

Computational Modeling of Multicomponent Diffusion

Using Fortran

by Michael Vincent Pasquariello

ARL-CR-575 July 2006

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-CR-575 July 2006

Computational Modeling of Multicomponent Diffusion
Using Fortran

Michael Vincent Pasquariello
University of Connecticut

Approved for public release; distribution is unlimited.

 ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

July 2006
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

13 April 2003–31 December 2005
5a. CONTRACT NUMBER

DAA17-03-C-0016
5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Computational Modeling of Multicomponent Diffusion Using Fortran

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Michael Vincent Pasquariello

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Connecticut
8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRD-ARL-WM-BD
Aberdeen Proving Ground, MD 21005-5066

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

ARL-CR-575
12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The objective of this thesis was to develop a Fortran software package, using three modules, in order to extract diffusion data
from concentration profiles and to predict future concentration profiles. The first module will be a finite difference code that
uses the multicomponent form of Fick’s First Law, and the time evolution of concentration will be calculated using the implicit
Crank-Nicholson method. The second module will take into account movements of boundaries between regions in the
interdiffusion zone, via equations that assume local equilibrium, and take into account that mass must be conserved. The first
and second module will be used to predict how measured concentration profiles will change with time. The purpose of the third
module will be to extract diffusivity data from measured concentration profiles. This module will use a matrix inversion method
to calculate the diffusivities. In conclusion, the original objective of this project was not met to its full completion. Several
factors contributed to this shortcoming, but the primary obstacle was the correlation between the software and the input data.
While the software ran successfully with many different known solutions, it did not perform well using actual concentration
profile data from the U.S. Army Research Laboratory. Most likely, this is due to the limited amount of species data, the
accuracy of the data itself, and the spacing between each data point. All efforts should be taken to obtain more accurate,
smoother input data which will allow the software to run with fewer obstacles and, in turn, produce cleaner output data. Once
the input data is appropriate, the programmer should return to “fine tune” the individual software programs to allow them to
work with the new data. This may require using a filtering subroutine in order to accept only worthy data from the input stream.

15. SUBJECT TERMS

gun tube erosion, multicomponent diffusion, diffusion matrix

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON
Paul Conroy

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

17. LIMITATION
OF ABSTRACT

UL

18. NUMBER
OF PAGES

 58 19b. TELEPHONE NUMBER (Include area code)

410-278-6114
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Figures v

Acknowledgments vi

1. Introduction 1
1.1 Background ...1

1.2 Problem Statement ..1

1.3 Approach ...1

2. Literature Survey 1
2.1 Diffusion Equations for Predicting Concentration Profiles ..1

2.1.1 Binary Systems..1
2.1.2 Multicomponent Systems With One Fast Diffuser ...6

2.2 Finite-Difference Methods for Predicting Concentration Profiles7
2.2.1 Explicit Forward-Difference Method (Euler Method) ..8
2.2.2 Crank-Nicolson Method..9
2.2.3 Thomas Algorithm to Solve a Tridiagonal System of Equations........................10

2.3 Inverse Methods Used to Calculate Transport Properties ...13
2.3.1 Extracting Thermal Conductivity Values From Temperature Profiles13
2.3.2 Extracting Diffusion Coefficients From Concentration Profiles.......................13

3. Fortran Software Development 17
3.1 Concentration Profile Predictor...17

3.2 Diffusivity Extractor..19

4. Software Limitations 20

4.1 Binary_effd..21

4.2 Inverse_rewrite..22

4.3 Ternary_separate ...24

5. Conclusions 25

6. References 26

 iv

Appendix A. Binary_effd 27

Appendix B. Inverse_rewrite 31

Appendix C. Ternary_separate 37

Distribution List 44

 v

List of Figures

Figure 1. Transient diffusion with constant diffusivity. ...2
Figure 2. Concentration-distance curves for an instantaneous plane source.3
Figure 3. Concentration-distance curves for the thin-film solution..4
Figure 4. Finite difference grid for the explicit Euler method..8
Figure 5. The Crank-Nicolson method stencil. ...9
Figure 6. Graph showing the error function solution compared with the Fortran code

solution...18
Figure 7. Graph showing the thin-film solution compared with the Fortran program.19
Figure 8. Graph showing the trigonometric approximation compared with the Fortran

program. ...20
Figure 9. Diffusivity matrix plotted for constant diffusivity of 1. ..21
Figure 10. Thin film approximation using program. ..22
Figure 11. Program output using ARL input data...23

 vi

Acknowledgments

First and foremost, I would like to gratefully acknowledge the enthusiastic supervision of Dr.
John E. Morral during this work. It was his guidance and continuous interest in the project that
kept me motivated throughout this 4-year saga. I would have been lost without him.

A special thank you to Dr. Harold Brody for helping to spark my interest in materials science
during my first year as a University of Connecticut undergraduate. I don’t think he will ever
know how much influence he had on my future academic decisions.

Thank you to Dr. Pamir Alpay for being an ideal mentor, one I could close the door and talk to
about almost anything. He truly is a genuine professor that enjoys sharing his knowledge with
eager students.

Thank you to Paul Conroy from the U.S. Army Research Laboratory for his continued support
throughout this research project.

I would especially like to extend my heartfelt appreciation to my patient and loving wife,
Harmony, for remaining by my side through all 10 years of my college career. It takes an
incredible woman to put up with the mind of an engineer, and I will be eternally grateful for it.

Finally, I am forever indebted to my parents, Antonia and Mark, for their understanding, endless
patience, and encouragement when it was most required. This thesis would be nothing without
their tremendous confidence and belief in my academic abilities. They have created an
environment in which following this path seemed so natural. It is to them whom I dedicate this
thesis.

 1

1. Introduction

1.1 Background

The U.S. Army Research Laboratory (ARL) in Aberdeen, MD, has expressed a need for a
computer software package that can analyze ion-implantation data, extract diffusion coefficients
from this data, and predict concentration profiles. Their current implantation data is used to
study the effects of carbon diffusion in gun-tube barrels. A comprehensive software package
such as this would save a tremendous amount of experimentation time and money for ARL and
would therefore be very beneficial.

1.2 Problem Statement

The objective of this thesis was to develop a Fortran software package in order to extract
diffusion data from concentration profiles and to predict future concentration profiles. This
package needed to be stand-alone, user friendly, and have the ability to interface with ARL’s
existing computer code.

1.3 Approach

The approach to this problem began with an in-depth literature survey. This allowed the
gathering of necessary equations and solution methods to solve the mathematical portion of the
thesis. Using this newly acquired knowledge, a Fortran code was written in order to satisfy the
requirements of ARL and to perform the necessary functions. This code was tested and
compared against existing code and mathematical solutions to validate its effectiveness.

The thesis then covered various experiments to demonstrate the sensitivity of the code. The
purpose of this step was to aid the reader in visualizing the adverse effects of altering parameters
such as number of data points, time increments, and induced noise.

The thesis concluded with a discussion on the limitations of the software itself and possible
recommendations that can be made in the future to improve the software package.

2. Literature Survey

2.1 Diffusion Equations for Predicting Concentration Profiles

2.1.1 Binary Systems

2.1.1.1 Constant Diffusivity. In reality, most cases of diffusion are transient or non steady-state
ones. This applies, for example, to those cases in which the interstitial concentration C varies
with time which results in a net accumulation or depletion of the diffusing species. In order to

 2

model this situation, it is necessary to use the partial differential equation known as the diffusion
equation which is given by (1)

 ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=
∂
∂

x
CD

xt
C . (1)

For cases in which D is independent of composition, or where the range of composition is small,
equation 1 reduces to (1)

 2

2

x
CD

t
C

∂
∂

=
∂
∂ , (2)

which is known as Fick’s second law. Figure 1 shows an example of transient diffusion in a
binary system in which the diffusivity is constant with respect to composition.

Figure 1. Transient diffusion with constant diffusivity.

If one were to apply Fick’s second law to a semi-infinite solid and held the surface concentration
constant, a common error function solution would be obtained (2). In order to obtain such a
solution, the following assumptions can be made:

1. Before diffusion, the diffusing solute atoms in the solid are uniformly distributed with
concentration of Co.

2. The concentration at the surface, x = 0, is a constant value, Cs.

These boundary conditions can be stated as follows:

 For t = 0, C = CO at 0 ≤ x ≤ ∞,

 For t > 0, C = Cs at x = 0, and C = C0 at x = ∞.

 3

If these boundary conditions are applied to equation 2, the following solution is obtained:

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−
−

Dt
xerf

CC
CC

os

ox

2
1 , (3)

where Cx represents the concentration at depth x after time t. The expression erf(x/2√Dt) is the
Gaussian error function, values of which are given in mathematical tables for various x/2√Dt
values. Equation 3 demonstrates the relationship between concentration, position, and time,
namely, that Cx, being a function of the dimensionless parameter x/√Dt, may be determined at
any time and position if the parameters Co, Cs, and D are known.

Another solution to Fick’s second law is known as the thin-film solution. Taking an infinite
plane as the geometry, the total amount of substance M diffusing in the cylinder and unit cross
section is given by (1)

M Cdx

∞

−∞
= ∫ . (4)

After differentiating equation 4 and applying the appropriate derivation, equation 5 is given as
(1)

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

Dt
x

Dt
MC

4
exp

2

2

π
. (5)

Therefore, this is the solution which describes the spreading by diffusion of an amount of
substance M deposited at time t = 0 in the plane x = 0. Figure 2 shows typical distributions at six
successive times.

0

0.5

1

1.5

2

-3 -2 -1 0 1 2 3

C(
x)

/M
 [

le
ng

th
]-1

x [distance]

.075

.05

Dt=0

0.025

0.25

1
3

Figure 2. Concentration-distance curves for an instantaneous plane source.

 4

For the thin-film solution, we can consider the solution for negative x to be reflected in the plane
x = 0 and superimposed on the original distribution in the region x > 0. Since the original
solution was symmetrical about x = 0 the concentration distribution for the semi-infinite plane is
given by

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

Dt
x

Dt
MC

4
exp

2

π
. (6)

A typical concentration distribution for the thin film solution is demonstrated in figure 3.

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2

C
(x

,t)
/M

th
in

 fil
m

Distance, x

0.005
Dt=0.01

0.02

0.05
0.1
0.2

Dt=1

Figure 3. Concentration-distance curves for the thin-film solution.

A third solution to Fick’s second law is based on a trigonometric solution. In this solution, it is
assumed that the time and spatial variables are separable, that is (1)

)()(txCB τξ ⋅= , (7)

where ξ and τ are functions, as yet unknown, of x and t respectively. Substituting for CB in
Fick’s second law gives (1)

 2

2

dx
dD

dt
d

B
ξττξ = , (8)

and

 2

211
dx
d

dt
d

DB

ξ
ξ

τ
τ

= , (9)

 5

where we now have only total differentials of our unknown functions. Since one side of the
equation depends only on t and the other only on x, the equation can only hold for all x and t if
both are equal to some constant, say –k2 (1).

 ττ
BDk

dt
d 2−= . (10)

 ξξ 2k
dx
d

−= . (11)

These differential equations can now be solved to give the functionsξ andτ (1).

)exp(2 tDk B−=τ . (12)

)cos()sin(21 kxAkxA +=ξ . (13)

The time-dependent concentration function CB is therefore a sinusoidal composition fluctuation
which decays exponentially with time. This is seen more clearly by taking CB = C0 at x = 0 at all
times, and substituting for the wavelength of the sinusoidal variation λ :

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛∆+= t

DxCCtxC B
B 2

2

0
4

exp2sin),(
λ

π
λ
π

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛∆+=

Γt
txCC exp2sin0 λ

π , (14)

where

BD

t 2

2

4π
λ

=Γ (15)

is the relaxation time, which is the time taken for a sinusoidal variation of wavelength λ to drop
to 37% of its original amplitude.

2.1.1.2 Variable Diffusivity. When the diffusion coefficient D is a function of concentration C,
the equation for one-dimensional (1-D) diffusion is (3)

 ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=
∂
∂

x
CD

xt
C . (16)

Differentiation of equation 16 yields (3)

x
C

x
D

x
CD

t
C

∂
∂

∂
∂

+
∂
∂

=
∂
∂

2

2

. (17)

Second-order-correct approximations to the partial derivations in equation 17 are (3):

 6

t

CC
t

C n
i

n
i

i

n

∆
−

≅
∂

∂ ++ 12/1

. (18)

() () ⎥

⎦

⎤
⎢
⎣

⎡

∆

+−
+

∆

+−
≅

∂
∂ −+

+
−

++
+

+

2
11

2

1
1

11
1

2

2/12 22
2
1

x
CCC

x
CCC

x
C n

i
n
i

n
i

n
i

n
i

n
i

i

n

. (19)

x
DD

x
D n

i
n
i

i

n

∆
−

≅
∂
∂ −+

2
11 . (20)

 ⎥
⎦

⎤
⎢
⎣

⎡
∆
−

+
∆
−

≅
∂

∂ −+
+

−
+

+
+

x
CC

x
CC

x
C n

i
n
i

n
i

n
i

i

n

222
1 11

1
1

1
1

2/1

. (21)

The superscripts refer to the time dimension and subscripts denote the space dimension. Note

that
x
D

∂
∂ is evaluated at n rather than n+1/2, because the composition-dependent coefficient D

cannot be calculated at the next time step n+1 before the concentrations at n+1 have been
evaluated. Substituting the approximations, equations 18–21 into equation 17 yields (3)

[] ()
⎥
⎦

⎤
⎢
⎣

⎡
+

∆
∆

+−+− +
−+

+
−

n
i

n
i

n
i

n
i

n
i

n
i D

t
xCDDDC 884

2
1

11
1

1

[]n
i

n
i

n
i

n
i DDDC 11

1
1 4 −+
+

+ −−−+

[] ()
⎥
⎦

⎤
⎢
⎣

⎡
−

∆
∆

++−= −+−
n
i

n
i

n
i

n
i

n
i

n
i D

t
xCDDDC 884

2

111

 []n
i

n
i

n
i

n
i DDDC 111 4 −++ −++ , (22)

which has been arranged so that all the concentrations at the current time step (n) are on the right
and the concentrations to be computed at the next time step (n+1) are on the left.

2.1.2 Multicomponent Systems With One Fast Diffuser

The basis for modeling multicomponent systems with one fast diffuser comes from the following
equation:

 total
total

J
xt

c)(1 −
∂
∂

=
∂

∂ (23)

in which x represents distance and J total is the total flux (4). Assuming the precipitate volume
fraction is negligible, the multicomponent flux can be written as

 7

x
c

DJ j
n

j
j ∂

∂
−= ∑

−

=

1

1
11 , (24)

in which component 1 is a fast diffuser (i.e., an interstitial atom) and components 2 through n-1
refer to slower moving alloying elements (i.e., substitutional atoms) (5).

Equation 24 can be rewritten in terms of an effective diffusivity described by the equation:

x

cDJ
m

eff

∂
∂

−= 1
11 . (25)

Joining equations 24 and 25 yields (6)

x
c

x
c

D
D m

m
j

n

j
j

eff

∂
∂

∂

∂

=
∑

−

=

1

1

1
1

1 . (26)

By assuming local equilibrium and no long-range diffusion by substitutional atoms, equation 26
can be simplified to

 ∑
−

= ∂

∂
+=

1

2 1
1111

n

j c
m

m
j

j
eff

k
c
c

DDD . (27)

Equation 27 represents only one independent concentration variable with only one degree of
freedom.

Combining equations 23 and 25 and then differentiating totc1 gives

x

c
c
cD

xt
c tot

tot

m
eff

tot

∂
∂

∂
∂

∂
∂

=
∂

∂ 1

1

1
1

1 . (28)

Equation 28 is the one used to predict concentration profiles for multicomponent systems with
one fast diffuser.

2.2 Finite-Difference Methods for Predicting Concentration Profiles

The objective of a finite-difference method for solving an ordinary differential equation (ODE) is
to transform a calculus problem into an algebra problem by:

1. Discretizing the continuous physical domain into a discrete finite difference grid,

2. Approximating the exact derivatives in the initial-value ODE by algebraic finite difference
approximations (FDAs),

 8

3. Substituting the FDAs into the ODE to obtain an algebraic finite difference equation
(FDE), and

4. Solving the resulting algebraic FDE.

2.2.1 Explicit Forward-Difference Method (Euler Method)

Consider the general nonlinear first-order ODE (7):

 ()ytfy ,=
′ () 00 yty = . (29)

Choose point n as the base point and develop a finite difference approximation of equation 29 at
that point. The finite-difference grid is illustrated in figure 4, where the x symbol denotes the
base point for the finite difference approximation of equation 29.

Figure 4. Finite difference grid for the explicit Euler method.

The first-order forward-difference, finite-difference approximation of y′ is given by (7):

 ty
t

yy
y n

nn
n

∆′′−
∆
−

=′ +)(
2
11 τ . (30)

Substituting equation 30 into equation 29 and evaluating ()ytf , at point n yields (7)

 () nnnn
nn fytfty

t
yy

==∆′′−
∆
−+ ,)(

2
11 τ . (31)

Solving equation 31 for 1+ny gives (7)

 +∆+=+ nnn ftyy 1 ()22 0)(
2
1 tftyty nnn ∆+∆+=∆′′ τ . (32)

Truncating the remainder term, which is ()20 t∆ , and solving for 1+ny yields the explicit Euler
finite difference equation (FDE) (7):

 nnn tfyy ∆+=+1 ()20 t∆ , (33)

where the ()20 t∆ term is included as a reminder of the order of the local truncation error.
Several features of equation 33:

1. The FDE is explicit, since nf does not depend on 1+ny .

n n+1 t

 9

2. The FDE requires only one known point. Hence, it is a single-point method.

3. The FDE requires only one derivative function evaluation (i.e., f(t,y)) per step.

4. The error in calculating 1+ny for a single step, the local truncation error, is ()20 t∆ .

5. The global (i.e., total) error accumulated after N steps is ()20 t∆ .

The explicit Euler method only has first-order accuracy and it is very unstable, therefore, it is
impractical to use.

2.2.2 Crank-Nicolson Method

The Crank Nicolson (1) method is a more widely used finite difference method for solving
partial differential equations and is set up using the following grid (figure 5).

Figure 5. The Crank-Nicolson method stencil.

Crank and Nicolson in 1947 proposed approximating the partial derivative tf at grid point
(i,n+1/2) by the second-order centered-time approximation obtained by combining Taylor series
for

1+n

if and
n

kf . Thus, (7)

 ...
26

1
22

1
2

3
2/1

2
2/12/12/11

+⎟
⎠
⎞

⎜
⎝
⎛ ∆

+⎟
⎠
⎞

⎜
⎝
⎛ ∆

+⎟
⎠
⎞

⎜
⎝
⎛ ∆

+=
+++++ tftftfff

n

ittt

n

itt

n

it

n

i

n

i (34)

 ...
26

1
22

1
2

3
2/1

2
2/12/12/1

+⎟
⎠
⎞

⎜
⎝
⎛ ∆

−⎟
⎠
⎞

⎜
⎝
⎛ ∆

+⎟
⎠
⎞

⎜
⎝
⎛ ∆

−=
++++ tftftfff

n

ittt

n

itt

n

it

n

i

n

i (35)

Subtracting these two equations and solving for
2/1+n

itf gives

 () 2
1

2/1

24
1 tf

t
ff

f ttt

n

i

n

in

it ∆−
∆
−

=
+

+
τ , (36)

(i-1,n+1) (i,n+1) (i+1,n+1)

(i-1,n) (i,n) (i+1,n)

(i,n+1/2)

 10

where 1+≤≤ nn tt τ [7]. Truncating the remainder term in equation 36 yields the second-order
centered-time approximation of tf (7):

t

fff
n

i
n

in

it ∆
−

=
+

+
1

2/1 . (37)

The partial derivative xxf at grid point (i,n+1/2) is approximated by (7)

 ⎟
⎠
⎞⎜

⎝
⎛ += ++ n

ixx
n

ixx

n

ixx fff 12/1

2
1 . (38)

The order of the FDE obtained using equations 37 and 38 is expected to be () ()22 00 xt ∆+∆ , but
that must be proven from the MDE. The partial derivative xxf at time levels n and n+1 are
approximated by the second-order centered-difference approximation

 2
11 2

x
fff

f
n

i
n

i
n

in

ixx ∆
+−

= −+ , (39)

applied at time levels n and n+1, respectively (7). The resulting finite-difference approximation
of the 1-D diffusion equation is (7)

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆

+−
+

∆
+−

=
∆

− −+
+

−
++

+
+

2
11

2

1
1

11
1

1 22
2
1

x
fff

x
fff

t
ff n

i
n

i
n

i
n

i
n

i
n

i
n

i
n

i α . (40)

Rearranging equation 40 yields the Crank-Nicolson finite-difference equation:

 () () n
i

n
i

n
i

n
i

n
i

n
i dffddfdffdd 11

1
1

11
1 1212 +−

+
+

++
− +−+=−++− , (41)

where 2x
td

∆
∆

= α is the diffusion number (7).

The Crank-Nicolson method is unconditionally stable and accurate on a second order level. The
solution at a given time level can be reached with much less computational effort by taking
larger time steps. The time step is limited only by accuracy requirements.

2.2.3 Thomas Algorithm to Solve a Tridiagonal System of Equations

When a large system of linear algebraic equations has a special pattern, such as a tridiagonal
pattern as in the Crank-Nicolson equation, it is usually worthwhile to develop special methods
for that unique pattern. These methods are generally very efficient in computer time and storage.
One algorithm that deserves special attention is the algorithm for tridiagonal matrices, often
referred to as the Thomas algorithm.

 11

To derive the Thomas algorithm, the Gauss elimination procedure is applied to a tridiagonal
matrix T, modifying the procedure to eliminate all unnecessary computations involving zeros.
Consider the matrix equation:

 Tx = b, (42)

where T is a tridiagonal matrix (7). Thus, (7)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

−−−−−

nnnn

nnnnnn

aa
aaa

aaa
aaa

aaa
aa

T

,1,

,11,12,1

454443

343332

232221

1211

0...00000
...00000

...........................
000...00
000...00
000...00
000...000

. (43)

Since all the elements of column 1 below row 2 are already zero, the only element to be

eliminated in row 2 is 21a . Thus, replace row 2 by 1
11

21
2 R

a
a

R ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− . Row 2 becomes (7)

 ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− 000...000 2312

11

21
22 aa

a
a

a . (44)

Similarly, only 32a in column 2 must be eliminated from row 3, only 43a in column 3 must be
eliminated from row 4, etc. The eliminated element itself does not need to be calculated. In fact,
storing the elimination multipliers, em = (21a / 11a), etc., in place of the eliminated elements
allows this procedure to be used as an LU factorization method. Only the diagonal element in
each row is affected by the elimination. Elimination in rows 2 to n is accomplished as follows
(7):

 iia , = iia , -(1, −iia / 1,1 −− iia) iia ,1− (i = 2,…,n) (45)

Thus, the elimination step involves only 2n multiplicative operations to place T in upper
triangular form.

The elements of the b vector are also affected by the elimination process. The first element b1 is
unchanged. The second element b2 becomes (7)

 1
11

21
22 b

a
a

bb ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= . (46)

 12

Subsequent elements of the b vector are changes in a similar manner. Processing the b vector

requires only one multiplicative operation, since the elimination multiplier, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

11

21

a
a

em , is

already calculated. Thus, the total process of elimination, including the operation on the b
vector, requires only 3n multiplicative operations.

The n x n tridiagonal matrix T can be stored as an n x 3 matrix A’ since there is no need to store
the zeros. The first column of matrix A’, elements '

1,ia , corresponds to the sub-diagonal of matrix

T, elements 1, −iia . The second column of matrix A’, elements '
2,ia , corresponds to the diagonal

elements of matrix T, elements iia , . The third column of matrix A’, elements '
3,ia , corresponds to

the super-diagonal of matrix T, elements 1, +iia . The elements '
1,1a and '

3,na do not exist. Thus, (7)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

=

−−−
'

2,
'

1,

'
3,1

'
2,1

'
1,1

'
3,3

'
2,3

'
1,3

'
3,2

'
2,2

'
1,2

'
3,1

'
2,1

.........
'

nn

nnn

aa
aaa

aaa
aaa
aa

A . (47)

When the elements of column 1 of matrix A’ are eliminated, that is, the elements '
1,ia , the

elements of column 2 of matrix A’ become (7)

 '
2,1a = '

2,1a (48)

 '
3,1'

2,1

'
1,'

2,
'

2, −
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= i

i

i
ii a

a
a

aa (i = 2, 3,…,n) (49)

The b vector is modified as follows: (7)

 b1 = b1 (50)

 1'
2,1

'
1,

−
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= i

i

i
ii b

a
a

bb (i = 2, 3,…,n) (51)

After '
2,ia (i = 2, 3,…,n) and b are evaluated, the back substitution step is as follows: (7)

 '
2,n

n
n a

b
x = . (52)

()

'
2,

1
'

3,

i

iii
i a

xab
x +−

= . (53)

 13

Pivoting destroys the tridiagonality of the system of linear algebraic equations, and thus cannot
be used with the Thomas algorithm. Most large tridiagonal systems that represent real physical
problems are diagonally dominant, so pivoting is not necessary. The Thomas algorithm, in a
format suitable for programming for a computer, is summarized as follows:

1. Store the n x n tridiagonal matrix T in the n x 3 matrix A’. The right-side vector b is an n x
1 column vector.

2. Compute the '
2,ia terms from equations 48 and 49. Store the elimination multipliers,

em= '
1,ia / '

2,1−ia , in place of '
1,ia .

3. Compute the bi terms from equations 50 and 51.

4. Solve for xi by back substitution using equations 52 and 53.

2.3 Inverse Methods Used to Calculate Transport Properties

2.3.1 Extracting Thermal Conductivity Values From Temperature Profiles

Inverse determination of the thermal conductivity from measured temperature profiles has been
the topic of research by many investigators (3). Most of these studies assume that the thermal
conductivity is only a function of the spatial coordinate. However, thermal conductivities are
temperature-dependent quantities in most practical engineering applications. Yeung developed a
second-order finite-difference procedure for the inverse determination of the thermal
conductivity in a one-dimensional heat conduction domain. In this case, the thermal
conductivity of the material is reconstructed by using the available temperature data at discrete
grid points. The numerical procedure is validated by comparing it to known examples. It is
proven that, using this technique, a priori knowledge of the functional form for thermal
conductivity is not required.

2.3.2 Extracting Diffusion Coefficients From Concentration Profiles

Since the governing equations for heat conduction and diffusion are similar, it is only natural to
use the same procedure to investigate the diffusion coefficient in a concentration profile.

As stated earlier, in a 1-D formulation with the diffusing substance moving in the direction
normal to a sheet of thickness 2a, the diffusion equation can be written as

 ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=
∂
∂

x
CD

xt
C (0<x<a, t>0), (54)

where C is the concentration of the diffusing substance, t is the time, D is the diffusion
coefficient, and x is the distance coordinate measured from the center of the sheet (3).

Let the initial condition be (3)

 14

 C = C0(0<x<a, t = 0), (55)

where C0 is a constant concentration in the medium, and let the boundary conditions be

 0=
∂
∂

x
C (x = 0, t ≥ 0) (56)

 ()CCS
x
CD e −=

∂
∂ (x≈a, t>0), (57)

where S is the surface emission coefficient and Ce is the equilibrium concentration (3).

The first step in the inverse method is to present a finite-difference procedure for the calculation
of the diffusion coefficient at discrete grid points. Let half of the medium thickness, a, be
discretized with mesh width ∆x in distance (thickness direction) and ∆t in the time direction with
grid points xjx j ∆⋅= (where j = 0, 1,…,n) and titi ∆⋅= (where i = 0, 1, 2…). The present

procedure will assume that C(x,t) is known at grid points (xj, ti). Equation 54 can then be
discretized as follows:

1. At the surface grid point with j = 0 and i > 0:

Applying forward difference to the time derivative of equation 54, we have (3)

t

CC
t
C iii

∆
−

=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂ +

0
1

0

0

. (58)

Applying the central difference to the distance derivative, we obtain

2

2
01

0
0101

0
x

x
CC

D
x
CCDD

x
CD

x

iiiiii

i

∆

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆
−

−
∆
−

⋅
+

=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

α
, (59)

where the following has been set in equation 57:

x
CC

D
x
CD

iii

∆
−

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂ 01

0
0

α , (60)

by introducing an appropriate constant a to compensate the use of forward difference in the
equation, which involves different errors than central difference (3). This also permits the
avoidance of using the unknown surface emission coefficient S.

Equating equations 58 and 59 gives (3)

 () () ()() ()iiiiiiii CCDCCDCC
t

x
0111000

1
0

2

12 −+−−=−
∆

∆ + α . (61)

 15

2. At an internal grid point with 0 < j < n and i > 0:

Here we have (3)

t

CC
t
C i

j
i
j

i

j ∆

−
=⎟

⎠
⎞

⎜
⎝
⎛

∂
∂ +1

 (62)

and

x

x
CCDD

x
CCDD

x
CD

x

i
j

i
j

i
j

i
j

i
j

i
j

i
j

i
j

i

j ∆

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∆

−+
−

∆

−
⋅

+

=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

−−++ 1111

22
. (63)

Equating equations 62 and 63 yields (3)

() () () ()i
j

i
j

i
j

i
j

i
j

i
j

i
j

i
j

i
j CCCDCCDCC

t
x

1111
1

2

22
−+−−

+ +−+−=−
∆
∆

 ()i
j

i
j

i
j CCD −+ ++ 11 . (64)

3. At the center grid point with j = n and i ≥ 0:

Due to symmetry, we can set 1 1 1 1, i i i i
j j j jC C D D− + − += = , and j = n in equation 64 to obtain (3)

 () () () ()i
n

i
n

i
n

i
n

i
n

i
n

i
n

i
n CCDCCDCC

t
x

−+−=−
∆

∆
−−−

+
111

1
2

. (65)

The next step in the inverse method occurs if ()txC , and ()ttxC ∆+, are known at evenly spaced
grid points where t is the specified time and t∆ is the time increment, and we are interested in
finding the diffusion coefficient values at the grid points. From equations 63, 64, and 65, we can
create the following system of linear equations:

 Ad = b, (66)

where A is an (n+1) × (n+1) matrix and d and b are (n+1) vectors (3). A, d, and b are subscripted
from 0 to n as shown by the following:

 16

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

−−−−−

nnnn

nnnnnn

aa
aaa

aaa
aa

A

,1,

,11,12,1

2,11,10,1

1,00,0

...
...

...
.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

nD

D

d

.

.

.

.

.
0

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

nb

b
b

b

.

.

.

.
1

0

. (67)

The elements of d are the unknown diffusion coefficient values at the grid points, and the
elements of A and b are expressed as follows:

1. At the surface grid point with x = x0 and t = t : (3)

 () () ()[]txCtxCa ,,12 100,0 −−= α . (68)

 () ()txCtxCa ,, 011,0 −= . (69)

 () () ()[]txCttxC
t

xb ,, 00

2

0 −∆+
∆

∆
= . (70)

2. At an internal grid point with x = xj (0<j<n) and t = t : (3)

 () ()txCtxCa jjjj ,,11, −= −− . (71)

 () () ()txCtxCtxCa jjjjj ,,2, 11, −+ +−= . (72)

 () ()txCtxCa jjjj ,,11, −= ++ . (73)

 17

 () () ()[]txCttxC
t

xb jjj ,,2
2

−∆+
∆

∆
= . (74)

3. At the center grid point with x = xn and t = t : [3]

 () ()txCtxCa nnnn ,,11, −= −− . (75)

 () ()txCtxCa nnnn ,,1, −= − . (76)

 () () ()[]txCttxC
t

xb nnn ,,
2

−∆+
∆

∆
= . (77)

This system consists of a tridiagonal system of linear algebraic equations. The solution vector d
is the diffusion coefficient vector. This system can be solved using the Thomas algorithm as
previously mentioned.

3. Fortran Software Development

3.1 Concentration Profile Predictor

Constant Diffusivity

This program was written to predict future concentration profiles from an initial concentration
profile and constant diffusivity value. The program begins by asking the user for the initial
concentration profile file in .txt format. After storing this array, the program requests the
constant diffusivity value from the user. The final request from the software is the time at which
the user would like the concentration profile to be predicted. The software’s output is both on
screen and in a .txt file located in the same location as the initial concentration profile. The user
can then easily import this file into Excel to see the new concentration profile. The user can also
edit the position and time increments within the code itself to tailor the output to their liking.

As discussed in section 2.1.1.1, one solution to Fick’s second law is the error function solution.
One way to test the validity of this program is to compare it against this known solution,
demonstrated by

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−
−

Dt
xerf

CC
CC

os

ox

2
1 . (78)

This is accomplished by using an initial concentration profile based on equation 78 and setting a
constant diffusivity. This diffusivity value is used both in equation 78 and in the program itself.
Equal times were chosen as well. The result of this comparison is shown in figure 6.

 18

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

t=1
t=1 program
t=0.5
t=0.5 program
t=0.25
t=0.25 program

Figure 6. Graph showing the error function solution compared with the Fortran code solution.

One can see that the results match to four significant figures, thereby verifying the correct
operation of the Fortran program.

Another solution known as the thin-film solution was discussed in section 2.1.1.1 as well. This
research compares this solution to the Fortran program as well to further validate its functional
use. The thin-film solution was given in equation 6, which is shown again here:

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

Dt
x

Dt
MC

4
exp

2

π
. (79)

In order to compare the program to the thin-film solution, an initial concentration profile based
on equation 79 was used as well as a predetermined constant diffusivity. This diffusivity value
was used both in equation 79 and in the program itself. Equal time increments were chosen as
well. The result of this comparison is shown in figure 7.

One can see that the results match to four significant figures, thereby verifying the correct
operation of the Fortran program.

A third solution of Fick’s law is based on a trigonometric solution and is mentioned in section
2.1.1.1. This solution is based on the following:

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛∆+=

Γt
txCCtxCB exp2sin),(0 λ

π . (80)

 19

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5

t=0.1
t=0.1 program
t=0.2
t=0.2 program
t=0.5
t=0.5 program

Figure 7. Graph showing the thin-film solution compared with the Fortran program.

In order to compare the program to the trigonometric solution, an initial concentration profile
based on equation 80 was used as well as a predetermined constant diffusivity. This diffusivity
value was used both in equation 80 and in the program itself. Equal time increments were
chosen as well. The result of this comparison is shown below in figure 8.

One can see that the results match to four significant figures, thereby verifying the correct
operation of the Fortran program.

3.2 Diffusivity Extractor

Constant Diffusivity

This program was written to extract diffusivity values from two concentration profiles. This
matrix of diffusivity values can then be used to predict future concentration profiles with respect
to both time and temperature. The program begins by asking the user for the two concentration
profiles file in .txt format. The array size, time step, and time duration are then inputted. The
software’s output is both on screen and in a .txt file located in the same location as the
concentration profiles. The user can then easily import this file into excel to see the graph of the
diffusivity matrix.

 20

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-20 -10 0 10 20

t=1

t=50

t=50 program

t=100

t=100 program

Figure 8. Graph showing the trigonometric approximation compared with the Fortran program.

In order to test this portion of the software, the thin-film solution was used again. A time of
0.005 s was inputted into equation 79 in order to generate one concentration profile. A second
profile was generated using a time of 0.00503 s demonstrating a time step of 0.00003 s. In this
case, the diffusivity was set as a constant value of 1 to generate both of these curves. In order for
the program to be operational, it would need to extract a diffusivity matrix with the value 1 in
each location. The resulting extraction is shown in graphical form in figure 9.

As one can see, the diffusivity values oscillate at first and finally converge to a value of 1.06,
which leaves a 5% error since 1 is the true value. Since this is within the acceptable tolerance,
this portion of the program is deemed operational.

4. Software Limitations

The Fortran programs written for this research project depend solely on input and output external
files. These files are currently in .txt format which rely on exact formatting and data placement
specifications. Slight alterations in either of these variables will inherently affect the operation
of the main program. If these files are converted to spreadsheet files (i.e., Excel), data
manipulation and representation will become more efficient. The programmer will need to write
an SQL subroutine to allow standard Fortran output to be inserted into a spreadsheet.

 21

0.9

0.95

1

1.05

1.1

1.15

1.2

0 5 10 15 20 25 30 35 40 45 50

Data Points

D
iff

us
iv

ity
 v

al
ue

Figure 9. Diffusivity matrix plotted for constant diffusivity of 1.

Throughout this research, many different programs were written to solve different aspects of the
problem such as binary_effd, inverse-rewrite , and ternary_separate and can be seen in
appendices A, B, and C respectively.

4.1 Binary_effd

This program was written to act as a concentration profile predictor for use with constant
diffusivity. It uses the condensed form of Fick’s second law when ‘D’ is not a function of
concentration. The program uses the Crank-Nicholson finite-difference method to iterate to
future unknown time steps to predict concentration profiles for any given initial binary diffusion
data set.

While this program runs successfully using known diffusion examples, the largest error seems to
come from boundary condition determination. The program began with Dirichlet boundary
conditions in which specify the value of the function at the surface and the finite difference only
takes place between them (i.e., i = 2…n-1).

 T = f (r, t). (81)

This scenario did not work with Fortran so the boundary conditions were changed to Neumann
boundary conditions which specify the normal derivative of the function on the surface.

 .= n (r,)T T f t
n

∂
∇ =

∂
. (82)

 22

The Neumann scenario proved effective when comparing the programs’ output to known
solutions. This program successfully uses the Thomas algorithm to solve for the concentration
values at future unknown time steps using the previous known concentration values.

4.2 Inverse_rewrite

This program is designed to act as a diffusivity extractor which would extract the composition-
dependent interdiffusion coefficients from the concentration profiles in a single diffusion couple.
The procedure is based on the minimization of the difference between the profiles calculated by
a finite difference scheme and the experimental profiles given by ARL. This program works
flawlessly when modeled after the thin-film solution as seen in figure 10.

0

1

2

3

4

5

6

7

8

9

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Program Data
Thin Film Solution

Figure 10. Thin film approximation using program.

This program does not perform as well when using actual data from ARL’s test matrix.
Unfortunately, due to the variation in the input data, the output does not converge on a specific
value as seen in figure 11.

 23

-100

-80

-60

-40

-20

0

20

40

60

80

100

0 5 10 15 20 25 30

yimp-y150
yimp-y200
y150-y250

Figure 11. Program output using ARL input data.

Some effort was made to computationally induce noise to simulate experimental concentration
scatter. A Gaussian noise with a standard deviation of 0.65% was applied to the raw data of
ARL. Unfortunately, this caused the program’s output to fluctuate even more. The inter-
diffusion coefficient values were meant to be obtained along the entire diffusion path, instead of
only at the intersection point of independent paths (Boltzmann-Matano; BZMA) (8) or instead of
mean coefficient values (Krishtal; KMAZ) (9).

The researcher believes the error in this program focuses on the initial values that are introduced.
It is assumed that a genetic algorithm would need to be developed to apply to the first iterative
step. This algorithm would aid in the location of a true minimum and not a local one as seen in
the current program. It is also alleged that the stopping criterion for this program was not
developed properly. This criterion should allow a point at when it is reached, a test would be
performed on the different terms to ensure they are of the same order of magnitude. In order to
maintain this criterion constant during the while profile treatment, and in order to limit
calculation time, a variable increment would need to be implemented. This increment could be
used as follows: if the relative variation of the concentration exceeds 10%, the increment is

 24

decreased so that the relative variation is no more than 1%. In that case, for the next iteration, it
is necessary to employ the previously discussed genetic algorithm to determine the interdiffusion
coefficients. This may explain the wide fluctuations seen in figure 11.

The researcher hypothesizes that a smoothing subcode would need to be applied on the raw ARL
date before using the Fortran program on it. An appropriate smoothing function is described in
equation 83.

 ()
() ()∑

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −⋅
−⋅+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−⋅⋅−+

+=
q

j

ij

ijij
ij

ij

ij
ijij

ij
ii

r
pxn

B
r

px
mB

A
AxC

1
0

expexp11

 (83)

In order to use the smoothing procedure efficiently, an adequate number of functions (q) must be
used. In this case, five should be sufficient. The average relative error on the concentration
associated with the smoothing procedure amounts to 0.02%, and the maximum relative error,
generally observed at extrema, never exceeds 0.5%.

Inverse solutions are known to be sensitive to changes in input data resulting from measurement
and modeling errors. Hence, they may not be unique. Mathematically, the inverse problems
belong to the class of ill-posed or ill-conditioned problems; that is, their solutions do not satisfy
the general requirements of existence, uniqueness, and stability under small changes to the input
data (10).

4.3 Ternary_separate

This program was written to scale the previous programs into ternary and multicomponent
diffusion with constant and variable diffusivity. In the ternary program, Fortran would not
recognize the second element array no matter how it was represented. A third element is not
needed in the program as the third element is always determined by the balance of the other two
to total 100%. It is here that a two-dimensional (2-D) array written in C++ would be easier to
code and debug. Fortran’s limitations make it difficult for the program to access a 2-D matrix
and perform the necessary calculations while keeping track of each data point within the matrix.
When forming the three-dimensional array known as ‘C’, Fortran continually disallowed a non-
integer in the ‘countreal’ slot. This variable began as an integer but somehow was converted to a
non-integer within the program itself.

Versions of the Crank-Nicholson method and the Thomas algorithm were again used in this
program with adjustments made to account for the additional variables used in multicomponent
diffusion. The finite-difference nomenclature is the same as that used for the binary diffusion
case. This program had difficulty interpreting the bi-tridiagonal matrix that is generated from
attempting to solve multicomponent diffusion. Only a single tridiagonal matrix is generated
when solving a binary diffusion problem.

 25

5. Conclusions

In conclusion, the original objective of this project was not met to its completion. Several factors
contributed to this shortcoming, but the primary obstacle was the correlation between the
software and the input data. While the software ran successfully with many different known
solutions, it did not perform well using actual concentration profile data from ARL. Most likely,
this is due to the limited amount of species data, the accuracy of the data itself, and the spacing
between each data point. As with all software, the closer the data points and the less intense the
noise is, the more accurate the solution will be. This is especially true when using a method such
as the finite difference method, which is based solely on iteration.

In order to make this program successful, careful analysis of the input data must be made. All
efforts should be taken to obtain more accurate, smoother input data which will allow the
software to run with fewer obstacles and, in turn, produce cleaner output data. Once the input
data is appropriate, the programmer should return to “fine tune” the individual software
programs to allow them to work with the new data. This may require using a filtering subroutine
in order to accept only worthy data from the input stream. There should be a minimum number
of data points that the program can run on and still produce acceptable results. It is imperative
that this number is determined so the program can be modified to run on a sufficient amount of
data points. This part of the code would terminate the program if there were fewer data points
than the program needed.

Finally, the concentration profile predictor should also be expanded to account for variable
diffusivity.

 26

6. References

1. Crank, J. The Mathematics of Diffusion; Oxford University Press: England, 1975.

2. Callister, William D. Materials Science and Engineering; John Wiley and Sons: Canada,
1997.

3. Yeung, W. K.; Lam, T. T. Second-Order Finite Difference Approximation for Inverse
Determination of Thermal Conductivity. Int. Journal of Heat and Mass Transfer 1995, 39
(17), 3685–3693.

4. Morral, J. E.; Dupen, B. M.; Law, C. C. Application of Commercial Computer Codes to
Modeling the Carburizing Kinetics of Alloy Steels. Metallurgical Transactions A 1992, 23a,
2069–2071.

5. Kirkaldy, J. S. Can. J. Phys. 1958, 36, 899.

6. Dayananda, M. A.; Behnke, D. A. Scripta Metall. 1991 11a, 2187–2191.

7. Hoffman, J. D. Numerical Methods for Engineers and Scientists; New York: McGraw-Hill,
1992.

8. Philibert, J. Diffusion et Transport de Matie`re dans les Solides. Les e´ditions de Physique,
1985.

9. Krishtal M.; Mokrov A.; Akimov, V.; Zakharov, P. Fiz Metal Metalloved 1973; 35:1234.

10. Ozisik, M. N. Heat Conduction; Chapters 12 and 14, 2nd ed.; John Wiley and Sons: New
York, NY, 1993.

 27

Appendix A. Binary_effd

Binary_effd

module setup_info

 real :: time, dt, dx, t
 real :: alpha, xpos, conc
 integer :: i
 real :: j

 data dt,dx,time /0.00005,0.01,.01/

end module setup_info

program binary_effd

 use setup_info
 implicit none
 interface

 subroutine fill_a(C,a,nx,effd)
 integer :: nx
 real, dimension(0:nx) :: C
 real, dimension(0:nx,4) :: a
 real, dimension(0:nx) :: effd
 end subroutine fill_a

 subroutine tridiag(C,a,nx)
 integer :: nx
 real, dimension(0:nx) :: C
 real, dimension(0:nx,4) :: a
 end subroutine tridiag

 end interface

 integer, parameter :: NSEG = 40

 real, dimension (0:NSEG) :: effd !This is the efective D array
 real, dimension (0:NSEG,4) :: a

 This appendix appears in its original form, without editorial change.

 28

 real, dimension (0:NSEG) :: C !Initial condition
 real, dimension (0:NSEG) :: xposa,conca
 integer :: count
 !character (len=1) :: tab = char(9)
 !***Enter data and info

 open (unit=10, file='conc.txt', status='old') !Opening the initial concentration profile
 open (unit=13, file='ds.txt', status='old') !Opening the effective D array file
 open (unit=100, file='binaryoutputtrig.txt', status='unknown')

 !dx=1/NSEG
 !print*, 'dx is',dx
 alpha=dt/(dx*dx)
 !write(*,*)dx,dt,' alpha is', alpha

 count=-1;
 5 read (10,*,END=15) xpos,conc
 count=count+1;
 xposa(count)=xpos;
 conca(count)=conc;
 go to 5

 15 if (count.EQ.0) then
 print*, 'No data in file'
 else
 end if

 C=conca;
 !print*,C

 !Input effective D's into 'effd' array
 count=-1;
 6 read (13,*,END=16) effd
 count=count+1;
 go to 6

 16 if (count.EQ.0) then
 !print*, 'No data in file'
 else
 end if

 !print*, effd(0)

 !***Crank Nicholson Method

 29

 t=100.0
 count=0

 do j=0,time,0.005
 !if (t>time) exit
 !count=count+1
 !t=count*dt

 call fill_a(C,a,NSEG,effd)
 call tridiag(C,a,NSEG) !Update C(i) to new time step

 end do

 print*, C
 write (100,99) C;
 99 format (1X, F10.4);

 close (unit=100)
 end program binary_effd

 !************Subroutine Fill_a *********

 subroutine fill_a(C,a,nx,effd)
 use setup_info
 integer :: nx
 real, dimension(0:nx) :: C
 real, dimension(0:nx,4) :: a
 real, dimension(0:nx) :: effd

 do i=1,nx-1
 a(i,1) = -alpha/2.*effd(i)
 a(i,2) = 1. + (alpha*effd(i))
 a(i,3) = a(i,1)
 a(i,4) = C(i)*(1.-(alpha*effd(i))) + ((C(i-1)+C(i+1))*alpha/2.*effd(i))
 end do

 !print*, a(:,4);

 !This is for i=0
 a(0,1) = 0.*effd(0)

 30

 a(0,2) = 1. + (alpha*effd(0))
 a(0,3) = -alpha*effd(3)
 a(0,4) = C(0)*(1.-(alpha*effd(0))) + (C(1)*alpha*effd(0))

 !This is for i=NSEG
 a(nx,1) = -alpha*effd(nx)
 a(nx,2) = 1. + alpha*effd(nx)
 a(nx,3) = 0.*effd(nx)
 a(nx,4) = C(nx)*(1.-(alpha*effd(nx))) + (C(nx-1)*alpha*effd(nx))

 !print*, a(nx,4);

 end subroutine fill_a

 !*********Tridiagonal matrix ************

 subroutine tridiag(C,a,nx)

 real, dimension(0:nx) :: C
 real, dimension(0:nx,4) :: a
 integer :: nx
 real :: denom
 integer :: j

 C(0)=a(0,4)/a(0,2)
 a(0,3)=a(0,3)/a(0,2)

 do j=1,nx
 denom = a(j,2) - a(j,1)*a(j-1,3)
 C(j) = (a(j,4) - a(j,1)*C(j-1))/denom
 a(j,3) = a(j,3)/denom
 end do

 !a(nx,3) is 0
 do j=nx-1,0,-1
 C(j) = C(j) - a(j,3)*C(j+1)
 end do

 end subroutine tridiag

 31

Appendix B. Inverse_rewrite

Inverse_rewrite

module setup_info

 real :: time, dt, dx, t
 real :: alpha, xpos, conc, xpos2, conc2
 integer :: i
 real :: j

 data dt,dx,time /0.00005,0.01,10/

end module setup_info

program inverse_rewrite

 use setup_info
 implicit none
 interface

 subroutine fill_a(a,b,c,r,nx,yimp,y150)
 integer :: nx
 !real, dimension(0:nx) :: C
 real, dimension(0:nx) :: a,b,c,r,h
 !real, dimension(0:nx,0:nx) :: a
 real, dimension(0:nx) :: yimp,y150
 end subroutine fill_a

 subroutine tridiag(nx,a,b,c,r,h)
 integer :: nx
 real, dimension(0:nx) :: h,a,b,c,r
 !real, dimension(0:nx,0:nx) :: a
 end subroutine tridiag

 end interface

 integer, parameter :: NSEG = 67

 This appendix appears in its original form, without editorial change.

 32

 !real, dimension (0:NSEG,0:NSEG) :: a
 real, dimension (0:NSEG) :: h,a,b,c,r
 real, dimension (0:NSEG) :: xposa,yimp,xpos2a,y150
 integer :: count
 !character (len=1) :: tab = char(9)

 !***Enter data and info

 open (unit=10, file='delta1.txt', status='old')
 open (unit=13, file='delta2.txt', status='old')
 open (unit=100, file='output.txt', status='unknown')

 !dx=1/NSEG
 !print*, 'nx is',NSEG
 alpha=(dx*dx)/dt
 !write(*,*)dx,dt,' alpha is', alpha

 count=-1;
 5 read (10,*,END=15) conc
 count=count+1;
 !xposa(count)=xpos;
 yimp(count)=conc;
 go to 5

 15 if (count.EQ.0) then
 print*, 'No data in file'
 else
 end if

 !print*,yimp

 count=-1;
 6 read (13,*,END=16) conc2
 count=count+1;
 !xpos2a(count)=xpos2;
 y150(count)=conc2;
 go to 6

 16 if (count.EQ.0) then
 !print*, 'No data in file'
 else

 33

 end if

 !print*, y150

 !***Crank Nicholson Method

 t=100.0
 count=0

 !do j=0,time,0.5
 !if (t>time) exit
 !count=count+1
 !t=count*dt

 call fill_a(a,b,c,r,NSEG,yimp,y150)
 call tridiag(NSEG,a,b,c,r,h)

!print*,'hnx is',h(NSEG)

 !end do

 print*, h
 write (100,99) h;
 99 format (1X, F10.4);

 close (unit=100)
 end program inverse_rewrite

 !************Subroutine Fill_a *********

 subroutine fill_a(a,b,c,r,nx,yimp,y150)
 use setup_info
 integer :: nx
 real, dimension(0:nx) :: a,b,c,r
 !real, dimension(0:nx,0:nx) :: a
 real, dimension(0:nx) :: yimp,y150

 !*****This is for i=0********

 !a(1)=0!!!

 b(0) = 2.0*yimp(0)-3.0*yimp(1)+yimp(2)
 !print*,b(0)

 34

 c(0) = -yimp(0)+yimp(1)
 !print*,c(0)

 r(0) = alpha*(y150(0)-yimp(0))
 !print*,'y150(0) is',y150(0)
 !print*,'alpha is',alpha
 !print*,r(0)

 !*****This is for 0<i<NSEG********

 do i=1,nx-1
 a(i) = yimp(i-1)-yimp(i+1)
 b(i) = 4*(yimp(i+1)-2*yimp(i)+yimp(i-1))
 c(i) = yimp(i+1)-yimp(i-1)
 r(i) = 4*alpha*(y150(i)-yimp(i))
 end do

 !print*,'yimp(0) is',yimp(0)
 !print*,'yimp(1) is',yimp(1)
 !print*,'yimp(2) is',yimp(2)

 !print*,a(1);
 !print*,b(1);

 !******This is for i=NSEG**********

 !a(nx,1) = 0
 b(nx) = 2*(yimp(nx-1)-yimp(nx))
 !a(nx,3) = 0
 r(nx) = alpha*(y150(nx)-yimp(nx))

 !print*, a(nx,4);

 end subroutine fill_a

 !*********Tridiagonal matrix ************

 subroutine tridiag(nx,a,b,c,r,h)

 !real, dimension (0:nx,0:nx) :: a

 35

 real, dimension(0:nx) :: a,b,c,r,h
 real bet
 real gam(100)
 integer j

 if(b(0).eq.0)pause 'tridiag:rewrite equations'

 bet=b(0)
 !print*, 'bet is',bet

 h(0)=r(0)/bet
 h(nx)=1.0
 !print*,'h(0) is',h(0)

 !**Decomposition and forward substitution
 do 2 j=1,nx
 gam(j)=c(j-1)/bet
 !print*,gam(1)
 bet=b(j)-a(j)*gam(j)
 !print*,bet
 if (bet.eq.0)pause 'tridiag failed' !Algorithm fails
 h(j)=(r(j)-a(j)*h(j-1))/bet

 2 continue

 !**Backsubstitution**

 do 3 j=nx-1,0,-1
 h(j)=h(j)-gam(j+1)*h(j+1)
 3 continue

 return

 end subroutine tridiag

 36

INTENTIONALLY LEFT BLANK.

 37

Appendix C. Ternary_separate

Ternary_separate

module setup_info

 real :: time, dt, dx, t
 !Xpos is the array of positions in the initial profile
 !Conc is the array of concentrations in the initial profile
 real :: alpha, xpos1, conc1, xpos2, conc2,dtt
 integer :: i,k,z
 real :: j

 data dt,dx,time /0.5,0.01,50/

end module setup_info

program ternary_separate

 use setup_info
 implicit none
 interface

 !The following subroutine is designed to make arrays that
 !follow the Crank Nicholson Finite Difference method. 'A' will
 !have four columns, representing the four coefficients in the
 !finite difference equation mentioned earlier which come before
 !C(i-1,j+1), C(i,j+1), C(i+1,j+1), and C(*,j)
 !'nx' is the maximum position of x
 !The 'Conc' array represents the known values of the concentrations
 !at the current time step

 subroutine fill_a(Conc,a,nx)
 integer :: nx
 real, dimension(0:nx) :: Conc
 real, dimension(0:nx,4) :: a
 ! real :: dtt2,j
 end subroutine fill_a

 !The following subroutine is designed to solve the tridiagonal matrix
 !that was formed using the Crank Nicholson method

 This appendix appears in its original form, without editorial change.

 38

 !It uses the same variables as in subroutine 'fill_a'
 !This routine returns the concentration values at the next time step
 subroutine tridiag(Con,a,nx)
 integer :: nx
 real, dimension(0:nx) :: Con
 real, dimension(0:nx,4) :: a
 end subroutine tridiag

 end interface

 !This parameter defines the number of steps in the x direction
 !For example, if the profile goes from -20 to 20, then NSEG=40
 integer, parameter :: NSEG = 40
 real, parameter :: timestep = 1000
 !real, parameter :: dt=0.5

 real, dimension (0:NSEG,4) :: a !Coefficient array
 real, dimension (0:NSEG,timestep) :: C !Initial condition
 real, dimension (0:NSEG) :: xposa,conca,xposb,concb,conarray
 integer :: count
 real :: countreal
 !character (len=1) :: tab = char(9)

 !***Enter data and info

 !This statement opens the text files containing the
 !two initial concentration profiles
 open (unit=10, file='trig.txt', status='old')
 open (unit=11, file='trig2.txt', status='old')
 !This statement opens the ouput file so the new concentration
 !profile at the current time step can be written
 open (unit=100, file='binaryoutputtrig.txt', status='unknown')

 !dx=1/NSEG
 !print*, 'dx is',dx
 alpha=dt/(dx*dx)
 !write(*,*)dx,dt,' alpha is', alpha

 !This loop will take only the proper number of x positions and
 !concentrations, storing them into 'xposa' and 'conca',
 !leaving off the trailing zeros
 count=-1;

 39

 5 read (10,*,END=15) xpos1,conc1
 count=count+1;
 xposa(count)=xpos1;
 conca(count)=conc1;
 go to 5

 15 if (count.EQ.0) then
 print*, 'No data in file'
 else
 end if

 !Same for second profile
 count=-1;
 6 read (11,*,END=16) xpos2,conc2
 count=count+1;
 xposb(count)=xpos2;
 concb(count)=conc2;
 go to 6

 16 if (count.EQ.0) then
 print*, 'No data in file'
 else
 end if

 !Define the initial concentration array at time=0 for both elements

 !***

 C(:,0)=concb; !****change a to b to a to change elements

 !***

 !C(:,2,0)=concb;

 !print*, C(:,2,0)

 40

 !Begin the loop to solve over the entire time, incrementing
 !by 0.5

 t=0.0;
 countreal=0.0;

 dtt=time/.5; !Gives how large the time column is in the array
 !print*,dtt

 !print*, C(:,2,0)

 !*****This is the set up for only one component******

do j=0,15,0.5
 !if (t>time) exit
 countreal=countreal+1 !monitor j increments
 !t=countreal*dt

 !Store one column of 3D array into 1D array 'conarray'
 !This is done because the subroutine 'fill_a' only needs the
 !concentrations and not the position and time subscripts
 conarray=C(:,j)

 !print*,z
 !print*, conarray
 !print*, C(:,1,0)

 call fill_a(conarray,a,NSEG) !Fill in the coefficients for the current time
step

 !print*, C(1,i,0)
 !print*, a(5,4)

 call tridiag(conarray,a,NSEG) !Update C(i) to new time step

 !This loop will move the new concentration profile back into
 !the 3D array with the appropriate position and time subscripts
 do k=0,NSEG

 41

 C(k,countreal)=conarray(k) !****Won't allow non-integer for countreal
slot
 end do

end do

 !print*, countreal

 !print*, C(:,15)! ********* Test print to show concentration profile across all x positions
 ! for a specific element at a specific time step **********

 !write (100,99) C(:,275); !Write the current concentration profile to the output file
 !99 format (1X, F7.4);

 close (unit=100) !Close the output file
 end program ternary_separate !Close the program

 !************Subroutine Fill_a *********

 subroutine fill_a(Conc,a,nx)
 use setup_info !Uses the parameter module
 integer :: nx
 !real :: dtt2,z
 real, dimension(0:nx) :: Conc
 real, dimension(0:nx,4) :: a

 !print*,Conc

 !Loop to enter the four coefficients of the finite
 !difference equation
 do i=1,nx-1
 a(i,1) = -alpha/2.
 a(i,2) = 1. + alpha
 a(i,3) = a(i,1)
 a(i,4) = Conc(i)*(1.-alpha) + (Conc(i-1)+Conc(i+1))*alpha/2.
 end do

 !print*, a(:,4);

 !These next two sets are different because there is no previous

 42

 !point for i=0 and there is no future point for i=NSEG

 !This is for i=0
 a(0,1) = 0.
 a(0,2) = 1. + alpha
 a(0,3) = -alpha
 a(0,4) = Conc(0)*(1.-alpha) + Conc(1)*alpha

 !This is for i=NSEG
 a(nx,1) = -alpha
 a(nx,2) = 1. + alpha
 a(nx,3) = 0.
 a(nx,4) = Conc(nx)*(1.-alpha) + Conc(nx-1)*alpha

 print*, Conc
 !print*,a(nx,4);

 end subroutine fill_a

 !*********Tridiagonal matrix ************

 subroutine tridiag(Con,a,nx)

 real, dimension(0:nx) :: Con
 real, dimension(0:nx,4) :: a
 integer :: nx
 real :: denom !Represents denominator after calculation
 integer :: j

 !Initial values
 Con(0)=a(0,4)/a(0,2)
 a(0,3)=a(0,3)/a(0,2)

 !This loop sets all ofthe known information to variables
 do j=1,nx
 denom = a(j,2) - a(j,1)*a(j-1,3)
 Con(j) = (a(j,4) - a(j,1)*Con(j-1))/denom
 a(j,3) = a(j,3)/denom
 end do

 !This loop decides the next concentration at the next time step
 !a(nx,3) is 0
 do j=nx-1,0,-1
 Con(j) = Con(j) - a(j,3)*Con(j+1)
 !print*,Con(2)

 43

 end do

 end subroutine tridiag

NO. OF
COPIES ORGANIZATION

 44

 1 DEFENSE TECHNICAL
 (PDF INFORMATION CTR
 ONLY) DTIC OCA
 8725 JOHN J KINGMAN RD
 STE 0944
 FORT BELVOIR VA 22060-6218

 1 US ARMY RSRCH DEV &
 ENGRG CMD
 SYSTEMS OF SYSTEMS
 INTEGRATION
 AMSRD SS T
 6000 6TH ST STE 100
 FORT BELVOIR VA 22060-5608

 1 INST FOR ADVNCD TCHNLGY
 THE UNIV OF TEXAS
 AT AUSTIN
 3925 W BRAKER LN
 AUSTIN TX 78759-5316

 1 DIRECTOR
 US ARMY RESEARCH LAB
 IMNE ALC IMS
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CI OK TL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 ABERDEEN PROVING GROUND

 1 DIR USARL
 AMSRD ARL CI OK TP (BLDG 4600)

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 45

 1 HQDA
 DAMO FDT
 400 ARMY PENTAGON
 WASHINGTON DC 20310-0460

 1 DIRECTOR
 US ARMY RSCH LAB
 AMSRD ARL D
 J MILLER
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 HQDA DIR R&D SAAL TR
 W MORRISON
 SUITE 9800
 2511 JEFFERSON DAVIS HWY
 ARLINGTON VA 22201

 1 HQ US ARMY
 MATERIEL CMD
 9301 CHAPEK RD
 FORT BELVOIR VA 22060-5527

 1 US ARMY BMDS CMD
 ADVANCED TECHLGY CTR
 PO BOX 1500
 HUNTSVILLE AL 35807-3801

 1 OFC OF THE PRODUCT MGR
 SFAE AR HIP IP
 R DE KLEINE
 PICATINNY ARSENAL NJ 07806-5000

 1 US ARMY ARDEC
 PROD BASE MODRNZTN AGENCY

AMSMC PBM
A SIKLOSI

 PICATINNY ARSENAL NJ
 07806-5000

 1 US ARMY ARDEC
 PROD BASE MODRNZTN AGENCY
 AMSTA AR WES L LAIBSON
 PICATINNY ARSENAL NJ
 07806-5000

 3 PM PEO ARMAMENTS
 TANK MAIN ARMAMENT SYS
 AMCPM TMA
 AMCPM TMA 105

AMCPM TMA AS
H YUEN

 PICATINNY ARSENAL NJ
 07806-5000

2 US ARMY ARDEC
 AMSTA AR CCH B
 C MANDALA
 E FENNELL
 PICATINNY ARSENAL NJ
 07806-5000

1 US ARMY ARDEC
 AMSTA AR CCS
 PICATINNY ARSENAL NJ
 07806-5000

1 US ARMY ARDEC
 AMSTA AR WE
 PICATINNY ARSENAL NJ
 07806-5000

 2 PM MAS
 SFAE AMO MAS SMC
 PICATINNY ARSENAL NJ
 07806-5000

 1 US ARMY ARDEC
 AMSRD AAR AEM D
 J LUTZ
 BLDG 354
 PICATINNY ARSENAL NJ
 07806-5000

 3 US ARMY ARDEC
 AMSTA AAR AEE W
 M MEZGER
 D WIEGAND
 P LU
 BLDG 3022
 PICATINNY ARSENAL NJ
 07806-5000

 1 US ARMY ARDEC
 AMSRD AAR AIL F
 G FERDINAND
 BLDG 1
 PICATINNY ARSENAL NJ
 07806-5000

 2 US ARMY ARDEC
 AMSTA AR WEE
 S WESTLEY
 S BERNSTEIN
 PICATINNY ARSENAL NJ
 07806-5000

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 46

 1 US ARMY ARDEC
 AMSRD AAR AEE W
 S EINSTEIN
 BLDG 382
 PICATINNY ARSENAL NJ
 07806-5000

 1 US ARMY ARDEC
 SFAE AMO CAS
 J RUTKOWSKI
 BLDG 171 M
 PICATINNY ARSENAL NJ
 07806-5000

 1 US ARMY ARDEC
 AMSRD AAR AEI W
 B BRODMAN
 BLDG 472
 PICATINNY ARSENAL NJ
 07806-5000

 1 US ARMY ARDEC
 AMSRD AAR AEE W
 P OREILLY
 BLDG 3028
 PICATINNY ARSENAL NJ
 07806-5000

 1 US ARMY ARDEC
 SFAE AMO CAS R
 R CIRINCIONE
 PICATINNY ARSENAL NJ
 07806-5000

 1 US ARMY ARDEC
 AMSRD AAR AEE W
 P HUI
 BLDG 382
 PICATINNY ARSENAL NJ
 07806-5000

 1 US ARMY ARDEC
 AMSRD AAR AEE W
 J OREILLY
 BLDG 382
 PICATINNY ARSENAL NJ
 07806-5000

 1 AMSTA AR FS
 T GORA
 PICATINNY ARSENAL NJ
 07806-5000

 1 US ARMY ARDEC
 AMSTA AR FS DH
 PICATINNY ARSENAL NJ
 07806-5000

 1 US ARMY ARDEC
 AMSRD AAR AEE W F(D)
 R KOPMANN
 BLDG 62N
 PICATINNY ARSENAL NJ
 07806-5000

 1 US ARMY ARDEC
 AMSRD AAR ATD
 B MACHAK
 BLDG 1
 PICATINNY ARSENAL NJ
 07806-5000

 1 US ARMY ARDEC
 AMSRD AAR AEM C
 K CHUNG
 BLDG 407
 PICATINNY ARSENAL NJ 07806-5000

 1 DIR BENET WEAPONS LAB
 AMSTA AR CCB T
 S SOPOK
 WATERVLIET NY
 12189-4050

 1 DIR BENET WEAPONS LAB
 AMSTA AR CCB TA
 M AUDINO
 WATERVLIET NY 12189-4050

 1 DIR BENET WEAPONS LAB
 AMST AAR CCB D
 R HASENBEIN
 WATERVLIET NY
 12189-4050

 2 CDR US ARMY RSRCH OFC
 TECH LIB
 D MANN
 PO BOX 12211
 RESEARCH TRIANGLE PARK NC
 27709-2211

 1 PM US ARMY TANK AUTOMOTIVE

CMD
 AMCPM ABMS
 T DEAN
 WARREN MI 48092-2498

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 47

 1 PM US ARMY TANK AUTOMOTIVE
 CMD
 FIGHTING VEHICLES SYSTEMS
 SFAE ASM BV
 WARREN MI 48397-5000

 1 PM ABRAMS TANK SYSTEM
 SFAE ASM AB
 WARREN MI 48397-5000

 1 DIR HQ TRAC RPD
 ATCD MA
 FT MONROE VA 23651-5143

 1 CDR
 RADFORD ARMY
 AMMUNITION PLANT
 SMCAR QA HI LIB
 RADFORD VA 24141-0298

 1 COMMANDANT
 USAFC&S
 ATSF CN
 P GROSS
 FT SILL OK 73503-5600

 4 CDR NAVAL RSRCH LAB
 TECH LIBRARY
 CODE 4410
 K KAILASANATE
 J BORIS
 E ORAN
 WASHINGTON DC 20375-5000

 1 OFFICE OF NAVAL RSRCH
 CODE 473 J GOLDWASSER
 800 N QUINCY ST
 ARLINGTON VA 22217-9999

 5 COR NSWC
 S MITCHELL
 C MICHIENZI
 J CONSAGA
 C GOTZMER
 TECHLIB
 INDIAN HEAD MD 20640-5000

 1 CDR
 NAVAL SURFACE WARFARE CTR
 CODE G30
 GUNS & MUNITIONS DIV
 DAHLGREN VA 22448-5000

 1 CDR
 NAVAL SURFACE WARFARE CTR
 CODE G32
 GUNS SYSTEMS DIV
 DAHLGREN VA 22448-5000

 1 CDR
 NSWC
 CODE E23
 TECHLIB
 DAHLGREN VA 22448-5000

 1 CDR
 NSWC
 R HUBBARD G33
 DAHLGREN VA 22448-5000

 2 CDR
 NAVAL AIR WARFARE CTR
 CODE 3895
 T PARR
 R DERR
 CH1NA LAKE CA 93555-6001

 1 CDR
 NAVAL AIR WARFARE CTR
 INFORMATION SCIENCE DIV
 CHINA LAKE CA 93555-6001

 1 WL MNME
 ENERGETIC MATERIALS BR
 2306 PERIMETER RD
 STE 9
 EGLIN AFB FL 32542-5910

 1 DIR SANDIA NATL LABS
 M BAER DEPT 1512
 PO BOX 5800
 ALBUQUERQUE NM 87185

 1 DIR SANDIA NATL LABS
 COMBUSTION RSRCH FACILITY
 R CARUNG
 LIVERMORE CA 94551-0469

 2 DIR LLNL
 L355
 A BUCHINGHAM
 M FINGER
 PO BOX 808
 LIVERMORE CA 94550-0622

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 48

 1 CIA
 J BACKOFEN
 RM 4PO7 NHB
 WASHINGTON DC 20505

 2 MILLERSVILLE UNIV
 PHYSICS DEPT
 C W PRICE
 M NOLAN
 MILLERSVILLE PA 17551

 2 UNIV OF ILLINOIS
 DEPT OF MECH INDUSTRY ENGR
 H KRIER
 R BEDDINI
 144 MEB 1206 N GREEN ST
 URBANA IL 61801-2978

 5 PENNSYLVANIA STATE UNIV
 DEPT OF MECHANICAL ENGRG
 V YANG
 K KUO
 S THYNELL
 G SETTLES
 R YETTER
 UNIV PARK PA 16802-7501

 1 ARROW TECHLGY ASSOC INC
 1233 SHELBURNE RD D 8
 SOUTH BURLINGTON VT 05403

 1 AAI CORPORATION
 D CLEVELAND
 PO BOX 126
 HUNT VALLEY MD 21030-0126

 2 ALLIANT TECHSYSTEMS INC
 ALLEGHENY BALLISTICS LAB
 W B WALKUP
 T F FARABAUGH
 PO BOX 210
 ROCKET CTR WV 26726

 3 ALLIANT TECHSYSTEMS INC
 C AAKHUS MN07-LW54
 R DOHRN MN07-LW54
 D KAMDAR MN07-LW54
 5050 LINCOLN DR
 EDINA MN 55436

 4 ALLIANT TECHSYSTEMS INC
 RADFORD ARMY AMMO PLANT
 D A WORRELL
 W J WORRELL
 S RITCHIE
 K BROWN
 RADFORD VA 24141-0299

 3 ST MARKS POWDER
 GENERAL DYNAMICS ARM SYS
 J DRUMMOND
 J HOWARD
 R PULVER
 7121 COASTAL HWY
 CRAWFORDVILLE FL 32327

 1 GENERAL DYNAMICS ARM SYS
 J TALLEY RM 1305
 LAKESIDE AVE
 BURLINGTON VT 05401

 1 PRIMEX
 BADGER ARMY AMMO PLANT
 F E WOLF
 BARABOO WI 53913

 4 PRIMEX
 E J KIRSCHKE
 A F GONZALEZ
 J DRUMMOND

D W WORTHINGTON
PO BOX 222

 SAINT MARKS FL 32355-0222

 2 PRIMEX
 NHYLTON J BUZZETT
 10101 9TH ST NORTH
 ST PETERSBURG FL 33716

 1 PAUL GOUGH ASSOC INC
 P S GOUGH
 1048 SOUTH ST
 PORTSMOUTH NH 03801-5423

 2 VERITAY TECHGY INC
 R SALIZONI
 J BARNES
 4845 MILLERSPORT HWY
 EAST AMHERST NY 14501-0305

NO. OF
COPIES ORGANIZATION

 49

 1 PRIMEX
 E STEINER
 DIR LARGE CAL R&D
 PO BOX 127
 RED LION PA 17356

 1 SRI INTERNATIONAL
 TECH LIB
 PROPULSION SCIENCES DIV
 333 RAVENWOOD AVE
 MENLO PARK CA 94025-3493

ABERDEEN PROVING GROUND

 1 CDR USAATC
 CSTE DTC AT SL
 R HENDRICKSEN
 APG MD 21005

 31 DIR USARL
 AMSRD ARL WM
 B RINGERS
 AMSRD ARL WM BC
 M BUNDY
 J GARNER
 P PLOSTINS
 P WEINACHT
 AMSRD ARL WM BD
 W R ANDERSON
 R A BEYER
 A L BRANT
 S W BUNTE
 C F CHABALOWSKI
 T P COFFEE
 J COLBURN
 P J CONROY
 B E FORCH
 B E HOMAN
 S L HOWARD
 P J KASTE
 A J KOTLAR
 C LEVERITT
 K L MCNESBY
 M MCQUAID
 M S MILLER
 A W MIZIOLEK
 J B MORRIS
 J A NEWBERRY
 M J NUSCA
 R A PESCE-RODRIGUEZ
 G P REEVES
 B M RICE
 R C SAUSA
 A W WILLIAMS

 50

INTENTIONALLY LEFT BLANK.

