(®p). We proceed by induction on k and show that I,(A) = Hp(®p)(4).

Base Case. (k = 0) In this case, I,(4) = L. It follows that for all 0 < j < n, I;(A4) =
1. Suppose ifp(®p)(A) # L. Then there exists an integer k such that ®p T r(4) =
fp(®p)(A) # L. It follows by a straightforward induction on r that this will always lead to a
contradiction. The induction hypothesis is that for all integer v/, if @p 1 7/(A) = Ifp(®p)(4),
then I,,(A) = p(®p)(4).

Inductive Case. (k+1) There are three cases to consider, depending upon whether It1(A) =
t or f or u. We consider these cases one by one.

I,(A) = Ix41(A) = t | Suppose I,(A) = Ixy1(A) = t. By definition of Ij,;, there exists a
clause

A*——Ll&&Ls

in Py such that I(L;) = t for all 1 < ¢ < s. By the induction hypothesis, Ifp(®p)(L;) =t
for all 1 <4 < 5. But then @p(ifp(2p))(4) = t, i.e. Ifp(dp)(A4) = t.

I.(A) = I131(A) = | Suppose I,(A) = f. By definition of Ij41, it follows that for every
clause

Aé*Ll&&Ls

in P, there exists a literal L; such that Ix(L;) = f. By the induction hypothesis, ifp(®p)(L;) =
f. But then @p(ifp(2p))(4) =1, i.e. lfp(®p)(4) = 1.

I.(A) = It41(A) = L | Similar to the base case.

As I,(A) must be either t or f or u, it follows from the above that in each of these three
cases, I,(4) = ifp(®p)(4).

This completes the proof of (1).
(2) The proof is similar to (and easier than) the proof of (3) below.

(3) By (1) above, I,(A) = f implies that Ifp(®p)(A) = . Hence, there is a smallest integer
m > 0 such that ®@p T m(A) = f. We proceed by induction on m.

If (m = 1), then there is no clause in P with A as the head. Consequently, 4 ¢ Fp(0), and
hence, as gfp(FE) C FA+1(0) for all » > 0[3, 4, 34], it follows that A ¢ gfp(F3). Hence,
A € wis_false(P).

If (m > 1), then for every clause C; of the form
A—Li&.. & L

in P, there exists a literal fo(i) such that &p T (m — 1)(L} )) = f. By the induction

s

hypothesis, fo(i) € wfs_false(P), i.e. Lfy(i) ¢ gfp(F3). Let Cy,...,C, be all clauses with
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A in the head of the above form. Then there is an odd integer s such that
Fp1s 0 {Lig, o L} =0

As s is odd, we know that Fp T (s + 2) C Fp 1 s, and consequently, we may conclude that
A ¢ F21(s+2). Hence, A ¢ gfp(F2); this establishes that A € wfs_false(P). [

Proof of Lemma 2. (1) Suppose ifp(®p)(A) # u. Then, by Theorem 1, we may
conclude that there is a smallest integer k such that Ix(A) # u. In this case, A does
not occur anywhere, either positively or negatively, in Priq1. To see this, observe that
Pry1 = mod( Py, It). If A occurs in the head of a clause in Py, then that clause is deleted by
part (1) of the definition of mod( Py, I). Four cases arise depending upon whether I(4)ist
or f, and depending upon whether A occurs positively, or negatively, in the body of a clause
C. Parts (2) — (5) of the definition of mod(Py, I;) handle these four cases. Occurrences of
A are eliminated by either deleting the occurrences, or by deleting the entire clause.

(2) Follows immediately from the definition of ®p and the construction of mi_target(P).
|

* Proof of Lemma 3. Suppose A € wis_true(P). Then A is in every stable model of P by
results of [4, 34].

(—) Suppose I is a stable model of §. We need to show that I U {A} is a stable model of
P, i.e. we need to show that I U {A} = Fp(I U {4}).

I. (I U {4} C Fp(I U {A})) Suppose B € I U {A}. There are two cases:

Case 1: (B # A) In this case, B € I and hence, as I is a stable model of @, B € Fp(I) =
Tqr T w. Hence, there is a smallest integer n > 1 such that B € Tr T n. We proceed by
induction on n.

Base Case: (n = 1)| Thus, B « is in @ and hence, @ contains a clause C of the form

B —-B&...&~B

such that {B1,...,Bx} NI = 0. As C € @, and as @ is obtained from P using the
transformation specified in the statement of the Lemma, we know that for all 1 < ¢ < k,
A # B;. Hence, {By,...,Br} N (I U {A}) = 0. At this stage, there are two possibilities: (1)
either C € P, or (2) C was obtained from a clause C’ € P by deleting positive occurrences
of A from the body of C’. In the first case, as none of the B;’s, 1 <4 < k,isin I U {4}, it
follows that B «—¢& PTY{4} and hence, B € Fp(I U {4}).

In the second case,
B k—A&_lBl&...&”!Bk

isin P. As {By,...,B:} n (I U {4}) = 0, it follows that B « A is in PUY{4}), To show
that B € Fp(I U {A}), it suffices to show that A € Fp(I U {A}) because of the presence
of the rule B «— A in PUV{AN, As A € wis_true(P), it follows, by results of [4, 34],
that there is a smallest integer s such that A € (F2) 1 s. It follows by a straightforward
induction on s that A € Fp(I U {A}). Hence, B € Fp(I U {4}).

Inductive Case (n = m + 1)|In this case, there is a clause B «— D1 &...& Dy, in Q! such
that {Dq,..., Dy} C Tor 1 m. By the induction hypothesis, we may assume that for all
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1<i<w,D; € Fp(I U {A}). Thus, Q contains a clause C of the form
B « ﬂB]&...&ﬂBk&Dl&...&Dw

such that {B1,...,Bx} N I = 0. The rest of the proof is identical to the base case.
This completes the proof that I U {A} C Fp(I U {A}).

II. (Fp(I U {A}) C I U {A}) Suppose B € Fp(I U {A}). Then there is a smallest integer
v such that B € Tp(ruay T v. The proof is by a straightforward induction on v.

(<) I U {A} is a stable model of P. We need to show that I is a stable model of @), i.e.
we need to show that I = Fg(I). Both inclusions are proved in the same way as in the (—)
case. |

Proof of Theorem 2. We prove the result by a simultaneous induction on (1) & (2).

Base Case. (i = 0) In this case, wis_true(P) = § = wis_true(FPo) U glo_true,(P) = 0 U 0.
The same holds of wfs_false. This completes this case.

Inductive Case. (i+2) We assume, without loss of generality, that ¢ is an even number. The
induction hypothesis is that for all even numbers j < ¢, wis_true(P) = wis_true(P;) U
glo_true;(P) and wis_false(P) = wfs_false(P;) U glofalse;(P).

[wfs_true(P) C wis_true(Pi;) U glo_true; ,(P) and wis_false(P) C wis_false(FPi;z)
Uglo_false,  ,(P)] By the induction hypothesis, wis_true(P) C wis_true(P;)Uglo_true;(P)
and wis_false(P) C wis_false(P;) U glo_true;(P).

Suppose A € wis_true(P). Then A € wfs_true(F;) U glo_true;(P). If A € glo_true;(P),
then, as glo_true;(P) C glo_true; ,(P), 4 € glo_true; ,(P).

On the other hand, suppose A € wis_true(P;) — glo_true,(P). Then 4 € F3, 1 k for some
minimal integer k. It can be established, by a straightforward induction on &, that then
A € wis_true(P;y2) U glo_true; ,(P). Intuitively, the reason for this is the following: as
i is even, glo_true; ,(P) = glo_true;(P), and hence, A ¢ glo_true;,(P). Furthermore,
A ¢ I as I; C glo_true,(P). Furthermore, A ¢ glo_false;,(P); were this the case, we
would have A € glo_false;(P) U (Bp, — Fp,(I;)). A € glofalse;(P) would contradict
A € wis_true(P,) and A € (Bp, — Fp,(I;)) would do the same. Consequently, as 4 €
wis_true(P;), A must either be in wis_true(Piys) or in glo_true; . ,(P).

The proof that wfs_false(P) C wis_false(P;y,) U glo_false; ,(P) is symmetric.

[wis_true(P) D wis_true(P,42) U glo_true; ,(P) and wis false(P) 2 wis_false(Fi2)
U glo_false; ,(P)] The proof is by a similar induction on 1. l

Proof of Theorem 3. We wish to prove that
wis_true(P) = mi_true(P) U glo_true(mi_target(P))

and
wis_false(P) = mi_false(P) U glo_false(mi_target(P)).

By theorem 1, we know that mi_true(P) C wfs_true(P) and mi false(P) C wifs_false(P).
mi_target(P) is obtained from P by performing the transformations specified in Defini-
tion 6. All changes made in the five cases of Definition 6 preserve the well-founded semantics
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when the interpretation I is an interpretation that occurs in the I-sequence associated with
P°, An important point to note is that in the pruning iteration, we only perform trans-
formations w.r.t. interpretations I such that I < Ifp(®p).

Case 1: According to this case, if A occurs in the head of a clause C, and I; is an inter-
pretation in the I-sequence associated with P which assigns either t or f to A, then C gets
deleted. If I; makes A true, then lfp(®p)(A) =t and so A € wfs_true(P) by Theorem 1.
But then, the clause C' cannot make anything else true and hence can be deleted. Similarly,
if I;(A) = f, then fp(2p)(A) = f and so A € wis_false(P) by Theorem 1. But then, C
cannot make anything else false (by itself) and hence can be deleted.

Cases 2,4: These cases delete clauses whose bodies contain literals that are false in Fitting’s
semantics (and hence in WFS by Theorem 1). This is clearly sound.

Cases 3,5: These cases delete literals that are true. This is clearly sound.

Consequently, every atom A that is assigned “unknown” by p(®p) is unaffected by the
five transformations of Definition 6 in the sense that the well-founded semantics of P and
the well-founded semantics of mi_target(P) agree on A. But the well-founded semantics of
mi_target(P) is given by the sets glo_true(mi_target(P)) and glo false(ml_targpt(P))
by Corollary 1. This completes the proof. »

Proof of Lemma 5. (1) follows immediately from the fact that if this were not the case,
then A would be assigned either the truth value t or f. (2) follows immediately from the
construction of glo_simp(P). |

Proof of Theorem 4. («+) Suppose I € MIN_LEAF(glo_simp(P)). We need to show
that [ is a stable model of glo_simp(P), i.e. we need to show that I = Tg15 simp(p)? T w-

Part 1: [I C Tglosimp(pyr T w] Suppose a € I. Let No, ..., Ni be the nodes from the root
of PRUNE_ACT(P) to the leaf in question, and let

(q05T07F0’ U0)7 .. 'a(Qka TkyFim Uk)

be the sequence of node-labels in the path from the root of PRUN E_ACT(P) to the leaf
node having Ty = I. In particular, note that the following relations hold:

0=T0§T1§T2...QT]¢

®:F0§F1 QFQQF]C
Ug2U1 2U;...2 U =0.
Furthermore, suppose ai,...,a; are the atoms on which we branch when following the

branch from the root of PRUN E_ACT(P) to the leaf node having T}, = I. Let ¢ > 0 be the
smallest integer such that a € T;. We show, by induction on ¢, that a € Ty, simp(p)! T w.

Base Case (1 = 1) Two possibilities arise, depending upon whether the branch from Ny to Ny
is obtained by branching positively, or negatively, on a;. If it is a positive branch, then ¢; =
CH(qgp, a1), and a € wis_true(CH(qo,a1)). As a € wis_true(glo_simp(CH(qgo, a1))), it

1Note that our proof hinges critically upon the fact that the pruning iteration only prunes w.r.t. inter-
pretations I; occurring in the I-sequence associated with P. Transforming P w.r.t. interpretations that do
not occur in the I-sequence associated with P may not preserve well-founded semantics.
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.follows. thata € (F, gzlo _simp(CH(go, ax))) T 7 for some integer r. It follows, by a straightforward
induction on 7, that @ € Tg)o gimp(p)r T w. The inductive hypothesis is that for all ground

atoms A, if 4 € (Fig_simp(CH(ge1)) 1 ¥ then 4 € Tglo simpp)r 1 w AND if 4 ¢

(Fglo_simp(CH(qo,al))) 12k +1, then A ¢ Tglo_simp(P)I Tw.
Inductive Case (i 4+ 1): Similar to the base case.

(—) Suppose I is a stable model of glo.simp(P). Note that each Herbrand interpretation
of the language generated by the constant symbols and predicate symbols of glo_simp(P)
corresponds to a path in ACT(P). We need to show only that if I is a stable model of
glo_simp(P), then:

1. there is a branch in ACT(P) that corresponds to [ in the sense that I is the T-
component of the leaf node of the branch.

2. if Ng,..., Ny are the nodes along the branch in PRUN E_ACT(P) corresponding to
I, and if the label of N; is (g;, T3, F;, U;), then Ug = @ and Ty N Fy = 0.

Let ay, ..., ax be the sequence of atoms on which branches occur in ACT(P). Then we can
inductively construct the branch B(I) corresponding to I as follows: The root of ACT(P) is
in B(I). Suppose N is a node in B(I), and the arcs emanating from N are labeled with —a;
(to the left child N;) and a; (to the right child N,) respectively. If a; € I, then N, € B(I),
else N; € B(I). : :

Let Ng, ..., N; be the sequence of nodes in B(I). Let s be the smallest integer 1 < s < k
such that U, = 0 where we use (g;,T;, F:, U;) to denote the label of the node N;. Then the
branch Ny,..., N, is in LEAF(P) unless T; N F; #  for some 1 < j < s. The only way
T; N F; could contain something is if assuming one of the +a,,’s, 1 < w < j, led to a previous
assumption being contradicted. This is impossible, given the way we are transforming P
using the function CH. This completes establishing that I is the T-component of a leaf
node in PRUNE_ACT(P), i.e. I € LEAF(P).

I ¢ MIN_LEAF(glo_simp(P)) for the following reason: when branching on an atom a, the
branch and bound algorithm we have specified first branches by assuming that a is false.
Thus, if some strict subset I’ of I were in LEAF(glo_simp(P)), then by the preceding
argument, this leaf would have been generated before I, i.e. I’ would be in S (where S is
the set of stable models found “so far”, cf. the branch and bound algorithm of Example 2).
But then, by the («) part of this theorem, I’ is a stable model. It is known [25] that if
I, I are distinct stable models, then I} € I and Iy € I;. Hence, it is impossible that there
is a leaf such that I’ C I, and hence, I € MIN_LEAF(glo_simp(P)). [

Proof of Lemma 6. Whenever the algorithm selects from L anode @ of PRUN E_ACT(P),
it removes @ from L; and the nodes @~ and @ generated in lines 8 and 18 of the algorithm
are precisely @’s children in PRUN E_ACT(P). From this, it is easy to prove by induction
that:

1. every node generated by the algorithm is in PRUNE_ACT(P);
2. every node in PRUN E_ACT(P) is generated by the algorithm;

3. no node is generated more than once.
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From this, it follows that the algorithm generates each node of PRUN E_ACT(P) exactly

once; and thus, from lines 4, 17 and 27 of the algorithm, it follows that it generates them
in pre-order. =

Proof of Corollary 2. PRUNE_ACT(P) has finitely many nodes. By the proof of
Lemma 6, no node is generated twice. The result follows. |

Proof of Corollary 3. Every node in LEAF(glo_simp(P))is aleaf of PRUNE_ACT(P),
and from Lemma 6, it follows that the algorithm generates the leaves of PRUN E_ACT(P)
in left-to-right order. |

Proof of Lemma 7. If N is to the left of N, then there is a node M somewhere “above”
N and N’ such that N is a descendant of M’s left branch and N’ is a descendant of M’s
right branch. Let a be the atom on which we branch at node M. Then a ¢ T and a € T,
soT' ¢ T. [

Proof of Theorem 5. From lines 14-15 and 24-25 of the branch and bound algorithm,
it follows that every element added to S is in LEAF(glo_simp(P)). Thus, upon termi-
nation of the algorithm, § C LEAF(glosimp(P)). Let T1,...,T, be the elements of
LEAF(glo.simp(P)) in left-to-right order. We now prove by induction on ¢ that for 7 =
1,...,n,T;isadded to § by the branch and bound algorithm iff T; € MIN_LEAF(glo_simp(P)).

Base Case. At the time that the algorithm decides whether to add 73, S = @, and so 75 is
added to 5. From Lemma 7, Ty € T; for all 7 > 1 and so T} € MIN.LEAF(glo_simp(P)).

Inductive Case. Suppose the algorithm is ready to decide whether to add T; for some 7 > 1,
and suppose S = {T; | j < i and T; € MIN_LEAF(glosimp(P))}. Then the algorithm
will add T; to S iff for all T € S, T € T;. There are two cases:

1. T C T; for some T € S. Then the algorithm does not add T; to S and T; ¢
MIN._LEAF(glo_simp(P)).

2. T ¢ T; for all T € S. Then the algorithm will add T} to S. Suppose there is some
T; such that T; C T; and j # 4. Then, from Lemma 7, it follows that j < 4. Thus,
from the induction hypothesis, T C T} for some T' € 5§, whence T' C T;, which is a
contradiction. Thus, T; € T; for all j # 1, and so T; € MIN_LEAF(glo_simp(P)).

This completes the proof that the output returned by the branch and bound algorithm is
MIN_LEAF (glo_simp(P)). That this output coincides with the set of stable models of
glo_simp( P) follows immediately from Theorem 4. u
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