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1. Introduction 

1.1 Background 

The U.S. Army Research Laboratory (ARL) in Aberdeen, MD, has expressed a need for a 
computer software package that can analyze ion-implantation data, extract diffusion coefficients 
from this data, and predict concentration profiles.  Their current implantation data is used to 
study the effects of carbon diffusion in gun-tube barrels.  A comprehensive software package 
such as this would save a tremendous amount of experimentation time and money for ARL and 
would therefore be very beneficial.  

1.2 Problem Statement 

The objective of this thesis was to develop a Fortran software package in order to extract 
diffusion data from concentration profiles and to predict future concentration profiles.  This 
package needed to be stand-alone, user friendly, and have the ability to interface with ARL’s 
existing computer code.  

1.3 Approach 

The approach to this problem began with an in-depth literature survey.  This allowed the 
gathering of necessary equations and solution methods to solve the mathematical portion of the 
thesis.  Using this newly acquired knowledge, a Fortran code was written in order to satisfy the 
requirements of ARL and to perform the necessary functions.  This code was tested and 
compared against existing code and mathematical solutions to validate its effectiveness. 

The thesis then covered various experiments to demonstrate the sensitivity of the code.  The 
purpose of this step was to aid the reader in visualizing the adverse effects of altering parameters 
such as number of data points, time increments, and induced noise.  

The thesis concluded with a discussion on the limitations of the software itself and possible 
recommendations that can be made in the future to improve the software package. 

2. Literature Survey 

2.1 Diffusion Equations for Predicting Concentration Profiles 

2.1.1  Binary Systems 

2.1.1.1 Constant Diffusivity.  In reality, most cases of diffusion are transient or non steady-state 
ones.  This applies, for example, to those cases in which the interstitial concentration C varies 
with time which results in a net accumulation or depletion of the diffusing species.  In order to 
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model this situation, it is necessary to use the partial differential equation known as the diffusion 
equation which is given by (1) 

 ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=
∂
∂

x
CD

xt
C . (1) 

For cases in which D is independent of composition, or where the range of composition is small, 
equation 1 reduces to (1) 

 2

2

x
CD

t
C

∂
∂

=
∂
∂ , (2) 

which is known as Fick’s second law.  Figure 1 shows an example of transient diffusion in a 
binary system in which the diffusivity is constant with respect to composition.  

 

Figure 1.  Transient diffusion with constant diffusivity. 

If one were to apply Fick’s second law to a semi-infinite solid and held the surface concentration 
constant, a common error function solution would be obtained (2).  In order to obtain such a 
solution, the following assumptions can be made: 

1. Before diffusion, the diffusing solute atoms in the solid are uniformly distributed with 
concentration of Co. 

2. The concentration at the surface, x = 0, is a constant value, Cs. 

These boundary conditions can be stated as follows: 

 For t = 0, C = CO at 0 ≤  x ≤  ∞, 

 For t > 0, C = Cs at x = 0,      and     C = C0 at x = ∞. 
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If these boundary conditions are applied to equation 2, the following solution is obtained: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−
−

Dt
xerf

CC
CC

os

ox

2
1 , (3) 

where Cx represents the concentration at depth x after time t.  The expression erf(x/2√Dt) is the 
Gaussian error function, values of which are given in mathematical tables for various x/2√Dt 
values.  Equation 3 demonstrates the relationship between concentration, position, and time, 
namely, that Cx, being a function of the dimensionless parameter x/√Dt, may be determined at 
any time and position if the parameters Co, Cs, and D are known. 

Another solution to Fick’s second law is known as the thin-film solution.  Taking an infinite 
plane as the geometry, the total amount of substance M diffusing in the cylinder and unit cross 
section is given by (1) 

 
 

 
M Cdx

∞

−∞
= ∫ . (4) 

After differentiating equation 4 and applying the appropriate derivation, equation 5 is given as 
(1) 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

Dt
x

Dt
MC

4
exp

2

2

π
. (5) 

Therefore, this is the solution which describes the spreading by diffusion of an amount of 
substance M deposited at time t = 0 in the plane x = 0.  Figure 2 shows typical distributions at six 
successive times. 
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Figure 2.  Concentration-distance curves for an instantaneous plane source. 
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For the thin-film solution, we can consider the solution for negative x to be reflected in the plane 
x = 0 and superimposed on the original distribution in the region x > 0.  Since the original 
solution was symmetrical about x = 0 the concentration distribution for the semi-infinite plane is 
given by  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

Dt
x

Dt
MC

4
exp

2

π
. (6) 

A typical concentration distribution for the thin film solution is demonstrated in figure 3. 
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Figure 3.  Concentration-distance curves for the thin-film solution. 

A third solution to Fick’s second law is based on a trigonometric solution.  In this solution, it is 
assumed that the time and spatial variables are separable, that is (1) 

 )()( txCB τξ ⋅= , (7) 

where ξ and τ are functions, as yet unknown, of x and t respectively.  Substituting for CB in 
Fick’s second law gives (1) 

 2

2

dx
dD

dt
d

B
ξττξ = , (8) 

and 

 2

211
dx
d

dt
d

DB

ξ
ξ

τ
τ

= , (9) 
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where we now have only total differentials of our unknown functions.  Since one side of the 
equation depends only on t and the other only on x, the equation can only hold for all x and t if 
both are equal to some constant, say –k2 (1). 

 ττ
BDk

dt
d 2−= . (10) 

 ξξ 2k
dx
d

−= . (11) 

These differential equations can now be solved to give the functionsξ andτ  (1). 

 )exp( 2 tDk B−=τ . (12) 

 )cos()sin( 21 kxAkxA +=ξ . (13) 

The time-dependent concentration function CB is therefore a sinusoidal composition fluctuation 
which decays exponentially with time.  This is seen more clearly by taking CB = C0 at x = 0 at all 
times, and substituting for the wavelength of the sinusoidal variation λ : 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛∆+= t

DxCCtxC B
B 2

2

0
4

exp2sin),(
λ

π
λ
π  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛∆+=

Γt
txCC exp2sin0 λ

π , (14) 

where  

 
BD

t 2

2

4π
λ

=Γ  (15) 

is the relaxation time, which is the time taken for a sinusoidal variation of wavelength λ to drop 
to 37% of its original amplitude. 

2.1.1.2 Variable Diffusivity.  When the diffusion coefficient D is a function of concentration C, 
the equation for one-dimensional (1-D) diffusion is (3) 

 ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=
∂
∂

x
CD

xt
C . (16) 

Differentiation of equation 16 yields (3) 

 
x
C

x
D

x
CD

t
C

∂
∂

∂
∂

+
∂
∂

=
∂
∂

2

2

. (17) 

Second-order-correct approximations to the partial derivations in equation 17 are (3): 
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. (21) 

The superscripts refer to the time dimension and subscripts denote the space dimension.  Note 

that 
x
D

∂
∂  is evaluated at n rather than n+1/2, because the composition-dependent coefficient D 

cannot be calculated at the next time step n+1 before the concentrations at n+1 have been 
evaluated.  Substituting the approximations, equations 18–21 into equation 17 yields (3) 
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+
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⎦
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⎡
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n
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n
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i
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i D

t
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2

111  

 [ ]n
i

n
i

n
i

n
i DDDC 111 4 −++ −++ , (22) 

which has been arranged so that all the concentrations at the current time step (n) are on the right 
and the concentrations to be computed at the next time step (n+1) are on the left.   

2.1.2  Multicomponent Systems With One Fast Diffuser 

The basis for modeling multicomponent systems with one fast diffuser comes from the following 
equation: 

 total
total

J
xt

c )(1 −
∂
∂

=
∂

∂   (23) 

in which x represents distance and J total is the total flux (4).  Assuming the precipitate volume 
fraction is negligible, the multicomponent flux can be written as 
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x
c

DJ j
n

j
j ∂

∂
−= ∑

−

=

1

1
11 , (24) 

in which component 1 is a fast diffuser (i.e., an interstitial atom) and components 2 through n-1 
refer to slower moving alloying elements (i.e., substitutional atoms) (5).  

Equation 24 can be rewritten in terms of an effective diffusivity described by the equation: 

 
x

cDJ
m

eff

∂
∂

−= 1
11 . (25) 

Joining equations 24 and 25 yields (6) 

 

x
c

x
c

D
D m

m
j

n

j
j

eff

∂
∂

∂

∂

=
∑

−

=

1

1

1
1

1 . (26) 

By assuming local equilibrium and no long-range diffusion by substitutional atoms, equation 26 
can be simplified to 

 ∑
−

= ∂

∂
+=

1

2 1
1111

n

j c
m

m
j

j
eff

k
c
c

DDD . (27) 

Equation 27 represents only one independent concentration variable with only one degree of 
freedom.   

Combining equations 23 and 25 and then differentiating totc1  gives 

 
x

c
c
cD

xt
c tot

tot

m
eff

tot

∂
∂

∂
∂

∂
∂

=
∂

∂ 1

1

1
1

1 . (28) 

Equation 28 is the one used to predict concentration profiles for multicomponent systems with 
one fast diffuser.  

2.2 Finite-Difference Methods for Predicting Concentration Profiles 

The objective of a finite-difference method for solving an ordinary differential equation (ODE) is 
to transform a calculus problem into an algebra problem by: 

1. Discretizing the continuous physical domain into a discrete finite difference grid, 

2. Approximating the exact derivatives in the initial-value ODE by algebraic finite difference 
approximations (FDAs), 



 8

3. Substituting the FDAs into the ODE to obtain an algebraic finite difference equation 
(FDE), and  

4. Solving the resulting algebraic FDE. 

2.2.1  Explicit Forward-Difference Method (Euler Method) 

Consider the general nonlinear first-order ODE (7): 

 ( )ytfy ,=
′ ( ) 00 yty = . (29) 

Choose point n as the base point and develop a finite difference approximation of equation 29 at 
that point.  The finite-difference grid is illustrated in figure 4, where the x symbol denotes the 
base point for the finite difference approximation of equation 29. 

 

Figure 4.  Finite difference grid for the explicit Euler method. 

The first-order forward-difference, finite-difference approximation of y′ is given by (7): 

 ty
t

yy
y n

nn
n

∆′′−
∆
−

=′ + )(
2
11 τ . (30) 

Substituting equation 30 into equation 29 and evaluating ( )ytf ,  at point n yields (7) 

 ( ) nnnn
nn fytfty

t
yy

==∆′′−
∆
−+ ,)(

2
11 τ . (31) 

Solving equation 31 for 1+ny  gives (7) 

 +∆+=+ nnn ftyy 1 ( )22 0)(
2
1 tftyty nnn ∆+∆+=∆′′ τ . (32) 

Truncating the remainder term, which is ( )20 t∆ , and solving for 1+ny  yields the explicit Euler 
finite difference equation (FDE) (7): 

 nnn tfyy ∆+=+1 ( )20 t∆ , (33) 

where the ( )20 t∆  term is included as a reminder of the order of the local truncation error.  
Several features of equation 33: 

1. The FDE is explicit, since nf does not depend on 1+ny . 

n n+1 t 
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2. The FDE requires only one known point.  Hence, it is a single-point method. 

3. The FDE requires only one derivative function evaluation (i.e., f(t,y)) per step. 

4. The error in calculating 1+ny  for a single step, the local truncation error, is  ( )20 t∆ . 

5. The global (i.e., total) error accumulated after N steps is ( )20 t∆ .  

The explicit Euler method only has first-order accuracy and it is very unstable, therefore, it is 
impractical to use. 

2.2.2  Crank-Nicolson Method 

The Crank Nicolson (1) method is a more widely used finite difference method for solving 
partial differential equations and is set up using the following grid (figure 5).  

 

Figure 5.  The Crank-Nicolson method stencil. 

Crank and Nicolson in 1947 proposed approximating the partial derivative tf  at grid point 
(i,n+1/2) by the second-order centered-time approximation obtained by combining Taylor series 
for 

1+n

if  and 
n

kf .  Thus, (7) 
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Subtracting these two equations and solving for 
2/1+n

itf  gives  

 ( ) 2
1

2/1

24
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t
ff
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=
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+
τ , (36) 

(i-1,n+1) (i,n+1) (i+1,n+1) 

(i-1,n) (i,n) (i+1,n) 

(i,n+1/2) 
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where 1+≤≤ nn tt τ  [7].  Truncating the remainder term in equation 36 yields the second-order 
centered-time approximation of tf  (7): 

 
t

fff
n
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−

=
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+
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2/1 . (37) 

The partial derivative xxf  at grid point (i,n+1/2) is approximated by (7) 

 ⎟
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The order of the FDE obtained using equations 37 and 38 is expected to be ( ) ( )22 00 xt ∆+∆ , but 
that must be proven from the MDE.  The partial derivative xxf at time levels n and n+1 are 
approximated by the second-order centered-difference approximation 
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applied at time levels n and n+1, respectively (7).  The resulting finite-difference approximation 
of the 1-D diffusion equation is (7) 
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Rearranging equation 40 yields the Crank-Nicolson finite-difference equation: 

 ( ) ( ) n
i

n
i

n
i

n
i

n
i

n
i dffddfdffdd 11

1
1

11
1 1212 +−

+
+

++
− +−+=−++− , (41) 

where 2x
td

∆
∆

= α  is the diffusion number (7). 

The Crank-Nicolson method is unconditionally stable and accurate on a second order level.  The 
solution at a given time level can be reached with much less computational effort by taking 
larger time steps.  The time step is limited only by accuracy requirements.   

2.2.3  Thomas Algorithm to Solve a Tridiagonal System of Equations 

When a large system of linear algebraic equations has a special pattern, such as a tridiagonal 
pattern as in the Crank-Nicolson equation, it is usually worthwhile to develop special methods 
for that unique pattern.  These methods are generally very efficient in computer time and storage.  
One algorithm that deserves special attention is the algorithm for tridiagonal matrices, often 
referred to as the Thomas algorithm. 
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To derive the Thomas algorithm, the Gauss elimination procedure is applied to a tridiagonal 
matrix T, modifying the procedure to eliminate all unnecessary computations involving zeros.  
Consider the matrix equation: 

 Tx = b,  (42) 

where T is a tridiagonal matrix (7).  Thus, (7) 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

−−−−−

nnnn

nnnnnn

aa
aaa

aaa
aaa

aaa
aa

T

,1,

,11,12,1

454443

343332

232221

1211

0...00000
...00000

...........................
000...00
000...00
000...00
000...000

. (43) 

Since all the elements of column 1 below row 2 are already zero, the only element to be 

eliminated in row 2 is 21a .  Thus, replace row 2 by 1
11

21
2 R

a
a

R ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− .  Row 2 becomes (7) 

 ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− 000...000 2312

11

21
22 aa

a
a

a . (44) 

Similarly, only 32a  in column 2 must be eliminated from row 3, only 43a  in column 3 must be 
eliminated from row 4, etc.  The eliminated element itself does not need to be calculated.  In fact, 
storing the elimination multipliers, em = ( 21a / 11a ), etc., in place of the eliminated elements 
allows this procedure to be used as an LU factorization method.  Only the diagonal element in 
each row is affected by the elimination.  Elimination in rows 2 to n is accomplished as follows 
(7): 

 iia , = iia , -( 1, −iia / 1,1 −− iia )    iia ,1− (i = 2,…,n) (45) 

Thus, the elimination step involves only 2n multiplicative operations to place T in upper 
triangular form.  

The elements of the b vector are also affected by the elimination process.  The first element b1 is 
unchanged.  The second element b2 becomes (7) 

 1
11

21
22 b

a
a

bb ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= . (46) 
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Subsequent elements of the b vector are changes in a similar manner.  Processing the b vector 

requires only one multiplicative operation, since the elimination multiplier, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

11

21

a
a

em , is 

already calculated.  Thus, the total process of elimination, including the operation on the b 
vector, requires only 3n multiplicative operations.   

The n x n tridiagonal matrix T can be stored as an n x 3 matrix A’ since there is no need to store 
the zeros.  The first column of matrix A’, elements '

1,ia , corresponds to the sub-diagonal of matrix 

T, elements 1, −iia .  The second column of matrix A’, elements '
2,ia , corresponds to the diagonal 

elements of matrix T, elements iia , .  The third column of matrix A’, elements '
3,ia , corresponds to 

the super-diagonal of matrix T, elements 1, +iia .  The elements '
1,1a  and '

3,na do not exist.  Thus, (7) 
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nnn
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aaa

aaa
aaa
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A . (47) 

When the elements of column 1 of matrix A’ are eliminated, that is, the elements '
1,ia , the 

elements of column 2 of matrix A’ become (7) 

 '
2,1a = '

2,1a  (48) 

 '
3,1'

2,1

'
1,'

2,
'

2, −
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= i

i

i
ii a

a
a

aa  (i = 2, 3,…,n)  (49) 

The b vector is modified as follows:  (7) 

 b1 = b1 (50) 

 1'
2,1

'
1,

−
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= i

i

i
ii b

a
a

bb  (i = 2, 3,…,n)  (51) 

After '
2,ia (i = 2, 3,…,n) and b are evaluated, the back substitution step is as follows: (7) 

 '
2,n

n
n a

b
x = . (52) 

 
( )

'
2,

1
'

3,

i

iii
i a

xab
x +−

= . (53) 
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Pivoting destroys the tridiagonality of the system of linear algebraic equations, and thus cannot 
be used with the Thomas algorithm.  Most large tridiagonal systems that represent real physical 
problems are diagonally dominant, so pivoting is not necessary.  The Thomas algorithm, in a 
format suitable for programming for a computer, is summarized as follows: 

1. Store the n x n  tridiagonal matrix T in the n x 3 matrix A’.  The right-side vector b is an n x 
1 column vector. 

2. Compute the '
2,ia  terms from equations 48 and 49.  Store the elimination multipliers, 

em= '
1,ia / '

2,1−ia , in place of '
1,ia . 

3. Compute the bi terms from equations 50 and 51. 

4. Solve for xi by back substitution using equations 52 and 53. 

2.3 Inverse Methods Used to Calculate Transport Properties  

2.3.1  Extracting Thermal Conductivity Values From Temperature Profiles 

Inverse determination of the thermal conductivity from measured temperature profiles has been 
the topic of research by many investigators (3).  Most of these studies assume that the thermal 
conductivity is only a function of the spatial coordinate.  However, thermal conductivities are 
temperature-dependent quantities in most practical engineering applications.  Yeung developed a 
second-order finite-difference procedure for the inverse determination of the thermal 
conductivity in a one-dimensional heat conduction domain.  In this case, the thermal 
conductivity of the material is reconstructed by using the available temperature data at discrete 
grid points.  The numerical procedure is validated by comparing it to known examples.  It is 
proven that, using this technique, a priori knowledge of the functional form for thermal 
conductivity is not required. 

2.3.2 Extracting Diffusion Coefficients From Concentration Profiles 

Since the governing equations for heat conduction and diffusion are similar, it is only natural to 
use the same procedure to investigate the diffusion coefficient in a concentration profile.   

As stated earlier, in a 1-D formulation with the diffusing substance moving in the direction 
normal to a sheet of thickness 2a, the diffusion equation can be written as  

 ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=
∂
∂

x
CD

xt
C (0<x<a,  t>0), (54) 

where C is the concentration of the diffusing substance, t is the time, D is the diffusion 
coefficient, and x is the distance coordinate measured from the center of the sheet (3).  

Let the initial condition be (3) 
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 C = C0(0<x<a,  t = 0), (55) 

where C0 is a constant concentration in the medium, and let the boundary conditions be  

 0=
∂
∂

x
C  (x = 0,  t ≥ 0) (56) 

 ( )CCS
x
CD e −=

∂
∂ (x≈a,  t>0), (57) 

where S is the surface emission coefficient and Ce is the equilibrium concentration (3). 

The first step in the inverse method is to present a finite-difference procedure for the calculation 
of the diffusion coefficient at discrete grid points.  Let half of the medium thickness, a, be 
discretized with mesh width ∆x in distance (thickness direction) and ∆t in the time direction with 
grid points xjx j ∆⋅= (where j = 0, 1,…,n) and titi ∆⋅= (where i = 0, 1, 2…).  The present 

procedure will assume that C(x,t) is known at grid points (xj, ti).  Equation 54 can then be 
discretized as follows: 

1. At the surface grid point with j = 0 and i > 0: 

Applying forward difference to the time derivative of equation 54, we have (3) 

 
t
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t
C iii

∆
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0
1

0

0

. (58) 

Applying the central difference to the distance derivative, we obtain  
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,  (59) 

where the following has been set in equation 57: 
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CD
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−

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂ 01

0
0

α , (60) 

by introducing an appropriate constant a to compensate the use of forward difference in the 
equation, which involves different errors than central difference (3).  This also permits the 
avoidance of using the unknown surface emission coefficient S.   

Equating equations 58 and 59 gives (3) 

 ( ) ( ) ( )( ) ( )iiiiiiii CCDCCDCC
t

x
0111000

1
0

2

12 −+−−=−
∆

∆ + α . (61) 
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2. At an internal grid point with 0 < j < n and i > 0: 

Here we have (3) 
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  (62) 

and  

 
x

x
CCDD

x
CCDD

x
CD

x

i
j

i
j

i
j

i
j

i
j

i
j

i
j

i
j

i

j ∆

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∆

−+
−

∆

−
⋅

+

=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

−−++ 1111

22
. (63) 

Equating equations 62 and 63 yields (3) 
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j

i
j CCD −+ ++ 11 . (64) 

3. At the center grid point with j = n and i ≥ 0: 

Due to symmetry, we can set 1 1 1 1,  i i i i
j j j jC C D D− + − += = , and j = n in equation 64 to obtain (3) 

 ( ) ( ) ( ) ( )i
n

i
n

i
n

i
n

i
n

i
n

i
n

i
n CCDCCDCC

t
x

−+−=−
∆

∆
−−−

+
111

1
2

. (65) 

The next step in the inverse method occurs if ( )txC ,  and ( )ttxC ∆+,  are known at evenly spaced 
grid points where t  is the specified time and t∆ is the time increment, and we are interested in 
finding the diffusion coefficient values at the grid points.  From equations 63, 64, and 65, we can 
create the following system of linear equations: 

 Ad = b, (66) 

where A is an (n+1) × (n+1) matrix and d and b are (n+1) vectors (3).  A, d, and b are subscripted 
from 0 to n as shown by the following: 



 16

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

−−−−−

nnnn

nnnnnn

aa
aaa

aaa
aa

A

,1,

,11,12,1

2,11,10,1

1,00,0

...
...

...
. 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

nD

D

d

.

.

.

.

.
0

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

nb

b
b

b

.

.

.

.
1

0

. (67) 

The elements of d are the unknown diffusion coefficient values at the grid points, and the 
elements of A and b are expressed as follows:  

1. At the surface grid point with x = x0 and t = t : (3) 

 ( ) ( ) ( )[ ]txCtxCa ,,12 100,0 −−= α . (68) 

 ( ) ( )txCtxCa ,, 011,0 −= . (69) 

 ( ) ( ) ( )[ ]txCttxC
t

xb ,, 00

2

0 −∆+
∆

∆
= . (70) 

2. At an internal grid point with x = xj (0<j<n) and t = t : (3) 

 ( ) ( )txCtxCa jjjj ,,11, −= −− . (71) 

 ( ) ( ) ( )txCtxCtxCa jjjjj ,,2, 11, −+ +−= . (72) 

 ( ) ( )txCtxCa jjjj ,,11, −= ++ . (73)
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 ( ) ( ) ( )[ ]txCttxC
t

xb jjj ,,2
2

−∆+
∆

∆
= . (74) 

3. At the center grid point with x = xn and t = t : [3] 

 ( ) ( )txCtxCa nnnn ,,11, −= −− . (75) 

 ( ) ( )txCtxCa nnnn ,,1, −= − . (76) 

 ( ) ( ) ( )[ ]txCttxC
t

xb nnn ,,
2

−∆+
∆

∆
= . (77) 

 

This system consists of a tridiagonal system of linear algebraic equations.  The solution vector d 
is the diffusion coefficient vector.  This system can be solved using the Thomas algorithm as 
previously mentioned.  

3. Fortran Software Development  

3.1 Concentration Profile Predictor 

Constant Diffusivity  

This program was written to predict future concentration profiles from an initial concentration 
profile and constant diffusivity value.  The program begins by asking the user for the initial 
concentration profile file in .txt format.  After storing this array, the program requests the 
constant diffusivity value from the user.  The final request from the software is the time at which 
the user would like the concentration profile to be predicted.  The software’s output is both on 
screen and in a .txt file located in the same location as the initial concentration profile.  The user 
can then easily import this file into Excel to see the new concentration profile.  The user can also 
edit the position and time increments within the code itself to tailor the output to their liking.  

As discussed in section 2.1.1.1, one solution to Fick’s second law is the error function solution.  
One way to test the validity of this program is to compare it against this known solution, 
demonstrated by 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−
−

Dt
xerf

CC
CC

os

ox

2
1 . (78) 

This is accomplished by using an initial concentration profile based on equation 78 and setting a 
constant diffusivity.  This diffusivity value is used both in equation 78 and in the program itself.  
Equal times were chosen as well.  The result of this comparison is shown in figure 6. 
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Figure 6.  Graph showing the error function solution compared with the Fortran code solution. 

One can see that the results match to four significant figures, thereby verifying the correct 
operation of the Fortran program.  

Another solution known as the thin-film solution was discussed in section 2.1.1.1 as well.  This 
research compares this solution to the Fortran program as well to further validate its functional 
use.  The thin-film solution was given in equation 6, which is shown again here: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

Dt
x

Dt
MC

4
exp

2

π
. (79) 

In order to compare the program to the thin-film solution, an initial concentration profile based 
on equation 79 was used as well as a predetermined constant diffusivity.  This diffusivity value 
was used both in equation 79 and in the program itself.  Equal time increments were chosen as 
well.  The result of this comparison is shown in figure 7. 

One can see that the results match to four significant figures, thereby verifying the correct 
operation of the Fortran program.  

A third solution of Fick’s law is based on a trigonometric solution and is mentioned in section 
2.1.1.1.  This solution is based on the following: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛∆+=

Γt
txCCtxCB exp2sin),( 0 λ

π . (80) 
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Figure 7.  Graph showing the thin-film solution compared with the Fortran program. 

In order to compare the program to the trigonometric solution, an initial concentration profile 
based on equation 80 was used as well as a predetermined constant diffusivity.  This diffusivity 
value was used both in equation 80 and in the program itself.  Equal time increments were 
chosen as well.  The result of this comparison is shown below in figure 8. 

One can see that the results match to four significant figures, thereby verifying the correct 
operation of the Fortran program.  

3.2 Diffusivity Extractor  

Constant Diffusivity 

This program was written to extract diffusivity values from two concentration profiles.  This 
matrix of diffusivity values can then be used to predict future concentration profiles with respect 
to both time and temperature.  The program begins by asking the user for the two concentration 
profiles file in .txt format.  The array size, time step, and time duration are then inputted.  The 
software’s output is both on screen and in a .txt file located in the same location as the 
concentration profiles.  The user can then easily import this file into excel to see the graph of the 
diffusivity matrix. 
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Figure 8.  Graph showing the trigonometric approximation compared with the Fortran program. 

In order to test this portion of the software, the thin-film solution was used again.  A time of 
0.005 s was inputted into equation 79 in order to generate one concentration profile.  A second 
profile was generated using a time of 0.00503 s demonstrating a time step of 0.00003 s.  In this 
case, the diffusivity was set as a constant value of 1 to generate both of these curves.  In order for 
the program to be operational, it would need to extract a diffusivity matrix with the value 1 in 
each location.  The resulting extraction is shown in graphical form in figure 9.  

As one can see, the diffusivity values oscillate at first and finally converge to a value of 1.06, 
which leaves a 5% error since 1 is the true value.  Since this is within the acceptable tolerance, 
this portion of the program is deemed operational.  

4. Software Limitations 

The Fortran programs written for this research project depend solely on input and output external 
files.  These files are currently in .txt format which rely on exact formatting and data placement 
specifications.  Slight alterations in either of these variables will inherently affect the operation 
of the main program.  If these files are converted to spreadsheet files (i.e., Excel), data 
manipulation and representation will become more efficient. The programmer will need to write 
an SQL subroutine to allow standard Fortran output to be inserted into a spreadsheet.  
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Figure 9.  Diffusivity matrix plotted for constant diffusivity of 1. 

Throughout this research, many different programs were written to solve different aspects of the 
problem such as binary_effd, inverse-rewrite , and ternary_separate and can be seen in 
appendices A, B, and C respectively.  

4.1 Binary_effd 

This program was written to act as a concentration profile predictor for use with constant 
diffusivity.  It uses the condensed form of Fick’s second law when ‘D’ is not a function of 
concentration. The program uses the Crank-Nicholson finite-difference method to iterate to 
future unknown time steps to predict concentration profiles for any given initial binary diffusion 
data set. 

While this program runs successfully using known diffusion examples, the largest error seems to 
come from boundary condition determination.  The program began with Dirichlet boundary 
conditions in which specify the value of the function at the surface and the finite difference only 
takes place between them (i.e., i = 2…n-1).  

 T = f (r, t). (81) 

This scenario did not work with Fortran so the boundary conditions were changed to Neumann 
boundary conditions which specify the normal derivative of the function on the surface.  

 .= n  (r, )T T f t
n

∂
∇ =

∂
. (82) 
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The Neumann scenario proved effective when comparing the programs’ output to known 
solutions. This program successfully uses the Thomas algorithm to solve for the concentration 
values at future unknown time steps using the previous known concentration values.  

4.2 Inverse_rewrite 

This program is designed to act as a diffusivity extractor which would extract the composition-
dependent interdiffusion coefficients from the concentration profiles in a single diffusion couple. 
The procedure is based on the minimization of the difference between the profiles calculated by 
a finite difference scheme and the experimental profiles given by ARL.  This program works 
flawlessly when modeled after the thin-film solution as seen in figure 10. 
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Figure 10.  Thin film approximation using program. 

This program does not perform as well when using actual data from ARL’s test matrix. 
Unfortunately, due to the variation in the input data, the output does not converge on a specific 
value as seen in figure 11. 
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Figure 11.  Program output using ARL input data. 

Some effort was made to computationally induce noise to simulate experimental concentration 
scatter.  A Gaussian noise with a standard deviation of 0.65% was applied to the raw data of 
ARL.  Unfortunately, this caused the program’s output to fluctuate even more.  The inter-
diffusion coefficient values were meant to be obtained along the entire diffusion path, instead of 
only at the intersection point of independent paths (Boltzmann-Matano; BZMA) (8) or instead of 
mean coefficient values (Krishtal; KMAZ) (9).  

The researcher believes the error in this program focuses on the initial values that are introduced. 
It is assumed that a genetic algorithm would need to be developed to apply to the first iterative 
step.  This algorithm would aid in the location of a true minimum and not a local one as seen in 
the current program.  It is also alleged that the stopping criterion for this program was not 
developed properly.  This criterion should allow a point at when it is reached, a test would be 
performed on the different terms to ensure they are of the same order of magnitude.  In order to 
maintain this criterion constant during the while profile treatment, and in order to limit 
calculation time, a variable increment would need to be implemented.  This increment could be 
used as follows:  if the relative variation of the concentration exceeds 10%, the increment is 
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decreased so that the relative variation is no more than 1%.  In that case, for the next iteration, it 
is necessary to employ the previously discussed genetic algorithm to determine the interdiffusion 
coefficients.  This may explain the wide fluctuations seen in figure 11.  

The researcher hypothesizes that a smoothing subcode would need to be applied on the raw ARL 
date before using the Fortran program on it.  An appropriate smoothing function is described in 
equation 83. 
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In order to use the smoothing procedure efficiently, an adequate number of functions (q) must be 
used.  In this case, five should be sufficient.  The average relative error on the concentration 
associated with the smoothing procedure amounts to 0.02%, and the maximum relative error, 
generally observed at extrema, never exceeds 0.5%. 

Inverse solutions are known to be sensitive to changes in input data resulting from measurement 
and modeling errors.  Hence, they may not be unique.  Mathematically, the inverse problems 
belong to the class of ill-posed or ill-conditioned problems; that is, their solutions do not satisfy 
the general requirements of existence, uniqueness, and stability under small changes to the input 
data (10).  

4.3 Ternary_separate 

This program was written to scale the previous programs into ternary and multicomponent 
diffusion with constant and variable diffusivity.  In the ternary program, Fortran would not 
recognize the second element array no matter how it was represented.  A third element is not 
needed in the program as the third element is always determined by the balance of the other two 
to total 100%.  It is here that a two-dimensional (2-D) array written in C++ would be easier to 
code and debug.  Fortran’s limitations make it difficult for the program to access a 2-D matrix 
and perform the necessary calculations while keeping track of each data point within the matrix. 
When forming the three-dimensional array known as ‘C’, Fortran continually disallowed a non-
integer in the ‘countreal’ slot.  This variable began as an integer but somehow was converted to a 
non-integer within the program itself. 

Versions of the Crank-Nicholson method and the Thomas algorithm were again used in this 
program with adjustments made to account for the additional variables used in multicomponent 
diffusion.  The finite-difference nomenclature is the same as that used for the binary diffusion 
case.  This program had difficulty interpreting the bi-tridiagonal matrix that is generated from 
attempting to solve multicomponent diffusion.  Only a single tridiagonal matrix is generated 
when solving a binary diffusion problem.  
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5. Conclusions 

In conclusion, the original objective of this project was not met to its completion.  Several factors 
contributed to this shortcoming, but the primary obstacle was the correlation between the 
software and the input data.  While the software ran successfully with many different known 
solutions, it did not perform well using actual concentration profile data from ARL.  Most likely, 
this is due to the limited amount of species data, the accuracy of the data itself, and the spacing 
between each data point.  As with all software, the closer the data points and the less intense the 
noise is, the more accurate the solution will be.  This is especially true when using a method such 
as the finite difference method, which is based solely on iteration.  

In order to make this program successful, careful analysis of the input data must be made.  All 
efforts should be taken to obtain more accurate, smoother input data which will allow the 
software to run with fewer obstacles and, in turn, produce cleaner output data.  Once the input 
data is appropriate, the programmer should return to “fine tune” the individual software 
programs to allow them to work with the new data.  This may require using a filtering subroutine 
in order to accept only worthy data from the input stream.  There should be a minimum number 
of data points that the program can run on and still produce acceptable results.  It is imperative 
that this number is determined so the program can be modified to run on a sufficient amount of 
data points.  This part of the code would terminate the program if there were fewer data points 
than the program needed.  

Finally, the concentration profile predictor should also be expanded to account for variable 
diffusivity.  
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Appendix A.   Binary_effd 

Binary_effd 

module setup_info 
 
 real :: time, dt, dx, t 
 real :: alpha, xpos, conc 
 integer :: i 
 real :: j 
 
 data dt,dx,time /0.00005,0.01,.01/ 
 
end module setup_info 
 
program binary_effd 
 
 use setup_info 
 implicit none 
 interface 
 
  subroutine fill_a(C,a,nx,effd) 
   integer :: nx 
   real, dimension(0:nx) :: C 
   real, dimension(0:nx,4) :: a 
   real, dimension(0:nx) :: effd 
  end subroutine fill_a 
 
  subroutine tridiag(C,a,nx) 
   integer :: nx 
   real, dimension(0:nx) :: C 
   real, dimension(0:nx,4) :: a 
  end subroutine tridiag 
 
 end interface 
 
 
 integer, parameter :: NSEG = 40 
  
 
 real, dimension (0:NSEG) :: effd !This is the efective D array 
 real, dimension (0:NSEG,4) :: a 

                                                 
  This appendix appears in its original form, without editorial change. 
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 real, dimension (0:NSEG) :: C     !Initial condition 
 real, dimension (0:NSEG) :: xposa,conca 
 integer :: count 
 !character (len=1) :: tab = char(9) 
 !***Enter data and info 
 
  open (unit=10,  file='conc.txt', status='old') !Opening the initial concentration profile 
  open (unit=13,  file='ds.txt', status='old') !Opening the effective D array file 
  open (unit=100, file='binaryoutputtrig.txt', status='unknown') 
   
  !dx=1/NSEG 
  !print*, 'dx is',dx 
  alpha=dt/(dx*dx)  
  !write(*,*)dx,dt,'   alpha is', alpha 
 
  count=-1; 
  5 read (10,*,END=15) xpos,conc 
   count=count+1; 
   xposa(count)=xpos; 
   conca(count)=conc; 
   go to 5 
 
  15 if (count.EQ.0) then 
    print*, 'No data in file' 
   else 
   end if 
 
  C=conca; 
  !print*,C 
  
 
  !Input effective D's into 'effd' array 
  count=-1; 
  6 read (13,*,END=16) effd 
   count=count+1; 
   go to 6 
 
  16 if (count.EQ.0) then 
   !print*, 'No data in file' 
   else 
   end if  
 
  !print*, effd(0) 
  
  
 !***Crank Nicholson Method 
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 t=100.0 
 count=0 
 
 do  j=0,time,0.005 
  !if (t>time) exit 
   !count=count+1 
   !t=count*dt 
 
   call fill_a(C,a,NSEG,effd) 
   call tridiag(C,a,NSEG)        !Update C(i) to new time step 
 
   
 end do 
 
 print*, C 
 write (100,99) C; 
 99 format (1X, F10.4); 
 
 close (unit=100) 
 end program binary_effd 
 
 
 
 !************Subroutine Fill_a ********* 
 
 subroutine fill_a(C,a,nx,effd) 
 use setup_info 
 integer :: nx 
 real, dimension(0:nx) :: C 
 real, dimension(0:nx,4) :: a 
 real, dimension(0:nx) :: effd 
 
  
 
  do i=1,nx-1 
   a(i,1) = -alpha/2.*effd(i) 
   a(i,2) = 1. + (alpha*effd(i)) 
   a(i,3) = a(i,1) 
   a(i,4) = C(i)*(1.-(alpha*effd(i))) + ((C(i-1)+C(i+1))*alpha/2.*effd(i)) 
  end do 
 
  !print*, a(:,4); 
 
  !This is for i=0 
  a(0,1) = 0.*effd(0) 
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  a(0,2) = 1. + (alpha*effd(0)) 
  a(0,3) = -alpha*effd(3) 
  a(0,4) = C(0)*(1.-(alpha*effd(0))) + (C(1)*alpha*effd(0)) 
 
  !This is for i=NSEG 
  a(nx,1) = -alpha*effd(nx) 
  a(nx,2) = 1. + alpha*effd(nx)  
  a(nx,3) = 0.*effd(nx) 
  a(nx,4) = C(nx)*(1.-(alpha*effd(nx))) + (C(nx-1)*alpha*effd(nx)) 
 
  !print*, a(nx,4); 
 
 end subroutine fill_a 
 
 
 !*********Tridiagonal matrix ************ 
  
 subroutine tridiag(C,a,nx) 
 
 real, dimension(0:nx) :: C 
 real, dimension(0:nx,4) :: a 
 integer :: nx 
 real :: denom 
 integer :: j 
 
 C(0)=a(0,4)/a(0,2) 
 a(0,3)=a(0,3)/a(0,2) 
  
 do j=1,nx 
  denom = a(j,2) - a(j,1)*a(j-1,3) 
  C(j) = (a(j,4) - a(j,1)*C(j-1))/denom 
  a(j,3) = a(j,3)/denom 
 end do 
 
 !a(nx,3) is 0 
 do j=nx-1,0,-1 
  C(j) = C(j) - a(j,3)*C(j+1) 
 end do 
 
 end subroutine tridiag 
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Appendix B.   Inverse_rewrite 

Inverse_rewrite 

module setup_info 
 
 real :: time, dt, dx, t 
 real :: alpha, xpos, conc, xpos2, conc2 
 integer :: i 
 real :: j 
 
 data dt,dx,time /0.00005,0.01,10/ 
 
 
end module setup_info 
 
 
program inverse_rewrite 
 
 use setup_info 
 implicit none 
 interface 
 
  subroutine fill_a(a,b,c,r,nx,yimp,y150) 
   integer :: nx 
   !real, dimension(0:nx) :: C 
   real, dimension(0:nx) :: a,b,c,r,h 
   !real, dimension(0:nx,0:nx) :: a 
   real, dimension(0:nx) :: yimp,y150 
  end subroutine fill_a 
 
  subroutine tridiag(nx,a,b,c,r,h) 
   integer :: nx 
   real, dimension(0:nx) :: h,a,b,c,r 
   !real, dimension(0:nx,0:nx) :: a 
  end subroutine tridiag 
 
 end interface 
 
 
 
 integer, parameter :: NSEG = 67 

                                                 
  This appendix appears in its original form, without editorial change. 
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 !real, dimension (0:NSEG,0:NSEG) :: a 
 real, dimension (0:NSEG) :: h,a,b,c,r      
 real, dimension (0:NSEG) :: xposa,yimp,xpos2a,y150 
 integer :: count 
 !character (len=1) :: tab = char(9) 
 
 
 
 !***Enter data and info 
 
  open (unit=10,  file='delta1.txt', status='old')  
  open (unit=13,  file='delta2.txt', status='old')  
  open (unit=100, file='output.txt', status='unknown') 
   
  !dx=1/NSEG 
  !print*, 'nx is',NSEG 
  alpha=(dx*dx)/dt  
  !write(*,*)dx,dt,'   alpha is', alpha 
 
  count=-1; 
  5 read (10,*,END=15) conc 
   count=count+1; 
   !xposa(count)=xpos; 
   yimp(count)=conc; 
   go to 5 
 
  15 if (count.EQ.0) then 
    print*, 'No data in file' 
   else 
   end if 
  
  !print*,yimp 
  
  count=-1; 
  6 read (13,*,END=16) conc2 
   count=count+1; 
   !xpos2a(count)=xpos2; 
   y150(count)=conc2; 
   go to 6 
 
  16 if (count.EQ.0) then 
   !print*, 'No data in file' 
   else 
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   end if  
 
  !print*, y150 
  
  
 !***Crank Nicholson Method 
 
 t=100.0 
 count=0 
 
 !do  j=0,time,0.5 
  !if (t>time) exit 
   !count=count+1 
   !t=count*dt 
 
   call fill_a(a,b,c,r,NSEG,yimp,y150) 
   call tridiag(NSEG,a,b,c,r,h)         
 
!print*,'hnx is',h(NSEG) 
 
 !end do 
 
 print*, h 
 write (100,99) h; 
 99 format (1X, F10.4); 
 
 close (unit=100) 
 end program inverse_rewrite 
 
 
 
 !************Subroutine Fill_a ********* 
 
 subroutine fill_a(a,b,c,r,nx,yimp,y150) 
 use setup_info 
 integer :: nx 
 real, dimension(0:nx) :: a,b,c,r 
 !real, dimension(0:nx,0:nx) :: a 
 real, dimension(0:nx) :: yimp,y150 
 
 !*****This is for i=0******** 
 
  !a(1)=0!!! 
 
  b(0) = 2.0*yimp(0)-3.0*yimp(1)+yimp(2) 
  !print*,b(0) 
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  c(0) = -yimp(0)+yimp(1) 
  !print*,c(0) 
   
  r(0) = alpha*(y150(0)-yimp(0)) 
  !print*,'y150(0) is',y150(0) 
  !print*,'alpha is',alpha 
  !print*,r(0) 
 
   
 !*****This is for 0<i<NSEG******** 
 
  do i=1,nx-1 
   a(i) = yimp(i-1)-yimp(i+1) 
   b(i) = 4*(yimp(i+1)-2*yimp(i)+yimp(i-1)) 
   c(i) = yimp(i+1)-yimp(i-1) 
   r(i) = 4*alpha*(y150(i)-yimp(i)) 
  end do 
 
  !print*,'yimp(0) is',yimp(0) 
  !print*,'yimp(1) is',yimp(1) 
  !print*,'yimp(2) is',yimp(2) 
   
  !print*,a(1); 
  !print*,b(1); 
 
   
   
 
 !******This is for i=NSEG********** 
 
  !a(nx,1) = 0        
  b(nx) = 2*(yimp(nx-1)-yimp(nx)) 
  !a(nx,3) = 0       
  r(nx) = alpha*(y150(nx)-yimp(nx))  
   
  !print*, a(nx,4); 
 
 end subroutine fill_a 
 
 
 !*********Tridiagonal matrix ************ 
  
 subroutine tridiag(nx,a,b,c,r,h) 
 
 !real, dimension (0:nx,0:nx) :: a 
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 real, dimension(0:nx) :: a,b,c,r,h 
 real bet 
 real gam(100) 
 integer j 
 
 if(b(0).eq.0)pause 'tridiag:rewrite equations' 
 
 
 
 bet=b(0) 
 !print*, 'bet is',bet 
  
 h(0)=r(0)/bet 
 h(nx)=1.0 
 !print*,'h(0) is',h(0) 
 
 !**Decomposition and forward substitution 
 do 2 j=1,nx         
  gam(j)=c(j-1)/bet 
  !print*,gam(1) 
  bet=b(j)-a(j)*gam(j) 
  !print*,bet 
  if (bet.eq.0)pause 'tridiag failed'  !Algorithm fails 
  h(j)=(r(j)-a(j)*h(j-1))/bet 
   
 2 continue 
   
 !**Backsubstitution** 
 
 do 3 j=nx-1,0,-1   
   h(j)=h(j)-gam(j+1)*h(j+1) 
 3 continue 
 
 return 
  
 end subroutine tridiag
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Appendix C.   Ternary_separate 

Ternary_separate 

module setup_info 
 
 real :: time, dt, dx, t 
 !Xpos is the array of positions in the initial profile 
 !Conc is the array of concentrations in the initial profile 
 real :: alpha, xpos1, conc1, xpos2, conc2,dtt 
 integer :: i,k,z 
 real :: j 
 
 data dt,dx,time /0.5,0.01,50/ 
 
 
end module setup_info 
 
program ternary_separate 
 
 use setup_info 
 implicit none 
 interface 
 
  !The following subroutine is designed to make arrays that  
  !follow the Crank Nicholson Finite Difference method. 'A' will 
  !have four columns, representing the four coefficients in the 
  !finite difference equation mentioned earlier which come before 
  !C(i-1,j+1), C(i,j+1), C(i+1,j+1), and C(*,j) 
  !'nx' is the maximum position of x 
  !The 'Conc' array represents the known values of the concentrations 
  !at the current time step 
 
  subroutine fill_a(Conc,a,nx) 
   integer :: nx 
   real, dimension(0:nx) :: Conc 
   real, dimension(0:nx,4) :: a 
  ! real :: dtt2,j 
  end subroutine fill_a 
 
  !The following subroutine is designed to solve the tridiagonal matrix  
  !that was formed using the Crank Nicholson method 

                                                 
  This appendix appears in its original form, without editorial change. 
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  !It uses the same variables as in subroutine 'fill_a' 
  !This routine returns the concentration values at the next time step 
  subroutine tridiag(Con,a,nx) 
   integer :: nx 
   real, dimension(0:nx) :: Con 
   real, dimension(0:nx,4) :: a 
  end subroutine tridiag 
 
 end interface 
 
 
 !This parameter defines the number of steps in the x direction 
 !For example, if the profile goes from -20 to 20, then NSEG=40 
 integer, parameter :: NSEG = 40 
 real, parameter :: timestep = 1000   
 !real, parameter :: dt=0.5 
  
 
 real, dimension (0:NSEG,4) :: a   !Coefficient array 
 real, dimension (0:NSEG,timestep) :: C     !Initial condition  
 real, dimension (0:NSEG) :: xposa,conca,xposb,concb,conarray 
 integer :: count   
 real :: countreal 
 !character (len=1) :: tab = char(9) 
 
 
 
 !***Enter data and info 
 
  !This statement opens the text files containing the  
  !two initial concentration profiles 
  open (unit=10,  file='trig.txt', status='old') 
  open (unit=11,  file='trig2.txt', status='old') 
  !This statement opens the ouput file so the new concentration  
  !profile at the current time step can be written 
  open (unit=100, file='binaryoutputtrig.txt', status='unknown') 
   
  !dx=1/NSEG 
  !print*, 'dx is',dx 
  alpha=dt/(dx*dx)  
  !write(*,*)dx,dt,'   alpha is', alpha 
 
  !This loop will take only the proper number of x positions and  
  !concentrations, storing them into 'xposa' and 'conca',  
  !leaving off the trailing zeros 
  count=-1; 
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  5 read (10,*,END=15) xpos1,conc1 
   count=count+1; 
   xposa(count)=xpos1; 
   conca(count)=conc1; 
   go to 5 
 
  15 if (count.EQ.0) then 
    print*, 'No data in file' 
   else 
   end if  
 
  !Same for second profile 
  count=-1; 
  6 read (11,*,END=16) xpos2,conc2 
   count=count+1; 
   xposb(count)=xpos2; 
   concb(count)=conc2; 
   go to 6 
 
  16 if (count.EQ.0) then 
    print*, 'No data in file' 
   else 
   end if 
 
   
 
  !Define the initial concentration array at time=0 for both elements 
 
 
   
   
 
 !*****************************************************************************
***** 
   
  C(:,0)=concb;  !****change a to b to a to change elements 
 
 
 !*****************************************************************************
****** 
 
 
 
  !C(:,2,0)=concb;  
  
  !print*, C(:,2,0) 
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 !Begin the loop to solve over the entire time, incrementing 
 !by 0.5 
 
 t=0.0; 
 countreal=0.0; 
 
 dtt=time/.5; !Gives how large the time column is in the array 
 !print*,dtt 
 
   
 !print*, C(:,2,0) 
 
 
 !*****This is the set up for only one component****** 
 
 
do  j=0,15,0.5 
  !if (t>time) exit 
   countreal=countreal+1 !monitor j increments  
   !t=countreal*dt 
 
   !Store one column of 3D array into 1D array 'conarray' 
   !This is done because the subroutine 'fill_a' only needs the  
   !concentrations and not the position and time subscripts 
   conarray=C(:,j) 
    
   !print*,z    
   !print*, conarray 
   !print*, C(:,1,0) 
 
   call fill_a(conarray,a,NSEG)    !Fill in the coefficients for the current time 
step 
 
    
   !print*, C(1,i,0) 
   !print*, a(5,4) 
 
   call tridiag(conarray,a,NSEG)        !Update C(i) to new time step 
 
    
    
   !This loop will move the new concentration profile back into  
   !the 3D array with the appropriate position and time subscripts 
   do k=0,NSEG 
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    C(k,countreal)=conarray(k)  !****Won't allow non-integer for countreal 
slot 
   end do 
 
 
end do 
  
 !print*, countreal 
 
 !print*, C(:,15)! ********* Test print to show concentration profile across all x positions 
                  ! for a specific element at a specific time step ********** 
 
 
 
 !write (100,99) C(:,275);   !Write the current concentration profile to the output file 
 !99 format (1X, F7.4); 
 
  
 close (unit=100)      !Close the output file 
 end program ternary_separate  !Close the program 
 
 
 
 !************Subroutine Fill_a ********* 
 
 subroutine fill_a(Conc,a,nx) 
 use setup_info    !Uses the parameter module 
 integer :: nx 
 !real :: dtt2,z 
 real, dimension(0:nx) :: Conc 
 real, dimension(0:nx,4) :: a 
 
 !print*,Conc 
  
  !Loop to enter the four coefficients of the finite 
  !difference equation  
  do i=1,nx-1 
   a(i,1) = -alpha/2. 
   a(i,2) = 1. + alpha  
   a(i,3) = a(i,1) 
   a(i,4) = Conc(i)*(1.-alpha) + (Conc(i-1)+Conc(i+1))*alpha/2. 
  end do 
 
  !print*, a(:,4); 
 
  !These next two sets are different because there is no previous 
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  !point for i=0 and there is no future point for i=NSEG 
 
  !This is for i=0 
  a(0,1) = 0. 
  a(0,2) = 1. + alpha 
  a(0,3) = -alpha 
  a(0,4) = Conc(0)*(1.-alpha) + Conc(1)*alpha 
 
  !This is for i=NSEG 
  a(nx,1) = -alpha 
  a(nx,2) = 1. + alpha  
  a(nx,3) = 0. 
  a(nx,4) = Conc(nx)*(1.-alpha) + Conc(nx-1)*alpha  
 
  print*, Conc 
  !print*,a(nx,4);  
 
 end subroutine fill_a 
 
 
 !*********Tridiagonal matrix ************ 
  
 subroutine tridiag(Con,a,nx) 
 
 real, dimension(0:nx) :: Con 
 real, dimension(0:nx,4) :: a 
 integer :: nx 
 real :: denom !Represents denominator after calculation 
 integer :: j 
 
 !Initial values 
 Con(0)=a(0,4)/a(0,2)  
 a(0,3)=a(0,3)/a(0,2) 
  
 !This loop sets all ofthe known information to variables 
 do j=1,nx 
  denom = a(j,2) - a(j,1)*a(j-1,3) 
  Con(j) = (a(j,4) - a(j,1)*Con(j-1))/denom 
  a(j,3) = a(j,3)/denom 
 end do 
 
 !This loop decides the next concentration at the next time step 
 !a(nx,3) is 0 
 do j=nx-1,0,-1 
  Con(j) = Con(j) - a(j,3)*Con(j+1) 
  !print*,Con(2) 
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 end do 
 
     
 end subroutine tridiag 
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 AMSTA AR CCH B  
 C MANDALA  
 E FENNELL  
 PICATINNY ARSENAL NJ  
 07806-5000  
 

1 US ARMY ARDEC 
 AMSTA AR CCS  
 PICATINNY ARSENAL NJ  
 07806-5000  
 

1 US ARMY ARDEC 
 AMSTA AR WE 
 PICATINNY ARSENAL NJ  
 07806-5000  
 
 2 PM MAS 
 SFAE AMO MAS SMC 
 PICATINNY ARSENAL NJ  
 07806-5000  
 
 1 US ARMY ARDEC  
  AMSRD AAR AEM D 
  J LUTZ 
  BLDG 354 
  PICATINNY ARSENAL NJ  
  07806-5000  
 
 3 US ARMY ARDEC 
  AMSTA AAR AEE W  
  M MEZGER  
  D WIEGAND  
  P LU  
  BLDG 3022 
  PICATINNY ARSENAL NJ  
  07806-5000  
 
 1 US ARMY ARDEC 
  AMSRD AAR AIL F 
  G FERDINAND 
  BLDG 1 
  PICATINNY ARSENAL NJ  
  07806-5000  
 
 2 US ARMY ARDEC 
  AMSTA AR WEE 
  S WESTLEY  
  S BERNSTEIN 
  PICATINNY ARSENAL NJ  
  07806-5000 
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 1 US ARMY ARDEC 
  AMSRD AAR AEE W 
  S EINSTEIN 
  BLDG 382 
  PICATINNY ARSENAL NJ  
  07806-5000 
 
 1 US ARMY ARDEC 
  SFAE AMO CAS 
  J RUTKOWSKI 
  BLDG 171 M 
  PICATINNY ARSENAL NJ  
  07806-5000 
 
 1 US ARMY ARDEC 
  AMSRD AAR AEI W 
  B BRODMAN 
  BLDG 472 
  PICATINNY ARSENAL NJ  
  07806-5000  
 
 1 US ARMY ARDEC 
  AMSRD AAR AEE W 
  P OREILLY 
  BLDG 3028 
  PICATINNY ARSENAL NJ  
  07806-5000  
 
 1 US ARMY ARDEC 
  SFAE AMO CAS R 
  R CIRINCIONE 
  PICATINNY ARSENAL NJ  
  07806-5000 
 
 1 US ARMY ARDEC 
  AMSRD AAR AEE W 
  P HUI  
  BLDG 382 
  PICATINNY ARSENAL NJ  
  07806-5000 
 
 1 US ARMY ARDEC 
  AMSRD AAR AEE W 
  J OREILLY 
  BLDG 382 
  PICATINNY ARSENAL NJ  
  07806-5000 
 
 1 AMSTA AR FS  
  T GORA  
  PICATINNY ARSENAL NJ  
  07806-5000  

 1 US ARMY ARDEC 
  AMSTA AR FS DH  
  PICATINNY ARSENAL NJ  
  07806-5000  
 
 1 US ARMY ARDEC  
  AMSRD AAR AEE W F(D) 
  R KOPMANN  
  BLDG 62N 
  PICATINNY ARSENAL NJ 
  07806-5000  
 
 1 US ARMY ARDEC 
  AMSRD AAR ATD 
  B MACHAK 
  BLDG 1 
  PICATINNY ARSENAL NJ 
  07806-5000  
 
 1 US ARMY ARDEC 
  AMSRD AAR AEM C 
  K CHUNG  
  BLDG 407 
  PICATINNY ARSENAL NJ 07806-5000  
 
 1 DIR BENET WEAPONS LAB 
  AMSTA AR CCB T  
  S SOPOK  
  WATERVLIET NY  
  12189-4050  
 
 1 DIR BENET WEAPONS LAB  
  AMSTA AR CCB TA  
  M AUDINO  
  WATERVLIET NY 12189-4050 
 
 1 DIR BENET WEAPONS LAB  
  AMST AAR CCB D  
  R HASENBEIN  
  WATERVLIET NY  
  12189-4050  
 
 2 CDR US ARMY RSRCH OFC  
  TECH LIB 
  D MANN  
  PO BOX 12211  
  RESEARCH TRIANGLE PARK NC  
  27709-2211  
 
 1 PM US ARMY TANK AUTOMOTIVE 

CMD 
  AMCPM ABMS  
  T DEAN  
  WARREN MI 48092-2498  
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 1 PM US ARMY TANK AUTOMOTIVE 
  CMD 
  FIGHTING VEHICLES SYSTEMS 
  SFAE ASM BV  
  WARREN MI 48397-5000  
 
 1 PM ABRAMS TANK SYSTEM 
  SFAE ASM AB  
  WARREN MI 48397-5000  
 
 1 DIR HQ TRAC RPD  
  ATCD MA  
  FT MONROE VA 23651-5143  
 
 1 CDR  
  RADFORD ARMY  
  AMMUNITION PLANT  
  SMCAR QA HI LIB  
  RADFORD VA 24141-0298  
 
 1 COMMANDANT  
  USAFC&S  
  ATSF CN 
  P GROSS  
  FT SILL OK 73503-5600  
 
 4 CDR NAVAL RSRCH LAB  
  TECH LIBRARY  
  CODE 4410  
  K KAILASANATE  
  J BORIS  
  E ORAN  
  WASHINGTON DC 20375-5000  
 
 1 OFFICE OF NAVAL RSRCH  
  CODE 473 J GOLDWASSER  
  800 N QUINCY ST  
  ARLINGTON VA 22217-9999  
 
 5 COR NSWC  
  S MITCHELL 
  C MICHIENZI 
  J CONSAGA 
  C GOTZMER  
  TECHLIB  
  INDIAN HEAD MD 20640-5000  
 
 1 CDR  
  NAVAL SURFACE WARFARE CTR  
  CODE G30  
  GUNS & MUNITIONS DIV 
  DAHLGREN VA 22448-5000  

 1 CDR  
  NAVAL SURFACE WARFARE CTR  
  CODE G32  
  GUNS SYSTEMS DIV 
  DAHLGREN VA 22448-5000  
 
 1 CDR  
  NSWC 
  CODE E23  
  TECHLIB  
  DAHLGREN VA 22448-5000  
 
 1 CDR  
  NSWC 
  R HUBBARD G33 
  DAHLGREN VA 22448-5000  
 
 2 CDR  
  NAVAL AIR WARFARE CTR 
  CODE 3895  
  T PARR  
  R DERR  
  CH1NA LAKE CA 93555-6001  
 
 1 CDR  
  NAVAL AIR WARFARE CTR  
  INFORMATION SCIENCE DIV 
  CHINA LAKE CA 93555-6001  
 
 1 WL MNME 
  ENERGETIC MATERIALS BR 
  2306 PERIMETER RD 
  STE 9  
  EGLIN AFB FL 32542-5910  
 
 1 DIR SANDIA NATL LABS 
  M BAER DEPT 1512 
  PO BOX 5800  
  ALBUQUERQUE NM 87185  
 
 1 DIR SANDIA NATL LABS 
  COMBUSTION RSRCH FACILITY 
  R CARUNG  
  LIVERMORE CA 94551-0469  
 
 2 DIR LLNL  
  L355  
  A BUCHINGHAM  
  M FINGER  
  PO BOX 808  
  LIVERMORE CA 94550-0622  
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 1 CIA  
  J BACKOFEN  
  RM 4PO7 NHB  
  WASHINGTON DC 20505  
 
 2 MILLERSVILLE UNIV 
  PHYSICS DEPT 
  C W PRICE 
  M NOLAN  
  MILLERSVILLE PA 17551  
 
 2  UNIV OF ILLINOIS  
  DEPT OF MECH INDUSTRY ENGR 
  H KRIER  
  R BEDDINI  
  144 MEB 1206 N GREEN ST  
  URBANA IL 61801-2978  
 
 5 PENNSYLVANIA STATE UNIV  
  DEPT OF MECHANICAL ENGRG  
  V YANG  
  K KUO  
  S THYNELL  
  G SETTLES  
  R YETTER 
  UNIV PARK PA 16802-7501  
 
 1 ARROW TECHLGY ASSOC INC  
  1233 SHELBURNE RD D 8  
  SOUTH BURLINGTON VT 05403  
 
 1 AAI CORPORATION  
  D CLEVELAND  
  PO BOX 126  
  HUNT VALLEY MD 21030-0126  
  
 2 ALLIANT TECHSYSTEMS INC 
  ALLEGHENY BALLISTICS LAB 
  W B WALKUP  
  T F FARABAUGH  
  PO BOX 210  
  ROCKET CTR WV 26726  
 
 3 ALLIANT TECHSYSTEMS INC 
  C AAKHUS MN07-LW54 
  R DOHRN MN07-LW54 
  D KAMDAR MN07-LW54 
  5050 LINCOLN DR  
  EDINA MN 55436  

 4 ALLIANT TECHSYSTEMS INC 
  RADFORD ARMY AMMO PLANT  
  D A WORRELL  
  W J WORRELL 
  S RITCHIE 
  K BROWN 
  RADFORD VA 24141-0299 
 
 3 ST MARKS POWDER 
  GENERAL DYNAMICS ARM SYS  
  J DRUMMOND 
  J HOWARD 
  R PULVER  
  7121 COASTAL HWY 
  CRAWFORDVILLE FL 32327 
 
 1 GENERAL DYNAMICS ARM SYS  
  J TALLEY RM 1305 
  LAKESIDE AVE  
  BURLINGTON VT 05401  
 
 1 PRIMEX  
  BADGER ARMY AMMO PLANT 
  F E WOLF  
  BARABOO WI 53913  
 
 4 PRIMEX  
  E J KIRSCHKE  
  A F GONZALEZ  
  J DRUMMOND  

D W WORTHINGTON  
PO BOX 222  

  SAINT MARKS FL 32355-0222  
 
 2 PRIMEX  
  NHYLTON J BUZZETT  
  10101 9TH ST NORTH  
  ST PETERSBURG FL 33716  
 
 1 PAUL GOUGH ASSOC INC  
  P S GOUGH  
  1048 SOUTH ST 
  PORTSMOUTH NH 03801-5423  
 
 2 VERITAY TECHGY INC 
  R SALIZONI  
  J BARNES 
  4845 MILLERSPORT HWY  
  EAST AMHERST NY 14501-0305
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 1 PRIMEX  
  E STEINER  
  DIR LARGE CAL R&D  
  PO BOX 127  
  RED LION PA 17356 
 
 1 SRI INTERNATIONAL  
  TECH LIB  
  PROPULSION SCIENCES DIV  
  333 RAVENWOOD AVE 
  MENLO PARK CA 94025-3493 
 

ABERDEEN PROVING GROUND 
 
 1 CDR USAATC 
  CSTE DTC AT SL 
  R HENDRICKSEN 
  APG MD 21005 
 
 31 DIR USARL 
  AMSRD ARL WM 
   B RINGERS 
  AMSRD ARL WM BC 
   M BUNDY 
   J GARNER 
   P PLOSTINS 
   P WEINACHT 
  AMSRD ARL WM BD 
   W R ANDERSON  
   R A BEYER 
   A L BRANT  
   S W BUNTE  
   C F CHABALOWSKI  
   T P COFFEE  
   J COLBURN  
   P J CONROY  
   B E FORCH  
   B E HOMAN  
   S L HOWARD  
   P J KASTE  
   A J KOTLAR 
   C LEVERITT  
   K L MCNESBY 
   M MCQUAID  
   M S MILLER  
   A W MIZIOLEK  
   J B MORRIS  
   J A NEWBERRY  
   M J NUSCA  
   R A PESCE-RODRIGUEZ  
   G P REEVES  
   B M RICE  
   R C SAUSA  
   A W WILLIAMS 
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INTENTIONALLY LEFT BLANK. 
 
 




