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1. Summary 

This project focused on one main problem: How to scale Intrusion tolerant replication to 
wide area networks. Specifically, the minimal project goal was to achieve 3 times better 
latency for a wide area Byzantine replication system, while tolerating up to 5 
compromised replicas anywhere in the system.  

We invented the first hierarchical Byzantine replication architecture tailored to systems 
that span multiple wide area sites, each consisting of several replicas. The new 
architecture dramatically improves system performance (latency and throughput), 
availability, and manageability, for the price of extra hardware.  

A full implementation of this architecture, named Steward, achieved and considerably 
exceeded the performance goal. For systems that are distributed over a network as wide 
as the continental US (50 millisecond network diameter), Steward demonstrates more 
than 3 times better latency and throughput as soon as there is one client in every wide 
area site, compared with the Byzantine Fault Tolerant (BFT) algorithm, which is the 
current state of the art. 

The Steward system was subjected to a white-box red team attack, where the red team 
has complete knowledge of system design, access to its source code, and control of a 
number of replicas in each site. The system was not compromised, and performed well 
during all the red team attacks. 

We think that this work is a first step toward closing the practicality gap between fault-
tolerant replication and intrusion-tolerant replication over wide area networks. 

A side goal for the project was to look at the problem of malicious insider clients. Instead 
of compromising the system, malicious clients can just use it to inject bad (but valid and 
authenticated) updates that propagate through the replicated system and corrupt the 
information in it. Clearly, since the updates are valid and the clients are authenticated 
(they are insiders), the computer system may not be able (at least not immediately) to 
detect these acts. Instead, we suggest enforcing accountability for client updates. 

By constructing an Accountability Graph between causally related updates, it is possible 
to track the causal relationship between different information items in the system’s state. 
Once bad data is discovered, we identify the client that injected it. We demonstrated how 
corrupted data that was injected subsequently by the client, as well as suspected data that 
causally depended on corrupted or suspected data, can be quickly marked. The system 
can then backtrack and regenerate its state based on non-corrupted and/or non-suspected 
data, and identify the extent of potential damage. 
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2. Introduction 

An important component of Self Regenerative Systems is their resilience against 
malicious attackers that successfully compromise parts of the system. In this project we 
focused on scaling intrusion-tolerant (Byzantine) replication algorithms to large systems 
that can be practically deployed in realistic scenarios, and on providing resilience against 
malicious, but authorized clients that use their credentials to introduce bad information 
into the system. 

We created the first hierarchical Byzantine fault-tolerant replication architecture suitable 
to systems that span multiple wide area sites. This architecture confines the effects of any 
malicious replica to its local site, reduces message complexity of wide area 
communication, and allows read-only queries to be performed locally within a site, for 
the price of additional hardware. We formally specified the algorithms of the new 
architecture, and proved their correctness analytically. We implemented our hierarchical 
architecture into a practical system, Steward, and demonstrated that it vastly improve 
performance (both throughput and latency) when compared with the current state of the 
art flat Byzantine fault-tolerant approach, over several network topologies. We verified 
our system implementation through a Red Team experiment where the attacker had full 
access to the algorithms, our proof of correctness and source code of our implementation, 
and full control (root) over several computer replicas. The system was not compromised 
in any of the attacks.  

We identified a major security vulnerability in distributed systems, which refers to 
compromised clients that fall under adversarial control and use the system within their 
authorized access rights and authenticated channels to deliberately insert incorrect data. 
When dealing with malicious clients, a significant challenge is that when such a 
malicious insider is discovered, it is hard to quickly assess the scope of the damage, and 
identify corrupt and suspected updates. 

In order to address this challenge, we introduced Accountability Graph, a mechanism that 
can assist applications in coping and recovering from such attacks. The tool provides 
accountability enforcement and causality tracking of updates and their dependencies.  
Upon detection of incorrect data (e.g. by an external intrusion detection mechanism or 
human assessment), the Accountability Graph quickly classifies all updates in the system 
as corrupted, suspected or not affected. We demonstrated the practicality and usefulness 
of this approach based on the requirements of three different applications: an open source 
software development project, a military common operation picture application, and a 
national emergency response system.  

The remainder of this report is organized as follows. Section 3 is focused on the scalable 
Byzantine replication. Section 4 is focused on providing accountability to mitigate the 
effects of malicious insider (or compromised) clients. Section 5 concludes the report. The 
Appendix A contains: 

• A paper detailing the architecture, algorithms and performance of the Steward 
system. 

• A paper detailing the Accountability Graph mechanism. 
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3. Scalable Byzantine Replication 

During the last few years, there has been considerable progress in the design of Byzantine 
fault-tolerant replication systems. The current state of the art protocols perform very well 
on small-scale systems that are usually confined to local area networks. However, current 
solutions employ flat architectures that introduce several limitations: Message complexity 
limits their ability to scale, and strong connectivity requirements limit their availability 
on wide area networks that usually have lower bandwidth, higher latencies, and exhibit 
network partitions. 

As part of the SRS program we designed the first hierarchical Byzantine fault-tolerant 
replication architecture suitable for systems that span multiple wide area sites, each 
consisting of several server replicas. Our approach, assumes no trusted component in the 
entire system, other than a valid mechanism to pre-distribute private/public keys. 

An implementation of our architecture, called Steward, uses a Byzantine fault-tolerant 
protocol within each site and a lightweight, benign fault-tolerant protocol among wide 
area sites. Each site, consisting of several potentially malicious replicas, is converted into 
a single logical trusted participant in the wide area fault-tolerant protocol.  Servers within 
a site run a Byzantine agreement protocol to order operations locally, and they agree 
upon the content of any message leaving the site for the global protocol. 

Guaranteeing a consistent agreement within a site is not enough. The protocol needs to 
eliminate the ability of malicious replicas to misrepresent decisions that took place in 
their site. To that end, messages between servers at different sites carry a threshold 
signature attesting that enough servers at the originating site agreed with the content of 
the message. 

Using threshold signatures allows Steward to save the space and computation associated 
with sending and verifying multiple individual signatures. Moreover, it allows for a 
practical key management scheme where servers need to know only a single public key 
for each remote site and not the individual public keys of all remote servers. 

The main benefits of our new hierarchical architecture are: 

• It reduces the message complexity on wide area exchanges from order O(N2) (N 
being the total number of replicas in the system) to order O(S2) (S being the number 
of wide area sites), considerably increasing the system's ability to scale. 

• It confines the effects of any malicious replica to its local site, enabling the use of a 
benign fault-tolerant algorithm over the wide area network. This improves the 
availability of the system over WANs that are prone to partitions, as only a majority 
of connected sites is needed to make progress, compared with at least 2f+1 servers 
(out of 3f+1) in flat Byzantine architectures (f being the maximal number of 
malicious replicas supported by the flat architectures). 

• It allows read-only queries to be performed locally within a site, enabling the system 
to continue serving read-only requests even in sites that are partitioned away. 

• It enables a practical key management scheme where public keys of specific replicas 
need to be known only within their own site. 

 3



These benefits come with a price. If the requirement is to protect against any f Byzantine 
servers in the system, Steward requires 3f+1 servers in each site. However, in return, it is 
able to overcome up to f malicious servers in each site. 

Steward's efficacy depends on using servers within a site which are unlikely to suffer the 
same vulnerabilities. Multi-version programming, where independently coded software 
implementations are run on each server, can yield the desired diversity. Newer techniques 
such as GENESIS from University of Virginia can automatically and inexpensively 
generate variation. 

We demonstrated that the performance of Steward tolerating f malicious servers in each 
site is much better even compared with a flat Byzantine architecture that can tolerate only 
f malicious servers total in the system, when deployed over the same wide area topology. 
We also showed, for the first time, that even though it offers strong Byzantine tolerant 
guarantees, Steward exhibits performance comparable (though somewhat lower) with 
common benign fault-tolerant protocols on wide area networks. 

We implemented the Steward system and a DARPA red team experiment has confirmed 
its practical survivability in the face of white-box attacks (where the red-team has 
complete knowledge of system design, access to its source code, and control of f replicas 
in each site). According to the rules of engagement, where a red-team attack succeeded 
only if it stopped progress or caused consistency errors, no attacks succeeded. 

A complete account of the DARPA red team experiment for the Steward system can be 
found in “Self-Regenerative Systems Red Team Assessment for STEWARD”, Final 
Report by RABA Technologies.  

In essence, the assessment included two parts. In the first part it is verified that Steward 
meets and exceeds the performance goals of the program. The latency reduction factor, as 
measured by RABA Technologies’ people, varies from 3.72 (with one client in each of 
the 5 wide area sites in the experiment for a total of 5 clients), to 10.18 (with 2 clients in 
each site for a total of 10 clients), to 17.03 (with 3 clients in each site for a total of 15 
clients) when no failures are introduced. When failures are introduced for Steward (but 
not for the BFT base line technology), the latency reduction factor is similar (3.71, 10.15, 
and 16.97 respectively). In each of these cases, the latency reduction factor was higher 
than 3, which was the SRS program stated goal. The latency reduction factor increases as 
the system size increases. 

The second part of the assessment involved 6 different attacks, each with escalating 
severity attack scenarios. None of the attacks managed to compromise the consistency of 
the correct servers or block the progress of the system. Therefore, the Steward system 
(blue team) was considered the winner in all the cases. Below is a quote (with 
permission) from the RABA report:   

"In summary, we assert that the STEWARD system met DARPA SRS 
objectives. We tested the protocol extensively and engaged tests that, 
according to the performer, tested their algorithms deeply. We attacked 
their hierarchical construct specifically. We killed servers – including critical 
servers. We observed the system responding and reacting – in every case 

 4



it restored itself to a normal operating status well within the time constraints 
and with full consistency of data. 
The STEWARD team produced a resilient system, and we attribute the 
success of the program to three factors. First, JHU has a significant amount 
of experience in the high performance systems problem domain – this 
experience contributed to many excellent design trade-off decisions early in 
the process.  Second, early in the conception of the project, the team spent 
a significant amount of time and effort developing a complete design 
specification for the system prior to writing any code.  Unlike many of these 
academically developed systems – or systems developed anywhere for that 
matter – they fully specified what they were going to build before they 
started building it, and rigorously proved the correctness of their algorithms 
prior to implementing them. Third, at the point that they ultimately accepted 
the challenge of the upcoming Red Team (about six months prior to the 
test), they went back and re-wrote their system from the ground up using 
defensive programming techniques. Through this process, they discovered 
a number of issues with their earlier implementation, and enhanced the 
implementation against traditional code attacks (such as buffer overflows).  
Additionally, Dr. Amir has a very talented and dedicated group of 
researchers performing the development of this system." 

 
The Steward work is thoroughly described in the following technical report, which is 
included in Appendix A: 

 “Steward: Scaling Byzantine Fault-Tolerant Systems to Wide Area Networks” Y. 
Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-Rotaru, J. Olsen and D. 
Zage. Technical Report CNDS-2005-3, Distributed Systems and Networks lab, 
Johns Hopkins University, www.dsn.jhu.edu.  

This technical report includes detailed description of the algorithms in Steward, including 
pseudo code that enables other researchers to replicate our work. The performance 
evaluation section of this technical report includes detailed benchmarks of the system in 
various wide area settings, comparing its throughput and latency to BFT, the baseline 
technology and current state of the art, for updates and read only queries.  

A conference version of this technical report will appear in the Proceedings of the 
International Conference on Dependable Systems and Networks (DSN 2006), 
Philadelphia, PA, June 2006 and is also available on the above web site. 
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4. Accountability Graph – Coping with Malicious Clients  

Many distributed services, including our own solution for scalable wide-area Byzantine-
tolerant replication detailed in Section 3, use a set of servers that replicate the service and 
coordinate their actions to answer client requests, while maintaining the consistency of 
the data. The most basic operations performed by clients are querying the servers or 
updating data maintained by the servers. Security is a major concern for such systems 
that often operate over unsecured networks such as the Internet. Significant work 
conducted over the last several years to develop mechanisms for Byzantine replication, 
access control and intrusion detection, provides the support for designing secure 
distributed services. Specifically, the servers and their operating system are protected 
against intrusions, corrupted servers are tolerated by running Byzantine replication 
algorithms, access to resources is tightly enforced by using access control mechanisms, 
while client actions are monitored by intrusion detection systems. 

Although such systems may seem difficult to attack, they often overlook that their 
weakest link is represented by clients, and the most critical asset is the data itself. Thus, 
very harmful attacks can come from compromised clients, targeting the data correctness: 
One or more compromised clients can use the system within their authorized parameters 
to create or inject incorrect inputs or updates to some servers. The (Byzantine) replication 
algorithms will propagate this information among all servers, corrupting the state of the 
system so that it will no longer reflect reality. In this respect, several observations are 
important. First, the Byzantine replication protocols running on the servers will replicate 
data already compromised, so they will not be able to address the attack. Second, these 
incorrect updates may not be detected immediately, impacting other clients subsequently 
querying the system and basing their decisions on the erroneous state. This creates a 
cascading effect in which further created updates are also erroneous because they are 
based on malicious data. Third, although intrusion detection mechanisms deployed in the 
system may eventually detect the compromised clients, assessing the extent of the 
damage and identifying the other components of the system that were affected is very 
challenging and is not provided by the mechanism mentioned above. 

The effect of such an attack can be devastating for applications that are highly dependent 
on the correctness of their data. For example, in collaborative open-source software 
development (e.g. Linux), multiple individuals create or augment existing source code. 
The inherent interdependency between software packages enables a malicious update to 
one package to significantly impact other components of the system. It is important to 
identify the packages that may be affected by corrupt code injected into the system, and 
determine the risk and vulnerabilities associated with it. Other examples are command 
and control information systems, such as those used by the military or by emergency 
response personnel.  In such systems, users update the state of the operational situation 
and make decisions based on it. Correctness of the data is critical, and any misleading 
information can result in loss of life. A malicious insider can inject authorized yet 
incorrect information that may mislead honest users and cause them, in turn, to make 
additional erroneous updates. 

A major challenge faced by secure distributed systems is that when a malicious client 
insider is discovered, it is hard to quickly assess the scope of the damage, and identify 
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corrupt and suspected updates. Therefore, the system is usually not able to regenerate and 
recover to a clean state without the effects of these updates. Based on our experience 
building secure reliable systems, we make the observation that in the best case, this is 
considered an application-specific issue, and the system infrastructure provides no 
support in addressing it. Most of the time, this problem is not considered at all. One of 
our main goals in the SRS program was to raise awareness to this important problem and 
to show how the distributed infrastructure can assist the application in recovering from 
such attacks. Results based on the requirements of three different applications 
demonstrated the practicality of our solution. 

In this project, we designed Accountability Graph, a generic mechanism that provides 
accountability enforcement and causality tracking of updates and their dependencies in a 
directed acyclic graph with periodic snapshots. Upon detection of incorrect data, the 
system traces the data to the corrupt update that generated it, and from that, the 
Accountability Graph enables the system to mark all causally dependent updates as 
corrupted or suspected. All subsequent updates made by the malicious client are marked 
as corrupt, and all other updates that recursively depend on corrupted updates are marked 
as suspicious. No less important, the system is assured that all unmarked updates are not 
affected by the discovered incorrect data. Our solution can use any intrusion detection 
mechanism (or human input) that will provide the initial detection. One or several servers 
forming the underlying distributed service can decide to maintain the graph, the 
coordination between the servers, including the ordering of the updates, will ensure that 
the graph looks the same at each server. There is no central authority or point of failure, 
any server can decide at any time if it will build the graph for events happening in the 
system.  

We demonstrated the usefulness of our solution in three different applications: an open-
source software development project, a military common operation picture application, 
and a national emergency response system. We showed that the overhead associated with 
our solution is reasonable in these cases. 

The Accountability Graph work is described in the following technical report, which is 
included in Appendix B: 

 “Enhancing Distributed Systems with Mechanisms to Cope with Malicious 
Clients” Y. Amir, C. Danilov, J. Lane, M. Miskin-Amir and C. Nita-Rotaru. 
Technical Report CNDS-2005-4, Distributed Systems and Networks lab, Johns 
Hopkins University, www.dsn.jhu.edu. 
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5. Concluding Remarks 

This SRS project, “Scalability, Accountability and Instant Information Access for 
Network-Centric Warfare”, was an intense, 18 month project conducted by the 
Distributed Systems and Networks lab at Johns Hopkins, with a subcontract to the 
Dependable and Secure Distributed Systems lab at Purdue University. 

The Johns Hopkins group included Dr. Yair Amir (Project PI), Dr. Claudiu Danilov, John 
Lane, Jonathan Kirsch, Dr. Danny Dolev and Dr. Jonathan Shapiro. 

The Purdue group included Dr. Cristina Nita-Rotaru (Subcontract PI), Josh Olsen, and 
David Zage.   

Our research resulted in the first hierarchical Intrusion tolerant (Byzantine) replication 
architecture, Steward, suitable for systems that span multiple wide area sites, each 
consisting of several server replicas. Steward assumes no trusted component in the entire 
system, other than a valid mechanism to pre-distribute private/public keys. The new 
architecture met and exceeded the SRS program goals and sustained all the scenarios 
tested in a white-box red team experiment. 

We also devised an Accountability Graph mechanism that can help mitigate the effects of 
malicious clients injecting bad (but valid and authenticated) updates to the system. 

The research also introduced several new open questions. 

• Performance under attack: The current common metrics for the evaluation of 
intrusion tolerant replication focus on performance in the benign case and 
correctness and liveness under attack. There are currently no good evaluation 
metrics for the system performance under attacks (perhaps because it is not well 
understood how to build systems that will be able to perform well under attacks). 
We think that future work should focus on how to construct system that will be 
able to perform well under attack, with the ratio of the performance under attack 
to performance with no attack as the proposed metric. 

• Generic hierarchical architecture: The steward system realizes the first 
hierarchical Byzantine replication architecture. We believe that the architecture 
can be generalized such that different protocols can be plugged in for the wide 
area protocol and the local area protocol.  If this can be accomplished, it will lead 
to very interesting tradeoffs between performance and guarantees. For example, 
we will then be able to protect against a complete site compromise by running a 
BFT-like algorithm between the sites. Interestingly, this will also reduce the 
number of replicas in each site from 16 to 10, still guarantying that no 5 malicious 
replicas anywhere can compromise system (although they may compromise one 
site).  

We think that this research is a first step toward closing the practicality gap between 
fault-tolerant replication and intrusion-tolerant replication over wide area networks. Work 
along this line can become useful to C3I systems, most of them geographically spread 
over wide area networks, once these systems will require intrusion tolerance.  
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• “Steward: Scaling Byzantine Fault-Tolerant Systems to Wide Area Networks” Y. 
Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-Rotaru, J. Olsen and D. 
Zage. Technical Report CNDS-2005-3, Distributed Systems and Networks lab, 
Johns Hopkins University, www.dsn.jhu.edu. A conference version of this 
technical report will appear in the Proceedings of the International Conference on 
Dependable Systems and Networks (DSN 2006), Philadelphia, PA, June 2006 and 
is also available on the above web site.  

 

 9

http://www.dsn.jhu.edu/


Steward: Scaling Byzantine Fault-Tolerant Systems
to Wide Area Networks

Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan Kirsch, John Lane, Cristina Nita-Rotaru, Josh Olsen, David Zage

Technical Report CNDS-2005-3 - December 2005
http://www.dsn.jhu.edu

Abstract— This paper presents the first hierarchical Byzantine
tolerant replication architecture suitable to systems that span
multiple wide area sites. The architecture confines the effects of
any malicious replica to its local site, reduces message complexity
of wide area communication, and allows read-only queries to
be performed locally within a site for the price of additional
hardware. A prototype implementation is evaluated over several
network topologies and is compared with a flat Byzantine tolerant
approach.

I. INTRODUCTION

During the last few years, there has been considerable
progress in the design of Byzantine tolerant replication sys-
tems. The current state of the art protocols perform very well
on small-scale systems that are usually confined to local area
networks. However, current solutions employ flat architectures
that introduce several limitations: Message complexity limits
their ability to scale, and strong connectivity requirements
limit their availability on wide area networks that usually
have lower bandwidth, higher latencies, and exhibit network
partitions.

This paper presents Steward, the first hierarchical Byzantine
tolerant replication architecture suitable for systems that span
multiple wide area sites, each consisting of several server
replicas. Steward assumes no trusted component in the en-
tire system, other than a valid mechanism to pre-distribute
private/public keys.

Steward uses a Byzantine tolerant protocol within each site
and a lightweight, benign fault tolerant protocol among wide
area sites. Each site, consisting of several potentially malicious
replicas, is converted into a single logical trusted participant in
the wide area fault-tolerant protocol. Servers within a site run
a Byzantine agreement protocol to order operations locally,
and agree upon the content of any message leaving the site
for the global protocol.

Guaranteeing a consistent agreement within a site is not
enough. The protocol needs to eliminate the ability of mali-
cious replicas to misrepresent decisions that took place in their
site. To that end, messages between servers at different sites
carry a threshold signature attesting that enough servers at the
originating site agreed with the content of the message. Using
threshold signatures allows Steward to save the space and
computation associated with sending and verifying multiple
individual signatures. Moreover, it allows for a practical key

management scheme where servers need to know only a single
public key for each remote site and not the individual public
keys of all remote servers.

The main benefits of our architecture are:
1) It reduces the message complexity on wide area ex-

changes from N2 (N being the total number of replicas
in the system) to S2 (S being the number of wide area
sites), considerably increasing the system’s ability to
scale.

2) It confines the effects of any malicious replica to its
local site, enabling the use of a benign fault-tolerant
algorithm over the wide area network. This improves the
availability of the system over wide area networks that
are prone to partitions, as only a majority of connected
sites is needed to make progress, compared with at
least 2f + 1 servers (out of 3f + 1) in flat Byzantine
architectures.

3) It allows read-only queries to be performed locally
within a site, enabling the system to continue serving
read-only requests even in sites that are partitioned.

4) It enables a practical key management scheme where
public keys of specific replicas need to be known only
within their own site.

These benefits come with a price. If the requirement is to
protect against any f Byzantine servers in the system, Steward
requires 3f + 1 servers in each site. However, in return, it is
able to overcome up to f malicious servers in each site.

Steward further optimizes the above approach based on the
observation that not all messages associated with the wide area
fault-tolerant protocol require a complete Byzantine ordering
agreement in the local site. A considerable amount of these
wide area messages require a much lighter local site step,
reducing the communication and computation cost on the
critical path.

The paper demonstrates that the performance of Steward
with 3f +1 servers in each site is much better even compared
with a flat Byzantine architecture with a smaller system of
3f + 1 total servers spread over the same wide area topology.
The paper further demonstrates that Steward exhibits perfor-
mance comparable (though somewhat lower) with common
benign fault-tolerant protocols on wide area networks.

The Steward system is completely implemented and is
currently undergoing a DARPA red-team experiment to assess
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Fig. 1. Normal-case operation of the Paxos algorithm when f = 1. Server
0 is the current leader.

its practical survivability in the face of white-box attacks
(where the red team has complete knowledge of system design,
access to its source code, and control of up to f replicas in
each site). We hope to be able to report on the insight gained
from this activity in a final version of this paper.

The remainder of the paper is presented as follows. We
provide a more detailed problem statement in Section II. We
present our assumptions and the service model in Section
III. We describe our protocol, Steward, and provide a sketch
for a proof that it meets the specified safety and liveness
properties, in Sections V and VI. We present experimental
results demonstrating the improved scalability of Steward on
wide area networks in Section VII. We discuss previous work
in several related research areas in Section VIII. We summarize
our conclusions in Section IX.

II. BACKGROUND

Our work uses concepts from fault tolerance, Byzantine
fault tolerance and threshold cryptography. To facilitate the
presentation of our protocol, Steward, we first provide an
overview of the state-of-art work in these areas: Paxos, BFT
and RSA Threshold Signatures in Sections II-A,II-B and II-C.
Steward used ideas and concepts from all these algorithms.

A. Paxos Overview
Paxos [1], [2] is a well-known fault-tolerant protocol that

allows a set of distributed servers, exchanging messages via
asynchronous communication, to totally order client requests
in the benign-fault, crash-recovery model. One server, referred
to as the leader, has the task of coordinating the protocol. If
the leader crashes or becomes unreachable, a new leader is
elected. Paxos requires at least 2f + 1 servers to tolerate f

faulty servers. Since servers are not Byzantine, only one reply
needs to be delivered to the client.

In the common case, in which a single leader exists and
can communicate with a majority of servers, Paxos uses two
asynchronous communication rounds to globally order client
updates. In the first round, Proposal, the leader assigns a
sequence number to a client update, and proposes this assign-
ment to the rest of the servers. In the second round, Accept,
any server receiving the proposal assents to the assigned
sequence number, or accepts the proposal, by sending an
acknowledgment to the rest of the servers. When a server
receives a majority of acknowledgments – indicating that a
majority of servers have accepted the proposal – the server

Fig. 2. Normal-case operation of the BFT algorithm when f = 1. Server 0
is the current leader.

orders the corresponding update. Common case operation is
presented in Figure II-A.

If the leader crashes or is partitioned away, the servers run
a leader election protocol to replace the old leader, allowing
progress to resume. The leader election protocol follows a
similar two-round, proposal-accept pattern, where the value
proposed will be a new leader. The protocol associates a
unique view number with the reign of a leader (i.e. view) and
defines a one-to-one mapping between the view number and
the identifier of the server acting as the leader in this view.
The system proceeds through a series of views, with a view
change occurring each time a new leader is elected. Proposals
are thus made in the context of a given view.

Since the communication is asynchronous, multiple leaders
may coexist, each issuing proposals for client requests. Paxos
ensures that saftey is preserved in the face of multiple leaders
in two ways. First, it defines a total ordering on all proposals
by attaching the view number and sequence number to each
proposal. Second, with this total ordering in place, the algo-
rithm uses an additional round of communication whenever
a view change occurs to prevent conflicting requests from
being ordered with the same sequence number. This round,
Prepare, ensures that the new leader learns of any outstanding
proposals that may have been ordered by a server that crashed
or partitioned away. The leader collects information from a
majority of servers. Since any ordered proposal was accepted
by a majority of servers, and since any two majorities intersect,
the ordered proposal is guaranteed to be reported to the new
leader. The leader then protects a server that may have ordered
the proposal (if one exists) by replaying the proposal with the
same sequence number in the new view.

In summary, Paxos uses two communication rounds in the
normal case (Proposal and Accept) and one additional round,
Prepare, in addition to the leader election protocol, when a
new leader is needed and a view change must take place. View
changes are triggered by timeouts.

B. BFT Overview
The BFT [3] protocol addresses the problem of replication

in the Byzantine model where a number of the servers can be
compromised and exhibit arbitrary behavior. Similar to Paxos,
BFT uses an elected leader to coordinate the protocol, and
proceeds through a series of views. BFT extends Paxos into
the Byzantine environment by using an additional round of
communication in the common case to ensure consistency both
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in and across views, and by constructing strong majorities in
each round of the protocol. Specifically, BFT requires end-to-
end acknowledgments from 2f + 1 out of 3f + 1 servers to
mask the behavior of f Byzantine servers. A client must wait
for f +1 identical responses to be guaranteed that at least one
correct server assented to the returned value.

In the common case, BFT uses three communication rounds:
Pre-Prepare, Prepare and Commit. In the first round, the leader
assigns a sequence number to a client update and proposes
this assignment to the rest of the servers by multicasting a
pre-prepare message to all servers. In the second round, a
server accepts the proposed assignment by sending an ac-
knowledgment, prepare, to all servers. Since a malicious leader
may propose conflicting assignments, both the pre-prepare and
prepare messages include the digest of the client update; this
allows correct servers to differentiate acknowledgments sent
in response to different pre-prepare messages. The first two
communication rounds guarantee that correct servers agree on
a total order of the updates proposed within the same view.
When a server receives 2f+1 prepare messages with the same
view number, sequence number, and digest as the pre-prepare,
it begins the third round, Commit, by multicasting a commit
message to all servers. A server commits the corresponding
update when it receives 2f + 1 matching commit messages.
The third communication round, in combination with the view
change protocol, ensures the total ordering of updates across
views.

If the leader crashes, or if no progress is made, the servers
initiate a view change protocol to replace the leader. View
changes are triggered by timeouts. A server initiates a view
change by sending a view-change message to all servers,
suggesting a new view number (with its associated leader).
When the new leader receives 2f + 1 view-change messages
for the same view number, it initiates a reconciliation process
by sending a new-view message. In this process, the new leader
solicits information about committed and outstanding updates
from 2f+1 servers. Since any committed update is known to at
least f+1 correct servers, any set of 2f+1 servers will contain
at least one of these correct servers; thus, the committed update
will be reported to the new leader. The leader then protects
servers that may have committed an update by replaying the
pre-prepare message with the same sequence number in the
new view.

In summary, BFT requires three communication rounds –
Pre-prepare, Prepare and Commit – in the normal case, and
two more communication rounds when a new leader is needed
and a view change must take place.

C. Threshold Digital Signatures
Threshold cryptography [4] distributes trust among a group

of participants to protect information (e.g. threshold secret
sharing [5]) or computation (e.g. threshold digital signatures
[6]). Threshold schemes define a threshold parameter, k, such
that any set of at least k (out of n) participants can work
together to perform a desired task (such as computing a digital
signature), while any subset of fewer than k participants is

unable to do so. In this way, threshold cryptography offers a
tunable degree of fault-tolerance: in the benign fault model, the
system can function despite (n-k) faults, and in the Byzantine
fault model, an adversary must corrupt k participants to break
the system. In particular, corrupting fewer than k participants
yields no useful information. There is a natural connection
between Byzantine fault-tolerance and threshold cryptography,
since both distribute trust among participants and make as-
sumptions about the number of honest participants required in
order to guarantee correctness.

A (k, n) threshold digital signature scheme allows a set of
n servers to generate a digital signature as a single logical
entity despite f = (k − 1) Byzantine faults. In a (k, n)
threshold digital signature scheme, a private key is divided
into n partial shares, each owned by a server, such that any
set of k servers can pool their shares to generate a valid
threshold signature, while any set of fewer than k servers
is unable to do so. To sign a message m, each server uses
its share to generate a partial signature on m, and sends the
partial signature to a combiner server. The combiner combines
the partial signatures into a threshold signature on m. The
threshold signature is verified in the standard way, using the
public key corresponding to the divided private key. Shares can
be changed proactively [7], [8] without changing the public
key, allowing for increased security and fault-tolerance, since
an adversary must compromise k partial shares within a certain
time window to break the system.

Since the participants can be malicious, it is important to
be able to verify that the partial signature provided by any
participant is valid – that is, it was generated with a share from
the initial key split. This property, known as verifiable secret
sharing [9], guarantees the robustness [10] of the threshold
signature generation.

A representative example of practical threshold digital sig-
nature schemes is the RSA Shoup [6] scheme, which allows
participants to generate threshold signatures based on the
standard RSA[11] digital signature. The scheme defines a (k,
n) RSA threshold signature scheme, and provides verifiable
secret sharing. The computational overhead of verifying that
the partial signatures were generated using correct shares
is significant. The resulting threshold signature can be non-
interactively verified using the same technique as the standard
RSA signature.

In summary, generating a threshold signature requires one
communication round and verifying the correctness of shares
is an expensive operation that can be omitted in the optimistic
case.

III. SYSTEM MODEL

Servers are implemented as deterministic state machines.
All correct servers begin in the same initial state. Servers
transition from one state to the next by applying updates
to their state machines. We assume that the next state is
completely determined by the current state and the next action
to be applied.
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We assume a Byzantine fault model. Servers are classified
as either correct or faulty. Faulty servers may behave in an
arbitrary manner. In particular, they can: exhibit two-faced
behavior, fail to send messages, collude with other faulty
servers, etc. We assume that correct servers do not crash.

Communication is asynchronous. Messages can be delayed,
lost, or duplicated, but those messages that do arrive are not
corrupted.

Servers are organized into wide area sites. Each site is
identified by a unique identifier. Each server belongs to exactly
one site. The network may partition into multiple disjoint
components, each containing one or more sites. Components
may subsequently remerge. Servers from sites in different
components are unable to communicate with each other.

We assume that communication latency within a site is
smaller than communication encountered in communication
between sites.

Each site Si has at least 3 ∗ (fi) + 1 servers, where fi is
the maximum number of servers that may be faulty within Si.
For simplicity, we assume in what follows that all sites may
have f faulty servers.

Clients are distinguished by unique identifiers. Clients send
updates to servers within their local site, and receive responses
from these servers. Each update is uniquely identified by a
pair consisting of the identifier of the client that generated
the update and a unique, monotonically increasing logical
timestamp. Clients propose updates sequentially: a client may
propose an update with timestamp i + 1 only after it has
received a response for an update with timestamp i.

We employ digital signatures, and we make use of a
cryptographic hash function to compute message digests.
Client updates are properly authenticated and protected against
modifications. We assume that all adversaries, including faulty
servers are computationally bounded such that they cannot
subvert these cryptographic mechanisms.

We also use (k,n) threshold signatures. Each site has a public
key, while each server receives shares and the corresponding
proofs that can be used to generate threshold signatures on
behalf of the site. We assume the threshold signature scheme
is cryptographically secure such that threshold signatures are
unforgeable without knowing k or more secret shares.

IV. SERVICE SAFETY AND LIVENESS PROPERTIES

The protocol assigns global, monotonically increasing se-
quence numbers to updates to establish a global, total order.
Below we define the safety and liveness properties of the
STEWARD protocol. We say that:

• a client proposes an update when the client sends the
update to a server in the local site.

• the update with sequence number i is the ith update.
• a server initiates an update when, upon receiving the

update from a client, the server forwards the update for
global ordering.

• a site initiates an update when the leading site locally
orders the update in the current global view (creating

a threshold signed proposal message which binds a se-
quence number to the update), and then a correct server
from the site sends the proposal on the wide area for
global ordering.

• a server executes an update with sequence i when it
applies the update to its state machine. A server executes
update i only after having executed all updates with a
lower sequence in the global total order.

• a site executes an update when some correct server in the
site executes the update.

• two servers within a site are connected if they can
communicate with no communication failures.

• two sites are connected if every correct server of each site
can communicate with every correct server of the other
site with no communication failures.

DEFINITION 4.1: S1 - SAFETY: If two correct servers
execute the ith update, then these updates are identical.

DEFINITION 4.2: S2 - VALIDITY: Only an update that was
proposed by a client (and subsequently initiated by a server)
may be executed.

DEFINITION 4.3: LL1- LOCAL PROGRESS: If there exists
a set, within a site, consisting of at least 2f +1 correct servers,
and a time after which the correct members of this set are
connected, then if a correct server in the set initiates an update,
the site will eventually initiate the update.

DEFINITION 4.4: GL1 - GLOBAL PROGRESS: If there
exists a set consisting of a majority of sites, each meeting
LL1, and a time after which all sites in the set are connected,
then if a site in the set initiates an update, some site in the set
eventually executes the update.

V. PROTOCOL DESCRIPTION

Steward leverages a hierarchical architecture to scale Byzan-
tine replication to the high-latency, low-bandwidth links char-
acteristic of wide area networks. It employs more costly
Byzantine fault-tolerant protocols within a site, confining
Byzantine behavior to a site and allowing a more lightweight,
fault-tolerant protocol to be run among sites. This results in
fewer messages and communication rounds on the wide area
compared to a flat Byzantine solution. The price is the need to
have enough hardware within a site to overcome f malicious
servers.

A site is made to behave as a single logical participant in
the wide area fault-tolerant protocol through a combination
of Byzantine agreement and threshold digital signatures. The
servers within a site agree upon the content of any message
leaving the site, and then construct a threshold signature on the
message to prevent a malicious server from misrepresenting
the site. One server in each site, referred to as the repre-
sentative, coordinates the internal agreement and threshold
signing protocols within the site. The representative of one
site, referred to as the leading site, coordinates the wide area
agreement protocol. If the representative of a site acts mali-
ciously, the servers of that site will elect a new representative.
If the leading site is partitioned away, the servers in the other
sites will elect a new leading site.
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At a higher level, Steward uses a wide area Paxos-like
algorithm to globally order updates. However, the entities
participating in our protocol are not single trusted participants
like in Paxos. Each site entity in our wide area protocol is
composed of a set of potentially malicious servers. Steward
employs several intra-site protocols as building blocks at
each site, to emulate a correct Paxos participant in each of
the wide area algorithm steps, based on need. For example,
the leader participant in Paxos unilaterally assigns a unique
sequence number to an update. Instead, Steward uses an intra-
site protocol that employs a BFT-like mechanism to assign a
global sequence number in agreement with the servers inside
the leading site. The leading site will need to present to other
sites a proof that the sequence indeed was assigned. Steward
uses a different intra-site protocol to threshold-sign the Paxos
proposal message demonstrating that f + 1 correct servers in
the leading site agreed to that global sequence number. The
same threshold signature intra-site protocol is used to issue
Paxos-like acknowledgments in non-leader sites.

In addition, Steward uses intra-site protocols that serve for
Byzantine election of the new representative inside each site,
as well as for proposing a new leading site.

The intra-site protocols used by Steward are as follows:
• P1-THRESHOLD-SIGN: this protocol signs a message with

a threshold signature composed of 2f +1 shares, within a
site. After executing this protocol, every correct process
has a message that was signed with a threshold signature
composed of 2f + 1 shares.

• P2-ASSIGN-SEQUENCE: this protocol assigns a sequence
number to an update received within a site, in the case
when the representative is not suspected, and no internal
view change takes place. It is invoked at the leading site
to assign a unique sequence number to an update such that
at least f + 1 correct servers will agree on the sequence
number.

• P3-PROPOSE-LEADER-SITE: this protocol is used to gen-
erate an agreement inside a site regarding which wide
area site should be the next leading site in the global
ordering protocol.

• P4-CONSTRUCT-COLLECTIVE-STATE: this protocol pro-
vides reconciliation during a view change and generates a
message describing the current state of the site, as agreed
by at least f + 1 correct servers inside the site.

The high-level inter-site protocols used by Steward are listed
below. Servers in multiple sites participate in these protocols.

• P5-ASSIGN-GLOBAL-ORDER: this protocol assigns a
global order to each update. It uses the ASSIGN-
SEQUENCE and THRESHOLD-SIGN intra-site protocols.
Note its similarity to the normal-case operation of Paxos.

• P6-LAN-VIEW-CHANGE: this protocol changes the view
within a site and, therefore, the local representative. A
server invokes this protocol when it suspects that the
current representative may be malicious. Servers in the
leading site that complete this protocol are constrained
such that safety is preserved across local views. A correct

constrained server will not assign a sequence number i

to update u if u′ may have been locally ordered wiht i

in a previous view.
• P7-WAN-VIEW-CHANGE: this protocol changes the

global view and, therefore, the leading site. A server
invokes this protocol when it suspects that it is not
connected to the leading site. Servers that complete this
protocol are constrained such that safety is preserved
across global views.

Below we provide a short description of the common case of
operation of Steward, the view changes algorithms, the timers
used by our protocols, and the inter-dependency between the
global protocol and intra-site timeouts.

A. Data Structures and Message Types
Each server maintains several variables and data structures

listed in Figure 4.
Each server can compute the Aru based on the correspond-

ing history. For example, Local update aru can be computed
based on the Local History.

An entry in the Pending Proposals is erased when it
becomes less updated than the corresponding item in
Global History.

Each server maintains two variables Installed global view
and Installed local view. Their purpose is to indicate what is
the next view to be installed when there is a view change. They
are set to 0 when the global or local view change protocol is
invoked and 1 when the protocol ends. If Installed global view
or Installed local view are 0, then Global view is the new
global view to be installed, and Local view is the new local
view, respectively.

B. The Common Case
During the common case, global progress is made and no

leading site or site representative election occurs. As described
above, the protocol run among sites follows a Paxos-like
communication pattern and is coordinated by the leading site.
Each round of the protocol uses one or more intra-site intra-
site protocols to generate the appropriate wide area message
(proposal and accept, respectively). The common case works
as follows:

1) A client located at some site sends an update to a server
in its local site. This server forwards the update to the
local representative.

2) The local representative forwards the update to the
representative of the leading site.

3) The representative of the leading site initiates a Byzan-
tine agreement protocol within the site to assign a
global sequence number to the update; this assignment
is encapsulated in a proposal message. The site then
generates a threshold digital signature on the constructed
proposal, and the representative sends the signed pro-
posal to all other sites for global ordering.

4) Upon receiving a signed proposal, the representative
of each site initiates the process of generating a site
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Update = (client id, ts, client update)
Server Update

Commit = (server id, seq, local view, digest, t share)

/* Messages used by the THRESHOLD-SIGN */
Sig Share = (server id, data, sig share, proof)
Corrupted Server = (server id, data, sig share, proof)

/* Messages used by ASSIGN-SEQUENCE */
Pre-Prepare = (server id, seq, local view, Update)
Prepare = (server id, seq, local view, digest)

Prepare Certificate(s, v, u)= A set containing a Pre-Prepare(server id, s, loc v, u) message and a
list of 2f distinct Prepare(server id(i), s, loc v’, d(u)) messages with server id 6= server id(i)
and loc v == loc v’

Local Order Proof(s, u)= A set containing a Pre-Prepare(server id, s, loc v, u) message and a list
of Commit(server id(i), s, loc v’, d(u), t share) messages satisfying Local Ordered(s)

Local Ordered Update = (site id, seq, local view, Update, t sig), t sig is computed on the digest of
Update; this message is equivalent to Local Order Proof(s, u)

Local New View(local view, union, t sig)= A view number and a set of Prepare Certificate and
Local Order Proof or Local Ordered Update messages

Proposal = (site id, seq, global view, local view, Update, t sig)
Accept = (site id, seq, global view, local view, digest, t sig)

Global Ordered Update(s, u)= A set containing a Proposal(site id, s, v, u) message and a list of
Accept(site id(i), s, v’, d(u)) messages, satisfying Global Ordered(s)

/* Messages used by LAN-VIEW-CHANGE */
New Rep = (server id, suggested local view)
New Rep Collection = set of New Rep messages
Preinstall Proof = a set of 2f+1 New Rep and the view that the l new rep set proves preinstalled

/* Messages used by the SITE-ATTEMPT-WAN-VIEW-CHANGE */
VC Attempt = (server id, site id, global view, sig share)
Global VC = (site id, global view, thresh sig)
Attempt Proof Request
Global Attempt Proof
VC Share

/* Messages used by the CONSTRUCT-COLLECTIVE-STATE */
Request State = (seq, ctx, ctx.view) , where ctx can be Local or Global depending on the place the
protocol is invoked
Server State = view, aru, server id, all ordered updates and proof of the order, and accepted
proposals with seq greater that a given SEQ
Server State Set = a set of 2f+1 Server State distinct messages that pass validity test that view
numbers is equal to the view of the corresponding Local or Global context.

Fig. 3. Message Types

acknowledgment (accept), and then sends the acknowl-
edgment signed with a threshold signature to the repre-
sentative of all other sites.

5) The representative of each site forwards the incoming
accept messages to all local servers. A server globally
orders the update when it receives signed accepts from
a majority of sites. The server at the client’s local site
that originally received the update sends a reply back to
the client.

6) If the client does not receive a reply to its update within
a certain amount of time, it resends the update, this time
broadcasting it to all servers at its site.

All site-originated messages that are sent as part of the fault-
tolerant global protocol, require threshold digital signatures so
that they may be trusted by other sites.

The THRESHOLD-SIGN intra-site protocol generates a (2f+1,
3f+1) threshold signature on a given message. As described

in Section II, each server is assumed to have a partial share
and a proof that the share was obtained from the initial secret
(i.e. private key). Upon invoking the protocol on a message
to be signed, the server generates a partial signature on this
message. In addition, the server constructs a verification proof
that can be used to confirm that the partial signature was
indeed created using a valid share. Both the partial signature
and the verification proof are sent to all servers within the site.

Upon receiving 2f+1 partial signatures on a message, a
server combines the partial signatures into a threshold signa-
ture on that message. The constructed signature is then verified
using the site’s public key (RSA verification). If the signature
verification fails, then one or more partial signatures used in
the combination were invalid, in which case the verification
proofs provided with the partial signatures are used to identify
incorrect shares; the corresponding servers are classified as
malicious. The invalid shares serve as proof of corruption and
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int Server id: unique id of this server within the site
int Site id: unique id of the site this server is in
bool I Am Representative: 1 if this server is the representative for this site
bool I Am LeadingSite: 1 if this site is the leading site
int Representative: the id of the representative for this site
int LeadingSite: the id of the leading site
A. Global Protocol Data Structure

int Global seq: next global order sequence number to assign
int Global view: the current global view this server is in, initialized to 0.
bool Installed global view: If it is 0, then Global view is the new view to be installed.
struct globally proposed item {

Proposal struct Proposal //Can be empty
Accept struct List Accept List //Can be empty
Global Ordered Update struct Global Ordered Update //can be empty

}
struct globally proposed item Global History[] // indexed by Global seq
int Global aru: the global sequence number up to which this server has globally ordered all updates.

B. Leader Proposed Intermediate Data Structure

int Local view: local view number this server is in
bool Installed local view: If it is 0, then Global view is the new one to be installed.
struct pending proposal item {

Pre-Prepare struct Pre-Prepare //can be empty
Prepare struct List Prepare List //can be empty
Prepare Cert struct Prepare Certificate //can be empty
Commit struct List Commit List //can be empty
Local Ordered Update struct Local Ordered Update //can be empty

}
struct pending proposal item Pending Proposals[] //indexed by Global seq
int Pending proposal aru: the global sequence number up to which this server has constructed proposals

C. Local Update Data Structure

int Local seq: next site order sequence number to assign
int Local view: local view number this server is in
bool Installed local view: 0 when the view change protocol is invoked; set to 1 when the protocol ends
struct local update item {

Pre-Prepare struct Pre-Prepare //can be empty
Prepare struct List Prepare List //can be empty
Prepare Cert struct Prepare Certificate //can be empty
Commit struct List Commit List //can be empty
Local Ordered Update struct Local Ordered Update //can be empty

}
struct local update item Local History[] // indexed by Local seq
int Local aru: the local sequence number up to which this server has locally ordered all updates.

Context definitions:
Global Context: [A.] (only the Global Protocol Data Structure)
Pending Context: [B.] (only Leader Proposed Intermediate Data Structure)
Local Context: [C.] (only the Local Update Data Structures)
Order Context: [A.] and [B.] combined (the union of the two data structures)

D. Client Related Data Structures

struct client record {
Update struct Update
int view num
int seq
bool is ordered

}
struct client record Client Records[] //indexed by client id

Fig. 4. Data Structures Maintained by Each Server

can be broadcast to all local servers. Further messages from
the corrupted servers are ignored.

Once the representative of the leading site receives an
update from a client (either local or forwarded by the rep-
resentative of a different site), it assigns a sequence number
to this update by creating a proposal message that will then
be sent to all other sites. The sequence number is assigned in
agreement with other correct servers inside the site, masking
the Byzantine behavior of malicious servers. The ASSIGN-

SEQUENCE intra-site protocol is used for this purpose. The
protocol consists of three rounds, the first two of which are
similar to the corresponding rounds of the BFT protocol:
the site representative proposes an assignment by sending
a pre-prepare message to all servers within the site. Any
server receiving the pre-prepare message sends to all servers
a prepare message as acknowledgment that it accepts the
representative’s proposal. At the end of the second round,
any server that has received 2f prepare messages, in addition
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to the pre-prepare, for the same view and sequence number,
invokes the THRESHOLD-SIGN intra-site protocol to generate
a threshold signature on the representative’s proposal.

Upon completion of the ASSIGN-SEQUENCE protocol, the
representative sends the proposal message for global ordering
on the wide area to the representatives of all other sites.

Each site’s representative receiving the proposal message
forwards it to the other servers inside the site, and invokes the
THRESHOLD-SIGN protocol to generate an acknowledgment
(accept) of the proposal. The representative of the site then
sends back the threshold signed accept message to the repre-
sentatives of all other sites. Each representative will forward
the accept message locally to all servers inside their site. A
server within a site globally orders the update when it receives
accept messages from a majority of sites.

C. View Changes
The above protocol describes the common-case operation of

Steward. However, several types of failure may occur during
system execution, such as the corruption of one or more site
representatives, or the partitioning of the leader site. Such
failures require delicate handling to preserve both safety and
liveness.

If the representative of a site is faulty, the correct members
of the site select a new representative by running a local
view change protocol, after which progress can resume. The
local view change algorithm preserves safety across views,
even if consecutive representatives are malicious. Similarly, the
leading site that coordinates the global ordering between the
wide area sites can be perceived as faulty if no global progress
is made. In this case, a global view change occurs. View
changes are triggered by timeouts, as described in Section V-E

Each server maintains a local view number and a global
view number. The local view number maps to the identifier of
the server’s current site representative, while the global view
number maps to the identifier of the wide area leader site.
The local and global view change protocols update the server’s
corresponding view numbers.

We first introduce the CONSTRUCT-COLLECTIVE-STATE
intra-site protocol, which is used as a building block in both
the local and global view change protocols.

The CONSTRUCT-COLLECTIVE-STATE protocol generates a
message describing the current state of a site, as agreed by
at least f + 1 correct servers within the site. The constructed
message is referred to as a union message. The representative
of a site invokes the protocol by sending a sequence number
to all servers inside the site. Upon receiving the invocation
message, all servers send to the representative a message con-
taining updates they have ordered and/or acknowledged with
a higher sequence number than the representative’s number.
The representative computes a union on the contents of 2f +1
of these messages, eliminating duplicates and using the latest
update for a given sequence number if conflicts exist. The
representative packs the contents of the union into a message
and sends the message to all servers in the site. Upon receiving
such a union message, each server updates its own state with

missing updates as needed, generates a partial signature on the
message, and sends the signed message to all servers within
the site. A server then combines 2f +1 such partial signatures
into a single message that represents the updates that the site
ordered or acknowledged above the original sequence number.

Local view change: The local view change protocol
is similar to the one described in [3]. It elects a new site
representative and guarantees that correct servers cannot be
made to violate previous safety constraints.

The protocol is invoked when a server at some site observes
that global progress has not been made within a timeout
period, and is used at both the leading site and non-leader
sites. A server that suspects the representative is faulty in-
creases its local view number and sends to all local servers
a new representative message, which contains the proposed
view number. Individual servers increase their proposed local
view in a way similar to [3]. Upon receiving a set of 2f + 1
new representative messages proposing the same view number
(and, implicitly, a new representative), the new representative
computes the sequence number of the highest update ordered,
such that all updates with lower sequence numbers were
ordered. We call this sequence number “ARU” (All Received
Up-to). The new representative then invokes the CONSTRUCT-
COLLECTIVE-STATE protocol based on its ARU. Finally, the
new representative invokes the ASSIGN-SEQUENCE protocol
to replay all pending updates that it learned from the signed
union message.

Global view change: In the global view change protocol,
wide area sites exchange messages to elect a new leading site
if the current one is suspected to be faulty (partitioned away
or with fewer than 2f + 1 correct servers). Each site runs
an intra-site protocol, PROPOSE-LEADER-SITE, to generate a
threshold-signed message containing the global view number
that the site has agreed to propose.

The PROPOSE-LEADER-SITE protocol is invoked in a dis-
tributed fashion. Upon suspecting that the leading site is faulty,
a server within a site increases its global view number and
generates a partial signature on a message that proposes the
new view. Upon receiving 2f + 1 partial signatures for the
same global view number, the local representative combines
the shares to construct the site’s proposal. To ensure liveness,
a server already suspects the leading site , and that receives
f+1 partial signatures referring to global view numbers higher
than its own, updates its global view number to the smallest
value of the f + 1 view numbers, and sends a corresponding
partial signature to the other servers in the site.

If enough servers in a site invoke the PROPOSE-LEADER-
SITE protocol, the representative of that site will issue the
resultant threshold-signed new leading site message that con-
tains the identifier of that site and the proposed global view
number. When the representativeof the new leading site re-
ceives a majority of such messages proposing the same global
view, it starts a local reconciliation protocol by invoking the
CONSTRUCT-COLLECTIVE-STATE protocol on its own ARU.
We call the highest sequence of an ordered update in the
resulting union message, below which all lower sequence
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THRESHOLD SIGN(Data s data, int server id):
A1. Sig Share ← GENERATE SIGNATURE SHARE(data, server id)
A2. SEND to all local servers: Sig Share

B1. Upon receiving a set, Sig Share Set, of 2f+1 Sig Share from distinct servers
B2. signature ← COMBINE(Sig Share Set)
B3. if VERIFY(signature)
B4. return signature
B5. else
B6. for each S in Sig Share Set
B7. if NOT VERIFY(S)
B8. REMOVE(S, Sig Share Set)
B9. ADD(S.server id, Corrupted Servers List)
B9. Corrupted Server ← CORRUPTED(S)
B10. SEND to all local servers: Corrupted Server
B11. continue to wait for more Sig Share messages

Fig. 5. THRESHOLD-SIGN Protocol

ASSIGN-SEQUENCE(Message update, Context ctx, int server id):
A1. if Representative
A2. ctx.seq++
A3. SEND to all local servers: Pre-Prepare(update, ctx.seq, ctx.view)

B1. Upon receiving Pre-Prepare(update, seq, view)
B2. if NOT CONFLICT(Pre-Prepare, ctx)
B3. SEND to all local servers: Prepare(update, seq, view)

C9. Upon receiving 2f Prepare for which NOT CONFLICT(Prepare, ctx)
C10. ordered update ← invoke THRESHOLD SIGN(update, server id)

Fig. 6. ASSIGN-SEQUENCE Protocol

ASSIGN-A-GLOBAL-ORDER(Message update):
A1. if LeadingSite and Representative
A2. Proposal ← invoke ASSIGN-SEQUENCE(update, Global History)
A3. SEND to all sites: Proposal

B1. Upon receiving Proposal(site id, seq, global view, local view, update, t sig)
B2. if NOT LeadingSite
B3. if Representative
B4. SEND to all local servers: Proposal
B5. if Proposal.global view ≥ Global view
B6. Global view ← Proposal.global view
B7. Accept ← invoke THRESHOLD SIGN(Proposal, Server id)
B8 SEND to all sites: Accept
B9. if NOT Representative
B10. if Proposal.global view ≥ Global view
B11. Global view ← Proposal.global view
B12. Accept ← invoke THRESHOLD SIGN(Proposal, Server id)

C1. Upon receiving an Accept at any site
C3. SEND to all local servers: Accept

D1. Upon receiving a majority of Accepts at any site
C2. return

Fig. 7. ASSIGN-A-GLOBAL-ORDER Protocol

numbers are ordered, “Site ARU”. The representative of the
new leading site invokes the THRESHOLD-SIGN protocol on
a message containing the Site ARU, and sends the resulting
threshold-signed message to the representatives of all other
sites. Based on the Site ARU received, the representatives
of the non-leader sites invoke the CONSTRUCT-COLLECTIVE-
STATE protocol and send the resultant union message back
to the representative of the new leading site. A set of union
messages from a majority of sites is used by servers in the
leading site to constrain the messages they will generate in
the new view so that safety is preserved.

D. Updating Data Structures
E. Timeouts

Steward relies on timeouts to detect problems with the
representatives in different sites or with the leading site. Our
protocols do not assume synchronized clocks; however, we
do assume that the rate of the clocks at different servers is
reasonably close. We believe that this assumption is valid
considering today’s technology. Below we provide details
about the timeouts in our protocol.

Local representative (T1): This timeout expires at a server of
a non-leading site to replace the representative once no (global)
progress takes place for that period of time. Once the timeout
expires at f + 1 servers, the local view change protocol takes
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Fig. 8. Steward system having five sites with seven servers in each site. The representatives are colored red. The leader site is colored dark blue.

LAN-VIEW-CHANGE:
A1. Stop Timer Local T
A2. Local View++
A3. New Rep ← NEW REPRESENTATIVE(Server id, Local View)
A4. SEND to all local servers: New Rep

B1. Upon receiving a set F of f+1 New Rep with view greater than mine from distinct servers:
B2. Local view ← MIN view(F)
B3. New Rep ← NEW REPRESENTATIVE(Server id, Local view)
B4. SEND to all local servers: New Rep

C1. Upon receiving a set, New Rep Set, of 2f+1 distinct New Rep for same view equal to mine:
C3, if not new representative
C4. Set Timer Local T = L Expiration Time
C5. if new representative
C6. New Rep Collection ← CONSTRUCT BUNDLE(New Rep Set)
C7. SEND to all local servers: New Rep Collection
C8. union ← Invoke CONSTRUCT-COLLECTIVE-STATE(Local aru, Local History)
C9. Invoke ASSIGN-SEQUENCE for each unordered update

D1. Upon timeout expiration:
D2. Local view++
D3. Stop Timer Local T
D4. L Expiration Time *= 2
D5. New Rep ← NEW REPRESENTATIVE(Server id, Local view)
D6. SEND to all local servers: New Rep

Fig. 9. LAN-VIEW-CHANGE Protocol

place. T1 should be higher than 3 times the wide area network
round-trip to allow a potential global view change protocol to
complete without changing the local representative.

Leading site representative (T2): This timeout expires at a
server at the leading site to replace the representative once no
(global) progress takes place for that period of time. T2 should
be large enough to allow the representative to communicate
with a majority of the sites. Specifically, since not all sites
may be lined up with correct representatives at the same
time, T2 should be chosen such that each site can replace

its representatives until a correct one will communicate with
the leading site; the site needs to have a chance to replace
f + 1 representatives within the T2 time period. Thus, we
need that T2 >(f+2)∗maxT1, where maxT1 is an estimate
of the largest T1 at any site. The (f +2) covers the possibility
that when the leader site elects a representative, the T1 timer
is already running at other sites.

Leading site (T3): This timeout expires at a site to replace
the leading site once no (global) progress takes place for
that period of time. Since we choose T2 to ensure a single
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SITE-ATTEMPT-WAN-VIEW-CHANGE:
A1. L VC Attempt ← GEN VIEW CHANGE ATTEMPT(Global view, Server id)
A2. SEND to all local servers: L VC Attempt

B1. Upon receiving L VC Attempt(v) from server s
B2. if v > Global view + 1
B3. Attempt Proof Request ← GEN ATTEMPT PROOF REQUEST()
B4. SEND to s: Attempt Proof Request

C1. Upon receiving an Attempt Proof Request from server s:
C2. Global Attempt Proof ← GEN GLOBAL ATTEMPT PROOF()
C4. My Global Attempt Proof ← Global Attempt Proof
C3. SEND to server s: Global Attempt Proof

D1. Upon receiving Global Attempt Proof message, p, for global view v:
D2. if Global view < v
D3. My Global Attempt Proof ← p
D4. Global view ← v
D5. L VC Attempt ← GEN VIEW CHANGE ATTEMPT(Server id, Global view)
D6. SEND to all local servers: L VC Attempt

E1. Upon receiving a set of 2f+1 distinct L VC Attempt for view greater than or equal to mine
E2. L VC Share ← GENERATE SIGNATURE SHARE(Global view, Server id)
E3. SEND to all local servers: L VC Share

F1. Upon receiving a set, L VC Share Set, of 2f+1 distinct L VC Shares for Global view
F2. My global attempt proof ← GEN GLOBAL ATTEMPT PROOF(L VC Share Set)
F3. Global VC ← COMBINE(L VC Share Set)
F4. return Global VC

Fig. 10. SITE-ATTEMPT-WAN-VIEW-CHANGE Protocol

WAN-VIEW-CHANGE:
When the new leader site receives a majority of Global VC messages, it constructs the Prepare(aru, view)
message by invoking P4. Non-leader sites respond to this message with Prepare OK.

A1. Upon Suspect leader site trigger:
A2. G Expiration Time ← Default Global Timeout
A3. Global view ← Global view + 1
A4. Global VC ← invoke SITE-ATTEMPT-WAN-VIEW-CHANGE
A5. if Representative
A6. Send to all sites: Global VC

B1. Upon receiving Majority Global VC where Global VC.view num = Global view
B2. if representative of leader site
B3. (ConstraintMessage, AruMessage) ← Invoke CONSTRUCT-COLLECTIVE-STATE(local aru, C)
B4. Send to all sites: AruMessage
B5. else
B6. Set Timeout Global T ← G Expiration Time

C1. Upon receiving Global VC where Global VC.view num > Global view
C2. if already suspecting leader site and Global T not set
C3. Global view ← Global VC.view num
C4. Global VC ← invoke SITE-ATTEMPT-WAN-VIEW-CHANGE
C5. if representative
C6. Send to all sites: Global VC

D1. Upon receiving AruMessage
D2. if AruMessage.view num >= Global view
D3. Global view ← AruMessage.view num
D4. Cancel Timeout Global T if set
D5. (CM Pending, ) ← Invoke CONSTRUCT-COLLECTIVE-STATE(AruMessage.aru, Pending Proposals)
D6. (CM Global, ) ← Invoke CONSTRUCT-COLLECTIVE-STATE(AruMessage.aru, Global History)
D7. Send to leader site: CM Global

E1. Upon receiving ConstraintMessage
E2. if server in leader site
E3. if representative of leader site
E4. Send to all local servers
E5. if Majority of ConstraintMessage
E6. Apply to data structures

F1. Upon expiration of Timeout Global T:
F2. Suspect leader site F3. T = T*2

Fig. 11. WAN-VIEW-CHANGE Protocol
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CONSTRUCT-COLLECTIVE-STATE(int seq, Context ctx):
A1. if Representative
A2. Request State ← GEN REQUEST STATE(seq, ctx, ctx.Global view) A3. SEND to all local
servers: Request State(seq, ctx, ctx.Global view)

B1. Upon receiving Request State(s, c, v)
B2. if v == ctx.Global view
B3. compute L ARU = Local ARU in *Context.history
B4. if L ARU < s
B5. Request missing ordered updates from representative
B6. if L ARU geq s
B7. Server State = Construct Server State(*Context, s)
B8. SEND to all local servers: Server State

C1. if representative
C2. Upon receiving a set, Server State Set, of 2f+1 distinct Server State messages that

pass validity test with view numbers == *Context.Global view
C4. Collected Servers State ← Construct Bundle(Server State Set)
C5. SEND to all local servers: Collected Servers State

D1. Upon receiving Collective State with view numbers == *Context.Global view
D2. union ← ConstructUnion(Collected Servers State )
D3. ConstraintMessage ← invoke THRESHOLD SIGN(union)
D4. union aru ← Extract Aru(union)
D5. AruMessage ← invoke THRESHOLD SIGN(union aru)
D6. Apply union to *Context.history
D7. return (ConstraintMessage, AruMessage)

Fig. 12. CONSTRUCT-COLLECTIVE-STATE Protocol

UPDATE-GLOBAL-HISTORY:
case message:

A1. Proposal(id, s, gl v, u):
A2. if Global History[s].Proposal is empty
A3. Global History[s] <- Proposal(id, s, gl v, u)
A4. if Global History[s].Proposal contains Proposal(id’, s, gl v’, u’)
A5. if gl v’ ≥ gl v
A6. ignore Proposal
A7. if gl v’ < gl v
A8. Global History[s] <- Proposal(id, s, gl v, u)

B1. Accept(id, s, gl v, d(u)):
B2. if Global History[s].Proposal is empty
B3. ignore Accept
B4. if Global History[s].Accept List is empty
B5. Global History[s].Accept List <== Accept(site id, s, gl v, d(u))
B6. if Global History[s].Accept List contains any Accept(site id, s, gl v’, d(u’))
B7. if gl v > gl v’
B8. discard all Accepts in Global History[s]
B9. Global History[s] <== Accept(site id, s, gl v, d(u))
B10. if gl v == gl v’ and Global History[s] does not contain Accept(site id, *)
B11. Global History[s] <== Accepts(site id, s, gl v, d(u))
B12. if gl v < gl v’
B13. ignore Accept
B14. if Global Ordered Ready(s)
B15. Construct Global Ordered Update from Proposal and list of Accepts
B16. Global History.Global Ordered Update = Global Ordered Update

C1. Global Order Update(s, gl v, u):
C2. if not Global Ordered(s)
C3. Global History[s].Global Ordered Update <- Global Ordered Update(s,gl v, u)
C4. else
C5. ignore Global Order Update

Fig. 13. Rules of applying a message to Global History assume that there is no conflict, i.e. Conflict(message, Global History) == FALSE

communication round with every site, and since the leading
site needs at least 3 rounds to prove progress, in the worse
case, the leading site must have a chance to elect 3 correct
representatives to show progress, before being replaced. Thus,
we need T3 = (f + 3)T2.

Client timer (T0): This timeout expires at the client, trig-
gering it to inquire the status of its last update by interacting
with various servers at the site. T0 can have an arbitrary value.

Timeouts management: Servers send their timers estimation
(T1, T2) on global view change messages. The site represen-
tative disseminates the f + 1st highest value (the value for
which f higher or equal values exist) to prevent the faulty
servers from injecting wrong estimates. Potentially, timers can
be exchanged as part of local view change messages as well.
The leading site representative chooses the maximum timer
of all sites with which communicates to determine T2 (which
in turn determines T3). Servers estimate the network round-
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UPDATE-LOCAL-HISTORY:
case message:

A1. Local New View(l view, union, t sig):
A2. if l view 6= Local view
A3. ignore Local New View
A4. if Installed local view == 0
A5. for every s > Local aru
A6. discard Local History[s].Pre-Prepare
A7. discard all Prepare in Local History[s].Prepare List
A8. discard all Commit in Local History[s].Commit List
A9. Apply union to Local History according to the rules below
A10. Installed local view = 1

B1. Pre-Prepare(server id, seq, l view, update):
B2. if Local History[s].Pre-Prepare is empty
B3. Local History[s].Pre-Prepare <- Pre-Prepare(server id, seq, l view, update)
B4. else
B5. ignore Pre-Prepare(server id, seq, l view, update)

C1. Prepare(server id, seq, local view, digest):
C2. if Local History[s].Pre-Prepare is empty
C3. ignore Prepare
C4. if Local History[s].Prepare List contains a Prepare with server id
C5. ignore Prepare
C6. else
C7. Local History[s].Prepare List <== Prepare(server id, seq, local view, digest)
C8. if Prepare Certificate Ready(s)
C9. Construct Prepare Certificate(Local History[s].Pre-Prepare, Local History[s].Prepare List)
C10. Local History[s].Prepare Certificate <- Prepare Certificate

D1. Commit(server id, seq, l view, digest, t share):
D2. if Local History[s].Pre-Prepare is empty
D3. ignore Commit(server id, seq, l view, digest, t share)
D4. if Local History[s].Commit List contains a Commit with server id
D5. ignore Commit(server id, seq, l view, digest, t share)
D6. else
D7. Local History[s].Commit List <== Commit(server id, seq, l view, digest, t share)
D8. if Local Ordered Ready(s)
D9. Construct Local Ordered Update(Local History[s].Pre-Prepare, Local History[s].Commit List)
D10. Local History[s].Local Ordered Update <- Local Ordered Update

E1. Prepare Certificate(s, l v, u):
E2. if Local History[s] contains a Prepare Certificate(s, l v’, u’)
E3. if l v’ < l v
E4. Local History[s] <- Prepare Certificate(s, l v, u)
E5. else
E6. ignore Prepare Certificate(s, l v, u)
E7. else
E8. Local History[s] <- Prepare Certificate(s, l v, u)

F1. Local Ordered Update(s, u):
F2. if Local Ordered(s)
F3. discard Local Ordered Update(s, u)
F4. else
F5. Local History[s].Local Ordered Update ← Local Ordered Update(s, u)

Fig. 14. Rules of applying a message to Local History assume that there is no conflict, i.e. Conflict(message, Local History) == FALSE

trip according to various interactions they have had. They can
reduce the value if communication seems to improve.

VI. PROOF

A. Strategy
In this section we show that Steward provides the properties

specified in SectionIV. We prove individual properties for each
of the building blocks, providing safety and liveness guaran-
tees. The building block algorithms are listed in Section V.

B. Proof of ASSIGN-SEQUENCE Protocol
Claim: If a correct representative invokes P1 on some data

(within a Context), and all correct servers are connected, then
P1 returns the data with a sequence number and a signature
at f+1 correct servers, or else a view change will take place.

Proof: Following Lemma 6.1, Lemma 6.2 and Lemma
6.3, the Claim is proved.

OBS 1: The correct representative will assign a
sequence number s to the update (data). If a view
change does not take place, a correct representative
will not assign the same sequence number to different
updates (Lines A2-A3) in protocol P1.
OBS 2: Following the rule RL1 and lines B2-B3
in Conflict() function, for any sequence number s,
a correct server will only maintain L-Pre-Prepare
messages sent by the current representative.
OBS 3: Following Obs 1 and Obs 2, an L-Pre-
Prepare message sent by a correct representative will
not conflict with any other Pre-Prepare messages
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boolean Global Ordered(s):
if Global History[s].Ordered Update is not empty

return TRUE
return FALSE

boolean Global Ordered Ready(s):
if Global History.Proposal[s] contains a Proposal(site id, s, gl v, u)

if Global History[s].Accept List contains (majority-1) of distinct
Accept(site id(i), s, gl v, d(u)) with site id(i) 6= site id
return TRUE

if Global History[s].Accept List contains a majority of distinct
Accept(site id(i), s, gl v’, d(u)) with gl v >= gl v’
return TRUE

return FALSE

boolean Local Ordered(s, *Context):
if Context.Local History[s].Ordered Update is not empty

return TRUE
return FALSE

boolean Local Ordered Ready(s, *Context):
if Context.Local History.Proposal[s] contains a Pre-Prepare(server id, s, loc v, u)

if Context.Local History[s].Commit List contains 2*f+1 of distinct
Commit(server id(i), s, loc v, d(u), t share’) with digest(u) == d(u)
return TRUE

return FALSE

boolean Prepare Certificate Ready(s, *Context):
if Context.Local History.Proposal[s] contains a Pre-Prepare(server id, s, loc v, u)

if Context.Local History[s].Prepare List contains 2*f of distinct
Prepare(server id(i), s, loc v, d(u)) with server id 6= server id(i) and digest(u) == d(u)
return TRUE

return FALSE

boolean Conflict(message, *Context):
case message
Pre-Prepare(server id, seq, local view, Update):

if server id 6= local view mod num servers in site
return TRUE

if local view 6= Context.Local view
return TRUE

if Context.Local History[s].Pre-Prepare(server id, seq, l view, u’) exists and u’ 6= Update
return TRUE

if Context.Local History[s].Prepare Certificate(seq, l view’, u’) exists and u’ 6= Update
return TRUE

if Context.Local History[s].Local Ordered Update(site id, seq, l view’, u’, t sig) exists
if u’ 6= Update or l view’ > local view

return TRUE

Prepare(server id, seq, local view, di):
Commit(server id, seq, local view, D, t share):

if local view 6= Context.Local view
return TRUE

if Context.Local History[s].Pre-Prepare(server id’, seq, local view, u) exists and digest(u) 6= d
return TRUE

if Context.Local History[s].Local Ordered Update(site id, seq, l view’, u, t sig) exists and
if digest(u) 6= d or l view’ > local view

return TRUE

Proposal((site id, seq, global view, local view, Update, t sig):
if global view 6= Context.Global View

return TRUE
if Context.Global History[s].Global Ordered Update(seq, g view’, u’) exists

if u’ 6= Update or g view’ > global view
return TRUE

Accept(site id, seq, global view, local view, d, t sig):
if global view 6= Context.Global View

return TRUE
if Context.Global History[s].Proposal(site id, s, g view, l view, u, t sig) exists and digest(u) 6= d

return TRUE
if Context.Global History[s].Global Ordered Update(seq, g view’, u’) exists

if digest(u’) 6= d or g view’ > global view
return TRUE

return FALSE

Fig. 15. Predicates
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mantained at any correct servers. As a consequence,
upon receiving a L-Pre-Prepare message from a
correct representative, Conflict() function at a cor-
rect server will only return TRUE if that server
has a conflicting Prepare-Certificate or a conflicting
Local Ordered messsage.
OBS 4: According to Obs3 and Lines B1-B4 in P1,
any correct server, upon receiving a L-Pre-Prepare
message from a correct representative, will send a L-
Prepare message unless it has a conflicting Prepare-
Certificate or a conflicting Local Ordered message.

Lemma 6.1: If a correct representative sends a L-Pre-
Prepare(d, s, v) and no view change takes place, then at least
f+1 correct servers will receive its message and at least 2*f
distinct and matching L Prepare(d, s, v) messages from servers
other than the representative.

Proof: Since the correct servers are connected, all the
correct servers will receive the L-Pre-Prepare message sent by
the correct representative.

If no correct server has a conflicting Prepare-Certificate or a
conflicting Local Ordered update to the L-Pre-Prepare(d, s, v)
message, then all correct servers other than the representative
will send a Prepare(d, s, v) message (Obs 4). This implies
that all correct servers will receive at least 2*f Prepare(d, s,
v) messages in addition to the L-Pre-Prepare message.

Some correct servers may have conflicting Prepare-
Certificates or Local ordered Updates. These servers will not
send a Prepare message. If fewer than f+1 correct servers
receive 2*f Prepare messages then less than 2*f+1 total servers
will invoke P2. ( Line C1-C2 in protocol P1) Following
Property 2 of P2, P1 will not be able to complete, so no
progress will be made, and this results in a view change.

Lemma 6.2: If at least f+1 correct servers receive a L-
Pre-Prepare(d, s, v) and at least 2*f distinct and matching
L Prepare(d, s, v) messages from servers other than the
representative then, if P1 returns at any correct server and
no view change takes place, the data and sequence number
returned at that server will be the data d and sequence number
s in the L-Pre-Prepare message.

Proof: If at least f+1 correct serves receives a L-
Pre-Prepare(d, s, v) and at least 2*f distinct and matching
L Prepare(d, s, v) messages from servers other than the
representative, then at least f+1 correct servers will invoke
P2 with (d, s, v) in the current view. Therefore, there cannot
be a set of 2*f+1 servers invoking P2 on any (d’, s) in the
current view.

Consequently, if P2 (and implicitly P1) completes at any
correct server, it will only complete on (d, s).

Lemma 6.3: If a correct representative invokes P1, then
either P1 completes at least f+1 correct servers or a view
change takes place.

Proof: According to Obs 1 a correct representative will
not assign two different updates to the same sequence number.
If P1 is invoked on some update by a correct representative,
then the representative assigns some sequence number for that
update. If P1 does not terminate at at least f+1 correct servers,

then these servers will see no progess being made for that
sequence number and they will invke a view change. Since
f+1 servers are enough to create a view change, then a view
change will take place.

Claim: If P1 returns (d, s) at any correct server, then P1
will never return (even in a different view) at any correct server
(d’, s) with d’ 6= d.

Proof: Following Lema 6.4 and Lema 6.7, the Claim is
proved.

Lemma 6.4: If P1 returns (d, s) in some view v at any cor-
rect server, then f+1 correct servers have a Prepare-Certificate
for (d, s) in the view P1 returned.

Proof: According to the rules RL3 and RL5, a correct
server adopts a Prepare Certificate for a sequence (d, s) either
when it does not have one already, or when it has one from an
older view. In any case, the old certificae (if any) is replaced
with the new one. Therefore, a correct server cannot have two
Prepare-Certificates for the same sequence number.

If P1 returns, then P2 (as part of P1) was invoked at 2*f+1
servers. Out of these, at least f+1 are correct. This implies
that at least f+1 correct servers should have constructed a
Prepare-Certificate out of the L-Pre-Prepare and the set of 2*f
L-Prepare messages that served as a pre-condition to invoking
P2.

Lemma 6.5: If f+1 correct servers have a Prepare-
Certificate for (d, s) in some view v, and a view change takes
place, then any correct representative of the next view installed
after v will not issue an L-Pre-Prepare message contianing a
different data d’ and s.

Proof: Any set of 2*f+1 PrepareOK messages in P4 in
the same view will contain at least one server of the set of f+1
having the Prepare-Certificate for (d, s). Therefore, any correct
representative elected will apply to its Context.Local History
a Prepare-Certificate for (d, s) in the new view v’ ≥ v,
and consequently will not send an L-Pre-Prepare message
containing d’ and s, with d’ 6= d.

Lemma 6.6: If f+1 correct servers have a Prepare-
Certificate for (d, s) in some view v, they will all have a
Prepare-Certificate for (d, s) in any view higher than v.

Proof: According to rule RL5 a Prepare-Certificate(d, s,
v) can only be replaced by another Prepare-Certificate(d’, s,
v’) constructed in a higher view v’ > v. In order for such a new
certificate to be constructed, at least 2*f servers, in addition to
the representative, should send a L-Prepare(d’, s, v’) message.
However, since f+1 correct servers already have a Prepare-
Certificate for (d, s), they will not send an L-Prepare message
as their Conflict() function will return TRUE (Lines B8-B9 in
Conflict()). Therefore, there cannot be a set of 2*f servers, in
addition to the representative, sending a L-Prepare(d’, s, v’),

Lemma 6.7: If f+1 correct servers have a Prepare-
Certificate for (d, s) in some view v, then P1 cannot return
(d’, s), with d’ 6= d on any view v’ ≥ v

Proof: According to Lema 2 and Lemma 3, only a
corrupt representative could send a L-Pre-Prepare message
contianing d’ and s with d’ 6= d. Then, there will be f+1 correct
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servers, none of them being the representative, that will have
a Prepare-Certificate for (d, s). Following Obs 3, these servers
will not send a L-Prepare message for (d’, s), and therefore
no other server will receive 2*f L-Prepare message for (d’, s).
As a consequence, there will not be enough servers invoking
P2 to complete with result (d’, s)

Claim: If a correct representative invokes P1 with some
data d and a sequence number s, in a view v, and the
preconditions 1-3 are valid, then P1 returns the data d with
the sequence number s and a valid threshold signature at 2f+1
correct servers.

Precondition 1: There are 2f+1 correct connected
servers that have preinstalled the same view v and
that do not suspect the representative.
Precondition 2: There is enough time for the nec-
essary communication consisting in three network
crossings in protocol P1 to complete before a correct
server suspects the representative.
Precondition 3: The data structures in the correct
servers have been synchronized so that there are no
conflicts. No correct server has a Prepare-certificate,
for sequence number s, that the representative does
not have, or that was constructed in a more recent
view than the one the representative has.

Proof: All correct connected servers will receive Pre-
Prepare(d,s,v) from the representative. Following from lines
B2-B3 of ASSIGN-SEQUENCE, all correct connected servers
will send a matching Prepare(d,s,v) because no conflict occurs.
Therefore, all correct servers will receive 2f Prepare(d,s,v)
messages and 1 Pre-Prepare(d,s,v) message which forms a
Prepare Certificate(d,s,v). At this point, all correct servers
will invoke P2. According to Property 1 of P2, the protocol
eventualy returns to every correct nodes with the combined
signature of the data.

C. Proof of SITE-ATTEMPT-WAN-VIEW-CHANGE
We say that a server globally attempts a global view v when

the server sets its My global view variable to v. Protocol is
presented in Figure 10

Claim: If 2f+1 correct servers invoke P3, and all correct
servers are connected, then P3 eventually returns to every
correct server a single view number and a combined signature
of that view number.

Claim: P3 will not return to any server a correct combined
signature unless at least f+1 correct servers that invoked P3
returned the same view number.

PROPERTY 6.1: If 2f+1 correct servers within a site are
connected, they will either all make progress, or they will
eventually all Globally attempt the same global view v, and
they will all generate a Global VC message for v.

PROPERTY 6.2: If 2f+1 correct servers within a site are
connected, and these servers have all globally attempted the
same view, v, then if global progress is not made, these correct,
connected servers will all globally attempt view v+1, and will
generate a Global VC message for view v+1.

PROPERTY 6.3: If 2f+1 correct, connected servers within
a site invoke P3 in the same globally attempted view v, then
all correct servers will generate a threshold-signed Global VC
message for view v.

Proof: All correct servers send L VC Attempt messages
for view v. Since all correct servers are connected, they all
receive at least 2f+1 L VC Attempt messages for view v.
Then, in lines E2 and E3, they all generate threshold signature
shares for view v, and send these shares to all local servers.
All local servers receive the shares, combine them, and return
the same Global VC message at line F4.

Since at least 2f+1 correct servers invoked P3 from global
view v, no other server can have global attempt proof for a
view higher than v. Thus, no correct server will move beyond
v in this invocation.

PROPERTY 6.4: Property 2: If 2f+1 correct, connected
servers within a site, having the same value for Global view,
invoke P3, then the site will eventually generate a Global VC
message.

Proof: Since 2f+1 correct servers invoke P3 from the
same global view, each such correct server will receive 2f+1
distinct, L VC Attempt signature shares for its own view. The
servers then combine in line D3, and return the Global VC
message.

D. Proof of CONSTRUCT-COLLECTIVE-STATE
Claim: If a correct representative invokes P4 with some

sequence number and all correct servers are connected, then
P4 will return a set of data updates, each with a corresponding
sequence number higher than the one invoked, and a proof of
the set, or a view change takes place.

Lemma 6.8: If a correct representative invokes P4 with
sequence number seq, and all correct servers are connected,
then the representative will receive at least 2f+1 Server Set
messages from the same view in response to its initial message,
or a view change takes place.

Proof: By assumption, there are at least 2f+1 connected,
correct servers when P4 is invoked. These servers will all
receive the representative’s initial invocation message at line
B1.

If a correct server is in a different view than the represen-
tative, it will not respond to the invocation message. If there
exists at least one such server, then since all faulty servers
may refuse to respond, either the representative receives 2f+1
Server Set responses from some combination of correct and
faulty servers, or a view change occurs because no progress
is made.

Assume, then, that all correct servers are in the same view
as the representative. Then upon receiving the representative’s
invocation message, a correct server will either enter case (1)
or case (2), at lines B4 and B7, respectively.

If a server enters case (2), it sends a Server History message
to the representative immediately.

If the server enters case (1), then the server has a local aru,
l aru, lower than seq, and requests those updates between l aru
and seq (line B5). Since there are no communication failures,
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the server is able to eventually recover these updates from the
representative. When this recovery completes, the server enters
case (2), constructs a Server Set message, and sends it to the
representative.

Since we assume in this case that there are at least 2f+1
correct servers in the same view as the representative, either at
least 2f+1 Server History messages arrive at the representative,
or a view change occurs.

A server constructs a Server Set message by calling Con-
struct ServerSet(seq). The Server Set message contains a (pos-
sibly empty) set of items. Any item that does appear is of one
of the following two types:

1) Proposal
2) (Proposal, Accept List)
We say that an item of type (1) is valid if:
• The Proposal carries a valid threshold-signature from

site id.
• prop global seq > seq
We say that an item of type (2) is valid if:
• The Proposal carries a valid threshold-signature from

site id.
• prop global seq > seq
• For each Accept A in Accept List:

1) A carries a valid threshold-signature from site
A.site id

2) A.accept global seq == prop global seq
3) A.digest = digest(Proposal.Update)
4) |Accept List| == (Majority - 1)
5) Proposal.site id != A.site id for any A in Ac-

cept List
6) A1.site id != A2.site id for any A1, A2 in Ac-

cept List
7) A1.view num == A2.view num for any A1, A2, in

Accept List
8) Proposal.view num == A.view num for any A in list

We say that a Server Set message is valid if any item that
appears is valid. Lemma 6.9 states that any Server Set message
constructed by a correct server is valid.

Lemma 6.9: Let M be the Server Set message constructed
by correct server s in response to a correct representative’s
invocation message with sequence number seq. Then M is a
valid Server Set message.

Proof: A correct server constructs a Server Set message
by calling Construct ServerSet(seq). For any sequence number
s > seq, if Global History[s] is empty, then the server will
not add any item to the Server Set message for this sequence
number, which trivially meets the validity properties defined
above.

For any sequence number s > seq where Global History[s]
is not empty, if the server has globally ordered s, i.e. if
Global Ordered Ready(s) == true, then it includes the Pro-
posal and its corresponding Accept List. This results in an
item of type (2). By the rules for global ordering, this item is
valid.

If the server has not globally ordered s, then
Global History[s] may consist of (a) Only a Proposal
or (b) A Proposal and 1 ≤ j < (Majority-1) Accepts. The
server adds the Proposal to the Server Set message in both
cases as an item of type (1). By the rules for maintaining the
Global History, such an item is valid.

Since these are the only two type of items that may appear
in the Server Set message, then the Server Set message M of
server s is valid.

Lemma 6.10: If a correct representative invokes P4 with
sequence number seq, and all correct servers are connected,
then the representative will receive at least 2f+1 valid
Server Set messages from its own view in response to its initial
message, or a view change occurs.

Proof: From Lemma 6.8, the representative receives
at least 2f+1 Server Set messages in response to its initial
invocation message, or a view change occurs. From Lemma
6.9, any Server Set message sent by a correct server is valid.

If any correct server does not respond to the representative’s
initial invocation message (because it is in a different view),
then either the representative receives 2f+1 valid Server Set
messages (from some combination of correct and faulty
servers) or a view change occurs.

If all correct servers send Server Set messages, then either
the representative receives a set of 2f+1 valid Server Set
messages (either from all correct servers or some combination
of correct and faulty servers who send valid messages), or a
view change occurs before these messages arrive.

Lemma 6.11: If a correct representative invokes P4 with
sequence number seq, and all correct servers are connected,
then at least f+1 correct servers will receive and process a
CollectedServerHistorySet message from the representative’s
view, or a view change occurs.

Proof: By Lemma 6.10, the representative receives at
least 2f+1 valid Server Set messages from its own view, or a
view change occurs. Since there are at most f faulty server, at
least f+1 of these valid messages are from correct servers in
the same view as the representative.

The representative sends a CollectedServerHistorySet mes-
sage to all local servers. Since all correct servers are con-
nected, the representative’s message will arrive at all correct
servers, including the f+1 whose Server Set messages the
representative received.

Lemma 6.12: If a correct representative invokes P4 with
sequence number seq, and all correct servers are connected,
then at least f+1 correct servers return identical (Con-
straintMessage, AruMessage) pairs as the result of P4, or a
view change occurs.

Proof: By Lemma 6.11 , at least f+1 correct servers
receive (and process) a CollectedServerHistorySet from the
representative, or a view change occurs. Since the represen-
tative is correct, all correct servers receive identical Col-
lectedServerHistorySet messages. Since the representative’s
signature cannot be forged, a correct server will only process
CollectedServerHistorySet message from the representative.
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Each of these f+1 correct servers produces the union in
a deterministic way, based solely on the contents of the
CollectedServerHistorySet message. Thus, each produces the
same union. At this point, at least f+1 correct servers construct
the ConstraintMessage by invoking Threshold Signature on
the identical union.

If even one correct server is not in the same view as the
representative, then either Threshold Signature terminates with
some combination of at least f+1 correct servers and some
faulty servers (in which case the f+1 correct servers return
identical ConstraintMessages), or it fails to terminate, and a
view change occurs.

If all correct servers are in the same view as the represen-
tative, then they all invoke Threshold Signature on the same
union, and produce identical ConstraintMessages, or a view
change occurs.

Similarly, each of these servers produces union aru in a
deterministic fashion, and invokes Threshold Signature on
this result. By the same property, each such AruMessage is
identical.

In either case, at least f+1 correct servers return identical
(ConstraintMessage, AruMessage) pairs, or a view change
occurs. The threshold signature attached to each message
serves as proof that the site assented to the message.

Lemma 6.13: If a correct representative invokes P4 with
sequence number seq, and all correct servers are connected,
then any item contained in the ConstraintMessage returned
by at least f+1 correct servers will be for a sequence number
greater than seq, or a view change occurs.

Proof: By Lemma 6.12 , at least f+1 correct servers
return the same ConstraintMessage, or a view change occurs.
The ConstraintMessage is the result of invoking Thresh-
old Signature on the computed Union.

The Union function operates on the ServerHistorySet mes-
sages contained in the CollectedServerHistorySet message. By
the way in which the representative constructs the Collected-
ServerHistorySet message, each such ServerHistorySet mes-
sage is valid. By the properties of validity, any item contained
in a valid ServerHistorySet message is for a sequence number
greater than seq. Since the result of the Union function is
a subset of those items appearing in the ServerHistorySet
messages, any item remaining must be for a sequence number
greater than seq.

Claim: Claim 2: Any (d, s) in the ConstraintMessage
returned by P4 passes context verification:

1) For the Global History, (d, s) was Proposed by some
leader site.

2) For Pending proposals, (d, s) has a Prepare Certificate
Proof: If a correct server returns from P4, then it

successfully completes the Union() function. This means that
each of the 2f+1 ServerHistorySet messages contained in the
CollectedServerHistorySet message is authenticated.

A ServerHistorySet message will only be authenticated if:
(1) The message carries a valid signature from a server or (2)
Each item (if any) contained in the message carries a valid

threshold signature, and is for a sequence number greater than
seq.

An item of type (1) is a Proposal, and since it was
authenticated, must have been proposed by some leader site,
since it carries a valid threshold signature. Such a message was
accepted by some server in the site, since the server stored it
in its history.

An item of type (2) consists of a Proposal and (Majority-1)
corresponding Accepts. Since the ServerHistorySet message is
valid, the item passes the validity tests defined above. Then the
authentication confirms that the Proposal and its Accepts are
valid. If the authentication succeeds, then this item constitutes
proof that the message was globally ordered by the server who
included it in its ServerHistorySet message.

The Union() returns a subset of the items contained in these
valid, authenticated ServerHistorySet messages, and thus the
ConstraintMessage produced as the result of P4 will consist
only of items that were either globally ordered or accepted by
some server in the site.

Claim: Claim 3: Let s be the sequence number with which
P4 was invoked. Then for any (d, s’), where s’ > s,

1) If (d, s) was globally ordered by at least f+1 correct
servers in the site, then it will appear in the Con-
straintMessage as globally ordered.

2) If (d, s) was in Global History[s] as a Proposal at at
least f+1 correct servers, then it will appear in the
ConstraintMessage as a Proposal, unless it could not
have been globally ordered.

Lemma 6.14: Let s be the sequence number with which
P4 was invoked. Then any correct server that responds to the
initial invocation message and that has either globally ordered
(d, s’) with s’ > s, or accepted (d, s’) with s’ > s, will include
(d, s’) in its ServerHistorySet message.

Proof: If a correct server has accepted (d, s’) with s’ > s
but has not globally ordered it, then by the protocol, the server
includes a type (1) item for (d, s’) in its ServerHistorySet
message. If the server has globally ordered (d, s’) with s’ >

s, then by the protocol, the server includes a type (2) item
in its ServerHistorySet message corresponding to (d, s’). In
both cases, the item appears in the ServerHistorySet message,
completing the proof.

Lemma 6.15: Let s be the sequence number with which P4
was invoked. Then any (d, s’), where s’ > s, that was either
globally ordered by at least f+1 correct servers in the site, or
accepted by at least f+1 correct servers in the site, will appear
in at least one of the ServerHistorySet messages contained in
authenticated, valid CollectedServerHistory message.

Proof: The CollectedServerHistorySet message consists
of 2f+1 ServerHistorySet messages from distinct servers. Since
there are at most f faulty servers within the site, at least f+1
of these messages are from correct servers.

By assumption, (d, s’) was either globally ordered by at
least f+1 correct servers, or accepted by at least f+1 correct
servers. Then in any set of 2f+1 ServerHistorySet messages,
at least one ServerHistorySet message is from one of these
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f+1 correct servers. By Lemma 1, such a ServerHistorySet
message includes (d, s’).

Lemma 6.16: Let (d, s, v) be an item that appears in one
of the 2f+1 valid ServerHistorySet messages used in Union().
Then (d, s, v) either appears in the set returned by Union, or
the set returned by Union contains (d’, s, v’) such that v’ >

v.
Proof: (d, s, v) appears as a type (2) item in one of

the ServerHistorySet messages if it was globally ordered by
that server. By the Union function, type (2) items are only
removed from the resulting union if an item corresponding to
this globally ordered update already exists in the Union. Thus,
such an item will appear in the o union set.

(d, s, v) appears as a type (1) item in one of the ServerHis-
torySet messages if it was accepted by that server. The a union
set is constructed by combining all accepted items from the
2f+1 messages, and removing identical items. If there exists a
(d’, s, v’) such that v’ > v, then (d, s, v) is replaced by (d’,
s, v’). If d’ == d, then (d’, s, v) represents the same Proposal
from a later view. If d’ 6= d, then (d’, s, v) represents a different
Proposal from a later view, which can only occur if the (d, s,
v) was not globally ordered.

E. Proof of the LAN-VIEW-CHANGE Protocol
In this section we prove the algorithm responsible of chang-

ing the view within a site and electing a new representative.
We have specified two functionally equivalent algorithms. The
first protocol was specified in Figure 9. In this section, we
prove properties of the second protocol which is specified in
Figure 16.

We use the following definitions:
DEFINITION 6.1: Preinstall; We say that a server preinstalls

view v if it collects 2f+1 New Rep messages for a view equal
to or greater than v. It can collect these messages via two
different mechanisms: 1. It can receive the messages directly
from the servers that generated them. 2. It can receive a
Preinstall proof message that contains a set of 2f+1 New Rep
messages where the minimum New Rep message is for view
v.

DEFINITION 6.2: Progress; From an individual server’s
view, progress means that any update which a server has sent
to the representative for ordering has been globally ordered
within some expected amount of time. If the update is not
eventually globally ordered, all correct connected servers will
suspect the representative.

Each server maintains four variables related to the LAN-
VIEW-CHANGE protocol. They are:

• I Am Representative: 1 if this server is the representative
for this site

• Representative: the id of the representative for this site

• Local view: the local view number of this server

• Installed local view: 0 when the view change protocol is
invoked; set to 1 when the protocol ends

When a correct server receives an update, it puts this update
in its queue. It removes updates from the queue when they
have been ordered. The protocol is triggered by the following
events:

• Any new update is not globally ordered within a timeout
period, Delta. This update may or may not be an update
that is in the servers Update Queue.

• The oldest (first) update in the servers Update Queue is
not ordered within a timeout period greater than Delta.

We assume that the following precondition is true:
PRECONDITION 6.1: The initial Local view, in which all

correct servers start, is preinstalled, a priori. Therefore all
servers have an a priori preinstall proof for this view.

We can now prove the following lemma.
Lemma 6.17: Any correct server with its Local view equal

to v, has either preinstalled view v or preinstalled view v-1.
Proof:

A correct server can increase its view only in the following
cases:

• The server responds to a trigger event (this includes
timeouts) and increments its Local view by one.

• the server receives a proof that a view preinstalled (the
proof consists of a set of 2f+1 L New Rep messages). If
it receives this proof, it preinstalls view V where V is the
lowest L New Rep.

Following from Precondition 6.1, servers that have not yet
incremented their view have preinstalled the initial view (and
have a preinstall proof), a priori. From the algorithm, a correct
server cannot respond to a trigger event and increment its view
unless it has preinstalled the view from which it is moving.
Therefore, when a server increases its Local view, it must
either be responding to a preinstall proof, in which case it
preinstalls the view to which it is moving, v, or it must be
responding to a trigger event, in which case, if it moves to
view v, it has preinstalled view v-1.

We can now prove the properties of the LAN-VIEW-
CHANGE protocol.

PROPERTY 6.5: If 2f+1 correct servers are connected, they
will either make progress or they will eventually all preinstall
the same view.

Proof: By Lemma 6.17, if a correct server responds to
a trigger event and increments its Local view to v, it must
have a preinstall proof for view V-1. If progress is not made,
there will be trigger events at all correct servers. Suppose the
maximum preinstalled view is M. Let Max Server denote a
server with Local view == M. When a trigger event occurs at
Max Server, it will send a New Rep message for view M+1
to all correct servers. Consider any correct server, S. If the
maximum view that S has preinstalled is less than M, then
S will request a preinstall proof from Max Server. When S
receives the preinstall proof for M, S preinstalls view M and
sets its Local view to M. At this point, if progress is not made,
there will be a trigger even at S and S will increment its view
to M+1. Therefore, if progress is not made, all correct servers
will increment their view to M+1. At this point, there are at
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least 2f+1 servers that will send a New Rep message for view
M+1 and view M+1 will be preinstalled.

PROPERTY 6.6: If 2f+1 correct servers are connected and
these servers have all preinstalled the same view, v, then if
progress is not made, these correct connected servers will all
preinstall view v+1.

Proof: If at least 2f+1 correct connected servers have
preinstalled view v, then if progress is not made, all correct
connected servers will either undergo a trigger event or prein-
stall v+1 because they receive a preinstall proof. When a server
responds to a trigger event it will increase its view by 1 to
view v+1. As soon as the first server preinstalls view v+1, it
can prove to the other correct connected servers that view v+1
was preinstalled, and they will all preinstall v+1. If all correct
servers have the same Local View, V, the f faulty servers
cannot prove that any view greater than v has preinstalled.
Therefore, a correct server that times out must preinstall view
v+1 before preinstalling a higher view.

PROPERTY 6.7: If 2f+1 correct servers are connected, then
if f+1 correct servers learn about an update and do not receive
proof that the site initiated that update after some amount of
time, there will be a view change.

Proof: When a correct server receives an update, it sends
the update to all local servers and each of these servers sends it
to the representative. Therefore, when any correct server learns
of an update, all correct connected servers will learn of this
update. When a server learns of an update, it sets a timeout. If
this timeout expires before the server receives proof that the
site initiated the update, it suspects the representative.

If f+1 servers suspect the representative, then they will all
timeout and increment their Local View. These servers will
not participate in ASSIGN-SEQUENCE protocol until they
preinstall a higher view. Since 2f+1 servers must participate
in ASSIGN-SEQUENCE to make progress, the remaining f
correct servers will also timeout and attempt to preinstall
another view.

F. Local L1 (Local Progress)
If there exists a set, within a site, consisting of at least 2f+1

correct servers, and a time after which the correct members
of this set are connected, then if a server in the set initiates
an update, the site will eventually initiate the update.

PRECONDITION 6.2: In the case where Local L1 refers to
the pending context (which runs only on the leader site and
produces Paxos Proposals), the global constraint messages re-
quired for ASSIGN-SEQUENCE to make progress generating
global Proposals have already been received.

Definitions:
DEFINITION 6.3: site update progress; We define

site update progress to mean that when a correct server
initiates an update, the site will initiate this update.

DEFINITION 6.4: site update progress proof;
• If all connected servers have proof that

site update progress is made site update progress proof
is True

• If no connected servers have proof that
site update progress is made site update progress proof
is False

• Otherwise site update progress is undefined.
DEFINITION 6.5: initiate;
• We say a server initiates an update when the server

receives an update that should be locally ordered and
attempts to push the update into the system.

• We say a site initiates an update when the update is sent
out of the site to the representative of the leader site.

DEFINITION 6.6: blocking conflict; A blocking conflict is
a situation where a conflict occurs that cannot necessarily
be resolved without a view change. Thus, a blocking conflict
can potentially require a view change. We say that a conflict
occurs when the conflict function is called on a Pre-Prepare
and returns true.

Proof of Local L1:
Lemma 6.18: If 2f+1 correct servers are connected and

site update progress proof is False, 2f+1 correct servers will
eventually all preinstall the same view.

Proof: From Definition 6.3 , no correct server receives
proof the that site update progress occurred. Lemma 6.18
follows from Proof of Local Representative Election Protocol
Property 1 and Property 3.

Lemma 6.19: If site update progress proof is True, then
Local L1 is true.

Proof: Site update progress proof can be True only if
site update progress is made. If there exists proof that site
update progress was made, then the site must eventually
initiate an update if a correct server initiated this update.
Site update progress implies Local L1, by Definition 6.4.

Lemma 6.20: If there are 2f+1 correct connected servers
and site update progress proof is False, every correct server
will eventually often become the representative. Each correct
server will become representative once every N view changes
where N is the number of servers in the site.

Proof: Following from Lemma 6.19, if
site update progress proof is False, all correct servers will
preinstall the same view. By Local Leader Election Property
2 and Property 3, if at least 2f+1 correct connected servers
preinstall the same view, V, and site update progress proof is
False, then these servers will all preinstall view V+1. When
all servers preinstall V+1, then if site update progress is not
made, this process repeats and they will all preinstall V+2.
Therefore, views are preinstalled consecutively. Because we
use V representative every N view changes where there are
N local servers. Thus, all correct servers will become the
representative for some amount of time, Delta, every N view
changes.

Lemma 6.21: If there are 2f+1 correct connected servers,
P4 will eventually complete.

Proof: By New Property of P4 (see below), P4 will
return if a correct representative invokes P4 and the precondi-
tions for this property are met. Precondition 1 is met because
we have 2f+1 correct connected servers and Lemma 3 says that

20
29



Initial State:
Local view = 0
my preinstall proof = a priori proof that view 0 was preinstalled
Set Timer Local T = L Expiration Time

LAN-VIEW-CHANGE()
A1. if ( my preinstall proof.preinstalled view 6= Local view )
A2. return
A3. Local view++
A4. Stop Timer Local T
A5. L Expiration Time *= 2
A6. l new rep <- Construct New Rep(My server id, Local view)
A7. Send to all local servers: L New Rep

B1. Upon Local T expiration:
B2. LAN-VIEW-CHANGE()

C1. Upon a trigger which causes me to suspect my representative:
C2. LAN-VIEW-CHANGE()

D1. Upon receiving an L New Rep message from server S:
D2. if L New Rep.view > Local view + 1,
D3. request <- Construct Preinstall Proof Request Message()
D4. Send to server S: request

E1. Upon receiving a request for a preinstall proof from server S:
E2. Send my preinstall proof to S

F1. Upon receiving a preinstall proof my message, p, for view V:
F2. if Local view < my preinstall proof.preinstalled view
F3. my preinstall proof <- p
F4. Local view <- p.preinstalled view
F5. Set Time Local T = L Expiration Time

G1. Upon receiving a set, L New Rep Messages, of 2f+1 distinct L New Rep
G2. for a view greater than or equal to mine:
G3. my preinstall proof <- Construct Preinstall Proof(L New Rep Messages)
G4. if not new representative
G5. Set Timer Local T = L Expiration Time
G6. if new representative
G7. Send to all local servers: my preinstall proof
G8. union <- Invoke CONSTRUCT-COLLECTIVE-STATE(L Aru, Local Update History)
G9. //Process union, decide what to replay
G10. Invoke ASSIGN-SEQUENCE for each unordered update

Fig. 16. Version 2 of LAN-VIEW-CHANGE Protocol.

if site update progress proof is False, the 2f+1 correct con-
nected servers will preinstall the same view. If view changes
occur during P4, by Lemma 4, eventually often a correct server
will invoke P4 again. If site update progress proof is False,
then the timeout expiration increases so that eventually it will
become large enough to meet Precondition 2.

Lemma 6.22: When a correct server invokes ASSIGN-
SEQUENCE on sequence number s and a blocking conflict
occurs, there is at least one correct server that can invoke
ASSIGN-SEQUENCE with sequence number s such that
another blocking conflict cannot occur unless there exists a
distinct Prepare Certificate for sequence number s that has not
previously caused a blocking conflict.

Proof: Let S1 and S2 denote two correct servers which
have preinstalled the same view, have completed P4, and
do not suspect their representative. Suppose that S1 is the
representative. S1 sends Pre-Prepare(d,s,v) and S2 receives this
Pre-Prepare. Following from lines B1 to B12 of the conflict
function, when S2 calls the conflict(Pre-Prepare(d,s,v)) it can
return True in two cases:

• Conflict-1: S2 has Prepare Certificate(d’,s,v’) where d 6=

d’
• Conflict-2: S2 has Local Ordered Update(d’,s,v’) where

d’ 6= d OR v’ > v
If S2 calls the conflict function and it returns True, S2

will not send a Prepare message immediately. Instead, S2
will table the Pre-Prepare message and request from S1 the
data upon which the Pre-Prepare message was based. This
request message includes the source of the conflict which is
either a Prepare Certificate or a Local Ordered Update. A Pre-
Prepare(d,s,v) is based on either no prepare certificate or on a
Prepare Certificate(d,s,v’).

In case Conflict-1 the following six scenarios exist. The
scenarios that can result in a view change (block) are marked
with BLOCKING. As stated above, S1 sent Pre-Prepare(d,s,v)
and S2 had a Prepare-Certificate(d’,s,v’).

1) If S1 has a Prepare Certificate(d,s,v”) and v’ < v”,
then S2 (through gossip) will will apply this Pre-
pare Certificate to its data structures because it has a
higher view than the Prepare Certificate that S2 already
had. Then S2 can send Prepare(d,s,v). In this scenario,
a conflict resolution takes place.
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2) BLOCKING If S1 has a Prepare Certificate(d,s,v”) and
v’ > v”, then S1 will adopt the Prepare Certificate from
S2. In this case, there is a possibility of a block because
S2 will not send Prepare(d,s,v).

3) BLOCKING If S1 has no Prepare Certificate for
sequence number s, then S1 will adopt the Pre-
pare Certificate from S2. In this case, there is a possibil-
ity of a block because S2 will not send Prepare(d,s,v).
Note that during the replay phase of a view change the
data in this scenario is often a NOP.

4) If S1 has a Local Ordered Update(d”,s,v”), then S1
will send this to all local servers. Note that in this
case, sequence number s has already been bound to
some update. Therefore, ASSIGN-SEQUENCE already
completed.

5) BLOCKING If S1 has a Prepare Certificate(d”,s,v”)
where d 6= d” and v’ > v”, then S1 will will adopt
the Prepare Certificate sent by S2. There can be a block
in this case because S2 will not send Prepare(d,s,v).

6) BLOCKING If S1 has a Prepare Certificate(d”,s,v”)
where d ne d” and v’ < v”, then S2 will adopt this
Prepare Certificate. There can be a block in this case
because S2 will not send Prepare(d,s,v).

Note that the scenarios 4, 5, and 6 can occur only when
S1 applies a change to its data structure after it sent Pre-
Prepare(d,s,v).

In case Conflict-2 the following scenario exists: S2 will
send the Ordered Update to S1. If S1 has not already received
an Ordered Update with a greater view, it will apply the Or-
dered Update that S2 sent. At this point, since sequence num-
ber s has already been bound to data, we consider ASSIGN-
SEQUENCE to have completed for sequence number s.

If there is a blocking conflict ASSIGN-SEQUENCE may
not complete and then there will be a view change. The
only conflicts that may cause a block are scenarios 2,3,5,and
6. All other scenarios have conflicts which can be resolved
without a view change by updating the servers with conflicts.
Following from Lemma 6.20, if a block does occur and
site update progress is not made, eventually the server that
has the conflicting data, S2, will become the representative.

Now consider what happens when S2 becomes the rep-
resentative during each of the possible blocking scenarios.
It is possible that S2 has received and applied a new Pre-
pare Certificate or Local Ordered Update to its datastructures
since the conflict occurred. If S2 has a Local Ordered Update
for sequence number s, then ASSIGN-SEQUENCE has com-
pleted. If S2 has a new Prepare Certificate, then this Pre-
pare Certificate must have a higher view than the Pre-
pare Certificate that caused the blocking scenario or it would
not be applied to the data structures (follows from Rule RL5).

In each of the four scenarios that cause blocks and therefore
view changes, S2 will eventually become the representative if
site update progress is not made. The following describe what
happens when S2 is the representative:

1) Scenario 2: For sequence number s, S2 either has
a Prepare Certificate with view v’ or higher or Lo-

cal Ordered Update. Note that v’ was greater than v.
If S2 has a Prepare Certificate, the view number of
this Prepare Certificate must be greater than the view
number of the Prepare Certificate that resulted in the
blocking condition when S1 sent Pre-Prepare(d,s,v).

2) Scenario 3: S2 is the representative. S2 has a Pre-
pare Certificate or an Ordered Update for sequence
number s. Originally, S1 had no Prepare Certificate for
sequence number s.

3) Scenario 5: This is the same as for scenario 1.2.
4) Scenario 6: For sequence number s, S2 either has a

Prepare Certificate with a view higher than v’ or Lo-
cal Ordered Update. Note that v’ was greater that v.
If S2 has a Prepare Certificate, the view number of
this Prepare Certificate must be greater than the view
number of the Prepare Certificate that resulted in the
blocking condition when S1 sent Pre-Prepare(d,s,v).

In case 1,3,and 4 above, the sequence number of S2’s
Prepare Certificate is greater than the sequence number of
the Prepare Certificate that S1 had when S1 originally sent
Pre-Prepare(d,s,v). In case 2, S1 had no Prepare Certificate
and S2 had a Prepare Certificate. During subsequent blocking
conditions, all scenarios above can happen again except for
scenario 1.3. In each of the three remaining blocking scenarios,
a server that has a conflict must have a Prepare Certificate
with a view greater than the Prepare Certificate that the
representative has. Therefore, each time a block occurs there is
at least one correct representative which will invoke ASSIGN-
SEQUENCE on sequence number s with data such that there
cannot be another blocking scenario unless there is a distinct
Prepare Certificate that has never caused a blocking scenario.

Lemma 6.23: If a correct server invokes ASSIGN-
SEQUENCE on sequence number s, then ASSIGN-
SEQUENCE will eventually return.

Proof: There are a finite number of Prepare Certificates
for the same sequence number and different views in the
system (this includes those Prepare Certificates known only
to faulty servers). Following from 6.22, eventually a correct
server will be representative and will base its invocation of
ASSIGN-SEQUENCE on the Prepare Certificate for sequence
number s with the highest view. Through the described gossip-
ing mechanism, any conflicts can be resolved if the representa-
tive sends its Prepare Certificate to all servers. Following from
P1 Property 3, this invocation will complete because there will
eventually be no conflicts.

A finite number of Prepare Certificates for the same se-
quence number, different data, and different views can exist: A
bad representative cannot generate a prepare certificate without
the cooperation of at least f+1 good servers. Suppose in view
1 PC( 1, d1) is generated. In each subsequent view where
there is a bad representive, another PC can be generated with
the same sequence number and different data. This can occur f
times before there will be a good server. When there is a good
server, the bad servers can give one of the correct no-reps a
PC. This can cause a block. However, one correct server now
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has a PC. It will give this PC to all servers when it becomes
the representative. A server will not contribute a Prepare for
another PC with different data unless it receives a PC having
a higher view than the view that it has.

Lemma 6.24: If there are 2f+1 correct connected servers,
eventually a representative will complete the replay phase of
the local view change algorithm.

Proof: By Lemma 6.21, P4 will eventually complete. By
ASSIGN-SEQUENCE Property 3, for any sequence number
that needs to be replayed, a correct representative will even-
tually complete ASSIGN-SEQUENCE. There is a finite range
of sequence numbers that must be replayed. Therefore, the
replay phase will complete.

The following uses a window to argue that there is a bound
on the number of sequence numbers that need to be replayed.

If a correct server sends a Pre-Prepare in response to a
Prepare for sequence number s, it must have proof that all
sequence numbers up to s-W have been locally ordered. 2f+1
servers must send Prepare or Pre-Prepare messages to create
a Prepare Certificate or a Local Ordered Update. Therefore,
if there exists a Prepare Certificate or Local Ordered Update
for sequence number s, f+1 correct servers must have proof
that all updates up to s-W were locally ordered. In this case,
the replay window will begin no earlier than s-W and can end
no later than s. Therefore, the number of sequence numbers
that must be replayed is less than W. Because there are a
finite number of sequence numbers that need to be replayed,
eventually the replay phase will finish.

The window mechanism used in the above proof prevents
malicious servers from collecting some large number of Pre-
pare Certificates which good servers know nothing about (As
described below).

We can now prove Local L1.
Proof: By Lemma 6.19, Local L1 holds if

site update progress proof is True. If site update progress is
not made, by Lemma 6.24, a correct representative will finish
the replay process. When the replay process is finished, a
correct representative can order new updates. By Lemma
6.20, if site update progress proof is false, eventually often
there will be a correct representative. If there is a correct
representative that orders an update, this representative can
send ordered updates out of the site. Therefore, when a
correct server initiates an update, the site will eventually
initiate the update.

G. Global L1 (Global Progress) Proof
If there exists a set consisting of a majority of sites, each

meeting Local L1, and a time after which all sites in the set
are connected, then if a site in the set initiates an update, some
site in the set eventually executes the update.

Proof of Global L1: By Claim G.1, either global progress
is made or all correct servers in all sites in the majority set
eventually reconcile their Global Histories to a common prefix.
If no global progress is made by the time this reconciliation
completes, then by Claim G.2, all sites in the majority set

eventually preinstall the same global view. By Claim G.3, if
all correct servers in all sites in the majority set are reconciled
and have preinstalled the same global view, then either global
progress is made, or all correct servers in the leader site will
be properly constrained by completing the global view change
protocol. By Claim G.4, the preconditions for completing
Assign-A-Sequence will eventually be met at the leader site
such that a valid Proposal can be generated. By Claim G.5,
such a Proposal will be able to elicit enough Accept messages
for the update to be globally ordered. Definition G.1: The Site-
Max-ARU of a site S is the sequence number below which all
updates have been globally ordered by one or more correct
servers in S.

Claim G.1: If there exists a set consisting of a majority of
sites, each meeting Local L1, and a time after which all sites
in the set are connected, then either global progress is made,
or eventually all correct servers in all sites in the set reconcile
their Global Histories up to highest Site-Max-ARU of any site
in the set.

Lemma G.1.1: Let S be a site meeting Local L1. If no new
Proposals are received by any server in S, then all correct
servers in S eventually reconcile their Global History to the
Site-Max-ARU.

Proof: By Local L1, there exists a set of 2f+1 correct,
connected servers in S. Since no new Proposals are received
in S, the Site-Max-ARU remains fixed. The correct servers
continuously run the local reconciliation protocol to exchange
globally ordered updates. Since all correct servers are con-
nected, they eventually all reconcile their Global History to
the Site-Max-ARU.

Lemma G.1.2: If there exists a set consisting of a majority of
sites, each meeting Local L1, and a time after which all sites
in the set are connected, then if no new Proposals are received
by any server in any site in the set, all correct servers in all
sites in the set eventually reconcile their Global Histories to
the highest Site-Max-ARU of any site in the set.

Proof: By Lemma G.1.1, the correct servers in each site in
the majority eventually reconcile their Global Histories to their
respective Site-Max-ARU values. Each site participates in the
global reconciliation protocol to exchange globally ordered
updates. Since all sites in the set are connected, the correct
servers in each site eventually reconcile their Global Histories
to the highest Site-Max-ARU.

Lemma G.1.3: If there exists a set consisting of a majority
of sites, each meeting Local L1, and a time after which all
sites in the set are connected, then either global progress is
made, or eventually no new Proposals are introduced.

Proof: If no global progress is made by the leader site, there
are two cases to consider. In the first case, no global progress is
made by any site (i.e. no new updates are globally ordered). In
this case, either updates continue to be locally ordered by the
leader site until the global window fills up, or no new updates
are introduced. In either case, eventually no new Proposals are
introduced.

If global progress is made by one or more non-leader sites
but not by the leader site, then either the leader site’s global
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window will fill up, or no new updates are introduced. In both
cases, eventually no new Proposals are introduced.

Proof of Claim 1: Immediate from Lemmas G.1.1, G.1.2,
and G.1.3.

Claim G.2: If there exists a set consisting of a majority of
sites, each meeting Local L1, and a time after which all sites
in the set are connected, then either global progress is made,
or all sites eventually preinstall the same global view.

Definition G.2: A site invokes the Site-Attempt-WAN-View-
Change protocol when at least 2f+1 correct servers have
invoked the protocol.

Lemma G.2.1: If there exists a set of at least 2f+1 correct,
connected servers within a site meeting Local L1, then either
global progress is made, or the site will eventually invoke
Site-Attempt-WAN-View-Change.

Proof: A correct server that has globally attempted view v

invokes Site-Attempt-WAN-View-Change when its Leading-
Site Timer (T3) expires. When this occurs, the server globally
attempts view v + 1 and will not actively contribute to gen-
erating site messages in view v. Either the remaining servers
see global progress, or they, too, will timeout and invoke Site-
Attempt-WAN-View-Change, in which case the site is said to
have invoked the protocol.

Lemma G.2.2: If there exists a set consisting of a majority
of sites, each meeting Local L1, and a time after which all
sites in the set are connected, then either global progress is
made, or a majority of sites eventually invoke Site-Attempt-
WAN-View-Change.

Proof: By Lemma G.2.1, either global progress is made, or
a site meeting Local L1 will eventually invoke Site-Attempt-
WAN-View-Change. Once one site in the set invokes the
protocol, either global progress is made without this site, or
all sites in the set eventually invoke the protocol. Since the set
contains a majority of sites, the lemma holds.

Proof of Claim G.2: By Lemma G.2.2, either global progress
is made, or a majority of sites eventually invoke Site-Attempt-
WAN-View-Change. By Property 6.1 of the Site-Attempt-
WAN-View-Change protocol, if no global progress is made,
the correct servers in a site will eventually all globally attempt
the same view v and will generate a Global VC message for
view v. By the property of the WAN-View-Change protocol,
either progress is made, or a majority of sites eventually
preinstall the same global view, completing the proof.

Claim G.3: If there exists a set consisting of a majority of
sites, each meeting Local L1, such that all sites in the set have
pre-installed the same global view and have reconciled their
Global Histories, then if a correct representative of the leader
site sends a Union (Prepare) message in this global view, it
will collect a majority of Union (Prepare OK) responses in this
global view, none of which causes a conflict for any correct
server in the leader site.

Lemma G.3.1: If there exist at least 2f+1 correct, connected
servers within a site that have preinstalled the same global
view v, all of which have reconciled their Global Histories
to the Site-Max-ARU, then if Construct-Collective-State is
invoked by a correct representative in global view v, all correct

servers in global view v generate the same threshold-signed
Union message for global view v.

Proof: By the property of Construct-Collective-State, if the
protocol is invoked by a correct representative in a site meeting
Local L1, and all correct servers have reconciled their Global
Histories, then the correct servers within a site will complete
the Construct-Collective-State protocol in global view v. By
the property of Construct-Collective-State, any two correct
servers that complete the protocol generate the same threshold-
signed Union message for the same view.

Lemma G.3.2: If there exists a set consisting of a majority
of sites, each meeting Local L1, such that all sites in the set
have pre-installed the same global view, and all correct servers
in all sites in the set have reconciled their Global Histories
to the highest Site-Max-ARU of any site in the set, then if a
correct representative of the leader site sends a Union (Prepare)
message in this global view, it will collect a majority of Union
(Prepare OK) responses in this global view.

Proof: By assumption, there exists a set consisting of a
majority of sites that have all preinstalled the same global view
and in which global reconciliation has occurred. Since all sites
in the set are connected, any non-leader site that has a correct
representative will receive the Prepare message from the leader
site. The Leading Site timeout (T3) is set such that at least
one correct representative will receive the Prepare message in
each site in the set. Upon receiving the Prepare message from
the currently preinstalled global view, a correct representative
of a non-leader site invokes the Construct-Collective-State
protocol.

By the property of Construct-Collective-State, at least 2f+1
correct servers complete the protocol in the preinstalled global
view. By the property of Construct-Collective-State, they all
generate identical Prepare OK responses in this global view.
The correct representative then sends the Prepare OK to the
representative of the leader site, which, by the relationship
between timeouts T1 and T2, is still the same correct server.

Lemma G.3.3: Any item appearing in a Prepare OK mes-
sage will not cause any ”real” conflict with a correct server at
the leader site.

Proof: By Property of Construct-Collective-State with re-
spect to the Global History data structure.

Proof of Claim G.3: Immediate from Lemmas G.3.1, G.3.2,
and G.3.3

Claim G.4: If there exists a set consisting of a majority
of sites, each meeting Local L1, such that all sites in the set
have pre-installed the same global view and have reconciled
their Global Histories, then the preconditions for completing
Assign-A-Sequence will eventually be met at the leader site.

Lemma G.4.1: If there exists a set consisting of a majority
of sites, each meeting Local L1, such that all sites in the set
have pre-installed the same global view and have reconciled
their Global Histories, and all correct servers at the leader site
have been globally constrained in this view, then either global
progress is made, or a correct representative will eventually
not be suspected by any correct server.

Proof: By Claim G.2, all correct servers in all sites in the
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majority set preinstall the same global view. By the Leader Site
timeout (T3), if no global progress is made, then a correct
server will eventually be elected at the leader site before a
global view change occurs. At this point, at least 2f+1 correct
connected servers do not suspect the representative.

Lemma G.4.2: If there exists a set consisting of a majority
of sites, each meeting Local L1, such that all sites in the set
have pre-installed the same global view and have reconciled
their Global Histories, and all correct servers at the leader site
have been globally constrained in this view, then either global
progress is made, or a correct representative will eventually
not be suspected by any correct server, and will not be
suspected by a correct server before at least three local network
crossings.

Proof: Follows immediately from Lemma G.4.1 and the
relationship between timeouts.

Lemma G.4.3: If there exists a set consisting of a majority
of sites, each meeting Local L1, such that all sites in the set
have pre-installed the same global view and have reconciled
their Global Histories, and all correct servers at the leader site
have been globally constrained in this view, then either global
progress is made, or the data structures of the correct servers
in the leader site will eventually be synchronized such that
there are no conflicts.

Proof: By Claim G.3, none of the Prepare OK messages
received by the correct servers in the leader site cause any
conflicts. By the relationship between timeouts, the leader site
will eventually elect a correct representative that has the most
up-to-date Prepare certificates, if any exist.

Proof of Claim G.4: Follows immediately from Lemmas
G.4.1, G.4.2, and G.4.3.

Claim G.5: If there exists a set consisting of a majority of
sites, each meeting Local L1, such that all sites in the set have
pre-installed the same global view and have reconciled their
Global Histories, then eventually, if a correct representative of
the leader site sends a valid Proposal message in this view, it
will globally order the associated update.

Lemma G.5.1: If there exists a set consisting of a majority of
sites, each meeting Local L1, such that all sites in the set have
pre-installed the same global view and have reconciled their
Global Histories, then eventually, if a correct representative of
the leader site sends a valid Proposal message in this view,
the Proposal will not cause any real conflicts at any correct
server in a non-leader site in the majority.

Proof: Immediate from the invariants of the Global History.
Lemma G.5.2: If there exists a set consisting of a majority of

sites, each meeting Local L1, such that all sites in the set have
pre-installed the same global view and have reconciled their
Global Histories, then eventually, if a correct representative of
the leader site sends a valid Proposal message in this view, it
will be received by a correct representative at all non-leader
sites in the majority.

Proof: Immediate from the stability properties of the net-
work and from relationship between T1, T2, and the Leading
Site Timeout.

Lemma G.5.3: If there exists a set consisting of a majority of

sites, each meeting Local L1, such that all sites in the set have
pre-installed the same global view and have reconciled their
Global Histories, then eventually, if a correct representative of
the leader site sends a valid Proposal message in this view,
the representative will receive Accept messages from at least
majority-1 sites.

Proof: By Lemma G.5.1 and G.5.2, the Proposal message
will not cause any real conflicts at the correct servers in the
non-leader sites, and will be received by all non-leader sites
in the stable majority. By the preconditions for successful
completion of Threshold-Sign, and the relationship between
T1, T2, and the Leading Site timeout, each non-leader site in
the majority will generate an Accept message corresponding to
the Proposal, which will be sent out by a correct representative
before the Leading Site timeout expires. Since the sites are
connected, and the leader site still has a correct representative
(by T3), the representative will receive all of the Accept
messages.

Proof of Claim G.5: Immediate from Lemmas G.5.1, G.5.2,
and G.5.3.

VII. PERFORMANCE EVALUATION

To evaluate the performance of our hierarchical Byzantine
replication architecture, we implemented a complete prototype
of our protocol including all the necessary communication and
cryptographic functionality. In this paper we focus only on the
networking and cryptographic aspects of our protocols, and do
not consider disk writes.

A. Implementation
The OpenTC library is an implementation of RSA threshold

signatures based on the ideas proposed by Shoup. There is
often the need to guarantee the authenticity of messages sent
by a group of individuals to another group. To protect against
a representative of a site sending bogus messages, other sites
must be able to verify the message authenticity. To facilitate
the verification, messages originated from a site are jointly
signed by a significant threshold of nodes in the site. A (n, k)
threshold signature scheme can be used for the purpose and it
offers several advantages. First, only a public key is needed for
each site and a single verification for each message is needed
for a recipient. These properties greatly reduce the overheads
on key distribution and signature verification. Second, the
threshold k can be set accordingly with respect to the number
of malicious nodes to be tolerated. Also, the threshold k and
the secret shares can be proactively changed while keeping the
same public key.

Testbed and Network Setup:
We selected a network topology consisting of 5 wide area

sites, assuming that there can be at most 5 Byzantine faults in
each site, in order to quantify the performance of our system
in a realistic scenario. This requires 16 replicated servers in
each site.

Our architecture uses RSA threshold signatures [6] to rep-
resent an entire site within a single trusted message sent on
the wide area network, thus trading computational power for
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wide area bandwidth and latency, in the number of wide area
crossings. We believe this tradeoff is realistic considering the
current technology trend: end-to-end wide area bandwidth is
slow to improve, while latency reduction of wide area links is
limited by the speed of light.

Our experimental testbed consists of a cluster with twenty
3.2GHz Intel Xeon computers, all of them having a 64-bit
architecture. On these computers, a 1024 bit RSA signature
can be computed in 1.3 msec and can be verified in 0.07
msec. The leader site was deployed on 16 of the machines,
and the other 4 sites were emulated by one computer each1.
The emulating computers were seen from the other sites as
if they were the representatives of complete 16 server sites,
for a system consisting of a total of 80 nodes spread over
5 sites. Upon receiving a packet at a non-leader site, the
emulating computers were busy-waiting for the amount of
time it took a 16 server site to handle that packet and reply
to it, including both in-site communication and the necessary
computation. The busy-waiting times for each type of packet
were determined in advance by benchmarking individual pro-
tocols on a fully deployed, 16 server site. We used the Spines
[12] messaging system to emulate latency and throughput
constraints on the wide area links.

We compared the performance results of the above system
with those obtained by BFT [3] on the same network setup
with five sites, run on the same cluster, only that instead of
using 16 servers in each site, for BFT we used a total of
16 servers across the entire network. This allows for up to 5
Byzantine failures in the entire network for BFT, instead of up
to 5 Byzantine failures in each site for Steward; however, since
BFT is a flat solution where there is no correlation between
faults and the sites where they can occur, we believe this
comparison is fair and conservative. We distributed the BFT
servers such that four sites contain 3 servers each, and one
site contains 4 servers.

All the write updates and read-only queries in our experi-
ments carried a payload of 200 bytes, representing a common
SQL statement.

Bandwidth Limitation:
We first investigate the benefits of the hierarchical archi-

tecture in a symmetric configuration with 5 sites, where all
sites are connected to each other with 50 milliseconds latency
links. A 50 millisecond delay emulates the wide area crossing
of the continental US.

In the first experiment, clients inject write updates. Fig-
ure 17 shows the update throughput when increasing the
number of clients, limiting the capacity of wide area links
between the sites to 10, 5 and 2.5Mbps, both for Steward and
BFT. The graph shows that up to 2.5Mbps, Steward is not
limited by bandwidth. The system is able to process a total

1Our implementation was tested on a complete deployment where each site
is composed on multiple computers using the complete set of protocols and is
currently undergoing a 5-sites DARPA red-team exercise. In order to evaluate
Steward’s scalability on large networks supporting many faults at each site,
we used emulating computers for non-leader sites to limit the deployment to
our cluster of 20 machines.

of about 84 updates/sec, being limited only by CPU, used for
computing threshold signatures at the sites.

As we increase the number of clients, the BFT throughput
increases at a lower slope than Steward, mainly due to the
one additional wide area crossing for each update. At 10
Mbps, BFT achieves about 58 updates/sec, being limited by
the available bandwidth. Similarly, at 5 Mbps it can sustain a
maximum of 26 updates/sec, and at 2.5 Mbps a maximum
of about 6 updates/sec. We also notice a reduction in the
throughput of BFT as the number of clients increases. We
believe this is due to a cascading increase of message loss,
generated by the lack of a wide area flow control in the original
implementation of BFT. Such a flow control was not needed
as BFT was designed to work in LANs. For the same reason,
we were not able to run BFT with more than 24 clients at 5
Mbps, and 15 clients at 2.5Mbps. We believe that adding a
client queuing mechanism would stabilize the performance of
BFT to its maximum achieved throughput, regardless of the
number of clients.

The average update latency, as depicted in Figure 18,
shows Steward achieving almost constant latency. The latency
slightly increases with the addition of clients, reaching 190 ms
when 15 clients send updates into the system. At this point,
as client updates start to be queued, their latency increases
linearly with the number of clients in the system. BFT exhibits
a similar behavior at 10 Mbps, only that its update latency
is affected by the additional number of messages sent and
the additional wide area crossing, such that for 15 clients the
average update latency is 336 ms. As the bandwidth decreases,
the update latency increases heavily, reaching up to 600 ms at
5 Mbps and 5 seconds at 2.5 Mbps, for 15 clients.

Adding Read-only Queries: One of the benefits of
our hierarchical architecture is that read-only queries can be
answered locally, at each site. To demonstrate these benefits we
conducted an experiment where 10 clients send mixes of read-
only queries and write updates, chosen randomly at each client,
with different ratios. We compared the performance of Steward
and BFT when both systems are not limited by bandwidth con-
straints. We used links of 50 ms, 10 Mbps between the sites.
Figures 19 and 20 show the average throughput and latency,
respectively, of different mixes of queries and updates sent
using Steward and BFT. When clients send only read queries,
Steward achieves about 2.9 ms per query, with a throughput of
over 3,400 queries per second. This is because all the queries
are answered locally, their latency being dominated by two
RSA signature operations: one at the originating client, and
one at the servers answering the query.

For BFT, the latency of read-only queries is about 105 ms,
and the total throughput achieved is 95 queries per second.
This is expected, as read-only queries in BFT need to be
answered by at least f + 1 servers, some of which being
located across wide area links. BFT could have achieved
queries locally in a site if we deployed it such that there are
at least 2f + 1 servers in each site (in order to guarantee
liveness it needs f + 1 correct servers to answer queries in
each site). Such a deployment, for f = 5 faults and 5 sites,
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would need at least 55 servers total, which will dramatically
increase communication for updates, and further reduce BFT’s
performance.

As the percentage of write updates in the query mix
increases, the average latency for both Steward and BFT
increases linearly, with Steward latency being about 100 ms
lower than BFT at all times. This is a substantial improvement
considering the absolute value of the update latency, the ratio
between the latency achieved by the two systems ranging from
a factor of two, when only write updates are served, to a factor
of 30, when only read queries are served. The throughput
drops with the increase of update latency, such that at 100%
write updates there is only about a factor of two between the
throughput achieved by Steward and BFT.

Wide Area Scalability: To demonstrate the scalability of
the hierarchical architecture we conducted an experiment that
emulated a wide area network that covers several continents.
We selected five sites on the Planetlab network [13], measured
the latency and available bandwidth characteristics between
every pair of sites, and emulated the network topology on our
cluster in order to run Steward and BFT. We ran the experiment
on our cluster, and not directly on Planetlab because Planetlab
machines are not of 64-bit architecture. Moreover, Planetlab
computers provide a shared environment where multiple re-
searchers run experiments at the same time, bringing the load
on almost all the machines to more than 100% at all times.

Such an environment lacks the computational power required
for the two systems tested, and would artificially influence our
experimental results.

The five sites we emulated in our tests are located in
the US (University of Washington), Brazil (Rio Grande do
Sul), Sweden (Swedish Institute of Computer Science), Korea
(KAIST) and Australia (Monash University). The network
latency varied between 59 ms (US - Korea) and 289 ms (Brazil
- Korea). Available bandwidth varied between 405 Kbps(Brazil
- Korea) and 1.3Mbps (US - Australia).

Figure 21 shows the average write update throughput as we
increased the number of clients in the system, while Figure 22
shows the average update latency. As seen in Figures 21
and 22, Steward is able to achieve its maximum limit of
about 84 updates/second when 27 clients inject updates into
the system. The latency increases from about 200 ms for 1
client, to about 360 ms for 30 clients.

BFT is limited by the available bandwidth to a maximum of
about 9 updates/sec, while the update latency starts at 631 ms
for one client, and jumps to the order of seconds when more
than 6 clients are introduced.

Comparison with Non-Byzantine Protocols:
Since Steward deploys a lightweight fault-tolerant protocol

between the wide area sites, we expect it to achieve per-
formance comparable to existing non-Byzantine fault-tolerant
protocols commonly used in database replication systems, but
with Byzantine guarantees (while paying more hardware).
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In the following experiment we compare the performance of
our hierarchical Byzantine architecture with that of two-phase
commit protocols. In [14] we evaluated the performance of
two-phase commit protocols [15] using a wide area network
setup across the US, called CAIRN [16]. We emulated the
topology of the CAIRN network using the Spines messaging
system, and ran Steward and BFT on top of it. The main
characteristic of the CAIRN topology is that East and West
Coast sites were connected through a single link of 38ms and
1.86Mbps.

Figures 23 and 24 show the average throughput and latency
of write updates, respectively, of Steward and BFT on the
CAIRN network topology. Steward was able to achieve about
51 updates/sec in our tests, being limited mainly by the
bandwidth of the link between the East and West Coasts
in CAIRN. In comparison, an upper bound of two-phase
commit protocols presented in [14] was able to achieve 76
updates/sec. As our architecture uses a non-Byzantine fault-
tolerant protocol between the sites, it was expected to achieve
comparable results with two phase commit protocols. We
believe that the difference in performance is caused by the
presence of additional digital signatures in the message head-
ers of Steward, adding 128 bytes to the 200 byte payload of
each update.

The high bandwidth requirement of BFT causes it to achieve
a very low throughput and high latency on the CAIRN

network. The maximum throughput achieved by BFT was 2.7
updates/sec and the update latency was over a second, except
when a single client injected updates in the entire system.

Summary:
The performance results we presented show that our hi-

erarchical Byzantine architecture achieves performance com-
parable (though somewhat lower) to non-Byzantine protocols
when run on wide area networks with multiple sites, and is
able to scale to networks that span across several continents.
In addition, our experiments show that the ability of our
architecture to answer queries locally inside a site gives
substantial performance improvements beyond the qualitative
benefit of allowing read-only queries in the presence of parti-
tions. In contrast, flat Byzantine protocols, while performing
very well on local area networks, do not scale well to multiple
sites across a wide area network. They have high bandwidth
requirements, and use additional rounds of communication
that increase individual update latency and reduce their total
achievable throughput.

VIII. RELATED WORK

Agreement and Consensus:
At the core of many replication protocols is a more general

problem, known as the agreement or consensus problem.
There are several models that researchers considered when
solving consensus, the strongest one being the Byzantine
model in which a participant can behave in an arbitrary
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manner. Other than the behavior of a participant (malicious or
not), other relevant considerations are whether communication
is asynchronous or synchronous, whether authentication is
available or not, and whether the participants communicate
over a flat network or not. A good overview of significant
results is presented in [17]. Optimal results state that under
the assumption that communication is not authenticated and
nodes are directly connected, in order to tolerate f Byzantine
failures, 3f + 1 participants and f + 1 communication rounds
are required. If authentication is available, then f + 1 rounds
are still required, but the number of participants just has to
be greater than f + 1 [18]. An important factor that must be
taken into consideration is whether participants are directly
connected or not. In [19], Dolev shows that in an arbitrary
connected network, if f Byzantine faults must be tolerated and
the network is f +1 (2f +1 if no signature exists) connected,
then agreement can be achieved in 2f + 1 rounds.

Byzantine Group Communication:
Related with our work are group communication systems

resilient to Byzantine failures. The most well-known such
systems are Rampart [20] and SecureRing [21]. Although these
systems are extremely robust, they have a severe performance
cost and require a large number of un-attacked nodes to main-
tain their guarantees. Both systems rely on failure detectors to
determine which replicas are faulty. An attacker can exploit
this to slow correct replicas or the communication between
them until enough are excluded from the group.

Another intrusion-tolerant group communication system is
ITUA [22], [23], [24], [25]. The ITUA system, developed by
BBN and UIUC, focuses on providing intrusion tolerant group
services. The approach taken considers all participants as equal
and is able to tolerate up to less than a third of malicious
participants.

Replication with Benign Faults: The two-phase commit
(2PC) protocol [15] provides serializability in a distributed
database system when transactions may span several sites. It
is commonly used to synchronize transactions in a replicated
database. Three-phase commit [Ske82] overcomes some of
the availability problems of 2PC, paying the price of an
additional communication round, and therefore, additional
latency. Paxos [1] is a very robust algorithm for benign fault-
tolerant replication. Paxos uses two rounds of messages in the
common case to assign a total order to updates and requires
2f + 1 replicas in order to tolerate f faults.

Quorum Systems with Byzantine Fault-Tolerance: Quorum
systems obtain Byzantine fault-tolerance by applying quo-
rum replication methods. Examples of such systems include
Phalanx [26], [27] and its successor Fleet [28], [29]. Fleet
provides a distributed repository for Java objects. It relies
on an object replication mechanism that tolerates Byzantine
failures of servers, while supporting benign clients. Although
the approach is relatively scalable with the number of replica
servers, it suffers from the drawbacks of flat non-hierarchical
Byzantine replication solutions.

Replication with Byzantine Fault-Tolerance:
The first practical work to solve replication while with-

standing Byzantine failures is the work of Castro and Liskov
[3]. Their algorithm requires 3f + 1 replicas in order to
tolerate f faults. In addition, the client has to wait for f + 1
identical answers (which, for liveness guarantees may require
waiting for up to 2f + 1 answers) in order to make sure
that a correct answer is received. The algorithm obtains very
good performance on local area networks. Yin et al. [30]
propose an improvement for the Castro and Liskov approach
by separating the agreement component that orders requests
from the execution component that processes requests. The
separation allows utilization of the same agreement component
for many different replication tasks. It also reduce the number
of processing storage replicas to 2f + 1. Martin and Alvisi
[31] recently introduced an algorithm that is able to achieve
Byzantine consensus in only two rounds, while using 5f + 1
servers in order to overcome f faults. This approach trades
lower availability (4f + 1 out of 5f + 1 connected replicas
are required, instead of 2f + 1 out of 3f + 1 in BFT), for
increased performance. The solution seems very appealing for
local area networks that provide high connectivity between
the replicas. We considered using it within the sites in our
architecture to reduce the number of intra-site communication
rounds. However, as we make use of threshold signatures
inside a site, the overhead of combining larger signatures of
4f + 1 shares would greatly overcome the benefits of using
one less communication round within the site.

Alternate architectures:

An alternate hierarchical approach to scale Byzantine repli-
cation to wide area networks can be based on having a
few trusted nodes that are assumed to be working under a
weaker adversary model. For example, these trusted nodes
may exhibit crashes and recoveries but not penetrations. A
Byzantine replication algorithm in such an environment can
use this knowledge in order to optimize the performance and
bring it closer to the performance of a fault-tolerant, non-
Byzantine solution.

Such a hybrid approach was proposed in [32], [33] by Veris-
simo et al, where trusted nodes were also assumed to perform
synchronously, providing strong global timing guarantees. The
hybrid failure model of [32] inspired the Survivable Spread
[34] work, where a few trusted nodes (at least one per site) are
assumed impenetrable, but are not synchronous, may crash and
recover, and may experience network partitions and merges.
These trusted nodes were implemented by Boeing Secure
Network Server (SNS) boxes, which are limited computers
designed specifically not to be penetrable.

In our opinion, both the hybrid approach proposed in [33],
and the approach proposed in this paper seem viable to
practically scale Byzantine replication to wide area networks.
The hybrid approach makes stronger assumptions while our
approach pays more hardware and computational costs. Fur-
ther developing both approaches and contrasting them can be
a fertile ground for future research.
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IX. CONCLUSIONS AND FUTURE WORK

This paper presented a hierarchical architecture that enables
efficient scaling of Byzantine replication to systems that span
multiple wide area sites, each consisting of several poten-
tially malicious replicas. The architecture reduces the message
complexity on wide area updates, increasing the system’s
ability to scale. By confining the effect of any malicious
replica to its local site, the architecture enables the use of
a benign fault-tolerant algorithm over the wide area network,
increasing system availability. Further increase in availability
and performance is achieved by the ability to process read-
only queries within a site.

We implemented Steward, a fully functional prototype that
realizes our architecture, and evaluated its performance over
several network topologies. The experimental results show
considerable improvement over flat Byzantine replication al-
gorithms, bringing the performance of Byzantine replication
closer to existing benign fault-tolerant replication techniques
over wide area networks.
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Abstract— In this paper we identify a major security vul-
nerability in distributed systems: compromised clients under
adversarial control can use the system within their authorized
access rights and authenticated channels to deliberately insert
incorrect data. A significant problem is that when a malicious
client insider is discovered, it is hard to quickly assess the scope
of the damage, and identify corrupt and suspected updates.

We propose Accountability Graph, a mechanism that can assist
applications in coping and recovering from such attacks. The
tool provides accountability enforcement and causality tracking
of updates and their dependencies. Upon detection of incorrect
data (e.g. by an external intrusion detection mechanism or human
assessment), the Accountability Graph will quickly classify all up-
dates in the system as either corrupted, suspected or not affected.
The practicality and usefulness of the approach is demonstrated
based on the requirements of three different applications: an
open source software development project, a military common
operation picture application, and a national emergency response
system. The Accountability Graph can also be used for risk
assessment and vulnerability analysis with respect to the above
attack.

I. INTRODUCTION

Many distributed services are implemented following a
model where a set of servers replicate the service and coordi-
nate their actions to answer client requests while maintaining
the consistency of the data. The most basic operations per-
formed by clients are querying the servers or updating data
maintained by the servers. Security is a major concern for
such systems that often operate over unsecure networks such
as the Internet. Significant work conducted in the last several
years to develop mechanisms for Byzantine replication [1], [2],
[3], access control [4], [5], [6] and intrusion detection [7], [8],
[9] provides the support for designing secure distributed ser-
vices. Specifically, the servers and their operating system are
protected against intrusions, corrupted servers are tolerated by
running Byzantine replication algorithms, access to resources
is tightly enforced by using access control mechanisms, while
client actions are monitored by intrusion detection systems.

Although such systems may seem difficult to attack, they
overlook that the weakest link is represented by the clients
(often communicating with the servers over wireless channels)
and the most critical asset is the data itself. Thus, very harmful
attacks can come from compromised clients, targeting the data

correctness: One or more compromised clients can use the
system within their authorized parameters to create or inject
incorrect inputs or updates to some servers. The (Byzantine)
replication algorithms will propagate this information among
all servers, corrupting the state of the system so that it will no
longer reflect reality. Several observations are important. First,
the Byzantine replication protocols running on the servers
will replicate data already compromised, so they will not be
able to address the attack. Second, these incorrect updates
may not be detected immediately, impacting other clients
subsequently querying the system and basing their decisions
on the erroneous state. This creates a cascading effect in which
further created updates are also erroneous because they are
based on malicious data. Third, although intrusion detection
mechanisms deployed in the system may eventually detect
the compromised clients, assessing the extent of the damage
and identifying the other components of the system that were
affected, or are suspect and need further investigation is very
challenging and is not provided by the mechanism mentioned
above.

The effect of such an attack can be devastating for appli-
cations that are highly dependent on the correctness of their
data. For example, in collaborative open-source software de-
velopment (e.g. Linux), multiple individuals create or augment
existing source code. The inherent interdependency between
software packages enables a malicious update to one package
to significantly impact other components of the system. It is
important to identify the packages that may be affected by
corrupt code injected into the system, and determine the risk
and vulnerabilities associated with it.

Other examples are command and control information sys-
tems, such as those used by the military [10] or by emergency
response personnel [11]. In such systems, users update the
state of the operational situation and make decisions based
on it. Correctness of the data is critical, and any misleading
information can result in loss of life. A malicious insider can
inject authorized yet incorrect information that may mislead
honest users and cause them, in turn, to make additional
erroneous updates.

Our Focus and Contribution: A major problem with
secure distributed systems is that when a malicious client
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insider is discovered, it is hard to quickly assess the scope
of the damage, and identify corrupt and suspected updates.
Therefore, the system is not able to regenerate and recover
to a clean state without the effects of these updates. Based
on our experience building secure reliable systems, we make
the observation that in the best case, this is considered an
application-specific issue, and the system infrastructure pro-
vides no support in addressing it. Most of the time, this
problem is not considered at all. The goal of this work is
to raise awareness to this important problem and to show
how the distributed infrastructure can assist the application
in recovering from such attacks. Our preliminary results based
on the requirements of three different applications demonstrate
the practicality of our solution.

We propose Accountability Graph, a generic mechanism
that provides accountability enforcement and causality track-
ing of updates and their dependencies in a directed acyclic
graph with periodic snapshots. Upon detection of incorrect
data, the system traces the data to the corrupt update that
generated it, and from that, the Accountability Graph enables
us to mark all causally dependent updates as corrupted or sus-
pected. We mark all subsequent updates made by the malicious
client that generated the corrupted update as corrupt, and use a
standard graph traversal to identify and mark as suspicious all
other updates that recursively depend on corrupted updates.
No less important, the system is assured that all unmarked
updates are not affected by the discovered incorrect data. Our
proposed solution can use any intrusion detection mechanism
(or human input) that will provide the initial detection. One
or several servers forming the underlying distributed service
can decide to maintain the graph, the coordination between the
servers, including the ordering of the updates, will ensure that
the graph looks the same at each server. There is no central
authority or point of failure, any server can decide at any time
if it will build the graph for events happening in the system.

The contributions of the paper are:
• We identify a significant attack against distributed ser-

vices mounted by malicious clients that deliberately insert
incorrect data through authorized channels.

• We propose a generic mechanism, Accountability Graph,
that tracks the dependencies between all of the updates
in the system. When notified about compromised clients
or corrupt updates by external mechanisms (such as in-
trusion detection, human assessment, application-specific
knowledge), the Accountability Graph can classify data
as corrupt, suspect, or not affected.

• We demonstrate the usefulness of our solution in three
different applications: an open-source software devel-
opment project, a military common operation picture
application, and a national emergency response system.
We show that the overhead associated with our solution
is reasonable in these cases.

• We present an additional benefit of the Accountability
Graph, namely the ability to conduct risk assessment and
vulnerability analysis with respect to the compromised
client attack.

The rest of the paper is organized as follows. We present a
description of the model considered in this paper in Section II.
Section III presents a detailed description of the Accountability
Graph. We demonstrate the usefulness and feasibility of our
approach for several applications in Section IV. In Section V
we present the performance of the Accountability Graph, and
in Section VI we survey related work. We conclude the paper
in Section VII.

II. SYSTEM MODEL

We assume a general message-passing system where one or
more servers respond to requests from clients. The requests
submitted by clients can be updates (write operations), or
queries (read operations). Communication is asynchronous.

We assume that each client has a public and private key
pair. Servers know the public keys of all clients that connect
to them. Cryptographic techniques such as public-key digital
signatures, message authentication codes, and message digests
produced by collision-resistant hash functions, are used to
provide non-repudiation, message integrity and authentication
of messages. We assume that the adversary is computationally
bounded such that he cannot subvert these cryptographic
techniques.

Clients communicate with the servers using secure channels:
the communication is protected from an external adversary
by using encryption, all messages are authenticated and carry
integrity information which prevents an external adversary
from injecting or modifying packets.

The adversary can compromise any number of clients,
coordinate the attack, delay communication, modify, delete
or replay a message, or simply generate and deliberately
send incorrect data. The adversary cannot delay indefinitely
correct clients. When a client node is compromised, the
adversary has full control over that node, including access to
all cryptographic keys stored on the machine.

We assume that there are external mechanisms that can
detect that clients were compromised or that they submitted
updates containing incorrect data. This can be done by employ-
ing tools such as intrusion detection systems, or by having a
human review the data offline. The intrusion detection is not
instantaneous, i.e. clients can inject several malicious updates
before they are detected. Correct clients may use affected
data in their decisions (and therefore create incorrect updates
themselves) before a malicious update is detected. Thus, the
damage caused by a malicious update can affect future updates
(not necessarily made by the malicious client), as well as
queries that will propagate incorrect information to honest
clients.

III. ACCOUNTABILITY GRAPH: DESIGN,
IMPLEMENTATION AND EXPRESSIVENESS

Based on the observations formulated in Section I, we
believe that there is a need for mechanisms that provide the
following:

• Corrupted data isolation: when notified that an update is
incorrect, the system can identify the data affected by it,
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and provide fast feedback about all other compromised
updates.

• Automatic regeneration of non-corrupted states: allow
automatic regeneration of a view of the data that includes
non-contaminated data, based on initial information about
problems that occurred and building knowledge about the
extent of the problem.

We address these requirements by building an Account-
ability Graph, a directed acyclic graph that maintains causal
dependency of updates, allowing data classification in the light
of a compromised client or incorrect update, and facilitating
automatic regeneration of a correct state. We note that the
Accountability Graph provides a useful tool to help assess
risk assuming that specific participants were compromised at
known times, or that specific updates were incorrect. Below
we describe our design, with focus on the construction and
traversal of the causality graph.

A. Design Overview

To track client updates, we construct the causality graph
as follows. Every update in the system is uniquely identified,
includes the ID of its client creator, and is signed by that client.
Every update also contains the identifier and digital signature
[12], [13] of every previous update directly responsible for
data on which the new update depends. In addition, we
assume a standard causal relationship where every update
depends on the previous update created by the same client.
The Accountability Graph is maintained such that every update
is a node in the graph and there is a directed link from that
update to all the updates on which it depends. The dependency
information is usually specific to the application. In some
cases, dependencies may be introduced by clients themselves.
In other cases, dependencies occur based on the flow of
the application, while in the most conservative case we may
consider that an update introduced by a client depends on all
the updates previously reported to that client. In this work we
do not make any assumption about the nature of dependencies.

When data is detected as incorrect, it is traced to the
corresponding update. Then, by traversing the graph, corrupted
and suspected updates are marked. For example, in Figure
1(a), an update of client C4 is found to be incorrect, and
the generating client, C4, is presumed malicious. Subsequent
updates from that client are marked as corrupt and all the
updates that depend on them are marked as suspicious, as
shown in Figure 1(b). Notice that the arrows indicate de-
pendency relations (i.e. if update A depends on update B,
there is an arrow from A to B). Therefore, the edges in the
graph are traversed in the opposite direction of the arrows.
The Accountability Graph can now present various views of
the system state based on these markings, and the system can
regenerate its state as needed based on the updates that are
deemed valid. The system can consider only the clean updates,
or it can consider both clean and suspected updates.

To limit the memory required for storing the causality
graph and the processing required for state regeneration, the
system can use periodic posteriori snapshots. Every epoch,

for example 12 hours, a snapshot of the system state as of 12
hours ago is calculated and stored. This limits the processing
required for state regeneration when bad data is discovered,
as calculations are performed from the last valid snapshot
(usually the last one). Of course, the length of the actual epoch
depends on the rate of the updates in the system.

The pseudocode for the operations used to create and tra-
verse the graph is presented in Algorithm 1. The SubmitUpdate
function creates a node containing the client’s identity and
a unique sequence number. It also places the node in an
associative container so that it can be found using its identifier.
The AddDependencies function adds directed edges from all
of the nodes in a specified list to the node specified by its
identifier. Finally, the function GetSuspectedUpdates performs
a standard graph traversal, beginning at the specified corrupt
node, and marks the other nodes as corrupt, suspect, or not
affected.

B. Optimization of the Accountability Graph

In the algorithm described above, when a client submits
an update, the Accountability Graph automatically creates
an edge connecting the update being added to the previous
update submitted by that client. In Figures 1(a) and 1(b),
these automatically generated edges correspond to the vertical
arrows. Note that FIFO edges are always present in standard
network-level causality graphs [14]; they are a conservative
approximation to true, application-level, causality. These edges
are also vital for our Accountability Graph. When a corrupt up-
date is discovered, we assume that the client that generated this
update is malicious and that all subsequent updates submitted
by the malicious client are also corrupt. A single traversal
beginning at the corrupt update can mark every corrupt and
suspected update precisely because of these vertical lines. The
FIFO edges link all of the updates that we assume are corrupt.
Note that the malicious client cannot alter or remove these
edges because it is not responsible for generating them.

The algorithm we have specified is simple and computa-
tionally efficient, but it suffers from an important problem.
Consider what might happen if an honest client’s update does
not depend on its previous update. For example, in a military
Common Operations Picture, a status update, Us, made by
a tank about its fuel, ammunition, and position is actually
independent of the last update submitted by this tank. Suppose
that a prior update submitted by the tank was dependent on an
update made by a malicious client. Then, Us would be marked
as suspect during a graph traversal. In addition, anything with
recursive dependencies on Us would be labeled as suspicious.
The result is a high false positive rate.

Before presenting our solution to this problem, we make
one important observation: If an update of an honest client
is compromised, future updates introduced by that client can
be trusted unless they depend on corrupted data themselves.
Our modified algorithm automatically adds FIFO edges as
described above. However, these edges do not necessarily need
to be used. By default, we disable the FIFO edges in the
directed acyclic graph so that the graph traversal will not
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Algorithm 1 Accountability Graph Operations

Each node (update) maintains:
Node

Int id // A unique id for this node
Int client id // A unique client id
Node dependents[] // A list of those nodes that are dependent on this node
Int classification // CORRUPT, SUSPECT, or NOT AFFECTED

Global Variables:
Int next id = 0 //this is used to create the id for the Node
Int suspects[] //a list to store the ids of suspect nodes
A Map of all nodes, indexed by the node’s id

Int SubmitUpdate( Int client id )
next id = next id + 1
let n = new Node with id next id
add n to the A-DAG //store the node in a container where it can be accessed via its id
add the last update of this client to n.dependents
return next id

AddDependencies( Int dependent, Int []dependencies )
let n = node having id of dependent
for each i in dependencies

let n d = node having id of i
add n to n d.dependents //this creates a directed edge from n d to d

Int[] GetSuspectedUpdates( Int corrupt node )
clear suspects //remove all suspect updates
set the classification to NOT AFFECTED for all nodes
let next = 0
let n = Node with id equal to corrupt node
add n to suspects
set n.classification = CORRUPT
while suspects.size() > next

let p = Node with id equal to suspects[next]
next = next + 1
for each c in p.dependents

if c.id is not in suspects
add c.id to suspects
if c.client id == n.client id, set c.classification = CORRUPT
else, set c.classification = SUSPECT

return suspects //return the suspects
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use them. When a corrupt update is found, we first enable
only those FIFO edges that connect updates made by the
malicious client (i.e. the client that generated the corrupt
update). Then, a traversal is done as previously described.
Figure 2 shows the same scenario as 1(b) with this optimiza-
tion; now, fewer updates are labeled as suspect. Note that
the improved Accountability Graph can express when a client
submits an update that really does depend on its previous
update. As in the original algorithm, malicious clients are
unable to alter these edges because they do not generate them.
We believe that this change is important not only because it
reduces false positives, but also because it draws attention to
the differences between conservative, network-level causality
graphs and pruned, application-level causality graphs. By
working at the application-level and allowing clients and/or
other dependency sources to specify dependency relations, we
improve the accuracy and utility of the Accountability Graph.

C. Enriching the expressiveness of the Accountability Graph

The Accountability Graph construction algorithm described
above has limited expressiveness; the integrity of an update
depends on the integrity of all of its dependencies. If C

depends on the set {A, B}, then C is suspect if A or B is
suspect. This means that the integrity of C depends on A

AND B. Expressing dependencies with only AND operators
does not always adequately capture a dependency relation. For
example, consider an application where two motion sensors,
Sa and Sb, cover the same area. Suppose that both sensors
make an update stating that there is motion in this area. An
administrator receives these two updates and makes an update,
D, that dispatches a security guard to the area. The integrity
of D depends on the integrity of Sa OR Sb. The administrator
is conservative and therefore would have dispatched the guard
even if only one of the sensors reported motion. The original
algorithm cannot express this dependency.

We increase the expressive power and, thereby, the accuracy
of our dependency graph by introducing an OR operator. The
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basic idea is shown in Figure 3, which depicts that D depends
on (A OR B) AND C. Note that node D contains two
numbered cells and that dependency arrows originate from
these cells. During a graph traversal, both numbered cells in
D must be visited before D is marked as suspect. If only A is
suspect, then only cell 1 will be visited. Similarly, if only B

is suspect, then only cell 2 will be visited. However, if C is
suspect, then both cell 1 and 2 will be visited. In general, we
can modify our algorithm so that it can express all dependency
relations written using linear combinations of OR and AND

operations.
The OR operator enables the Accountability Graph to

express dependencies on redundant sources of information.
In the above example, the motion sensors provide the same
information. If a client bases an update on both sensors, the
update remains unaffected even if one of the sensors was
corrupt. This is important because fault tolerance is commonly
improved by using redundancy. Therefore, the OR operator
increases the usefulness of the Accountability Graph as an
offline analysis tool. When the Accountability Graph is used
to assess system vulnerabilities, the OR operator can be used
to show the benefits of strategically placed redundancy.

IV. CASE STUDIES

To demonstrate the feasibility of the Accountability Graph
for real applications, we consider three applications for which
we believe our mechanisms can offer great benefits. These
applications are drawn from: open-source software projects,
network-centric warfare applications, and information access
to national emergency systems.

A. Collaborative Open-Source Software Projects

Many applications today rely on open source software
projects, such as Debian [15], Red Hat [16], Apache [17],
and Gnome [18]. Such projects are collaborative, distributed
over several machines, and involve many participants. For
example, the Debian project has over 1000 registered devel-
opers managing about 10000 software packages supporting 12
different platforms. If a critical machine is compromised, all
packages that passed through it during creation are suspect.
If a package is compromised, any other packages that use it
are compromised. If a client is untrustworthy, all packages
that client was involved in are suspect. Unfortunately such
incidents are a reality: in 2001 [19], the public server used
by the Apache Software Foundation to provide the source
code repository, binary distribution, web services, and public
mailing lists was compromised; in 2001 a developer introduced
a Trojan horse in one of the Debian packages, while more
recently in 2003 Debian was again in the news [20] when
four servers were compromised, one of them hosting security
updates; Gnome also was the target of an attack in 2004 [21].

We chose to use Red Hat software packages (RPMs) as
a representative open source software project because RPMs
are widely used and because the Red Hat Package Manager
contains tools for extracting dependency information. Each
RPM package contains a set of capabilities such as programs,

libraries and data, and may require other capabilities to already
be installed on the system. The fifteen Red Hat distributions
using RPMs contain 52,984 software capabilities, spanning 7
years of development. The distributions we considered, the
number of RPMs, and the number of software capabilities in
each distribution are presented in Table I.

Version Number of RPMs Number of Capabilities

RedHat 4.2 458 632
RedHat 5.0 482 693
RedHat 5.1 523 789
RedHat 5.2 573 891
RedHat 6.0 645 1523
RedHat 6.1 718 1691
RedHat 6.2 743 2049
RedHat 7.0 865 2113
RedHat 7.1 1016 2918
RedHat 7.2 1231 3862
RedHat 7.3 1438 5715
RedHat 8.0 1472 6432
RedHat 9 1402 7128
RedHat Fedora 1 1466 7754
RedHat Fedora 2 1619 8804

TOTAL 14651 52984

TABLE I

RED HAT DISTRIBUTIONS

Each package provides one or more software capabilities
such as programs, libraries, or data. Some capabilities have
many thousands of directly or recursively dependent capa-
bilities resulting in very complex dependency relationships.
If one of the capabilities is corrupt, it can potentially affect
all of the capabilities that depend on it. It is very difficult
and time consuming to manually analyze such a system and
determine the set of capabilities that may be affected by a
corrupt capability. The Accountability Graph automates this
task and thus can be extremely useful when corrupt software
is discovered and distribution administrators want to promptly
determine the extent of the possible damage.

The integrity of a software capability in some specific
distribution depends on the integrity of the same software
capability in all older distributions. From one distribution to
the next, capabilities evolve slowly and source code added to
one version is generally present in many subsequent versions.
Suppose that a malicious programmer added a vulnerability
to the source code of the encryption capability libcrypt.so.1
in RedHat 5.0. Clearly, anyone using a capability that directly
or recursively depended on this version of libcrypt.so.1 could
have been affected. It is also possible that the malicious
code has propagated to subsequent versions of libcrypt.so.1 in
RedHat 5.1 through Fedora 2. Therefore, when a compromise
of libcrypt.so.1 in RedHat 5.0 is found, it is important to obtain
a list of all software packages that depend on this version or
on any subsequent version. Note that because libcrypt.so.1 is a
shared library, fixing all versions of libcrypt.so.1 will produce
a properly functioning system assuming that static linking
was not used. However, we are also concerned with finding
any capability that may have been vulnerable during the time
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Fig. 4. CDFs of the percentage of capabilities (on the Y axis) having less than the specified number of dependent capabilities (on the X axis).

that the encryption library was corrupt. In this example, all
capabilities that depend on libcrypt.so.1 may have stored data
that is insecure and therefore should be examined.

Below, we analyze the dependency graph generated based
on the RPM packages. Each RPM provides a set of software
capabilities. Commonly, the provided set contains only one
capability. Other RPMs provide several capabilities comprised
of applications, shared libraries, and other software related
files. An RPM may also require a set of capabilities. The
capabilities that are provided depend on the capabilities that
are required. Using these sets, we created a mapping from
each capability to its dependencies. More precisely, in the
Accountability Graph, software capabilities represent nodes,
edges are drawn between the provided capabilities and those
that they require, and, even though not specified in the
RPM system, developers who create software packages are
considered clients. For each distribution, we constructed a
list of tuples having the form: (Cn, dependencies of Cn).
Then, we added all of these tuples to one graph. Within
each distribution, there are many dependencies and some of
these reflect recursive relationships. A distribution sometimes
included more than one version of a capability. When this
occurred, we determined a causal order based on version
numbering and made a dependency chain so that the newest
version recursively depended on all prior versions. We linked
the oldest version of a capability in Distribution n to the newest
version in Distribution n-1.

After constructing the dependency graph, we ran a traversal
beginning at each software capability and retrieved a list
of all dependent capabilities. Figures 4(a) and 4(b) show
cumulative distribution function (CDF) plots of the percentage
of capabilities (on the Y axis) having less than the specified
number of dependent capabilities (on the X axis). The figures
differ only in the range shown on the y axis. We see that
about 65% of capabilities have less than 20 other capabilities
that depend on them. However, 20% have over 100 dependent
capabilities, and furthermore, about 10% of the capabilities
have over 15000 dependent capabilities. Capabilities having
the greatest number of dependents include: “libc.so.5” (48288
dependents), “filesystem = 1.3-1” (48901 dependents), “setup

= 1.7-2” (48915 dependents) all from RedHat 4.2, and
“/sbin/ldconfig” (49441 dependents) from RedHat 5.0.

The RPM dependency graph described above shows that,
generally, a corrupt capability affects a relatively small number
of other capabilities. However, some capabilities can affect
many others. Therefore, the Accountability Graph can be used
to identify the capabilities that would cause the most damage if
they were corrupted; these capabilities represent system-wide
vulnerabilities. Also note that the complex recursive depen-
dency relations and sometimes large number of dependents
make it very difficult to manually identify suspect capabilities
when a corrupt capability is discovered. We believe that this
case study illustrates the usefulness of the Accountability
Graph both as an offline analysis tool and as an online damage
assessment tool.

B. A Military Common Operation Picture Application

The military Common Operation Picture (COP) application
provides a current view of the battle space shared by all
friendly forces, and enables planning and coordination of the
forces. The information provided by the COP may include
the location of friendly and enemy units, current level of
available supplies and ammunition in each unit, location of
natural and man made obstacles, currently executed tactical
plans and future possible plans for the different units, etc.
Authentication and access control strictly determines who is
allowed to view or update different parts of the operational
picture. Participants constantly monitor the COP, modify their
plans, and issue commands as the situation progresses.

Such applications depend heavily on the fact that infor-
mation provided to the system is correct. The following
scenario illustrates this problem: An update, coming from a
compromised intelligence officer computer, that updates the
location of an enemy unit to be 3 km south of where it actually
is. This update will be accepted by the system because the
intelligence officer is authenticated and is authorized to make
it. A logistics officer that needs to re-supply a friendly unit,
notices the location of the enemy unit according to the COP,
and plots a path that will avoid the enemy. This path is also
updated into the COP. The unit that is being supplied selects a
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location to meet with the logistics convoy based on the updated
path. In parallel, a friendly commando unit plans to attack
the enemy unit. Once it is discovered that the enemy unit
location is incorrect, the Accountability Graph can quickly
mark the plans of the logistics convoy, the supplied unit and
the commando unit. These plans were dependent directly or
indirectly on the incorrect update and will have to be re-
evaluated.

In this application, the clients are all the participants autho-
rized to update any part of the common operation picture state.
The nodes of the Accountability Graph are the updates to the
state, and the edges of the graph refer to the past updates that
influenced the decision to make the dependent update.

The Common Operation Picture application is not large
compared with current hardware capabilities, and allows stor-
ing all the updates throughout the duration of a military
engagement (a few months time). To explore the feasibility of
the Accountability Graph to support this kind of application
with adequate performance, we need to estimate the size of
the graph. If we consider tracking about 5000 units, each
causing the generation of about one update per minute, then
over 12 hours this scenario generates about 3,600,000 updates.
A snapshot of the COP state, taken every 12 hours, limits the
required calculation for traversing the Accountability Graph to
this number of nodes. Our experiments provided in Section V
indicate that the Accountability Graph can provide an answer
in matter of seconds for a dependency graph of this size.

C. Information Access for National Emergency Response Sys-
tems

The Clinicians’ Biodefense Network (CBN) [22], [23] is a
nationwide Internet-based information exchange system de-
signed specifically for use by US-based clinicians in the
aftermath of a bioterrorist attack. The network is managed
and operated by the Center for Biosecurity of the University
of Pittsburgh Medical Center. CBN was designed to facilitate
communication and timely exchange of accurate and precise
information among clinicians in the event of bioterrorism,
and provide practitioners around the country with clinically
oriented information quickly enough to guide decision-making

The design of the CBN envisioned communication between
the network editorial staff, network contributors, and many
thousands of network subscribers. The network data con-
tributors are highly trusted clinicians and prominent experts
who provide critical clinical information to the network, and
comment on information provided by other data contributors.
Several hundred clinical experts and leaders were expected
to participate as data providers. The number of information
updates during an emergency situation could reach several
thousand per day.

The Clinicians’ Biodefense Network architecture was de-
signed to employ state of the art security mechanisms. Clinical
leaders, experts, and network administrators need specific
credentials in order to provide information to the network.

The network must provide accurate, correct and timely
information. The potential exists for malicious users who
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Fig. 5. Traversal time as a function of the number of updates.

impersonate a network content contributor, e.g. by stealing
a password or finding other ways to infiltrate the network,
to provide misleading data that could be dangerous and
potentially life-threatening. For example, during a Biodefense
attack, an update can incorrectly report identified cases in the
wrong locations, in order to create confusion and hamper the
response to legitimate cases. Further updates by other data
providers can be based on this misleading data, and must
also be identified and reevaluated once the malicious update
is detected.

In this application, the clients are the clinical leaders and
experts who provide data to the network. The nodes of the
accountability graph are the messages sent on the network.
The edges of the graph refer to the past messages that this
message is in response to.

The type of scenarios described in the Common Operation
Picture operation exist here, although the size of the CBN
state and overall number of nodes in the graph is considerably
smaller.

V. PERFORMANCE OF THE ACCOUNTABILITY GRAPH

The Accountability Graph keeps track of all updates intro-
duced into the system and their dependency on other updates.
It may appear that this mechanism introduces an unacceptably
high overhead due to storing and processing the updates. The
goal of this section is to analyze the resulted overhead and
to show that for many applications it does not affect the
performance significantly.

Intuitively, there are several factors that can affect the time
it takes to build or traverse the graph: the number of updates
(nodes) in the graph, the number of clients, the depth of the
graph, and the number of dependencies (edges) in the graph.
We implemented a simple data structure in C++ using the
STL library and conducted several experiments to evaluate its
performance as a function of these factors.

Experiment Set-up: In the experiments presented be-
low we make no assumption about the end application, and
consider a random graph with the following structure: The
Accountability Graph is constructed based on time-slices in
which updates are committed. Each update has a correspond-
ing node in the graph. The nodes are organized in a two
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dimensional matrix having a column for each client and a
row for each time slice. The graph was built and traversed on
a Intel Pentium IV 2.8GHz computer with 1GB RAM.

To initialize the graph, all clients submit one update at time
t0. These updates are not dependent on any other update.
At every subsequent time-slice, all clients submit one more
update. Thus, at t1 and after, a client’s update depends on a
constant number of nodes in prior time-slices. This defines the
number of dependencies of that particular update.

In the experiments below we constrain the number of rows
on which an update can depend. This is because in practice,
only a snapshot of the dependents will be preserved. Note that
the number of rows depended upon is an upper bound. For
example, if this number is 20, an update submitted in time-
slice t100 can depend on any update submitted between t80
and t99, inclusive. Dependencies are selected randomly within
the defined range of time-slices with uniform probability.

Number of updates: Figure 5 shows traversal time as a
function of the number of updates in the graph. The graph
traversal starts at the first time-slice, on the first update of
the client having an identifier equaling N/2, where N is the
number of clients. For this experiment we fixed the number of
clients to 20, the number of dependencies to 5 and the number
of prior time-slices in which nodes can have dependencies to
20. We observe that the traversal time grows linearly with the
number of updates, and that for about 4 million updates, the
traversal time takes less than 3 seconds. We believe that several
seconds response time for marking potentially affected updates
is reasonably fast to serve current applications. For example,
a distributed replicated system that can handle around 80
updates per second, with a snapshot taken every 12 hours
will accumulate about 3.5 million updates between snapshots.
Building a 4 million dependency graph as described above
took less than 20 seconds, and the data structure occupied
about 225 MB of memory.

Number of clients: Figure 6 shows the traversal time and
the number of nodes traversed, as a function of the number
of clients submitting updates, in a scenario where the number
of nodes is 4 million, and there are 5 dependencies per node.
New updates can depend on the updates in previous 100 time-
slices. The number of nodes visited decreases as the number
of clients increases. Note that because the number of updates
is fixed, the number of time-slices decreases as the number
of clients increases. One node is visited in time slice t0.
Approximately 5 nodes in t1 are dependent on this node. In
t2, approximately 52 nodes are dependent, recursively on the
original node in t0. This trend continues (at a decreasing rate
because of overlapping dependents) until all nodes in a time-
slice are marked as suspect. As the number of clients increases,
it takes a larger number of time-slices before all clients in each
subsequent time-slice are marked as suspect, and therefore,
fewer nodes are traversed as the number of clients increases.

The traversal time is initially large because of CPU cache
misses, since dependent nodes are spread across a range of
memory proportional to the number of clients. It then increases
slightly as the number of clients increases to 10, 000 due to

an increase in cache misses. Then it decreases because the
number of nodes traversed decreases.

Number of dependencies: Figure 7 shows the traversal
time and the number of nodes traversed as a function of the
number of dependencies, when the number of nodes, clients,
and dependency time-slices are fixed. We consider a graph
with 4 million nodes, 100, 000 clients, and 20 dependency
time-slices. It can be noted that at 1, 2, 3 and 4 dependencies,
the traversal time and number of nodes traversed are small.
The number of nodes traversed increases rapidly thereafter.
The traversal time is approximately linear with the number of
dependencies.

Summary: Our experiments show that factors that affect
the performance of the Accountability Graph are number
of compromised clients, number of dependencies, and the
number of updates. For all of the scenarios we considered,
and without performing any application-specific optimizations,
the traversal time was less than 8 seconds. The number of
dependencies and the number of dependencies per update
seemed to be the most influential factors in increasing the
traversal time.

VI. RELATED WORK

In this section we summarize related work in several re-
search areas in distributed systems that relate to the problem
we present in this paper. We note that our work is comple-
mentary to the work presented below.

a) Directed Acyclic Graphs in Operating and Distributed
Systems: The core mechanism of our tool is building a
causality graph. Directed acyclic graphs (DAGs) were previ-
ously used in operating systems and distributed systems. For
example, the Time Warp Operating System [24] maintains two
“wave fronts” of computation. The front wave front represents
speculative computation that is hazarded by rollback. The
rear wave front bounds the roll back. Computations on the
rear wave front line depend only on prior computations that
are committed. Computations between the two wave fronts
are tracked using causal dependency tracking (a dependency
DAG), and can be canceled.

In the distributed systems field, the Trans protocol [14] and
the Transis system [25] also use a DAG in order to ensure
reliable delivery of multicast messages using non-reliable
multicast. This DAG is maintained on the fly and updated
accordingly as messages are delivered by all of the members
of the group. Strom and Yemini [26] replace synchronization
by causal dependency tracking in order to overcome benign
process failures in distributed systems.

b) Intrusion Detection Systems: The security community
has developed many mechanisms that can detect malicious
users after they have penetrated a computer system. The large
body of intrusion detection literature [9] testifies to our as-
sertion that malicious intruders will sometimes gain access to
even the best secured systems. We provide a way for to assess
and cope with these penetrations, while intrusion detection
systems provide ways to detect them. When a malicious, yet
authorized, intruder is detected, systems typically alert an
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Fig. 7. Traversal time as a function of the number dependencies

administrator and may trigger an automated damage mitigation
response. Traditionally, intrusion detection researchers have
taken two main approaches: misuse detection and anomaly
detection. Misuse detection focuses on identifying user be-
havior that matches a specific attack signature [7]. Anomaly
detection [8] focuses on finding user behavior that deviates
from normal system use. We want to emphasize that intrusion
detection strategies are more than merely complementary
to the Accountability Graph. Intrusion detection forms an
important component of our solution since a malicious user
must first be detected before the damage created by that user
can be mitigated.

The BackTracker Tool by King and Chen [27] was de-
signed to help system administrators analyze intrusions to their
operating system. Working backward from a detection point
such as a suspicious file or process, BackTracker identifies
the events and objects that could have affected that detection
point and displays chains of events in a dependency graph.
The system administrator can focus the detective work on
those chains of events in order to understand how the intruder
gained access to the system. Our work, in comparison, assumes
that the malicious clients (insiders) are authorized to access
the system and simply use the application to create or inject
incorrect inputs or updates. We are concerned with quickly
identifying what part of the current application state is corrupt,
suspected, and (no less important) not affected. The use of
dependency graphs in BackTracker, together with our past
directed acyclic graph work in Transis [25] to efficiently track
causality, inspired our Accountability Graph approach to cope
with malicious clients.

c) Byzantine-Resilient Replication: The first practical
work to solve replication while withstanding Byzantine fail-
ures is the work of Castro and Liskov [1]. Their algorithm
requires a number of 3f + 1 servers in order to tolerate
f faults and asks the client to wait for f + 1 identical
answers out of 2f + 1 answers in order to make sure that
it received a correct answer. The work is fundamentally based
on Byzantine Consensus, for which a good overview can be
found in [28]. The Byzantine replication provides protection
against malicious servers, and does not address the malicious
clients problem.

VII. CONCLUSIONS

In this paper we identified a significant attack against
distributed systems, mounted by malicious clients that delib-
erately insert incorrect data into the system using authorized
channels. We proposed a generic mechanism, Accountability
Graph, that tracks the dependencies between all of the updates
in the system, and that can classify data as corrupt, suspect,
or not affected, giving the ability to conduct risk assessment
and vulnerability analysis with respect to the compromised
client attack. We demonstrated the usefulness of our solution in
three different applications, and we showed that the overhead
associated with our solution is reasonable in these cases.
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