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1.  Technical Approach  

1.1 The Challenge  
Within MIT CSAIL an ensemble of computers runs a Visual Surveillance and Monitoring 
application. On January 12, several of the machines experience unusual traffic from 
outside the lab. Intrusion Detection systems report that several password scans were 
observed. Fortunately, after about 3 days of varying levels of such activity, things seem 
to return to normal; for another 3 weeks no unusual activity is noticed. Then, however, 
one of the machines (named Harding), which is crucial to the application, reports that it is 
experiencing unusually high load averages and that its application-level software is 
receiving less than the expected quality of service. The load average, degradation of 
service, the consumption of disk space and the amount of traffic to and from unknown 
outside machines continue to increase to annoying levels. Then they level off. On March 
2, a second machine in the ensemble (Grant) crashes; fortunately, the application has 
been written in a way which allows it to adapt to unusual circumstances. The system 
considers whether it should migrate the computations which would normally have run on 
Grant to Harding; however, these computations are critical to the application. The system 
decides that in spite of the odd circumstances noticed on Harding earlier, it is a 
reasonable choice.  
 
Did the system make a good choice? It turns out it did. The system needed to run those 
computations somewhere; even though Harding was loaded more heavily than expected, 
it still represented the best pool of available computational resources. Other machines 
were even more heavily loaded with other critical computations of the application. But 
what about all the unusual activity that had been noticed on Harding? It turns out that 
what had, in fact, transpired is that hackers had gained access to Harding by correctly 
guessing a password; using this they had set up a public FTP site containing among other 
things pirated software and erotic imagery. They had not, in fact, gained root access. 
There was, therefore, no serious worry that the critical computations migrated to Harding 
would experience any further compromise. (Note: the adaptive system in this story is 
fictional, the compromised computers reflect an amalgam of several real incidents).  
 
Let’s suppose instead that (1) the application was being run to protect a US embassy in 
Africa during a period of international tension (2) that we had observed a variety of 
information attacks being aimed at Harding earlier on (3) that at least some of these 
attacks are of a type known to be occasionally effective in gaining root access to a 
machine like Harding and that (4) they are followed by a period of no anomalous 
behavior other than a periodic low volume communication with an unknown outside host. 
When Grant crashes, should Harding be used as the backup? In this case, the answer 
might well be the opposite; for it is quite possible that an intruder has gained root access 
to Harding; it is also possible that the intent of the intrusion is malicious and political. It 
is less likely, but still possible, that the periodic communication with the unknown 
outside host is an attempt to contact an outside control source for a “go signal” that will 
initiate serious spoofing of the application. Under these circumstances, it is wiser to shift 
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the computations to a different machine in the ensemble even though it is considerably 
more overloaded than Harding.  
 

1.1.1 Architectural Lessons  
What can we learn from these examples?  
 
• It is crucial to have a trust-model that estimates (1) To what degree and for what 

purposes a computer (or other computational resource) may be relied on, as this 
influences decisions about what tasks should be assigned to them; (2) What 
contingencies should be provided for; and (3) How much effort to spend watching 
over them.  

 
• Making this estimate depends in turn on having a model of: (1) The possible ways in 

which a computational resource may be compromised; (2) The vulnerabilities 
possessed by the resources; (3) The general forms of the attacks capable of exploiting 
these vulnerabilities.  

 
• This in turn depends on having in place a system for long term monitoring and 

analysis of the computational infrastructure which can detect patterns of activity such 
as “a period of attacks followed by quiescence followed by increasing degradation of 
service”. Such a system must be capable of assimilating information from a variety of 
sources including both self-checking observation points within the application itself 
and external intrusion detection systems.  

 
• The system and its applications must be capable of self-monitoring and diagnosis and 

capable of adaptation so that they can best achieve their purposes using the available 
resources, even when these resources might be partially compromised.  

 
• This, in turn, depends on the ability of the application, monitoring, and control 

systems to engage in cognitive decision making about what resources they should use 
in order to achieve the best balance of expected benefit to risk.  

 
In this project, we have developed a software infrastructure providing services like those 
just enumerated. Existing application software may be retrofitted to this infrastructure and 
new applications may be developed against it. This infrastructure, called AWDRAT (for 
Architectural-differencing, Wrappers, Diagnosis, Recovery, Adaptivity and Trust-
modeling), provides a variety of services that are normally taken care of in an ad hoc 
manner in each individual application, if at all. These services include fault containment, 
execution monitoring, diagnosis, recovery from failure and adaption to variations in the 
trustworthiness of the available resources.  
 
Software systems tethered within the AWDRAT environment behave reflectively and 
adaptively, and with the aid of the AWDRAT infrastructure these systems regenerate 
themselves when attacks or mistakes cause serious damage. AWDRAT provides a 
convenient framework for structuring new application systems, for restructuring legacy 
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code, and for modeling software behavior in such a way that robustness is a natural 
byproduct, whether the cause of compromise is accidental misconfiguration or intentional 
coordinated attack.  
 

1.2 Overview of the AWDRAT System Architecture  
The discussion above illustrates the need for a software system to recognize and respond 
adaptively to signs of compromise. Rather than leaving it to the developers of each and 
every application system to build the complex facilities needed to achieve robustness in 
the face of attacks or mistakes, we instead have built the AWDRAT infrastructure that 
provides application level software with the services necessary to achieve robustness. The 
name AWDRAT enumerates these services: Architectural-differencing, Wrapper 
generation and placement, Diagnosis, Recovery, Adaptivity and Trust Management. We 
will present an overview of these services in the rest of this section and then turn in the 
following sections to a more complete description of each of the facilities.  
 
The architecture of AWDRAT is cognitive, goal driven, self-reflective and adaptive. 
AWDRAT provides services that allow application software systems to respond in 
reasonable ways to compromises of the resources, avoiding them if the compromise 
would cause serious harm, and using compromised resources if they can be employed 
usefully in pursuit of important goals without fear of damaging properties of interest. 
Finally, AWDRAT regenerates its hosted applications by removing the compromises 
(e.g. changing the stolen user password in our scenario), restoring corrupted data sets, 
instituting defenses against observed attacks, increasing the degree of variability in the 
hosted software so as to confuse future attackers or when none of this is possible by 
helping the application software to avoid the compromised resource.  
 
These services do not come for free. Software hosted within the AWDRAT environment 
must be (re)structured as discrete methods capable of rendering specific services; 
wherever possible, application software is encouraged to provide multiple methods for 
the same generic service (as is often the case when systematic domain engineering is 
undertaken). In addition, semantic meta-data must be provided to AWDRAT for each 
method. The AWDRAT framework is intended to host distributed application systems 
and wherever possible the methods should be (re)structured as mobile code, allowing 
AWDRAT to decide which host is best suited to running a computation.  
 
In the discussion to follow, we use the term “resource” to mean any host, code segment, 
data set, etc. that is necessary to support a particular computational step; when there are 
multiple resources that are more or less equivalent, AWDRAT has the freedom to choose 
between them. The AWDRAT decision cycle is:  
 
• When presented with a task to be achieved, AWDRAT consults its method library, 

finding all applicable methods relevant to the service request. Meta-data associated 
with each method describes the method’s resource requirements as well as the quality 
of service that the method will render given a particular resource selection.  
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• Each combination of method and supporting resources is evaluated, taking into 
account the cost of the resources and the value of the service quality delivered. 
During this evaluation, the trust model is consulted to assess the possibility that the 
resources are compromised; the cost of a potential failure is then taken into account in 
assessing the overall expected value of this particular combination of method and 
resources. The method and set of resources that promise the best overall tradeoff is 
selected for execution.  

 
• Accompanying each method is an architectural model of the computation performed 

by the method. This specifies prerequisite and post conditions for each step of the 
computation as well as state transitions that occur and invariants that are maintained 
during the step’s execution. Wrappers are synthesized to check that these constraints 
are met during the method’s execution. AWDRAT uses these wrappers to effect a 
technique called Architectural Differencing. It interprets the architectural model of 
the method in parallel with the executing code, noting when the two produce 
discrepant results or when the executing code violates a constraint of the architectural 
model. Other wrappers are synthesized to provision back up copies of significant data 
that will be used in recovery and regeneration.  

 
• If any constraint imposed by the architectural model is violated, model-based 

diagnosis is invoked to assess what part of the computation may have failed and to 
assess what resources might have been compromised in such a way as to lead the 
observed misbehavior. The trust model is updated with the information produced by 
the diagnosis, leading to new assessments of the reliability and trustability of the 
computational resources.  

 
• Recoverable data (e.g. databases, code segments, password files) are restored in order 

to establish a consistent point from which to resume the computation. If specific 
vulnerabilities are implicated in the failure, then attempts are made to repair the 
vulnerability.  

 
• AWDRAT also constantly monitors its sensors for evidence that an attack is 

underway. Attacks are modeled as multi-stage plans and plan recognition techniques 
are used to assess the probability that an attack has succeeded or is underway. This 
too updates the trust model.  

 
• AWDRAT returns to the beginning of its decision cycle, trying again to meet the 

application’s goal; however it is now informed by the results of diagnosis. It restarts 
the computation from any place that the diagnosis guarantees to have been 
successfully completed and chooses a method and resources in light of the updated 
trust model.  

 
• During the execution of a method AWDRAT collects data about the method’s 

performance and resource consumption. These data are used to form and refine 
constraints on the “nonfunctional properties” of the method which will then be 
monitored during future executions. Deviations from expected performance and 
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resource consumption constraints generate calls for diagnosis and recovery just as 
would a violation of a hard constraint on the input-output relationships of the method.  

 
This approach guarantees that AWDRAT will find some way to achieve the application’s 
goals if there is an available method; it also guarantees that it will steer the application 
clear of resources that it has reason to believe are corrupted if the compromise to the 
resources is likely to cause damage. The application system behaves adaptively when 
hosted within the AWDRAT environment.  
 
We have called this approach to survivability “Automatic Trust Management” [36, 38, 
37]. Prior to the SRS program, we had been investigating its principles and 
experimenting with prototype implementations of key components. This approach is a 
cogent example of “cognitive immunity” in that it relies on explicit, symbolic 
representation and reasoning, an explicit model of the intended functioning of the 
applications, as well as on a deliberative and reflective self-adaptive computing 
architecture. AWDRAT unites the following components:  

 
Figure 1:  The AWDRAT Architecture 
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Figure 2:  Method Selection 

 
• A trust model that assesses the likelihood that each computational resource is 

compromised in a specific way and thereby implies for what purposes the component 
may be used reliably. The first prototype for this was developed in the Oasis program 
[37].  

 
• An infrastructure to support self-adaptive application systems. Such systems will 

have more than one way to achieve each major sub-task and will dynamically decide 
how best to achieve each goal in light of current conditions, in particular, in light of 
the trust model. This draws on work done in both the Oasis program and in MIT’s 
Project Oxygen [36].  

 
• A system modeling framework that allows AWDRAT to operationalize the 

specifications of an application in terms of conditions expected to hold at particular 
points and invariants that must be true across intervals of the computation.  

 
• A synthesis system that automatically generates wrappers around components of the 

computation and around interfaces to the operating system such that the important 
state of the computation is observable and such that redundant copies of critical data 
can be automatically provisioned. This is based on both an existing Teknowledge 
technology drawn from earlier programs [12, 2, 3] and on new technology developed 
during SRS.  

 
• A diagnostic component that is activated by the detection of a symptom (i.e. the 

failure of a computational component to behave in accordance with its specification) 
by some wrapper. The diagnostic component then determines what failures may have 
led to the observed symptom, whether this failure is indicative of a compromised 
resource, what the cause of this compromise is likely to have been and whether this 
cause is likely to have affected other resources as well. In particular, we are 
concerned with intentional attacks that exploit vulnerabilities of the computational 
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resources
1 

. The diagnostic component then updates the trust model to reflect its 
conclusions. This is based on work begun in the Oasis program [38, 36] and further 
enhanced during SRS.  

 
• A recovery component, developed during SRS, that operates after the diagnostic 

component has assessed the cause of the failure. The recovery component is 
responsible for restoring corrupted data sets to a usably consistent preserved state 
(often capitalizing on checkpointed data automatically provisioned by wrappers) and 
for the selecting of a suitable method for achieving the application’s goals, given the 
updated beliefs in the trust model.  

 

1.2.1 The Trust Model  
 
The core representation enabling cognitive immunity is the Trust Model whose role is to 
inform AWDRAT about which resources may be trusted and for what purposes. It does 
this by creating a set of models of the ways in which each resource may be compromised 
and then associating a probability with the normal state as well as each compromised 
state of each resource (by resource we mean any object, such as a host computer, a data 
set, a code segment, that is necessary to support the execution of a computation).  
 
We model each resource at many levels of detail, decomposing until we reach a level at 
which it is convenient to observe evidence of compromises, to describe the types of 
compromises and to characterize the recovery methods relevant to each compromise. We 
do this by grounding the analysis in a comprehensive ontology that covers:  
 
• System properties  
 
• System Types  
 
• System structure  
 
• The control and dependency relationships between system components.  

 
The ontology covers what types of computing resources are present in the environment, 
how the resources are composed from components (e.g. an operating system has a 
scheduler, a file system, etc.), how the components control one another’s behavior, and 
what vulnerabilities are known to be present in different classes of these components. The 
analysis begins by asking what are the desirable properties that systems are expected to 
deliver and how these properties depend on the correct functioning of specific 
components of the system (for example, predictable performance of a computer system 
depends on the correct functioning of its scheduler). Typical properties include:  
 

                                                 
1 However, this approach is equally valid in reasoning about unintentional but systematic environmental factors that 
might, for example, degrade physical resources or interfere with communications 
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• Reliable Performance  
 
• Privacy of Communications  
 
• Integrity of Communications  
 
• Integrity of Stored Data  
 
• Privacy of Stored Data   
 

A relatively simple reasoning process (encoded in a rule-based system) then explores 
how a desirable property of a system can be impacted (e.g. you can impact the 
predictability of performance by affecting the scheduler, which in turn can be done by 
changing its input parameters which in turn can be done by gaining root access which 
finally is enabled by a buffer overflow attack on a process running with root privileges). 
The output of this reasoning is a set of multi-stage attack plans, each of which is capable 
of affecting the property of interest, see section 1.2.4.  
 
We also provide a structural model of the entire computing environment under 
consideration, including:  
 
• Network structure and topology  

 
– How is the network decomposed into subnets 
  
– Which nodes are on which subnets  
  
–  Which routers and switches connect the subnets 
  
– What types of filters and firewalls provide control of the information flow 

between subnets  
 
• System types:  

– What type of hardware is in each node  
 
– How is the hardware decomposed into sub-systems  
 
– What type of operating system is in each node  
 
– How is the operating system decomposed into sub-systems 
  

• Server and user software suites: What software functionality is deployed on each 
node. 

  
• What are the access rights to data and how are they controlled  
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• What are the places in which data or code is stored or transmitted  
 
• How is data or code transformed from one representation to another  

 
For example, we decompose a computer system into the physical hardware and the 
running operating system; the operating system is in turn decomposed into its various 
subsystems such as the file system, the scheduler, log-in manager, etc. We might then 
identify one type of possible compromise to the scheduler as the imposition of an unfair 
scheduling policy favoring certain tasks over others. Alternatively we might go one layer 
deeper, decompose the scheduler into a process priority table and a scheduling algorithm; 
here the compromise might be in the form of a change in the priority table, favoring a 
specific process. In general, the strategy is to decompose the model to a level that gives 
good diagnostic resolution, leads to accurate decisions about how to recover and that 
requires no more accurate information than we are capable of observing or of inferring 
from our observations.  
 
The trust model constitutes the middle tier of a three-tiered Bayesian inference system. 
The highest tier is concerned with the observations and inferences we make about 
executing computations, the lowest tier is concerned with the observations and inferences 
we can make about attacks. Intuitively, a compromise to a computational resource will 
eventually manifest itself in a misbehavior of some computation that relies on that 
resources (e.g. if the scheduler is compromised then some processes are likely to perform 
worse than expected; if the access control mechanisms are compromised then some 
protected data will eventually fail to meet its integrity constraints). An observation of 
such a misbehavior provides confirmation that the resource is compromised. This 
reasoning is made precise by translating it into the machinery of Bayesian networks; we 
create a link (a conditional probability) from a compromised state of a resource to a 
misbehaving state of the computation (see section on diagnosis on page 17). An 
observation of such a misbehaving computation will then cause the Bayesian network to 
increase the probability that the resource is compromised.  
 
Similarly, if we observe evidence of an attack we can infer that it is likely that the attack 
took advantage of the vulnerabilities of its target resources, leaving these in a 
compromised state. Within the Bayesian network this is implemented by connecting the 
node representing such a successful attack with other nodes representing the resulting 
compromised states of the vulnerable resources. The Bayesian network machinery will 
then propagate the probability forward from the attack node to the nodes representing the 
compromised resource state.  
 
In summary, the trust model has three levels: (1) Computational behavior, (2) Resource 
health status, (3) Attacks and vulnerabilities2 

. It unites these into a single Bayesian 
inference mechanism that assimilates all and propagates all evidence bidirectionally, 
connecting the observations of misbehaving computations, to the conclusion that certain 
resources are likely to have been compromised and connecting these conclusions to the 

                                                 
2 We note again that this approach is equally applicable to other events such as incorrect settings of configuration files 
by the system’s operators. 
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further conclusion that certain types of attacks (or mistakes) are likely to have occurred. 
It also makes bottom-up inferences, starting with evidence of an attack, leading to the 
inference that certain resources are likely to have been compromised and finally 
predicting that certain computations are likely to misbehave.  
 
The net result of this Bayesian inference is an updated estimate of the health status of 
each resource, an indication of what attacks are likely to have compromised some 
resources (and therefore which are likely to cause harm to other resources in the future) 
and an explanation for the observed misbehavior of executing computations. These 
assessments of the health status of computational resource then informs AWDRAT as it 
makes choices about how to achieve application level goals and about what resources to 
use in doing so. This is discussed in the section 1.2.2.  
 

1.2.2 Self-Adaptive Software and Rational Decision Making  
The purpose of the trust model is to inform AWDRAT in its choice of how to conduct 
application level computations and with what resources. To capitalize on the trust model, 
AWDRAT must be structured in a way that facilitates such a choice, making the 
applications that run within the AWDRAT framework adaptive to changes in the 
trustworthiness of their resources.  
 
Our approach to adaptation is an explicit, cognitive approach, based in decision theory. 
We structure the application systems around the services they are capable of rendering 
(i.e. the goals they can achieve on behalf of their client

3
) and the various methods they 

have available for achieving those goals (i.e. the plans available for achieving each goal). 
Each method that is capable of rendering a specific service requires a set of resources 
satisfying certain constraints (e.g. it needs a set of host computers with adequate memory, 
networks with appropriate bandwidth, data sets, etc.). These resources may be more or 
less available at the time of the request; this availability can be reflected as a price.  
 
In addition, each service can be rendered with varying qualities of service; for example, if 
the service is to display some information, then different methods will vary in terms in 
the speed with which the information is presented (a printer being much slower than a 
monitor, for example), the quality of the output (the printer might be much better than a 
monitor), the privacy of the presentation (a PDA screen would be more private than a 
projector), etc.  
 
As the context varies, different qualities of service may have more of less value to the 
requester of the service (at some point privacy might outweigh the quality of the display; 
at other times, the exact opposite might be true). In other words, the client has 
preferences over the qualities of service; the degree to which these preferences have been 
satisfied may be measured using techniques we have developed for converting preference 
sets into numerical utility functions [28]. In addition, we may assign to each set of 
resources a price reflecting their current availability. The difference between these two 

                                                 
3 By clients we mean either an actual end-user or another method that makes a service request 
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values is called net-benefit. AWDRAT will select that method and set of resources that 
maximizes net-benefit so as to provide adaptivity. We note in passing that this approach 
is a generalization of the method dispatch of object-oriented programming; instead of 
selecting methods based on type signatures, we select methods based on net-benefit.  
 

1.2.3 Adaptation to the Trust Model  
So far, we have been describing an AWDRAT as an adaptive framework that responds to 
variability in the availability of resources and the variability of the client’s preferences. 
However, in the current context, we are also interested in adaptation to compromises in 
the system’s resource pool. To do this, we turn to considering the expected net-benefit of 
a particular method-resource selection.  
 
The trust model gives us an assessment of the probability that a resource is compromised. 
In addition, it connects this estimate to assessments of the likelihood that a component of 
a computation will behave in other than the expected manner as we saw in section 1.2.1. 
This, in turn, may lead to a different quality of service being delivered by the application, 
which will affect the estimated benefit of the method. So in thinking about the benefit that  
 
 

 
Where M is a method, R is a set of resources, RS is a set of state assignments to each 
resource in a set. SQ is the service quality delivered, U is the utility function. EB is 

Expected Benefit and EC is Expected Cost 
 

Figure 3:  Equations governing Method Selection 

 
Figure 4:  Dependence Between Resource States and Behavioral Mode of Computation 
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a particular method and set of resources will deliver we must consider all the possible 
modes (both healthy and compromised) of all the resources used, and for each mode 
weigh the benefit delivered by the probability that the resources are in this mode. The 
sum over all combinations is called the expected net benefit and is a measure of how well 
this method and set of resources is likely to meet the client’s needs, given the uncertainty 
we have about the health of the resources. We note that a set of compromised resources 
can deliver “negative benefit,” for example by publicly exposing information intended to 
be kept private; if the resources are extremely likely to be in such a compromised state, 
then the expected net benefit will be negative.  
 
We also note that each method has certain prerequisite conditions and that absent these 
conditions, the method will fail. In addition to assessing the health status of all resources, 
the trust model also assesses the likelihood that these prerequisite conditions hold (see 
section 1.2.7). If a computational step is attempted when its prerequisite conditions do not 
obtain, then the computation will fail and there will be a cost associated with the damage 
such a failure engenders. Since there is a probability that the prerequisite conditions do 
hold, we subtract the cost of failure weighted by its probability from the expected net 
benefit weighted by its probability, yielding a measure of total net expected benefit. 
AWDRAT will choose that method which maximizes total net expected benefit so as to 
provide adaptivity to resource compromises.  
 
Finally, we must consider the total net expected benefit of not rendering the service at all. 
This has a cost to the client; but it is possible that the expected net benefit of the best 
possible method is itself negative (i.e. it’s a cost) and worse than cost of doing nothing. 
This would be the case if it is extremely likely that the resources are corrupted or that the 
method’s prerequisites don’t hold and that it will, therefore, fail catastrophically. For 
example, if you are about to send a message to your neighbor telling him that he is about 
to be attacked and if it is extremely likely that the message will be intercepted because 
security has been breached, then this might lead to catastrophic attacks against both you 
and your neighbor. This has an even more negative benefit than would doing nothing; in 
one case both of you get attacked, in the other case only the neighbor gets attacked. In 
such a situation the service request should be rejected.  
 
In summary, the decision theoretic approach allows AWDRAT to account for variations 
in the client’s preference, variations in the availability of resources, and variations in the 
assessment of the trustability and reliability of computational resources. It allows 
AWDRAT to consider explicitly whether to attempt recovery at a particular time and 
whether to attempt to render a service at all. It represents a cognitive, self-aware approach 
to making the application systems immune to compromises of the resources.  
 

1.2.4 Vulnerability Analysis and Attack Plan Recognition  
Attack modeling is the process of systematically enumerating all of the ways in which a 
computational environment can be attacked and discovering how those attacks can lead to 
resource compromises. The output of attack modeling is a set of complex, multi-step 
plans that an attacker might use. These plans are then interpreted by the plan recognition 
component of the system which is informed by inputs from the full gamut of sensors 
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available. It collates these inputs looking for specific patterns of activity characteristic of 
each step of a plan; for example, high rates of password scanning alarms from an 
intrusion detection system are characteristic of an early stage of an attack in which the 
attacker is attempting to gain first access. The plan recognizer maintains a set of active 
hypotheses; each hypothesis corresponds to a particular attack plan some of whose steps 
have already been observed.  
 
The attack plans are hierarchical; each sub-plan corresponds to a attack effecting a 
compromise enabling other sub-plans downstream. As we described in section 1.2.1, the 
bottom tier of the trust model deals with attacks while the middle tier deals with the 
health status of resources. To reflect the causal relationship between attacks and 
compromised resource states, a Bayesian network node representing a sub-plan of an 
attack plan is linked to a node representing a compromised modes of one or more 
resources in the trust model. As the plan recognizer gathers evidence that an attack is in 
progress, the Bayesian machinery increases the estimate of the probability that the 
resource has been compromised, possibly causing this estimate to become large enough 
to warrant action. At such a point the system poses for itself a goal of removing the 
compromise, tries to find a method relevant to this recovery and if successful executes the 
method and changes its estimate that the resource is compromised. [10, 11].  
 
Attack plans are generate by a rule-based inference system that uses the ontology 
underlying the trust model to reason about how one might affect a desirable system 
property. Fundamentally, this rule base deals with how different components depend on 
and control one another. We make this rule base as abstract and general as possible. This 
puts the notion of control and dependency at the center of the reasoning process. There 
are several rules about how to gain control of components, which are quite general. The 
following are examples of such general and abstract rules:  
 
If the goal is to affect the reliable-performance property of some component ?x 
Then find a component ?y of ?x that contributes to the delivery of that property  
and find a way to control ?y  
 
If the goal is to control a component ?x  
Then find an input ?y to ?x and find a way to modify ?y  
 
If the goal is to control a component ?x  
 
Then find a component ?y of ?x and find a way to control ?y  
 
If the goal is to control a component ?x 
Then find a vulnerability ?y of the component ?x  
  and find a way to exploit ?y to take control of ?x.  
 
At the leaves of this reasoning chain is specific information about vulnerabilities and how 
to exploit them. For example:  
 
• Microsoft IIS web-servers below a certain patch level are vulnerable to buffer 

overflow attacks.  
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• Buffer overflow attacks are capable of taking control of the components that are 

vulnerable.  
 
Vulnerability analysis is a backward chaining goal-directed reasoning process. It begins 
with desirable properties, finds ways to compromise those resources that deliver these 
properties and then find ways to enable these compromises. The attack plans developed 
may be quite complex, multi-stage plans in which one step enables a compromise (e.g. 
gaining access to a use account) that serves as a foothold for succeeding steps (e.g. 
monitoring network traffic to steal information). Figure 5 gives an example.  
 
To compromise the privacy of a typical computer C-1 in Cluster-1 
       Know the contents of a typical file F-1 on C-1 
          To do that Achieve Access rights to F-1 
                To do that Know the password of a typical user U-1 in Cluster-1 
                      To do that Observe network traffic on the Cluster-1’s Subnet S-1 
                            To do that Control A Switch SW-1 connected to S-1 
                                  To do that Logon to SW-1 
                                      To do that Know the password for the administrators of SW-1 
                                          To do that launch a password guessing attack 
                                     and connect to SW-1 using the SSH protocol 
and use those rights to Read F-1 

Figure 5:  A Plan for Affecting Privacy output by the Attack Modeler 
 

1.2.5 Architectural Differencing  
So far, we have discussed the trust model, how it is connected to attack recognition and 
diagnosis services (1.2.1), and how AWDRAT makes decisions about how to render 
application services given the information in the trust model (1.2.3). However, it is 
possible and unfortunately likely that some attacks will not be recognized and that 
resources will be compromised. Thus, for the overall system to be survivable, the trust 
model must be kept current while application software is running, the consequences of 
inappropriate behavior due to compromised resources must be contained, and the 
software must be reconfigured dynamically to avoid further inappropriate use of 
compromised resources. The key to all this is for AWDRAT to notice the misbehavior of 
the running application software, for it to use this as evidence of a compromised resource, 
for it to learn more about the nature of the compromise, and for it to reconfigure itself so 
as to reduce future risk.  
 
Our approach is based on detecting deviations of a application’s actual behavior from its 
expected behavior by running the executable application software in parallel with a 
simulation model of its intended behavior. The simulation model is supplied with input, 
output and state data gathered during execution using wrapper technology. A difference 
between the observed behavior of the application and that predicted by the model is taken 
to be symptomatic of an underlying problem and is used to trigger diagnostic services 
(1.2.7) whose job it is to characterize and localize the breakdown. We call this approach 
“Architectural Differencing”.  
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In Section 1.2.2 we described the basic execution cycle of AWDRAT as centering around 
method selection. The method ultimately selected is, in fact, just normal executable code 
(including legacy code); however, we associate with each executable method a simulation 
model. This is expressed in an architectural description language, called SDSL 
(Statecharts for Dynamic Systems Language) [13] which draws on UML [34] we also 
draw on ideas from the Plan Calculus of the Programmer’s Apprentice project [30].  
 
The model is a coarse decomposition of the task into partially ordered sub-tasks 
connected by abstract data and control flow links. Each sub-task is annotated with 
prerequisite conditions, post-conditions, and invariant conditions that must hold 
throughout the execution of the sub-task as well as descriptions of state-changes and 
other dynamic system behavior that should occur during the method’s execution.  
 
The model is usually not elaborated down to the individual subroutine level of the 
software, it stays at a more abstract level of decomposition. However, the entry and exit 
points of each model sub-task are associated with points in the code at which wrappers 
may be interposed, most often at actual subroutine entry and exit points. Wrappers are 
also used to capture significant events during the execution of the method (e.g. object 
creation, communication between objects). Wrappers are implemented in a variety of 
ways depending on what the environment offers. In a suitably reflective language (e.g. 
Lisp) they may be implemented by employing the Meta-level of the language system. In 
other cases wrappers may be implemented by incorporating them into the source code of 
the system; if the source code is not available, (e.g., commercial of the shelf components 
-COTS) wrappers may be injected [12].  
 
As long as AWDRAT can monitor at least the entry and exit points, it can maintain a 
mapping between the behavior of the executing application and that of the simulation 
model. It achieves synchronization between the two by translating significant execution 
events into inputs to the simulation. When a module in the executing application is 
started with particular inputs, these are presented to the simulation model which then 
makes predictions about: (1) What significant events should be noticed during the 
execution (and with what delay), (2) What outputs should be produced satisfying what 
constraints (both temporal and logical) and (3) What events should not be observed 
because they violate invariant conditions. As events in the executing software are noted, 
AWDRAT checks these for equivalence with the model’s predictions, translating the raw 
events into the model’s more abstract language and guaranteeing equivalence at the 
design level. Any difference between the predictions of the model and the observed 
behavior is treated as a symptom that is brought to the attention of the diagnostic services 
(1.2.7).  
 
Although the Model representation specifies prerequisite, invariant and post-conditions 
for each module, it is not the case that all of these events are easily observed or that the 
constraints are computationally inexpensive to check. Thus, the model must include 
annotations specifying which conditions actually to check; monitoring points are only 
enabled for such tractably checkable conditions. However, the other conditions are still 
useful during diagnosis as will be seen in section 1.2.7.  
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We also include models of misbehavior, when these are known or anticipated. We 
decompose the models along aspectual lines, separately describing how the task might 
perform correctly or incorrectly from the point of view of performance (e.g, overly slow 
or fast execution), privacy (e.g. storing protected data in public places), etc. This allows 
us to conveniently characterize misbehaviors of various types without combinatorial 
explosion of the descriptions. These characterizations of incorrect behavior are employed 
during diagnosis, see 1.2.7.  
 
The final set of annotations included in the model deal with critical data sets. As we will 
see in the section 1.2.6, we use wrappers to mediate access to all critical data sets. These 
wrappers enforce and signal violation of role-based access rules, initiating diagnostic 
activity. When indicated by the model, the wrappers can provision backup copies, 
checkpoints and access journals for all data marked as critical in the model. These can be 
used to aid diagnosis by helping to determine who or what processes accessed or 
modified the data; in addition they can be used during recovery to reconstitute 
compromised resources as will be described in the section 1.2.8.  
 

1.2.6 Wrapper Synthesis  
 
AWDRAT requires information to be collected during execution of an application 
method to determine whether the constraints of the application model are met. Moreover, 
critical data must be logged at certain points as execution progresses in case restoration to 
a safe state at a later time is necessary. To collect this data, we have chosen not to 
interfere with existing coding practices; we will not insist on trusting only code that is 
written anew for our purposes. Because of this, we cannot assume, for example, that we 
could modify the existing source code and recompile versions better suited to our 
modeling goals, perhaps broadcasting the data we need to collect. Instead, AWDRAT 
instruments existing legacy code with wrappers that collect the data without interfering 
with the original functionality.  
 
At Teknowledge we have built a wrapper-based technology called Mediated Connectors 
that can be imposed on legacy components (1) To observe behavior that feeds 
AWDRAT’s Architecture Differencer; (2) To create periodic backup copies of critical 
data resources; (3) To observe non-function properties, such as resource consumption and 
utilization. (4) In effecting recovery procedures from backed up data and other modeled 
trust data.  
 
The Mediated Connector technology [3] is quite mature and has been used extensively (in 
several projects [14, 41, 42]); the technology is immune to mediator bypass attacks. The 
Mediated Connector technology is based on intercepting (mediating) calls to PC 
Windows-based platforms’ Dynamic Link Libraries (DLLs). One or more sets of 
mediators are designed for each library to be wrapped; the mediators are programmed in 
C++. Each wrapped call has access to the parameters of the intercepted call and can 
substitute its own computation’s result for the wrapped function’s result. The wrapper 
can (and normally does) invoke the original function, possibly with altered parameters, in 
order to determine the result to pass back. After installation, the wrappers run in the 
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calling process and have access to everything in its environment, e.g., its process id and 
spawning process.  
 
Wrappers are normally used for three distinct purposes. First, they can be used to protect 
resources by checking to see that a critical function, e.g. “open file for output,” is not 
invoked on sensitive system resources, e.g. “files in the Windows Startup directory.” In 
this case, the result returned by the wrapper tends to be either an empty result or the 
wrapper actually throws an exception. Second, they can be used to observe and record 
activities in the system, e.g. “website access frequency,” by simply keeping auxiliary data 
structures or files that they update. Such wrappers keep their statistics or logs and allow 
the original function to proceed normally. A related use for wrappers is to cache results 
and return the same result as the first call on identical parameter sets. And finally, 
wrappers can be used to change functionality in part or in its entirety. One could spoof 
access results, for example, if the invoker of the accessor were not trusted.  
 
Generally, this final activity requires cooperation among mediators to effect a new 
infrastructure. For example, one can impose an encryption decryption protection scheme 
using wrappers that cooperate on both storage and retrieval of information on a particular 
resource. Here we are proposing just such a new infrastructure for trust management.  
 
To establish this infrastructure there will be some wrappers that we design that will be 
imposed on every system participant. These will be used to establish the reflective 
information model and are quite complex. For example, all process creation and deletion 
activity must be wrapped to maintain a reflective model of the running architectural 
structure of the system.  
 
There are two approaches to synthesizing the model-specific wrappers needed to collect 
system-specific data used in modeling. One is to preprogram most wrappers for generic 
activities such as file access, registry access, and web access, as well as a second set of 
wrappers around process creation and destruction, etc. These wrappers would then 
interpret of more specific instructions relevant to their specific context of user. Although 
these mediators can be dynamically installed and activated, they would be largely pre-
programmed. A second approach is to dynamically synthesize the specific wrappers 
needed to monitor specific predicates. The decision of which approach to take depends on 
the overhead of using the interpreted version and how volatility of the situation driving 
the synthesis process. Initially, we will work with the former approach and look for 
bottlenecks indicating the desirability of the latter. In either case, our Teknowledge group 
has over 25 years’ experience with program synthesis systems and can apply a variety of 
program generation technologies to this problem [43, 44, 45, 15, 46].  
 
 

1.2.7 Diagnosis  
 
We have described how we model computational behavior (1.2.5) and how the models 
act as active monitors of the executing software (1.2.6). As an application computation 
proceeds AWDRAT checks that the executing software produces behavior equivalent to 



 

 18

that specified in its model. If there is a discrepancy, then the executing system is halted 
and diagnostic services are invoked.  
 
The task of diagnosis is to localize and characterize the breakdown; in this case this 
ultimately comes down to (1) Identifying resources that have been compromised so as to 
cause the computation to misbehave in the manner observed and (2) Identifying those 
tasks that have been correctly completed and those conditions that can be relied upon as a 
basis for recovery. If every condition in the model were easily observed and efficiently 
checked, this would be trivial since AWDRAT would catch any misbehavior 
immediately. Unfortunately, this is usually not the case; the observable and verifiable 
behaviors are sparse and act as containment regions on the execution. The diagnostic task 
then becomes to employ model-based, symbolic inference to isolate and characterize the 
failure given the sparse observations that have been made. Finally, since there may be 
more than a single possible explanation for a failure (for example, more than one 
resource compromise might lead to the same misbehavior), AWDRAT employs Bayesian 
inference techniques to associate a probability with each possible explanation and 
ultimately to update the estimates in its trust model.  
 
The techniques we employ were developed in the OASIS program [36, 38, 37] and draw 
on earlier model-based diagnosis work [7, 8, 6, 16]. The basic idea is as follow: 
Associated with the executing software are simulation models of both nominal and 
abnormal modes of behavior (1.2.5) for each sub-task. To allow for the fact that we 
cannot possibly model all faults, we include a “null model” for each task, representing all 
other behaviors. The diagnostic task is to assign one such mode of behavior to each sub-
task, such that the predictions made by the simulation model are consistent with the 
observations of the actual behavior.  
 
Like all Model Based Diagnosis techniques, ours is driven by the use of a network of 
justifications and dependencies (i.e. a Truth Maintenance Systems) built during model 
simulation. As the coordinated execution of the actual software and the simulation model 
proceeds AWDRAT maintains a database of assertions corresponding to the model 
conditions. Those model conditions that are actually observed and checked are marked as 
premises. Prerequisite conditions of a task are justified with links to those post-conditions 
of prior tasks that collectively entail the precondition. Each sub-task in the model has 
several possible behavioral modes, each with its own simulation model, prerequisite and 
post-conditions. Up to the point that a discrepancy is noticed, we assume that each sub-
task executes in its normal mode. The post-conditions asserted by this model are linked to 
the assumption that the task is in its normal mode and to the prerequisite conditions of the 
task. Thus, as execution proceeds we build up a dependency network linking 
unobservable conditions to observations and the assumptions that sub-tasks behaved 
normally.  
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Figure 6:  Dependencies Built During Diagnosis 
 

Diagnosis is initiated when a discrepancy is detected between the expected and actual 
behaviors of a computation. We first identify the conflict set; this is the set of components 
that were assumed to be behaving normally and that are linked by justification chains to 
predicted behavior that is at variance with the observed behavior. Diagnosis consists of 
finding different behavior modes for some or all of the components in the conflict set 
such that the selected behavior models predict the behavior actually observed (as opposed 
to that predicted by the normal behavioral modes). There may in fact be several such 
diagnoses. As we search for diagnoses, we may also encounter selections of abnormal 
behavior models that make predictions at variance with the actual observations. These are 
additional conflict sets. We continue enumerating combinations of behavioral models 
until we have identified all the conflict sets; all remaining combinations are possible 
diagnoses. This whole process is managed efficiently by a truth maintenance system as 
described in [38, 37, 7, 8, 9, 39].  
 
As we noted in sections 1.2.1 and 1.2.5, the trust model links different behavioral modes 
for tasks in the model to the various kinds of compromises that might be present in the 
resources employed by the computation. In fact, these are all represented within a 
Bayesian inference network. The Bayesian network is augmented with a new node 
corresponding to each conflict set; each such conflict node is connected to the nodes 
corresponding to behavior modes in the conflict set and the conditional probability table 
of this node corresponds to a logical conjunction (i.e. its true value has probability 1 if all 
the inputs are true and otherwise the true value has probability 0). Since the conflict set is 
a set of behavior modes that collectively entail conditions at variance with our 
observations, we pin the value of each such node at false.  
 
Actually, we only identify minimal conflicts (i.e. conflict sets that are not supersets of 
other conflicts) since these imply any non-minimal conflicts. After all minimal conflicts 
are discovered, any remaining set of behavioral modes is a consistent diagnosis. For each 
of these we create a node in the Bayesian network which is the logical-and of the nodes 
corresponding to the behavioral modes of the components. This node represents the 
probability of this particular diagnosis; the probability of this node is determined by the 
Bayesian inference machinery. Finally all the dependency relationships between 
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prerequisite conditions, selection of behavior mode and post-conditions are also added to 
the Bayesian network4 

.  
 
The Bayesian network is then solved giving us updated (posterior) probabilities. In 
particular, we have posterior probabilities for each diagnosis, for each possible 
compromised mode of each resource, and for each assertion in our trace of the 
computation that was not directly observed. Since these assertions represent prerequisite 
and post-conditions of tasks in the model, we also have estimates of how likely it was 
that these particular conditions obtained at particular points in the computation.  
 
In summary, our approach to diagnosis uses model-based symbolic reasoning as well as 
Bayesian probabilistic reasoning to assess the probabilities that resources have been 
compromised in specific ways; this is to say that diagnosis updates the trust model. In 
addition, these same diagnostic techniques assess the probabilities of the various way in 
which the computation might have misbehaved so as to produce the misbehavior 
observed. This is to say that diagnosis updates a world model, telling us what conditions 
we can rely on even after the computation has failed (and to what extent we can trust this 
assessment). These are then used to support AWDRAT’s recovery and regeneration 
processes.  
 

1.2.8 Recovery from Failure and System Regeneration  
 
Having reached a diagnosis of a failure and updated the trust model, AWDRAT attempts 
to find an alternative way to render the desired service. It also considers the broader 
question of regenerating other resources that are suspect and that may be required for 
system wide consistency.  
 
In the final analysis, all recovery and regeneration efforts are a matter of replacing 
corrupted data by more trusted copies. However, by data we mean any collection of bits 
in either volatile or non-volatile storage that is used in the course of a computation. There 
are several aspects to this problem. First, the same conceptual data may exist in several 
locations and move between these during normal operation. For example, a segment of 
executable code might exist in primary memory as well as in a paging partition. 
Secondly, the same conceptual data might exist in different formats (e.g. source code, 
binary files, linked image files) that are transformed one into another. In general, it may 
be possible to achieve short term recovery by fixing the active version alone, but 
systematic regeneration would fix all versions and representations that are suspect.  
 
AWDRAT’s primary recovery technique is to attempt to replace the corrupted data 
(including code) representing a computational resource by a redundant copy that had 

                                                 
4 we will explore an implementation technique in which the data structures representing justifications in the Truth 
Maintenance system also represent links in the Bayesian network, removing the need to maintain what is essentially 
redundant data  
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been secreted away by wrappers
5 

. Once the resource is restored, its status in the trust 
model is updated to reflect its highly increased likelihood of being uncorrupted.  
 

2.  Detailed Description of Key Technologies  
 
The AWDRAT architecture is shown in Figure 1. AWDRAT is provided with models of 
the intended behavior of its applications. These models are based on a “plan level” 
decomposition that provides invariant conditions for each module’s execution as well as 
for the modules’ pre-and post-conditions. AWDRAT actively enforces these declarative 
models of intended behavior using “wrapper” technology. Non-bypassable wrappers 
check the model conditions at runtime, allowing execution to proceed only if the 
observed behavior is consistent with the model’s constraints. We call this technique 
“Architectural Differencing”. In the event that unanticipated behavior is detected, 
AWDRAT uses Model-Based Diagnosis to determine the possible ways in which the 
system could have been compromised so as to produce the observed discrepancy. 
AWDRAT proceeds to use the results of the diagnosis to update a “trust model” 
indicating the likelihood and types of compromise that may have been effected to each 
computational resource. Finally, AWDRAT helps the application recover from failure, 
using this trust model to guide its selection of computational techniques (assuming that 
the application has more than one method for carrying out its intended tasks) and in its 
selection of computational resources to be used in completing the task.  
 
AWDRAT uses its model of an application’s intended behavior to recognize the critical 
data that must be preserved in case of failure. AWDRAT generates wrappers that 
dynamically provision backup copies and redundant encodings of this critical data. 
During recovery efforts, AWDRAT installs these backup copies in place of compromised 
data resources.  
 
AWDRAT, using this combination of technologies, provides “cognitive immunity” to 
both intentional and accidental compromises. An application that runs within the 
AWDRAT environment appears to be self-aware, knowing its plans and goals; it actively 
checks that its behavior is consistent with its goals and provisions resources for recovery 
from future failures. AWDRAT builds a “trust model” shared by all application software, 
indicating which resources can be relied on for which purposes. This allows an 
application to make rational choices about how to achieve its goals in light of the trust 
model.  
 

2.1 Wrapping Technology  
 
Wrappers are used to allow AWDRAT to gain visibility in the program’s execution. 
AWDRAT, in fact, employs two distinct wrapper technologies: SafeFamily[4, 19] and 
                                                 
5 Our project did not attempt to develop sophisticated techniques for managing and protecting this backup data; in the 
future we will attempt to use the techniques developed by other projects in SRS. 
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JavaWrap. The first of these encapsulates system DLL’s, allowing AWDRAT to monitor 
any access to external resources such as files or communication ports. The second of 
these provides method wrappers for Java programs, providing a capability similar to 
“:around” methods in the Common-Lisp Object System[21, 5] or in Aspect-J[22].  
 
These two capabilities are complementary: JavaWrap provides visibility to all application 
level code, SafeFamily provides visibility to operations that take place below the 
abstraction barrier of the Java Language runtime model.  
 
Together they provide AWDRAT with the ability to monitor the applications behavior in 
detail as is shown in Figure 7.  
 
Both wrapper technology’s involve the use of a collection of individual mediators each of 
which gains control at the entry point of some module. For JavaWrap the unit of 
granularity is the individual Java method, for SafeFamily, the unit of granularity is the 
individual API entry point in a shared library. 
 

 
Figure 7:  Two Types of Wrappers Used in AWDRAT 

 
A mediator typically does one or more of the following:  
 

• conditionally calls the mediated API  
 

• calls the mediated API with altered actual parameter values  
 

• return a different result (or exception) than the mediated API  
 
Mediating one or more APIs from a shared library provides, (or one or more method in a 
class file) in effect, a new library (class file) that relies on the original. The new library 
(or class file) exports the same interface as the original, and actually shares with the 
original the binary code that is common to both. Mediator authors are thus relieved of the 
need to reimplement any portions of the library they don’t need to mediate. They are also 
relieved of any need to maintain a second copy of the source (generally unavailable 
anyway). Mediator users do not need to retain a second binary version of the library 
(class file) in the file system. The new library (class file) is virtual. It is implemented 
dynamically within the address space of any process that uses the mediators.  
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2.1.1 The SafeFamily Facility  
 
The SafeFamily facility is build on top of the low level mediators that are used to gain 
control of the API’s presented by the shared libraries (dll’s) that constitute the OS 
interface. The SafeFamily execution environment controls the set of resources that can be 
seen by application code running in the mediated environment. It also controls how and 
to what extent those resources can be used. Any excluded resources are neither detectable 
nor useable by the applications running within these execution environments.  
 
By restricting how resources are used, these SafeFamily execution environment can 
prevent the modification or destruction of critical resources, access of unauthorized 
information, submission of unauthorized requests, and denial of service.  
 
The SafeFamily execution environment protects four classes of resources: files, the 
system registry, process spawning, and communication with remote hosts. Access to, and 
modification of, each of these resources is controlled by a set of user specified rules. The 
rules are written in XML notation, with one unit for each Resource. To use the 
SafeFamily facility, one must provide an XML file of rules specifying the resources (e.g. 
files, ports) and actions (e.g. writing the file, communicating over the port) that are to be 
prevented.  
 
The Figure 8 shows a rule that controls files in the “AWDRAT” directory:  
 

<file inherit="true" override="false" 
resource="C:\aire2\edu\mit\aire\awdrat\" specialmode="none"> 

<read action="allow" audit="false"/> 
<write action="allow" audit="false"/> 
<execute action="deny" audit="true"/> 
<com action="deny" audit="true"/> 

</file> 

Figure 8:  A SafeFamily Rule 
 

The SafeFamily security manager non-bypassably installs wrappers on newly spawned 
processes as they are started in accordance with the wrapper policy specification it is 
given. This wrapper policy specification details which wrappers are to be placed on 
which processes whenever those processes run.  
 
This Security Manager runs as a service (which means that it is started before any user 
logs on) and monitors all process spawns. It accomplishes this monitoring by wrapping 
all the other services and any processes they spawn (recursively). This includes all 
processes started on behalf of the logged in user. The Security Manager also propagates 
all wrappers installed on a process to all processes that that process spawns directly or 
indirectly.  
 
Within the AWDRAT environment, any policy violation detected by the SafeFamily 
facility results in the action being blocked and a message being sent on a socket opened 
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between the SafeFamily security manager and the AWDRAT executive. AWDRAT 
inserts an event corresponding to this signal into its event stream, allowing the execution 
monitor to respond to the attempt at unauthorized access. We have a designed, but not yet 
implemented, a more complex mechanism in which AWDRAT can respond to the 
SafeFamily security manager, telling it that the attempted access is, in fact, allowable in 
the current context. In more detail, the SafeFamily executive blocks the thread that 
attempted the unauthorized access, and then signals the AWDRAT executive (which runs 
in a separate thread from the application). The AWDRAT executive then gets to 
determine whether this access is one that allowed at this point in the execution of the 
program. If so, it signals back to SafeFamily security manager, that the access is 
permitted and then the SafeFamily manager allows that application thread to continue 
execution. If AWDRAT determines that the access is, in fact, a violation, then it signals 
that back to the SafeFamily security manager which continues to block the access.  
 
Thus, the SafeFamily rules act as a coarse grained policy, saying which accesses to 
resources are never allowed and which are conditionally allowed, while the AWDRAT 
execution monitor supplies the fain-grained control based on its system model.  
 

2.1.2 The JavaWrap Facility  
 
Just as the SafeFamily wrapping facility provide visibility at the shared library API level 
(which is ideal for monitoring resource accesses), so the JavaWrap facility provide 
visibility into the dynamic execution of the application code at the granularity of 
individual method calls. To use the JavaWrap facility, one must provide an XML file 
specifying the methods one wants to wrap as well as a Java Class of mediator methods, 
one for each wrapped method in the original application. This is explained in more detail 
below.  
 
JavaWrap is a tool that installs mediators on Java methods in a Java application. A 
mediator is itself a Java method that mimics the interface of the method that it mediates 
(the mediatee). Technically, a mediator replaces its mediatee in the wrapped application. 
The mediator has access to the mediatee, to its parameters, and (in the case of a non-static 
mediatee) to the this object supplied at the invocation of the mediatee. A wrapper consists 
of a collection of mediators and methods called by them. A wrapper generally also 
contains its own variables in which its mediators record aspects of the application state.  
 
The most general form of mediator is called a transformer. Transformers are the most 
common type of mediator used in AWDRAT. Although a transformer completely 
replaces the behavior of its mediatee, it can include in that behavior an invocation (or 
even more than one!) of the mediatee, passing either the original parameters or different 
parameters.  
 
Two less general, but quite common, uses of mediators are singled out with simplified 
protocols for their definition. A monitor is a mediator that applies its mediatee to the 
parameters originally supplied in its invocation, returning the value (if any) returned by 
the mediatee, but performs some additional behavior (typically recording information in 
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the wrapper’s state) before and/or after the execution of the mediatee. Typically the 
additional behavior consists of recording state information in the wrapper’s private 
variables. This additional behavior can include actions that modify the application’s 
native state, but monitors are not intended for that purpose. Monitors are used in 
AWDRAT mainly for gaining visibility into invocations of Java constructor methods.  
 
An authorizer is a mediator that decides whether or not to allow an invocation of its 
mediatee to be executed. The authorizer has access to the mediatee’s parameters and (in 
the case of a non-static mediatee) to the object supplied at the invocation of the mediatee. 
The authorizer may throw an exception to the caller, blocking execution of the mediatee, 
or may allow the mediatee invocation to occur as it would have had there been no 
mediator.  
 
Monitors can be used to produce logs of application execution. JavaWrap includes a 
capability for producing fairly general logs, in an XML format, of an application’s 
execution. Using JavaWrap to produce logs requires you to identify which methods 
should be traced, and where the log should be written, but does not require you to write 
any mediators.  
 
2.1.2.1 Implementation and Requirements  

Java Wrappers are implemented as transformations to the byte code implementations of 
Java classes. The transformations to a class are carried out at the time the class is loaded 
into the Java Virtual Machine (JVM).  
 
Sun Microsystem’s JVM version 1.5 (aka 5.0) includes a facility for java agents to 
intervene in the loading of classes. Java wrappers rely on this facility and so will not 
work with earlier versions of the JVM. Only the 1.5 JRE (Runtime Environment) is 
required, not the full JDK. It can be freely downloaded from 
http://java.sun.com/j2se/1.5.0/download.jsp. Use of Java Wrappers does not require 
familiarity with java agents.  
 
Java Wrappers also relies on a “Java source to byte code” compiler provided by the 
Javassist library. This library can be downloaded by following the link from 
http://www.jboss.org/products/javassist.h Use of Java Wrappers does not require 
familiarity with Javassist.  
 
2.1.2.2 Wrapping a Java Application  
Wrapping a Java application requires creating an XML file – the wrapper specification – 
and creating a java jar file – the wrapper implementation. The wrapper specification binds 
methods to be mediated to their mediators. The wrapper implementation contains the byte 
code implementations of the mediators.  
 
To run the application with the wrapper, it must be launched with a -javaagent argument 
supplied to the JVM, and with a class path enhanced to include the wrapper 
implementation jar file and the Javassist jar file. For example, suppose an unwrapped 
application could be launched with the command line  
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{Java -cp <path> <mainclass> [args...]} 

 
The same application could be launched with a wrapper using the command line:  
 
{Java -javaagent:<JWjar>=<JWSpec> -cp <path>;<JWImpl>;<JAjar> <mainclass> 
[args...]} 
 
where  

• <JWjar> is the path to JavaWrap.jar  
 
• <JWSpec> is the path to the wrapper specification XML file  

 
• <JWImpl> is the path to the wrapper implementation jar file  
 
• <JAjar> is the path to Javassist.jar  

 
2.1.2.3 Wrapper Specifications  
 
A Wrapper Specification is an XML document whose root element uses the tag 
JAVAWRAP. The immediate children of the JAVAWRAP root element use the tag 
CLASS. A CLASS element should have a single attribute, whose name is name and 
whose value is the fully qualified Java name of the class, using the “dot-separated” syntax 
you would use in java source code -e.g.,  
 

{<CLASS name="org.xml.sax.Locator"> } 
 

The name in a CLASS element must identify a Java class, not an interface.  
 
A CLASS element may have any number of METHOD children and any number of 
PRINTER children. A METHOD element identifies a method of its parent’s class that is 
to be mediated or traced. The target method is identified by a pair of attributes: name and 
signature. The value of the name attribute is the simple name of the method, just as you 
would write it in a method invocation. The value of the signature attribute is the Java 
method descriptor for the method, using the notation specified in The Java

TM 

Virtual 
Machine Specification (sections 4.3.2, 4.3.3, table 4.2),  
 
The identified method may be either local to the class or, if it is an instance method, 
inherited from a superclass.  
 
The method identified by a METHOD element, regardless of whether it is local or 
inherited, may not be an abstract method.  
 
A constructor is identified in a METHOD element either by the name=”¡init¿” or by 
omitting the name attribute entirely.  
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{<METHOD signature= "(Ljava/lang/String;Z)V" />} 
 

identifies a constructor with two parameters -a string and a boolean. If the class has only 
one method having the specified name -including inherited methods -then the signature 
may be omitted.  
 
The method identified by the combination of the METHOD name and signature 
attributes, in conjunction with the CLASS name attribute, may be either an instance 
method or a static method, and may have any scope attribute (public, protected, private, 
or default).  
 
If the method is to be mediated by code you supply, then the METHOD element must 
contain exactly one of the attributes: monitor, authorizer, or transformer. The value of the 
attribute should be a string that identifies the mediator to be used. The mediator code 
must be located in the Wrapper Implementation jar file. The identifying string consists of 
the mediator’s full class name (dot-separated) followed by another dot and the method 
name e.g,  
 

<METHOD signature= "(Ljava/lang/String;Z)V" monitor= 
"tek.mafMed.Mediators.constructMission" /> 

 
All mediators must be static methods. The precise parameter types, return type, and 
allowed behavior of a mediator depends both on the method it mediates and on whether it 
is used as a monitor, authorizer, or transformer. These requirements are detailed below.  
 
If the method is to be traced, then the METHOD element must contain none of the 
attributes: monitor, authorizer, or transformer.  
 

2.2 Diagnostic Technology  
 
AWDRAT’s diagnostic service is described in more detail in [36] and draws heavily on 
ideas in [9]. Each component in the System Architectural Model provided to AWDRAT 
is provided with behavioral specifications for both its normal mode of behavior as well as 
additional models for faulty behavior. As explained in the section on Architectural 
Differencing, page 29, an event stream, tracing the execution of the application system, is 
passed to the execution monitor, which in turn checks that these events are consistent 
with the System Architectural Model. As the execution monitor does this, it builds up a 
data base of assertions describing the system’s execution and connects these assertions in 
a dependency network. Any directly observed condition is justified as a “premise” while 
those assertions derived by inference are linked by justifications to the assertions they 
depend upon. In particular, post-conditions of any component are justified as depending 
on the assumption that the component has executed normally as is shown in Figure 9. 
This is similar to the reasoning techniques in [35].  
 
Should a discrepancy between actual and intended behavior be detected, this will show 
up as a contradiction in the database of assertions describing the application’s execution 
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history. Diagnosis then consists of finding alternative behavior models for some subset of 
the components in the architectural model such that the contradiction disappears when 
these models of off-nominal behavior are substituted.  

 
Figure 9: Dependency Graph 

 
 
 
 

 
Figure 10: Diagnosis With Fault and Attack Models 
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2.2.1 Common Mode Failures  
What we are able to observe is the progress of a computation; but the computation is 
itself just an abstraction. What an attacker can actually affect is something physical: the 
file representing the stored version of a program, the bits in main memory representing 
the running program, or other programs (such as the operating system) whose services are 
employed by the monitored application.  
 
Thus, we require a more elaborated modeling framework detailing how the behavior of a 
computation is related to the state of the resources that it uses. In addition to modeling the 
behavior of the components in the system architectural model, AWDRAT therefore also 
models the health status of resources used by the application. We use the term “resource” 
quite generally to include data read by the application, loadable files (e.g. Class files) and 
even the binary representation of the code in memory. In turn, we must represent the 
vulnerabilities of these resources and the attacks enabled by these vulnerabilities. Finally, 
we must represent how such attacks compromise the resources, causing them to behave in 
an undesired manner.  
 
The System Architectural Model provided to AWDRAT describes how a compromise to 
a resource might result in an abnormal behavior in a component of the computation; these 
are provided as conditional probability links. Similarly, AWDRAT’s general knowledge 
base contains descriptions of how various types of attacks might result in compromises to 
the resources used by the application as is shown in Figure 10.  
 
A single compromise of an operating system component, such as the scheduler, can lead 
to anomalous behavior in several application components. This is an example of a 
common mode failure; intuitively, a common mode failure occurs when a single fault 
(e.g. an inaccurate power supply), leads to faults at several observable points in the 
systems (e.g. several transistors misbehave because their biasing power is incorrect). 
Another example comes from reliability studies of nuclear power plants where it was 
observed that the catastrophic failure of a turbine blade could sever several pipes as it 
flies off, leading to multiple cooling fluid leaks.  
 
Formally, there is a common mode failure whenever the probabilities of the failure modes 
of two (or more) components are dependent. Early model-based diagnostic systems have 
assumed probabilistic independence of the behavior modes of different components [9] in 
order to simplify the assessment of posterior probabilities. Later work [39] allows for 
probabilistic dependence; however, it does not explore in detail how to model the causes 
of this dependence. We deal with common mode failures by extending our modeling 
framework to make explicit the mechanisms that couple the failure probabilites of 
different components.  
 
As already noted we have extended our modeling framework, as shown in Figure 10, to 
include two kinds of objects: computational components (represented by a set of delay 
models one for each behavioral mode) and infrastructural components (represented by a 
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set of modes, but no delay or other behavioral models). Connecting these two kinds of 
models are conditional probability links; each such link states how likely a particular 
behavioral mode of a computational component would be if the infrastructural 
component that supports that component were in a particular one of its modes (normal or 
abnormal). Each infrastructural component mode will usually project conditional 
probability links to more than one computational component behavioral mode, allowing 
us to say that normal behavior has some probability of being exhibited even if the 
infrastructural component has been compromised.  
 
The model also includes a priori probabilities for the modes of the infrastructural 
components, representing our best estimates of the degree of compromise in each such 
piece of infrastructure. Following a session of diagnostic reasoning, these probabilities 
may be updated to the value of the posterior probabilities.  
 
We next observe that resources are compromised by attacks. Attacks are enabled by 
vulnerabilities in the resources. For example, many systems in the Unix family are 
vulnerable to buffer-overflow attacks; most networked systems are vulnerable to packet-
flood attacks. An attack is capable of compromising a resource in a variety of ways; for 
example, buffer overflow attacks are used both to gain control of a specific resource and 
to gain root access to the entire system. But the variety of compromises enabled by an 
attack are not equally likely (some are much more difficult than others). We therefore add 
a third tier to our model to describe the ensemble of attacks assumed to be available in 
the environment. We connect the attack layer to the resource layer with Conditional 
probability links that state the likelikhood of each mode of the compromised resource 
once the attack has been successful.  
 
When attacks are present in the environment what matters is the conditional probabilities 
of the different modes of the resources given that an attack has taken place. We 
hypothesize that one or more attack types are present in the environment, leading to a 
three-tiered model as shown in figure 10.  
 
Our model of the computational environment therefore includes:  
 

• The components of the computation that is being observed  
 

• A set of behavioral models for each component, representing both normal and 
failure modes.  

 
• The set of resources available to be used by the computational components  

 
• A set of behavioral modes for each resource, representing both normal and 

compromised modes.  
 

• A map stating which resources are used by each computational component.  
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• Conditional probabilities linking the modes of the computations to the modes of 
the resources employed by that component.  

 
• A list of vulnerabilities possessed by each computational resource 

 
• A description of which attacks are enable by each vulnerability.  

 
• A list of attack types that are believed to be active in the environment.  

 
• A description of which compromised modes of each type of resource can be 

caused by a successful execution of each type of attack. This is provided as a set 
of conditional probabilities of the compromised mode given the execution of the 
attack.  

 
Given this information, simple rule-based inferencing (implemented in the Joshua 
inference system) deduces which specific resources might have been compromised and 
with what probability. This information is then used to construct a Bayesian network (in 
the IDEAL system).  
 

2.2.2 Diagnostic Reasoning  
 
As in earlier techniques, diagnosis is initiated when a discrepancy is detected; in this case 
this means that the predicted production time of an output differs from those actually 
observed after an input has been presented. The goal of the diagnostic process is to infer 
as much as possible about where the computation failed (so that we may recover from the 
failure) and about what parts of the infrastructure may be compromised (so that we can 
avoid using them again until corrective action is taken). We are therefore looking for two 
things: the most likely explanation(s) of the observed discrepancies and updated 
probabilities for the modes of the infrastructural components.  
 
To do this we use techniques similar to [9, 39]. We first identify all conflict sets, and then 
proceed to calculate the posterior probabilities of the modes of each of the computational 
components. We do these tasks by a mixture of symbolic and Bayesian techniques; 
symbolic model-based reasoning is used to predict the behavior of the system, given an 
assumed set of behavioral modes. Whenever the symbolic reasoning process discovers a 
conflict (an incompatible set of behavioral modes), it adds to the Bayesian network a new 
node corresponding to the conflict (see below). Bayesian techniques are then used to 
solve the extended network to get updated probabilities.  
 
This approach involves an exhaustive enumeration of the combinations of the models of 
the computational components. This allows us to calculate the exact posterior 
probabilities. However, this is expensive and the precision may not be needed. It would 
be possible to instead use the techniques in [40] to generate only the most likely 
diagnoses and to use these to estimate the posterior probabilities; but we have not yet 
pursued this approach.  
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We instead follow the following approach: We alternate the finding of conflicts with the 
search for diagnoses. After each “conflict” node is added to the Bayesian network (see 
below) the network is solved; this gives us updated probabilities for each behavioral 
mode of each component. We can, therefore, examine the behavioral modes in the current 
conflict and pick that component whose current behavioral mode is least likely. We 
discard this mode, and pick the most likely alternative; we continue this process of 
detecting conflicts, discarding the least likely model in the conflict and picking its most 
likely alternative until a consistent set is found. This process is a good heuristic for 
finding the most likely diagnosis 6

 
.  

 

 
Figure 11:  Adding a Conflict Node to the Bayesian Network  

Our models of computational behavior are used to predict the behavior of the 
computational components and to compare the predictions with observations. When a 
discrepancy is detected, we use dependency tracing to find the conflict set underlying the 
discrepancy (i.e. a set of behavioral modes which are inconsistent). At this point a new 
(binary truth value) node is added to the Bayesian network representing the conflict as 
shown in Figure 11 (based on a fictional financial system). This node has an incoming arc 
from every node that participates in the conflict. It has a conditional probability table 
corresponding to a pure ”logical and” i.e. its true state has a probability of 1.0 if all the 
incoming nodes are in their true states and it otherwise has probability 1.0 of being in its 
false state.  
 
Since this node represents a logical contradiction, it is pinned in its false state. Adding 
this node to the network imposes a logical constraint on the probabilistic Bayesian 
network; the constraint imposed is that the conflict discovered by the symbolic, model-
based behavioral simulation is impossible. We continue to explore other combinations of 
behavioral modes, until all possible minimal conflicts are discovered. Each of these 
conflicts extends the Bayesian network as before.  The set of such conflicts constitutes the 
full set of logical constraints on the values taken on within the Bayesian network; thus, 
                                                 

6 However since the probabilities of the failure modes of different components are not independent, this is only a 
heuristic  

 



 

 33

once we have augmented the Bayesian network with nodes corresponding to each 
conflict, the network has all the information available.

7 
  

 
At this point, we have found all the minimal conflicts and added conflict nodes to the 
Bayesian network for each. We therefore also know all the possible diagnoses since these 
are sets of behavioral modes (one for each component) which are not supersets of any 
conflict set. For each of these we create a node in the Bayesian network which is the 
logical-and of the nodes corresponding to the behavioral modes of the components. This 
node repre 
sents the probability of this particular diagnosis. The Bayesian network is then solved. 
This gives us updated probabilities for all possible diagnoses, for the behavioral modes of 
the computational components and for the modes of the underlying infrastructural 
components. Furthermore, these updated probabilities are those which are consistent with 
all the constraints we can obtain from the behavioral models. Thus, they represent as 
complete an assessment as is possible of the state of compromise in the infrastructure. 
These posterior estimates can be taken as priors in further diagnostic tasks and they can 
also be used as a “trust model” informing users of the system (including self adaptive 
computations) of the trustworthiness of the various pieces of infrastructure which they 
will need to use.  
 

2.3 Architectural Differencing  
 
In addition to synthesizing wrappers, the AWDRAT generator also synthesizes an 
“execution monitor” corresponding to the system model as shown in Figure 15. The role 
of the wrappers is to create an “event stream” tracing the execution of the application. 
The role of the execution monitor is to interpret the event stream against the specification 
of the System Architectural Model and to detect any differences between the two as 
shown in Figure 12. Should a deviation be detected, diagnosis and recovery is attempted. 
Our diagnosis and recovery systems, far and away the most complex parts of the 
AWDRAT run-time system, are written in Common-Lisp; therefore, the actual 
“plumbing” generated consists of Java wrappers that are merely stubs invoking Lisp 
mediators that, in turn, signal events to the execution monitor, which is also written in 
Lisp. This is shown in Figure 13.  
 
The architectural model provided to AWDRAT includes prerequisite and post-conditions 
for each of its components. A special subset of the predicates used to describe these 
conditions is built-in to AWDRAT and provide a simple abstract model of data 
structuring. The AWDRAT synthesizer analyzes these statements and generates code in 
the Lisp mediators that creates backup copies of those data-structures manipulated by the 
application that the architectural model indicates are crucial.  
 

                                                 
7 [39] builds logical reasoning directly into the Bayesian network system because the logical inferences needed are 
simple enough to be accommodated. However, our inference needs are more complex and not easily amenable to this 
approach 
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The execution monitor behaves as follows: Initially all components of the System 
Architectural Model are inactive. When the application system starts up it creates a 
“startup” event for the top level component of the model and this component is put into 
its “running” state. When a module enters the “running” state it instantiate its sub-
network (if it has one) and propagate input data along data flow links and passes control 
along control flow links. When data arrives at the input port of a component, the 
execution monitor checks to see if all the required data is now available; if so, the 
execution monitor checks the preconditions of this component and if they succeed, it 
marks the component as “ready”. Should these checks fail, diagnosis is initiated. As 
events arrive form the wrappers, each is checked. If the event is a “method entry” event, 
then the execution monitor checks to see if this event is the initiating event of a 
component in the “ready” state; if so, the component’s state is changed to “running”. 
Data in the event is captured and applied to the input ports of the component. If the event 
is a “method exit” then the execution monitor checks to see if this is the terminating event 
of a “running” module; if so, it changes the state of the component to “completed”. Data 
in the event is captured and applied to the output ports of the component. The 
component’s post-conditions are checked and diagnosis is invoked if the check fails. 
Otherwise the event is checked to see if its an allowable or prohibited event of some 
running component; detection of an explicitly prohibited event initiates diagnosis as does 
the detection of an unexpected event, i.e. one that is neither an initiating event of a ready 
component, or a terminating or allowable event of a running component. Using these 
generated capabilities, AWDRAT will detect any deviation of the application from the 
abstract behavior specified in its System Architectural Model and AWDRAT’s diagnostic 
services will be invoked.  
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Figure 12:  Architectural Differencing 

 
 
 

 
 

Figure 13:  The Generated Plumbing 
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2.4 Self-Adaptive Software  
 
Recovery in AWDRAT depends critically on self-adaptive techniques such as those 
described in [24]. The critical idea is that in many cases an application may have more 
than one way to perform a task. For example, in the experiments that will be described in 
the section on experimental methods, 3, we tethered a graphical editor application to 
AWDRAT. This application loads image files (e.g. GIF, JPEG) and, as it happens, there 
is a vulnerability (since fixed) related to loading malformed image files. This is enabled 
by the use of a “native library” (i.e. code written in 3); however, there is also a slower 
pure-java library that performs the same task.  
 
Self-adaptive software involves making dynamic choices between alternative methods 
such as the native and Pure Java image loading methods. The general framework starts 
from the observation that we can regard alternative methods as different means for 
achieving the same goal. But the choice between methods will result in different values 
of the “nonfunctional properties” of the goal; for example, different methods for loading 
images have different speeds and different resulting image quality. The application 
designer presumably has some preferences over these properties and we have developed 
techniques for turning these preferences into a utility function representing the benefit to 
the application of achieving the goal with a specific set of non-functional properties. Each 
alternative method also requires a set of resources consistent with constraints peculiar to 
that method and we may also think about these resources having a cost. As is shown in 
Figure 2, the task of AWDRAT’s adaptive software facility is to pick that method and set 
of resources that will deliver the highest net benefit. Thus AWDRAT’s self-adaptive 
software service provides a decision theoretic framework for choosing between 
alternative methods.  
 

2.5 Recovery and Trust Modeling  
 
Recovery in AWDRAT depends critically on self-adaptive techniques such as those 
described in [24]. The critical idea is that in many cases an application may have more 
than one way to perform a task. For example, in the experiments that will be described in 
the section on experimental methods, page 3.3, we tethered a graphical editor application 
to AWDRAT. This application loads image files (e.g. GIF, JPEG) and, as it happens, 
there is a vulnerability (since fixed) related to loading malformed image files. This is 
enabled by the use of a “native library” (i.e. code written in 3); however, there is also a 
slower pure-java library that performs the same task.  
 
Self-adaptive software involves making dynamic choices between alternative methods 
such as the native and Pure Java image loading methods. The general framework starts 
from the observation that we can regard alternative methods as different means for 
achieving the same goal. But the choice between methods will result in different values 
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of the “nonfunctional properties” of the goal; for example, different methods for loading 
images have different speeds and different resulting image quality. The application 
designer presumably has some preferences over these properties and we have developed 
techniques for turning these preferences into a utility function representing the benefit to 
the application of achieving the goal with a specific set of non-functional properties. Each 
alternative method also requires a set of resources consistent with constraints peculiar to 
that method and we may also think about these resources having a cost. As is shown in 
Figure 2, the task of AWDRAT’s adaptive software facility is to pick that method and set 
of resources that will deliver the highest net benefit. Thus AWDRAT’s self-adaptive 
software service provides a decision theoretic framework for choosing between 
alternative methods.  
 

2.6 The Synthesizer  
 
The inputs to these two wrapper generator facilities (the JavaWrap XML spec, the Java 
Mediator files and the SafeFamily XML specification file) are not provided by the user, 
but are instead automatically generated by AWDRAT from a “System Architectural 
Model” such as that shown in Figure 14. The model is written in a language similar to the 
“Plan Calculus” of the Programmer’s Apprentice [30, 35, 29]; it includes a hierarchical 
nesting of components, each with input and output ports connected by data and control-
flow links. Each component is provided with prerequisite and post-conditions. In 
AWDRAT, we have extended this notation to include a variety of event specifications, 
where events include the entry to a method in the application, exit from a method or the 
attempt to perform an operation on an external resource (e.g. write to a file). Each 
component of the architectural model may be annotated with “entry events”, “exit 
events”, “allowable events” and “prohibited events”. Entry and exit events are described 
by method specifications (and are caught through the JavaWrap facility); allowable and 
prohibited events may be either method calls or resource access events (resource access 
events are caught by the SafeFamily facility). The occurrence of an entry (exit) event 
indicates that a method that corresponds to beginning of a component in the architectural 
model has started (completed) execution. Occurrence of a prohibited event is taken to 
mean that the application system has deviated from the specification of the model.  
 
Given this information, the AWDRAT wrapper synthesizer collects up all event 
specifications used in the model and then synthesizes the wrapper method code and the 
two required XML specification files as is shown in Figure 15.  
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Figure 14 An Example System Model 

 

 
Figure 15: Generating the Wrapper Plumbling 

 
 

3.  Technical Results  
 
AWDRAT’s goal is to guarantee that the application tethered to it faithfully executes the 
intent of the software designer; for example, for an interactive system this means that the 
system should faithfully execute the commands specified by its user (e.g through an 
application GUI), or for a server application this means that it should faithfully execute 
the requests received from its client applications.  
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3.1 The Testbed System  

3.1.1 Requirements  
 
Our approach was predicated on applying operator commands and directives to an 
operational system model to predict the effect of those actions on the system, and to them 
guarantee that those effects and no others had been realized in the system. In addition, we 
wanted to be able to use our technology to capture and replicate the internal data 
structures of the program, so that we could restore the program to its previous state in the 
event that the program was corrupted. We thus needed a real system for which we could 
easily build an operational model, and which we could easily instrument.  
 
The application system we selected was the MAF interactive mission planner – a 
component of the DARPA Dem/Val demonstration system which is in turn based on 
Rome Labs Joint Battlespace Infosphere (JBI). MAF is a Java-based program whose 
primary vulnerabilities arise either through use of native libraries containing unsafe code 
or through an attack that somehow manages to gain enough privileges to modify the 
application’s class files.  
 

3.1.2 OASIS Dem/Val: A Legacy System  
 
To demonstrate the applicability of the AWDRAT architecture to legacy systems, we 
chose a moderately large example legacy system to model and defend against insider 
attacks, the OASIS Dem/Val system developed under an earlier DARPA program. This 
system relies on the Joint Battlespace Infosphere (JBI) repository and communication 
protocol for coordinating and managing information from a variety of agents cooperating 
in the development of major military plans. The OASIS Dem/Val system developed air 
tasking orders for air cargo and munitions delivery and deployment and was created to 
demonstrate how existing military systems could interoperate with new components 
through the JBI infrastructure.  
 
Most of the agents in the Dem/Val scenario were programmatic “stub code” that 
published pre-canned information from files, rather than, for example, publishing actual 
weather data. However, a substantial operator interface illustrated in Figure 17 was 
provided for the MAF and CAF agents (the same component, actually, just applied to 
different information at different times for different purposes). . Notice the locations of 
various airfields around the world and the route being constructed from the US to Africa. 
These are easily changed by actions of the user before publishing the ATO, using the 
bottom right button at the left of the screen in the cluster of 5.  
 
Because this subsystem was an actual application of modest complexity (several 
thousand lines of Java code) and because it has some vulnerabilities to outsider attacks, it 
was chosen as the component that the AWDRAT Architecture would protect.  
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3.1.2.1 OASIS Operational Scenario Description  

The motivation and actual scenario chosen to demonstrate our technology using the 
OASIS system is best described by the operations manual itself [20].  
 
As context for the OASIS scenario is Operation Allied Force, the NATO military 
operation fought primarily with air power and used to compel Serbia to cease hostilities 
against ethnic Albanians in Kosovo. This air operation allowed peace-keeping forces, on 
the ground, to carry out their mission to a successful conclusion. Much of the success in 
Kosovo was due to incredible efforts of the individuals involved in the planning and 
execution of operations, but a tool like the OASIS JBI would hopefully make their job 
easier.  
 
Within this theater of operations, our scenario will be scoped to focus only on some of 
the functions performed by an AOC/TACC and its constituent planning cells. We will 
describe the separate planning processes that occur within the AOC/TACC in developing, 
refining, and executing an Air Battle Plan against WMD facilities, taking environmental 
factors such as weather and chemical plume hazards into consideration.  
 

Table 1: OASIS Dem/Val Glossary of Terms 
AOC  Air Operations Center  MIDB  Modernized Integrated Database  
AODB  Air Operations Database  NATO  North Atlantic Treaty Organization  
ATO  Air Tasking Order  OASIS  Organically Assured and Survivable 

Information Systems  
CAF  Combat Air Forces  SPI  Sensor Performance Impact  
EDC  Environmental Data Cube  TACC  Tanker Airlift Control Center  
HTML  Hyper Text Markup Language  TAF  Terminal Aerodome Forecast  
IO  Information Object  TAP  Theater Air Planner  
IR  InfraRed  TBMCS Theater Battle Management/Core 

Systems  
JBI  Joint Battlespace Infosphere  TNL  Target Nomination List  
JEES  Joint Environment Exploitation 

Segment  
TWS  Theater Weather Server  

JWIS  Joint Weather Impact System  USMTF US Message Text Format  
MAF  Mobility Air Forces  WMD  Weapons of Mass Destruction  
METAR  METeorological Air Report  XML  eXtensible Markup Language  
 
The associated use case models targeting and mission planning for air strikes against 
weapons of mass destruction (WMD) facilities. Weather and chemical plume/aerosol 
effects are taken into consideration during this mission. Weather changes affect predicted 
WMD plume dispersion, requiring the in-flight sortie to stand down in order to prevent 
undesirable propagation of the plume.  
 
The process begins with the Targeting Cell in the Air Operations Center producing a 
Target Nomination List (TNL). The Combat Plans Cell then takes this TNL and builds 
the Air Tasking Order (ATO) assigning strike packages against each target. The ATO is 
then sent out to each unit/squadron who will be participating the strikes. A few hours 
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after the TNL is distributed, the Combat Operations Cell comes online to start monitoring 
weather conditions, readying aircraft, and implementing the ATO when it is built.  
 
Throughout this planning process there is opportunity to take weather effects into 
account. Weather affects such things as weapon/sensor head selection, route selection, 
and attack timing. In addition, when considering an attack against a WMD facility, we 
have to assess where the released chemical materials will travel and ensure that neither 
noncombatants nor friendly forces will be harmed.  
 
While the ATO is being built, the TACC in St. Louis is also planning an in-theater 
mission. An airlift mission to Prince Sultan Air Base is built that involves in-air refueling 
in the North Sea and landings in Aviano and Sigonella. This flight will be reconciled with 
the in-theater Director of Mobility (DirMob) to ensure that weather conditions and other 
factors will permit the flight. Once the DirMob approves the mission, notice is sent back 
to the TACC MAF planner for execution.  
 
The ATO is then finalized and distributed to Combat Operations, who is responsible for 
mission execution and monitoring. After planes have departed for their targets, updated 
weather conditions become available from Air Force Weather Agency (AFWA.) After 
analysis of this latest weather by the Chemical Hazard Cell, it is predicted that a change 
in winds around the WMD site will cause a toxic plume to encroach a heavily populated 
area of non-combatants. The new plume pattern is passed to Combat Operations, who 
redirects the WMD sortie to stand down and return to base. Table 1 should help to clear 
up the meanings of most of the acronyms.  
 
The normal flow of publications through the system is shown in Figure 16. A solid arrow 
indicates publication by the agent at the root of the arrow and the dotted arrows represent 
receipt of the information by the agent at the tip of the arrow (no matter which direction 
the arrow is pointing). Time progresses downward, although some of the timings are 
artificial. For example, it does not matter whether WLC is published before or after WH, 
because their consumers are disjoint and neither produces a publication before both are 
received.  
 

3.1.3 Instrumenting Dem/Val  
Our focus in this project was on the use of AWDRAT 1) to detect malicious attacks on 
the MAF system, 2) to appropriately diagnose these attacks in terms of the characterizing 
the ways in which the system is corrupted and in terms of localizing the point of the 
attack, and 3) to restore the MAF system to a consistent state from which the user can 
continue useful work.  
 
Doing this required modeling the internal flows of the MAF system, modeling the data 
structure invariants that apply to the internal state of the MAF system, modeling the set of 
events that are expected and allowed to occur within the execution of the MAF system. In 
addition, restoring the system to a consistent state required us to build a set of control 
routines that are capable of “scripting” the MAF system so as to replicate the effect of the 



 

 42

user’s interaction through the MAF system GUI. These were all effected through use of 
the key AWDRAT capabilities Architectural Differencing, Wrappers, Diagnosis, 
Recovery, Adaptive Software and Trust modeling  
 

3.2 Red Team Exercise  
 
The AWDRAT red teaming exercise was conducted on October 18 and 19, 2005 at the 
MIT CSAIL facility. The Red Team was from Raba Technologies LLC. The exercise ran 
all day, October 18, 2005 and was continued for the full morning of October 19. Prior to 
the actual red-team exercises, we met with the Red Team members from Raba Inc. on 
October 17,  
 
 

 
 

Figure 16:  OASIS Dem/Val Scenario 



 

 43

 
Figure 17:  The MAF / CAF GUI 

 

to describe the MAF application in detail and the goals of the AWDRAT architecture. In 
addition, RABA forwarded to us a draft Assessment Plan before out meeting.  
 
Several things mitigated against the exercise being as informative as it might have been:  
 

• The red-team and we did not spend adequate time interacting before the tests. 
Thus, there was significant disconnect between the parties in terms of the focus 
and significance of the tests. This exercise was one of the first Red-Team 
engagements in the SRS program and there wasn’t enough of an experience base 
to lead both sides to a correct understanding of the necessary preparation, 
particularly preparation involving discussion between both team about the goals 
and methodology of the exercise. (In contrast, the PMOP exercise in which we 
also participated involved extensive prior interactions and was much more 
informative).  

 
• To a significant degree, the Red-Team approached the exercise as a rather 

traditional perimeter penetration exercise. Thus, many of the tests they had 
prepared were actually outside the scope of the exercise. A measure of the 
problem, is to be seen in the fact that only 10 of the 25 different attacks, prepared 
by the red-team were considered in scope.  

 
• When we tried to redirect the testing effort towards the issues that were of 

significance to AWDRAT, the only way to proceed was for Blue Team members 
to aid the Red Team in inserting “attack code” into the sources and recompiling. 
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The first couple of such attempts involved code that “exec’d” Windows Explorer, 
a illegal action that should have been discovered by the SafeFamily facilities, 
except that SafeFamily was incorrectly installed (see next point).  

 
• We did not spend adequate time installing our software on the experimental 

machine nor did we adequately test that the installation was correct. As a result, 
the SafeFamily software was misconfigured and inoperable leading to a failure all 
of defenses that depended on the SafeFamily capability. In addition, there were 
some minor bugs in the core AWDRAT software (2, each requiring 1 line of code 
to be changed) there weren’t discovered until after the exercise finished.  

 
Table 2: Red Team Results 

Name  Value 
Total Attacks Discussed  25  
Attacks Deemed Out of Scope  9  
Attacks Not Scored  4  
Attacks Not Tested  3  
Red Team Victory  8  
Blue Team Victory  2  

 
Faults identified  2   
Total Faults  10   
Percentage of faults identified  2/10 20% 
   
Corrective action Percentage of 
corrective action  

2 
2/10 20% 

 
None of the above discussion is intended to lay blame on the Red-Team. The 
fundamental problem was the lack of interaction between the parties with enough lead 
time before the exercise. Consequently there was a significant lack of mutual 
understanding about goals and methods. In addition, we credit the Red Team with a 
substantive evaluation of the AWDRAT system and for perceptive suggestions about 
future work. One addition point that seems clear from the experience is that it is often 
useful to stage a red-team exercise in two engagements, the first to sort out the rough 
points and the second to collect meaningful results.  
 
The following data are drawn from the White Team report on the exercise, prepared by 
Chris Do.  
 
The Red Team prepared twenty-five (25) different attacks that were supposed to be 
executed. In accord with the issues discussed earlier, and because of time constraints, 
only ten attacks were executed and scored. Eight were in favor of the Red Team and two 
for the Blue Team. Several of the issues settled in favor of the Red Team were issues that 
we conceded on the grounds that they were actually outside of our research goals and 
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were clearly things that we did not defend against, but that nevertheless seemed 
important.  
 
The SRS program goal was to accurately diagnose at least 10% of the root causes of 
system problems and to automatically take effective corrective action for at least half of 
those diagnoses. The results in table 2 show that AWDRAT performed better than the 
requirements of the program metric. Thus, in spite of several difficulties in the 
experiments, AWDRAT met the program goals in the Red Team experiments.  
 
The next section discusses internal experimentation done after the Red Team exercise 
that stressed the defenses much more systematically than was done in the Red Team 
exercise.  
 

3.3 Internal Experiments  
 
AWDRAT’s primary concern is not with the attack vector, but rather with the 
identification of and containment of misbehavior and with the identification of corrupted 
resources so that recovery processes can avoid them. In particular, AWDRAT focuses on 
the maintenance of data integrity and data privacy.  
 
We identified the following properties that AWDRAT should guarantee:  
 
• The data structures maintained by the application should accurately reflect user 

requests:  
– Each field of each data structure should be what the GUI requested  
 
– No other fields should be present  
 
– All the fields requested by the GUI should be present  
 

• The application should not be able to open a port to any application other than to the 
JBI servers with which it must communicate (i.e. the JBOSS server).  

 
• The application should not be able to open a port to a foreign host  
 
• The application should not be able to write files except to the specified directories that 

constitute its temporary storage areas.  
 

3.3.1 Experimental Methodology  
 
To test the effectiveness of AWDRAT in guaranteeing these properties we adopted three 
distinct ways of attempting to violate the properties:  
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• Modification of class files. We hand inserted attack code into a Java source file, 
recompiled and placed the class file into the appropriate directory on the Java 
Classpath. This is intended to simulate the case where an external attacker gained 
sufficient privileges to corrupt the class files.  

 
• Random attacks. The AWDRAT controller launches a parasitic thread on startup. 

This thread waits for a random delay and then attempts to violate one of the 
constraints listed above (e.g. attempts to launch an application, to open a port, or to 
corrupt the data structures). Which type of violation (and in the case of data integrity 
which field of which data structure) is chosen randomly; the specific attack selected is 
logged for analysis purposes.  

 
• Wrapped methods. AWDRAT places wrappers around a significant number of 

methods in the MAF application. The wrapper can be used a place from which to 
launch a simulated attack; for example, by wrapping the “loadImage” method, one 
can simulate an attack payload that is carried by a corrupted image file (without 
actually having to do the very laborious work of constructing such a corrupted image 
file).  

 
The core AWDRAT machinery is kept unaware of the attack machinery. Its goal is to 
detect and characterize a violation.  
 
The MAF’s data-structures are a relatively simple, tree built from instances of a few 
classes. The top level is a Mission-Builder containing a hashtable for the overall mission 
data and four hashtables holding the sets of events, legs, sorties and movements data 
structures. Each entry in these tables is an instance of the appropriate type, containing a 
hashtable with the data specific to that element of the mission plan. Each flight path 
(mission) is represented by a Mission-Builder that contains a set of Events, Legs, Sorties, 
Movements. An Event is a Take-off, a Landing, or a Waypoint. For each take-off event 
there is a corresponding leg, sortie and movement:  
 
When considering data-structure integrity it is important to understand that the data 
structures can be modified using two different levels of calls. Each data-structure is 
implemented as a Java Class with accessor methods (e.g. setInformation, getInformation). 
In addition, Java, of course, defines methods on hash-tables (e,g, put, get). The 
application always accesses the data structures through its API using the getInformation 
and setInformation methods. However, payload code might access the data-structures 
below the level of this API (e.g. using the hash-table methods or even using lower-level, 
memory accessing capabilities at the Native Code level). Thus it is necessary to simulate 
attempts to corrupt the data structures using both the API methods and the hash-table 
methods (AWDRAT does not wrap or monitor the hash-table level methods for both 
pragmatic and technical reasons, so modifications at this level are as opaque as 
modifications using Native code level capabilities).  
 
Each of the simulated attacks methods has drawbacks and strengths: The first method 
allows very precise placement of an attack within the code, but might be criticized for 
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being overly synchronized to the normal execution flow of the program; the random 
attacks, has a dual set of issues. However, our feeling is that collectively, these tests 
cover a great deal of the appropriate space.  
 
In more detail, here are the tests conducted by category:  
 
1. Modification of Class Files:  
• Insert call to write files  
• Insert call to launch external application  
• Insert call to open port  
• Insert code to modify the data structures at the API level  
• Insert code to modify the data structures below the API level  

 
2. Random delay attacks (through a parallel thread)  
• Make call to write files  
• Make call to launch external application  
• Make call to open port  
• Attempt to modify the data structures at the API level  
• Attempt to modify the data structures below the API level  

 
3. Wrapped Methods (used only for loadImage)  
• Make call to write files  
• Make call to launch external application  
• Make call to open port  

 
The use of a wrapper to simulate an attack payload was only employed for the loadImage 
method (to avoid actually building a payload carrying corrupted image file). The wrapper 
only attempts to do the disallowed action when using the native loadImage library on 
specific image files identified in a configuration file; this is admittedly a bit hokey since 
the same wrapper mechanism is used both to launch the simulated attack and to make the 
decision as to whether to use the native or Pure Java load method, but we have tried to 
keep two separate and to run an honest test. In this case we do not attempt to corrupt the 
MAF data structures because loadImage is only called in the application during its 
initialization, which is before the data structures are created. So image based attacks only 
attempt to open a port or to write a file.  
 
The second category of violation is launched from a thread that is started by the 
initialization code of the system. This thread waits until the user begins to enter a mission 
plan, then picks an arbitrary delay time (less than 4 minutes); after that delay time, it 
either attempts to open a port, write a file or to corrupt the data structures. To do the last 
of these, it picks an arbitrary element of the MAF data structures and attempts to either 
modify an existing field of the data structure, or to add a new field. Strictly speaking the 
later action is harmless, the application will ignore the extra field. However, the criterion 
for success is detecting any deviation of the application from the actions requested by the 
GUI, so we include these cases as well.  
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3.3.2 Detection methods  
As explained in the sections on Wrappers, 2.1, Architectural Differencing, 2.3 and 
Diagnostic Reasoning, page 2.2, AWDRAT picks up violations in one of three ways: 1) It 
checks the integrity of the Java data structures against its internal backup copy 
everywhere that the system-model specifies that the data structures should be consistent. 
2) It checks that monitored methods are called only at points in the execution sanctioned 
by the system model. 3) It receives messages from the SafeFamily (dll) wrappers, alerting 
it to violations of the access rules imposed by SafeFamily. Some violations that are 
conceptually in the same category (e.g. data structure integrity) are picked up by more 
than one mechanism. For example, an attempt to modify the MAF data structures using 
an API level call is usually picked up because the call isn’t sanctioned at that point of the 
execution; however, using a hash-table method on a hash-table held in one of the data-
structures will be picked up by the integrity check, since the hash-table methods aren’t 
wrapped.  
 

3.3.3 Results Summary  
The results of out internal experiments are shown in figure 3. All attempts to launch an 
application, write a file other than those sanctioned or to open a port are detected. The 
only exception to this broad statement is that an attacker can write to a file in the MAF’s 
temporary directory or open one of the ports used by AWDRAT itself (however, opening 
such a port would violate the rules of engagement for the experiments). Almost all 
attempts to destroy the integrity of the MAF data structures are detected; the exception is 
when the modification is made using the MAF API level calls during the execution of a 
method that legitimately uses the exact same API call. This almost only occurs in hand-
modified source code “attacks” (one “random” attack managed to tickle this case). In 
principle, it’s possible that an attack operating below the MAF API level could modify 
the MAF data structures and that the modification could be overwritten later by the 
uncorrupted MAF code doing the right thing. For example:  
 
• GUI request that the “ALT” field of Event 1 be set to “30000”  
 
• Attack code in another thread sets the “ALT” field of Event 1 to “1” using hash-table 

or lower level calls  
 
• MAF method sets the “ALT” field of Event 1 to “30000”  

 
The net effect is that the data structures are uncorrupted; however, AWDRAT’s 
machinery will never detect the unsuccessful attempt to corrupt the data structures in this 
case.  
 

3.3.4 Discussion  
 
The first category includes hand inserted attack code. Four of these included calls to 
MAF API level methods inside other routines that legitimately invoke these methods. 
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These attacks could have been caught if AWDRAT had interposed itself at a higher level 
in the call tree, specifically at the boundary between the GUI and the rest of the MAF 
application. As it happens, the MAF system is not appropriately modularized to facilitate 
this; it could have been done, but it would have involved a bit more work. Of course, had 
AWDRAT interposed at that level, then it would be possible to imagine an attack 
interceding in the GUI code itself; this issue was discussed with the Red Team who felt 
that they would be unable to construct such an attack (with reasonable effort). One of the 
random attacks managed by pure chance to run in parallel with an application routine that 
invoked the same MAF level API; we thought this was too unlikely to actually occur, but 
we were wrong. This slips by because the current AWDRAT execution monitor isn’t 
aware of thread structure: AWDRAT believes that the program is inside the method that 
builds an EVENT data structure; it believes this because it received an Enter Method 
event for that method. However this legitimate thread that generated the event isn’t the 
“attack thread” and the AWDRAT execution monitor could use this information; this is 
an obvious next extension to AWDRAT.  
 
Attacks that attempt to open ports, write files, or launch applications are intercepted by 
the SafeFamily wrapper system; the attempt is blocked so no bad effect is propagated. 
That is why the last column is marked Not Applicable (NA) for these categories of attack.  
 
 

Table 3: Results of Internal Experimentation 
 

Attack Type  Number of 
Attempts  

Detected  Diagnosed  Corrected  

Hand Placed  24 20/83% 20/83% 11/73% 
Data MAF API  10 6/60% 6/60% 6/60% 
Data lower API  5 5/100% 5/100% 5/100% 
Port Opening  3 3/100% 3/100% NA 
File Write  3 3/100% 3/100% NA 
Application Launch  3 3/100% 3/100% NA 
Random  26 25/96% 25/96% 13/92% 
Data MAF API  6 5/83% 5/83% 5/83% 
Data lower API  8 8/100% 8/100% 8/100% 
Port Opening  5 5/100% 5/100% NA 
File Write  4 4/100% 4/100% NA 
Application Launch  3 3/100% 3/100% NA 
Wrapped  9 9/100% 9/100% 9/100% 
File Write  3 3/100% 3/100% 3/100% 
Port Opening  3 3/100% 3/100% 3/100% 
Application Launch  3 3/100% 3/100% 3/100% 
Total  59 54/91% 54/91% 33/86% 
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In fact, AWDRAT does restart the application and rebuild its data structures in these 
cases as well. For the Wrapped cases (i.e. those involving simulated corrupt image files) 
the last column is listed because the dominant diagnostic hypothesis in those cases is that 
a payload was launched from the image loading method. In those case, switching to the 
Pure Java method and/or using a different format of the image file constitutes successful 
recovery. In these cases, we did not mark these as NA, since there was significant 
decision making in the recovery process. In the other cases, the dominant diagnostic 
hypothesis is that the class files (and/or core image) was corrupted; if there is a significant 
probability that the class files were corrupted, then the recovery process involves 
switching the class path to backup copies of the JAR files.  
 
As a parenthetical note, we observe that there are a set of hand-coded attacks that we 
might have created but didn’t that would have evaded detection. As we configured the 
system, SafeFamily wrappers block all read and/or write attempts except to a set of 
directories that are used by the MAF system. However, a spurious write to those 
directories would be allowed regardless of the call site. However, most of these exploits 
could be detected if the SafeFamily wrappers consulted the AWDRAT execution monitor 
to see if the program is executing a routine that is supposed to be doing I/O. We are 
looking into implementing this capability.  
 
Finally we note that there are no false positives. This is to be expected if the system 
model is a reasonable abstraction of the program.  
 

3.4.  Meeting the Program Metrics  
 
The SRS program goal was to accurately diagnose at least 10% of the root causes of 
system problems and to automatically take effective corrective action for at least half of 
those diagnoses.  
 
The results in table 2 in section 3.2 show that AWDRAT performed better than the 
requirements of the program metric, detecting 20% of the attacks and mitigating against 
all of these.  
 
The results in table 3 in section 3.3 show a much higher level of detection and correction: 
(91% detection and diagnosis and 86% correction).  
 
Thus AWDRAT in both exercises exceeded the program metrics. The red team exercise 
was conducted with the SafeFamily facility installed incorrectly, leading to a serious 
degradation of detection capability. During the internal experimentation, the more 
systematic use of wrapping at both the language level (JavaWrap) and shared library 
level (SafeFamily) led to a much more complete detection regime.  
 
Both sets of experiments were conducted under the assumption that the AWDRAT 
infrastructure was off limits. However, the systematic use of the SafeFamily facility to 
wrap all processes can make the resources used by the AWDRAT system virtually 
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impervious to attack. The AWDRAT vision also includes the use of plan recognition 
technology to track the signs of possible attacks and to use the likelihood of possible 
attack together with diagnostic results to update the trust model. We believe that this 
added capability would significantly improve AWDRAT’s ability to protect its own core 
resources.  
 
AWDRAT’s ability to protect an application stems from the systematic monitoring of the 
program’s execution and presence of a system model, specifying what behavior is 
expected. The allow the AWDRAT diagnostic capabilities to localize and characterize the 
fault which, in turn, guides the recovery effort through use of a trust model indicating 
which resources are likely to have been compromised.  
 

4.  Conclusions  
The experimental results indicate that AWDRAT has the ability to detect the symptoms 
of a variety of different types of attacks. AWDRAT’s monitoring mechanisms allow it to 
sense several different types of deviation from expected behavior:  
 
• Sequencing Violations: The system’s control flow deviates from that specified in the 

system model.  
 
• Data Corruption: The data structures of the system do not adhere to the constraints 

of the system model. 
 
• Communications Violations: The application attempts to communicate with external 

entities in ways outside of those described in the system model.  
 
• Data Modification: The application attempts to modify data in ways precluded by the 

system model.  
 
Each of these types of deviation are detected using the instrumentation provided by the 
wrappers that AWDRAT synthesizes. Detection of any such violation institutes diagnosis 
and recovery. When the system model is more detailed, the instrumentation records very 
precise information about the application’s execution, making the diagnostic task 
relatively easy and accurate. Weaker system models are easier to construct, but pick up 
less information and leave more room for diagnostic ambiguity. In either case, diagnosis 
leads to updated estimates of how trustable the system resources are and the information 
gathered by the instrumentation can be preserved to allow the application system to be 
restarted and restored to the consistent state that existed before the compromise was 
effected.  
 
Given this backup information AWDRAT is capable of restarting the application 
system’s execution, allowing it to complete its task. In addition, the trust model indicates 
that certain resources are less likely to be trustable than others. During the recovery 
process, these resources are avoided if possible. Generally this depends on two things:  
 



 

 52

• The existence of redundant resources (e.g. initial data sets, class files) that can be 
substituted for the initial ones  

• The existence of alternative methods for achieving the task that avoid the use of the 
suspected resources  

 
In our current experiments we have utilized both of these approaches. An example of the 
second approach is given by the case when AWDRAT believes that a “corrupted image 
file” attack has been used. In this case, it uses the alternative Pure Java image library 
which avoids the corrupted image file. An example of the first approach, is given by the 
case when AWDRAT believes that a class file has been corrupted. In that case, 
AWDRAT switches the class path to point to an alternative set of class files (in a JAR 
file). In both cases, reconstituting the original resource would be a simple next step in 
keeping with the “Self Regenerative” theme of SRS.  
 
The AWDRAT architecture is a general purpose framework that can be adapted to a 
variety of application systems and domains of application. Each application involves a 
significant modeling effort, but when the architecture is applied to many applications 
within a domain, much of the modeling effort can be amortized over the entire ensemble 
of applications. We still need to explore in much greater detail the trade-offs between the 
specificity of the system model, the effort to produce the model and the utility of the 
added specificity in terms of diagnostic resolution and effectiveness of the recovery 
actions.  
 

5.  Key Personnel  
In addition to the project’s Principal Investigators, Howared Shrobe and Robert M. 
Balzer, several other researchers on their respective staffs at Massachusetts Institute of 
Technology and Teknowledge Corp. participated. Robert Ladaga of MIT was 
instrumental in the Common Lisp application development and algorithm development 
for the trust models and assessment. David Wile and Alexander Egyed built the 
infrastructure for coordinating and visualizing the activities of the various OASIS agents 
and the analyzers. Neil Goldman built the Java wrapper tool used to intercept the JBI 
services calls. Tim Hollebeek provided the wrapped Windows system call defenses to 
intercept malicious file and communications resource attacks. Marcelo Tallis wrote the 
JBI driver code and the detailed MAF / CAF GUI wrappers.  
 

6.  Comparison with Current Technology  
The scope of AWDRAT is extraordinarily broad, encompassing fault containment, 
diagnosis, architectural modeling, wrapper technology, and self-adaptive software. We 
know of no other comparable overall effort. Nor do we know of other efforts that make a 
systematic attempt to build trust models, to derive attack plans using systematic 
reasoning from first principles, or that attempt to use Trust Models in a decision theoretic 
adaptive framework other than our own [38, 37, 36]. Our diagnostic techniques draw on a 
long tradition of model-based diagnosis in which we were early pioneers [7, 6, 8, 9, 16, 
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39] while the work on self-adaptivity is part of growing body of research [31, 32, 33, 23]. 
Our system modeling language is similar to other modern architectural description 
languages such as [17, 18, 25, 26, 27, 13].  
 
The general spirit of our effort is similar to other research in the Information 
Survivability tradition which has focused on Intrusion Detection and Response. However, 
our approach to this is unique. There are three traditional approaches to intrusion 
detection [1] as shown in Figure 18. The first approach relies on a library of known 
attacks, finding behavior that matches such an attack pattern. A second approach is 
statistical in character; it builds a statistical profile of normal user interactions with the 
system and then detects behavior outside of this profile. A third approach uses a corpus of 
interactions annotated by an expert to indicate where attacks have occurred; a statistical 
recognizer is then trained using supervised machine learning techniques to recognize 
such attacks. The strengths and weaknesses of each of these traditional approaches can be 
measured in terms of their false positive and false negative rates. In addition, we may 
evaluate them by their diagnostic resolution: when the system signals an alarm, how 
precisely does it characterize the attack, the location of the attack and the nature of the 
compromise effected by the attack.  
 
 
 
 
 

 

Figure 18:  Approaches to Intrusion Detection 
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Figure 19 Evaluation of Intrusion Detection Approaches 

 
Figure 19 shows the strengths and weaknesses of these different approaches to intrusion 
detection.  Expert systems are limited by the breadth of their library of known attacks.  
They have low false positive rates because they signal intrusions only when a precise 
pattern is matched; this also enables good diagnostic resolution.  But they only recognize 
attacks in their knowledge base; in practice, the attackers are far more effective in 
generating new attacks and the knowledge base can’t cope with the volatility of the 
environment. A high false negative rate is the result. In contrast, statistical anomaly 
detectors do not depend on recognizing attacks at all; their false negative rate is therefore 
much lower, since almost all attacks do fall outside the statistical profile of normal 
behavior. However, this approach lacks diagnostic resolution since all it knows is that the 
behavior is outside the profile. This approach conflates illegitimate behavior with unusual 
behavior leading to a high false positive rate; in practice, the profiles are never accurate 
enough to include many legitimate behaviors that are nevertheless infrequent. The 
machine learning approach, like the expert system approach is only as good as its training 
set; but keeping the training set up to date is nearly as difficult as keeping an expert 
system’s knowledge base current. Consequently this approach suffers from a modest false 
negative rate; it also suffers from a modest to high false positive rate since the machine 
learning algorithm offers statistically generalizes to include legitimate behaviors. 
However, when such a system correctly recognizes an attack, it can usually provide some 
diagnostic resolution.  
 
Finally, we use diagnosis to update the Trust Model which then acts indirectly in shaping 
the response. Any activities that are undertaken to repair compromised resources or to 
change the policies of boundary controllers are all evaluated within a common decision-
theoretic framework. We believe that the great advantage of this approach is that we only 
undertake activities that seem to be “worth it,” thereby avoiding self-inflicted denial of 
service problems.  
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Appendix A   

The System Model 
 

(in-package :mediators) 
 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;;; 
;;; Class Registry 
;;; Defining short cuts for the class names 
;;; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 

(eval-when (:compile-toplevel :execute :load-toplevel) 

    ;; Pad Editor Related Stuff 

    ;; do we actually use this? 

    (register-class "Pad" "mil.af.afrl.ife.gui.padeditor") 

    (register-class "PadAction" "mil.af.afrl.ife.gui.padeditor") 

    (register-class "PadEditor" "mil.af.afrl.ife.gui.padeditor")  

    (register-class "PadDrawObjectListener" "mil.af.afrl.ife.gui.padeditor") 

    (register-class "CMAPI" "mil.af.afrl.ife.cmapi.cmapi2k")  

 
;; Frames and Panels 
(register-class "ClientFrame" "mil.af.rl.jbi.client.ExtensibleMappingClient.client") 
(register-class "ClientPanel" "mil.af.rl.jbi.client.ExtensibleMappingClient.client") 
(register-class "LoginWindow" "mil.af.rl.jbi.client.ExtensibleMappingClient.client") 
 

;; Mission Objects 
 

(register-class "MissionObject" "mil.af.rl.jbi.client.ExtensibleMappingClient.toolsets.MissionPlan") 
(register-class "MissionBuilder" "mil.af.rl.jbi.client.ExtensibleMappingClient.toolsets.MissionPlan" 
:proxy ’(mission-builder-proxy mission-holder-mixin)) 
(register-class "MissionEventObject" "mil.af.rl.jbi.client.ExtensibleMappingClient.toolsets.MissionPlan" 
:proxy ’(mission-event-proxy mission-event-mixin)) 
(register-class "MissionLegObject" "mil.af.rl.jbi.client.ExtensibleMappingClient.toolsets.MissionPlan" 
:proxy ’(mission-leg-proxy mission-stuff-mixin)) 
(register-class "MissionMovementObject" "mil.af.rl.jbi.client.ExtensibleMappingClient.toolsets.MissionPlan" 
:proxy ’(mission-movement-proxy mission-stuff-mixin)) 
(register-class "MissionSortieObject" "mil.af.rl.jbi.client.ExtensibleMappingClient.toolsets.MissionPlan" 
:proxy ’(mission-sortie-proxy mission-stuff-mixin)) 
(register-class "MissionPlannerListener" "mil.af.rl.jbi.client.ExtensibleMappingClient.toolsets.MissionPlan") 
(register-class "MissionLegEditor" "mil.af.rl.jbi.client.ExtensibleMappingClient.toolsets.MissionPlan") 
(register-class "MissionViewerListener" "mil.af.rl.jbi.client.ExtensibleMappingClient.toolsets.MissionPlan") 
(register-class "MissionForm" "mil.af.rl.jbi.client.ExtensibleMappingClient.toolsets.MissionPlan") 
(register-class "MissionInfoForm" "mil.af.rl.jbi.client.ExtensibleMappingClient.toolsets.MissionPlan") 
(register-class "CreateMissionAction" "mil.af.rl.jbi.client.ExtensibleMappingClient.toolsets.MissionPlan") 
(register-class "EditMissionAction" "mil.af.rl.jbi.client.ExtensibleMappingClient.toolsets.MissionPlan") 
(register-class "PublishMissionAction" "mil.af.rl.jbi.client.ExtensibleMappingClient.toolsets.MissionPlan") 
(register-class "ReceiveMissionAction" "mil.af.rl.jbi.client.ExtensibleMappingClient.toolsets.MissionPlan") 
(register-class "SaveMissionAction" "mil.af.rl.jbi.client.ExtensibleMappingClient.toolsets.MissionPlan") 
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(register-class "RequestHandler" "mil.af.rl.jbi.client.ExtensibleMappingClient.toolsets.MissionPlan") 
(register-class "mil.af.afrl.ife.gui.util.Util" "") 
(register-class "mil.af.afrl.ife.cmapi.util.Util" "") 
) 
 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;;; 
;;; Registering Events 
;;; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 

(register-event ’startup "LoginWindow" 
"main" 
’(("String[]" "args")) 
:static t :startup t) 
 

(register-event ’post-validate 
"LoginWindow" "postValidate" 
’(("String" "userName") ("String" 
"pathname")))  
(register-event ’create-client-frame "ClientFrame" "<init>" 
 ’(("String" "login")  

("String" "password")))  

(register-event ’exit "ClientFrame" "exitAction" 
’() 
) 
 

(register-event ’center-action "ClientPanel" "centerAction" 
’(("Point" "point"))) 
 

;;; Mission Event Object 
 

(register-event ’create-mission-event-object "MissionEventObject" "<init>" 
’()) 
 

(register-event ’meo-set-information "MissionEventObject" "setInformation" 
’(("String" "key") 

      ("String" "value")))  

;;; Mission Builder  

(register-event ’create-mission-builder "MissionBuilder" "<init>" 

’())  

(register-event ’create-mission-builder-with-client-panel "MissionBuilder" "<init>" 

 ’(("ClientPanel" "cp")))  

(register-event ’create-mission-builder-with-hash-table "MissionBuilder" "<init>" 

 ’(("Hashtable" "hashTable")))  

(register-event ’set-Initial-Info "MissionBuilder" "setInitialInfo" 

 ’(("Hashtable" "hashTable" )))  

(register-event ’mission-builder-action-Performed "MissionBuilder" "actionPerformed" 

 ’(("ActionEvent" "actionEvent")))  
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(register-event ’mission-builder-set-Information "MissionBuilder" "setInformation" 
 ’(("String" "Key")  

("String" "Value")))  

(register-event ’update-Msn-Evt "MissionBuilder" "updateMsnEvt"  
’(("String" "Key")  

("MissionEventObject" "missionEventObject")))  

(register-event ’create-New-Additional-Mission-Info-Panel "MissionBuilder" 
"createNewAdditionalMissionInfoPanel" 
’(("Vector" "vector")) 
:bypass t) 
 

;;; Mission Leg Objects 
(register-event ’mlo-set-information "MissionLegObject" "setInformation" 
’(("String" "key") 
 

("String" "value")))  

(register-event ’create-mission-leg-object "MissionLegObject" "<init>" 
()) 
 

;;; Mission Movement Objects 
(register-event ’mmo-set-information "MissionMovementObject" "setInformation" 
’(("String" "key") 
 

("String" "value")))  

(register-event ’create-mission-movement-object "MissionMovementObject" "<init>" 

 ())  

;;; Mission Sortie Objects  
(register-event ’mso-set-information "MissionSortieObject" 
"setInformation" ’(("String" "key") ("String" "value")))  

(register-event ’create-mission-sortie-object "MissionSortieObject" "<init>" 
()) 
 

;;; Mission Planner Listener 
(register-event ’set-current-point "MissionPlannerListener" "setCurrentPoint" 
’(("Point" "point"))) 
 

(register-event ’add-new-event-internal "MissionPlannerListener" "addNewEventInternal" 
’(("Vector" "theVector"))) 
 

(register-event ’mpl-action-performed "MissionPlannerListener" "actionPerformed" 
’(("ActionEvent" "actionEvent"))) 
 

;;; Mission Leg Editor 
(register-event ’mle-action-performed "MissionLegEditor" "actionPerformed" 
’(("ActionEvent" "actionEvent"))) 
 

;;; Mission Viewer Listener 
(register-event ’mvl-action-performed "MissionViewerListener" "actionPerformed" 
’(("ActionEvent" "actionEvent"))) 
 

;;; Mission Form 
(register-event ’close-form "MissionForm" "closeForm" 
’() :output-type "Vector") 
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;;; Mission Info Form 
(register-event ’retrieve-leg "MissionInfoForm" "retrieveLegInfo" 
() :output-type "MissionLegObject") 
(register-event ’retrieve-movement "MissionInfoForm" "retrieveMvmtInfo" 
() :output-type "MissionMovementObject") 
(register-event ’retrieve-sortie "MissionInfoForm" "retrieveSortieInfo" 
() :output-type "MissionSortieObject") 
(register-event ’retrieve-info "MissionInfoForm" "retrieveInfo" 
() :output-type "Hashtable") 
 

;;; Create Mission Action 
(register-event ’Create-Mission-Action-Action-Performed "CreateMissionAction" "actionPerformed" 
’(("ActionEvent" "actionEvent")) 
:bypass t) 
 

;;; It’s not clear that we need this 
;;; It’s the event when you click on the map 
;;;   It’s followed by an ActionPerformed on Mission Planner Listener 
;;;    that action is either PointChoiceCmd if you clicked on a recognized point 
;;;                               or NewPointCmd if you clicked on something random 
(register-event ’create-mission-event-point "CreateMissionAction" "createMissionEventPoint" 
’(("Point" "point"))) 
 

;;; Edit Mission Action 
(register-event ’edit-mission-action-action-performed "EditMissionAction" "actionPerformed" 
’(("ActionEvent" "ActionEvent"))) 
 

;;; Publish Mission Action 
(register-event ’publish-mission-action-action-performed "PublishMissionAction" "actionPerformed" 
’(("ActionEvent" "theActionEvent"))) 
 

;;; Receive Mission Action 
(register-event ’receive-mission-action-action-performed "ReceiveMissionAction" "actionPerformed" 
’(("ActionEvent" "actionEvent"))) 
 

;;; Save Mission Action 
(register-event ’save-mission-action-action-performed "SaveMissionAction" "actionPerformed" 
’(("ActionEvent" "actionEvent"))) 
 
;;; Request Handler 
(register-event ’request-handler-action-performed "RequestHandler" "actionPerformed" 
’(("ActionEvent" "actionEvent"))) 
 

;;; The ife gui util Util stuff -used in load image 
 

(register-event ’load-image "mil.af.afrl.ife.cmapi.util.Util" "loadImage" 
’(("Component" "component") 
 

("URL" "theUrl")) 
:output-type "Image" 
:static t 

:bypass "theImage")  

(register-event ’load-image "mil.af.afrl.ife.gui.util.Util" "loadImage" ’(("Component" 
"component")  

("URL" "theUrl")) 
:output-type "Image" 
:static t 

 :bypass "theImage")  
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;;; 
;;; Method Accessors 
;;; This defines the Lisp accessors to Java Class Data 
;;; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 

(define-java-accessors Mission-Builder "MissionBuilder"  
(get-information |getInformation| (("String" key)) :output-type "String") 
 (get-leg-id |getLegID| (("String" key)) :output-type "String")  
 (get-mission-event |getMissionEvent| (("String" key)) :output-type "MissionEventObject")  
 (get-mission-events |getMissionEvents| () :output-type "Hashtable") 
 (get-mission-leg |getMissionLeg| (("String" key)) :output-type "MissionLegObject") 
 (update-mission-leg |updateMsnLeg| (("String" key) ("MissionLegObject" "theLeg"))) 
 (update-mission-sortie |updateMsnSrt| (("String" key) ("MissionSortieObject" "theSortie"))) 
 (update-mission-movement |updateMsnMvmt| (("String" key) ("MissionMovementObject" "theMovement"))) 
 (get-mission-movement |getMissionMovement| (("String" key)) :output-type "MissionMovementObject")  
 (get-mission-sortie |getMissionSortie| (("String" key)) :output-type "MissionSortieObject")  
 (get-msn-plot-objects |getMsnPlotObjects| () :output-type "Vector") 
 (get-number-of-legs |getNumberOfLegs| () :output-type "int") 
 (get-number-of-movements |getNumberOfMovements| () :output-type "int") 
 (get-number-of-sorties |getNumberOfSorties| () :output-type "int") 
 (get-number-of-refuel-events |getNumberOfRefuelEvents| () :output-type "int") 
 (create-Mission-object |createMissionObject| () :output-type "MissionObject") 
 (create-addtional-mission-info-panel |createNewAdditionalMissionInfoPanel|  

(("Vector" "currentInfoVector"))) 
(set-client-panel |setClientPanel| (("ClientPanel" "clientPanel"))) 
(get-event-ctr |getEventCtr| () :output-type "int") 
(set-event-ctr |setEventCtr| (("int" counter))) 
) 
 

(defun get-number-of-events (mb)  

(ht-size (get-mission-events mb)))  

(defun create-mission-builder (&key client-panel hash-table) 
(make-java-instance "MissionBuilder" 

        (cond (client-panel ‘(("ClientPanel" ,client-panel))) 
(hash-table ‘(("Hashtable" ,hash-table))))))  

(define-java-accessors MissionObject "MissionObject"  

    (create-metadata |createMIOMetadata| () :output-type "String")  

    (create-payload |createMIOPayload| () :output-type "String")  

    (get-plot-objects |getMissionEvents| () :output-type "Vector") 

     )  

(define-java-accessors MissionLegObject "MissionLegObject"  
   (leg-get-info |getInfo| () :output-type "Hashtable") 
    (leg-get-Information |getInformation| (("String" key)) :output-type "String")  

(leg-set-information |setInformation| (("String" key) ("String" value))))  

(defun create-mission-leg-object () 

    (make-java-instance "MissionLegObject"))  

(define-java-accessors MissionMovementObject "MissionMovementObject" 

 (movement-get-info |getInfo| () :output-type "Hashtable") 

 (movement-get-Information |getInformation| (("String" key)) :output-type "String") (movement-set-
information |setInformation| (("String" key) ("String" value))))  
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(defun create-mission-movement-object () 

 (make-java-instance "MissionMovementObject"))  

(define-java-accessors MissionSortieObject "MissionSortieObject" 

    (sortie-get-info |getInfo| () :output-type "Hashtable")  

    (sortie-get-Information |getInformation| (("String" key)) :output-type "String")  

     (sortie-set-information |setInformation| (("String" key) ("String" value))))  

(defun create-mission-sortie-object () 

 (make-java-instance "MissionSortieObject"))  

(define-java-accessors Mission-Event-Object "MissionEventObject" 

    (event-get-info |getInfo| () :output-type "Hashtable") 

    (event-get-Information |getInformation| (("String" key)) :output-type "String") 

    (event-set-information |setInformation| (("String" key) ("String" value))))  

(define-java-accessors Create-Mission-Action "CreateMissionAction" 

 (get-Mission-Planner-Listener |getMissionPlannerListener| () :output-type "MissionPlannerListener") 

 (set-current-mission-builder |setCurrentMissionBuilder| (("MissionBuilder" mb)))  

(get-current-mission-builder |getCurrentMissionBuilder| () :output-type "MissionBuilder"))  

(define-java-accessors Save-Mission-Action "SaveMissionAction" 

   (create-xml |createXML| (("String" layer-name)) :output-type "String"))  

(define-java-accessors Mission-Planner-Listener "MissionPlannerListener"  

   (set-first-point |setFirstPoint| (("boolean" yes-or-no))) 

    (set-current-point |setCurrentPoint| (("Point" point))) 

    (add-new-event-internal |addNewEventInternal| (("Vector" v)))  

    (get-event-counter |getEventCounter| () :output-type "int") 

    (set-event-counter |setEventCounter| (("int" count))))  

(define-java-accessors Pad-Editor "PadEditor" 

  (get-pad |getPad| () :output-type "Pad"))  

(define-java-accessors PAD "PAD"  

   (add-draw-listener |addPadDrawObjectListener| (("PadDrawObjectListener" listener)))  

  (remove-draw-listener |removePadDrawObjectListener| (("PadDrawObjectListener" listener))))  

(define-java-accessors pad-action "PadAction"  

  (want-draw-object-event? |wantDrawObjectEvent| ()))  

(define-java-accessors cmapi "CMAPI" 

   (get-layers |getLayers| () :output-type "Vector"))  

(define-java-accessors cmapi-layer "mil.af.afrl.ife.cmapi.Layer" 

   (layer-get-name |getName| () :output-type "String")  
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(get-plot-objects |getPlotObjects| () :output-type "Vector"))  

(define-java-accessors Cmapi-Util "mil.af.afrl.ife.cmapi.util.Util" 

 (load-image-1 |loadImage| (("Component" component) ("String" url)) 
:output-type "Image" :static t)  

      (load-image-2 |loadImage| (("Component" component) ("URL" url)) 
:output-type "Image" :static t))  

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;;; 
;;; Client Frames and Panels 
;;; 
 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;  

(define-java-accessors Client-Frame "ClientFrame" 

   (frame-get-client-panel |getClientPanel| () :output-type "ClientPanel"))  

 
(define-java-accessors Client-Panel "ClientPanel" 

      (set-mission-mode |setMissionMode| (("boolean" yes-or-no))) 

      (get-mission-mode |getMissionMode| () :output-type "boolean") 

      (get-actions |getActions| () :output-type "Hashtable") (get-cmapi |getCMAPI| () :output-type "CMAPI")  

       (get-pad-editor |getPadEditor| () :output-type "PadEditor") )  

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;;; 
;;; Alternative Load Image Library 
;;; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 

(eval-when (:compile-toplevel :execute :load-toplevel) 

    (register-class "PJAToolkit" "com.eteks.awt"))  

(define-java-accessors eteks-awt "PJAToolkit" 

   (create-image-string |createImage| (("String" url-string)) :output-type "Image") 

    (create-image-url |createImage| (("URL" url)) :output-type "Image"))  

(defun make-eteks-toolkit () (make-java-instance "PJAToolkit" ()))  

;;; This is a java class of accessors to a variety of MAF system functions 

 (eval-when (:compile-toplevel :execute :load-toplevel) 

 (register-class "MafSupport" "edu.mit.aire.awdrat"))  

(define-java-accessors MafSupport "MafSupport" 
 (jbi-login |JBILogin| (("ClientFrame" client-frame)) :static t) 
 (mdr-login |MDRLogin| (("ClientFrame" client-frame)) :static t) 
 (do-action |doAction| (("ClientFrame" client-frame) ("String" action-string))  

:static t))  
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;;; 
;;; 
;;;; The system model per se 
;;; 
;;; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 

(define-ensemble maf-editor 
      :entry-events :auto 
      :inputs () :outputs (the-model) 
      :components ((startup :type maf-startup :models (normal compromised))  
(create-model :type maf-create-model :models (normal compromised)) 
(create-events :type maf-create-events :models (normal compromised)) 
(save :type maf-save :models (normal compromised))) 
 

:controlflows ((before maf-editor before startup) 
(after startup before create-model)) 
 
:dataflows ((the-model create-model the-model create-events)  
(the-model create-events the-model save) 
 (the-model save the-model maf-save-model))  
        ;; The resources used, their modes, and their a priori likelihood of being in each mode  
        :resources ((imagery image-file (normal .7) (hacked .3))  

(code-files loadable-files (normal .8) (hacked .2))) 
        ;; this maps which resources are used by which components of the computation 
        :resource-mappings ((startup imagery)  
(create-model code-files) 
 (create-events code-files)  
(save-model code-files)) 
        ;; this maps the conditional probabilities between the compromises and the misbehaviors 
 :model-mappings ((startup normal imagery normal .99)  

(startup compromised imagery normal .01) 
(startup normal imagery hacked .9) 
(startup compromised imagery hacked .1) 
 

(create-model normal code-files normal .99) 
(create-model compromised code-files normal .01) 
(create-model normal code-files hacked .9) 
(create-model compromised code-files hacked .1) 
 

(create-events normal code-files normal .99) 
(create-events compromised code-files normal .01) 
(create-events normal code-files hacked .9) 
(create-events compromised code-files hacked .1) 
 

(save normal code-files normal .99) 
(save compromised code-files normal .001) 
(save normal code-files hacked .01) 
(save compromised code-files hacked .999)) 
 

:vulnerabilities ((imagery reads-complex-imagery) 
(code-files loads-code) 
)) 
 

(define-ensemble maf-startup 
      :entry-events (startup) 
       :exit-events (startup) 
       :allowable-events (post-validate create-client-frame  

center-action load-image) 
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:inputs () 
:outputs ()) 
 

;;; Need to pick predicates for distinguishing these 
 ;;; The compromise possible in startup is an image file 
 ;;; attack leading to out of code execution? 
 (defbehavior-model (maf-startup normal)  

:inputs () 
:outputs () 
:prerequisites () 
:post-conditions ()) 
 

(defbehavior-model (maf-startup compromised) 

 :inputs () 

 :outputs () :prerequisites () 

 :post-conditions ())  

;;; Need defbehaviors for each of these even if its empty  

(define-ensemble maf-create-model 
       :entry-events (create-mission-action-action-performed) 
        :exit-events (mission-builder-submit) 
         :allowable-events (create-mission-builder-with-client-panel  

create-mission-builder 
create-mission-builder-with-hash-table 
mission-builder-submit 
(set-initial-info exit (the-model nil)) 
create-mission-action-action-performed 
retrieve-info 
create-mission-action-action-performed 
(set-initial-info entry) 
) 
 

:inputs () 
:outputs (the-model)) 
 

(defbehavior-model (maf-create-model normal) 

       :inputs () 

        :outputs (the-model) 

         :prerequisites () 

          :post-conditions ([dscs ?the-model mission-builder good]) 

          )  

(defbehavior-model (maf-create-model compromised) 

       :inputs () 

 :outputs (the-model) 

 :prerequisites () 

 :post-conditions ([not [dscs ?the-model mission-builder good]]) 

 )  

(define-ensemble maf-create-events 
      :entry-events :auto 
       :exit-events () 
       :allowable-events () 
       :inputs (the-model) 
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 :outputs (the-model)  
:components ((get-next-cmd :type maf-get-next-cmd :models (normal))  
(get-event-info :type maf-get-event-info :models (normal compromised)) 
(add-event-to-model :type maf-add-event-to-model :models (normal compromised)) 
(get-leg :type maf-get-leg :models (normal compromised)) 
(get-movement :type maf-get-movement :models (normal compromised)) 
(get-sortie :type maf-get-sortie :models (normal compromised)) 
(add-additional-info-to-model :type maf-add-additional-info :models (normal compromised)) 
(continue :type maf-create-events :models (normal compromised))) 
 

:dataflows ((the-model maf-create-events the-model join-exit-exit) 
 (the-model maf-create-events the-model add-event-to-model) 
 (the-cmd get-next-cmd cmd more-events?) 
 (the-event get-event-info the-event add-event-to-model) 
 (the-model add-event-to-model the-model join-events-non-take-off) 
 (the-event get-event-info event takeoff?) 
 (the-leg get-leg the-leg add-additional-info-to-model)  
(lms-event-counter get-leg event-number add-additional-info-to-model) 
 (the-movement get-movement the-movement add-additional-info-to-model) 
 (the-sortie get-sortie the-sortie add-additional-info-to-model) 
 (the-model add-event-to-model the-model add-additional-info-to-model) 
 (the-model add-additional-info-to-model the-model join-events-take-off) 
 (the-model join-events the-model continue) 
 (the-model continue the-model join-exit-recur) 
 (the-model join-exit the-model maf-create-events) 
 ) 
  
    :controlflows ((after more-events?-build-event before add-event-to-model) 

  (after more-events?-exit before join-exit-exit) 
  (after takeoff?-get-additional-info before get-leg) 
  (after takeoff?-get-additional-info before get-movement) 
  (after takeoff?-get-additional-info before get-sortie) 
  (after takeoff?-exit before join-events-non-take-off)) 
 
:splits ((more-events? maf-more-events? (cmd) (build-event exit))  
(takeoff? maf-takeoff? (event) (get-additional-info exit))) 

:joins ((join-events (the-model) (take-off non-take-off)) 
(join-exit (the-model) (recur exit))) 
 

;; The resources used, their modes, and their a priori likelihood of being in each mode 
 :resources ((code-files loadable-files (normal .8) (hacked .2))) 
 ;; this maps which resources are used by which components of the computation 
 :resource-mappings ((get-event-info code-files)  

(add-event-to-model code-files) 
(get-leg code-files) 
(get-movement code-files) 
(get-sortie code-files) 
(add-additional-info-to-model code-files) 
(continue code-files)) 
 

;; this maps the conditional probabilities between the compromises and the misbehaviors  
:model-mappings ((get-event-info normal code-files normal .99) 
(get-event-info compromised code-files normal .01) 
(get-event-info normal code-files hacked .9) 
 

 (get-event-info compromised code-files hacked .1)  

(add-event-to-model normal code-files normal .99) 
(add-event-to-model compromised code-files normal .01) 
(add-event-to-model normal code-files hacked .9) 
(add-event-to-model compromised code-files hacked .1) 
 

(get-leg normal code-files normal .99) 
(get-leg compromised code-files normal .001) 
(get-leg normal code-files hacked .01) 
(get-leg compromised code-files hacked .999) 
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(get-movement normal code-files normal .99) 
(get-movement compromised code-files normal .001) 
(get-movement normal code-files hacked .01) 
(get-movement compromised code-files hacked .999) 
 

(get-sortie normal code-files normal .99) 
(get-sortie compromised code-files normal .001) 
(get-sortie normal code-files hacked .01) 
(get-sortie compromised code-files hacked .999) 
 

(add-additional-info-to-model normal code-files normal .99) 

 (add-additional-info-to-model compromised code-files normal .001) 

 (add-additional-info-to-model normal code-files hacked .01) 

 (add-additional-info-to-model compromised code-files hacked .999)  

(continue normal code-files normal .99) 
(continue compromised code-files normal .001) 
(continue normal code-files hacked .01) 
(continue compromised code-files hacked .999)) 
 

:vulnerabilities ((code-files loads-code))  
)  

(defbehavior-model (maf-create-events normal) 

 :inputs (the-model) 

 :outputs (the-model) 

 :prerequisites ([dscs ?the-model mission-builder good]) 

 :post-conditions ([dscs ?the-model mission-builder good]) 

 )  

(defbehavior-model (maf-create-events compromised) 

         :inputs (the-model) 

         :outputs (the-model) 

         :prerequisites ([dscs ?the-model mission-builder good]) 

         :post-conditions ([not [dscs ?the-model mission-builder good]]) 

 )  

(define-ensemble maf-get-next-cmd 

      :entry-events (next-cmd) 

      :exit-events ((next-cmd exit (the-cmd))) 

      :inputs () 

      :outputs (the-cmd))  

(defbehavior-model (maf-get-next-cmd normal) 

      :inputs () 

      :outputs (the-cmd) 

      :prerequisites () 
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      :post-conditions ())  

(define-ensemble maf-get-event-info 
      :entry-events (create-mission-event-point) 
      :allowable-events (set-current-point 
          (create-mission-event-point exit) 
           create-mission-event-object 
           meo-set-information 
            mpl-action-performed 
             close-form  
           add-new-event-internal) 

:exit-events ((got-event-info exit (the-event))) 
:inputs () 
:outputs (the-event)) 
 

(defbehavior-model (maf-get-event-info normal) 

      :inputs () 

      :outputs (the-event) 

      :prerequisites () 

      :post-conditions ([dscs ?the-event event good]))  

(defbehavior-model (maf-get-event-info compromised) 

      :inputs () 

      :outputs (the-event) 

      :prerequisites () 

      :post-conditions ([not [dscs ?the-event event good]]))  

(define-ensemble maf-add-event-to-model 
      :entry-events (update-msn-evt) 
      :allowable-events 
      ((update-msn-evt exit (mb event-number event))  

add-new-event-internal 
create-new-additional-mission-info-panel 
) 
 

:exit-events (mpl-action-performed) 
:inputs (the-event the-model) 
:outputs (the-model event-number)) 
 

(defbehavior-model (maf-add-event-to-model normal) 
      :inputs (the-event the-model) 
      :outputs (the-model event-number) 
      :prerequisites ([dscs ?the-event event good] 
      [dscs ?the-model mission-builder good]) 
      :post-conditions 
      ([add-to-map (events ?the-model)?event-number ?the-event  
?before-maf-add-event-to-model] 

[dscs ?the-model mission-builder good])) 
 

(defbehavior-model (maf-add-event-to-model compromised) 

      :inputs (the-event the-model) 

      :outputs (the-model event-number) 

      :prerequisites ([not [dscs ?the-event event good]] 

      [not [dscs ?the-model mission-builder good]])  
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     :post-conditions ([dscs ?the-model mission-builder good]))  

(define-ensemble maf-get-leg 

      :entry-events (retrieve-leg) 

      :exit-events ((retrieve-leg exit (nil the-leg lms-event-counter))) 

      :allowable-events (create-mission-leg-object mlo-set-information) 

      :inputs () 

      :outputs (the-leg lms-event-counter))  

(defbehavior-model (maf-get-leg normal) 

      :inputs () 

      :outputs (the-leg lms-event-counter) 

      :prerequisites () 

      :post-conditions ([dscs ?the-leg leg good]))  

(defbehavior-model (maf-get-leg compromised) 

      :inputs () 

      :outputs (the-leg lms-event-counter) 

      :prerequisites () 

      :post-conditions ([not [dscs ?the-leg leg good]]))  

(define-ensemble maf-get-movement 
      :entry-events (retrieve-movement)  
      :exit-events ((retrieve-movement exit (nil the-movement))) 
      :allowable-events  

(create-mission-movement-object mmo-set-information)  
:inputs ()  
:outputs (the-movement))  

(defbehavior-model (maf-get-movement normal)  
:inputs ()  
:outputs (the-movement)  
:prerequisites ()  
:post-conditions ([dscs ?the-movement movement good]))  

(defbehavior-model (maf-get-movement compromised)  
:inputs ()  
:outputs (the-movement)  
:prerequisites ()  
:post-conditions ([not [dscs ?the-movement movement good]]))  

(define-ensemble maf-get-sortie  
:entry-events (retrieve-sortie)  
:exit-events ((retrieve-sortie exit (nil the-sortie)))  
:allowable-events  
(create-mission-sortie-object mso-set-information)  
:inputs ()  
:outputs (the-sortie))  

(defbehavior-model (maf-get-sortie normal)  
:inputs ()  
:outputs (the-sortie)  
:prerequisites ()  
:post-conditions ([dscs ?the-sortie sortie good]))  

(defbehavior-model (maf-get-sortie compromised)  
:inputs ()  
:outputs (the-sortie)  
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:prerequisites ()  
:post-conditions ([not [dscs ?the-sortie sortie good]]))  

(define-ensemble maf-add-additional-info  
:entry-events ((retrieve-sortie exit))  
:exit-events (Mission-builder-add-info)  
:inputs (the-model the-leg the-movement the-sortie event-number)  
:outputs (the-model))  

(defbehavior-model (maf-add-additional-info normal)  
:inputs (the-model the-leg the-movement the-sortie event-number)  
:outputs (the-model)  
:prerequisites ([dscs ?the-leg leg good]  
[dscs ?the-movement movement good]  
[dscs ?the-sortie sortie good]  
[dscs ?the-model mission-builder good])  

:post-conditions ([add-to-map (legs ?the-model) ?event-number ?the-leg  
?before-maf-add-additional-info]  

[add-to-map (sorties ?the-model) ?event-number ?the-sortie  
?before-maf-add-additional-info]  

[add-to-map (movements ?the-model) ?event-number ?the-movement  
?before-maf-add-additional-info]  

[dscs ?the-model mission-builder good]))  

(defbehavior-model (maf-add-additional-info compromised)  
:inputs (the-model the-leg the-movement the-sortie event-number)  
:outputs (the-model)  
:prerequisites ([dscs ?the-leg leg good]  
[dscs ?the-movement movement good]  
[dscs ?the-sortie sortie good]  
[dscs ?the-model mission-builder good])  

:post-conditions ([not [dscs ?the-model mission-builder good]]))  

(defsplit maf-more-events? (cmd)  
(build-event (equal ?cmd ’new-event)) 
(exit (equal ?cmd ’save-mission))) 
 

(defsplit maf-takeoff? (event)  

     (get-additional-info (take-off-event? ?event)) 

      (exit (not (take-off-event? ?event))))  

(define-ensemble maf-save 

      :inputs (the-model) 

      :outputs ())  

(defbehavior-model (maf-save normal) 

      :inputs (the-model) 

      :outputs () 

      :prerequisites ([dscs ?the-model mission-builder good]) 

      :post-conditions ([dscs ?the-model mission-builder good]))  

(defbehavior-model (maf-save compromised) 

 :inputs (the-model) 

 :outputs () 

 :prerequisites ([dscs ?the-model mission-builder good]) 
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 :post-conditions ([not [dscs ?the-model mission-builder good]]))  

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;;; 
;;; attack models 
;;; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 

(define-attack-model maf-attacks 

      :attack-types ((hacked-image-file-attack .3) (hacked-code-file-attack .5)) 

       :vulnerability-mapping ((reads-complex-imagery hacked-image-file-attack) 

        (loads-code hacked-code-file-attack)))  

;;; rules mapping conditional probabilities of vulnerability and attacks  

(defrule bad-image-file-takeover (:forward) 
   if [and [resource ?ensemble ?resource-name ?resource] 
   [resource-type-of ?resource image-file] 
   [resource-might-have-been-attacked ?resource hacked-image-file-attack]]  
   then [and [attack-implies-compromised-mode hacked-image-file-attack ?resource hacked .9 ]  

[attack-implies-compromised-mode hacked-image-file-attack ?resource normal .1 ]])  

(defrule bad-image-file-takeover-2 (:forward) 
   if [and [resource ?ensemble ?resource-name ?resource] 
   [resource-type-of ?resource code-memory-image] 
   [resource-might-have-been-attacked ?resource hacked-image-file-attack]] 
    then [and [attack-implies-compromised-mode hacked-image-file-attack ?resource hacked .9 ]  

[attack-implies-compromised-mode hacked-image-file-attack ?resource normal .1 ]])  

(defrule hacked-code-file-takeover (:forward) 
   if [and [resource ?ensemble ?resource-name ?resource] 
   [resource-type-of ?resource loadable-files] 
   [resource-might-have-been-attacked ?resource hacked-code-file-attack]] 
   then [and [attack-implies-compromised-mode hacked-code-file-attack ?resource hacked .9 ]  

[attack-implies-compromised-mode hacked-code-file-attack ?resource normal .1 ]])  

(defrule hacked-code-file-takeover-2 (:forward) 
   if [and [resource ?ensemble ?resource-name ?resource] 
   [resource-type-of ?resource loadable-files] 
   [resource-might-have-been-attacked ?resource hacked-code-file-attack]]  
   then [and [attack-implies-compromised-mode hacked-code-file-attack ?resource hacked .9 ]  

[attack-implies-compromised-mode hacked-code-file-attack ?resource normal .1 ]])  

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;;;;; 
;;;;; Hacked Code file attacks 
 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;  

(defrule bad-code-file-takeover (:forward)  
if [and [resource ?ensemble ?resource-name ?resource]  
[resource-type-of ?resource code-file]  
[resource-might-have-been-attacked ?resource hacked-code-file-attack]]  
then [and [attack-implies-compromised-mode hacked-code-file-attack ?resource hacked .9 ]  

[attack-implies-compromised-mode hacked-code-file-attack ?resource normal .1 ]])  

(defrule bad-code-file-takeover-2 (:forward)  
if [and [resource ?ensemble ?resource-name ?resource]  
[resource-type-of ?resource code-memory-image]  
[resource-might-have-been-attacked ?resource hacked-code-file-attack]]  
then [and [attack-implies-compromised-mode hacked-code-file-attack ?resource hacked .9 ]  

[attack-implies-compromised-mode hacked-code-file-attack ?resource normal .1 ]])  




