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Abstract

Flat appearance-based systems, which combine clever

image representations with standard classifiers, might be

the most effective way to recognize objects using current

technologies. In the future, however, it seems probable

that hierarchical representations might have better perfor-

mance. In such systems, the image representation consists

of a sequence of sets of features, where each subsequent set

is computed based on the previous sets.

The main contributions of this paper are to: (1) pose

the question “what is the best way to employ discriminative

methods for hierarchical image representations?”; (2) enu-

merate some of the alternative hierarchies while drawing

connections to recent work by brain researchers; (3) study

experimentally the different alternatives. As we will show,

the strategy used can make a substantial difference.

1. Introduction

To date, there is no satisfactory explanation for the role

of feedback connections in the primate visual system. These

abundant feedback connections dominate the visual areas in

a 10 to 1 ratio over the feed-forward connections [8]. A

clearer understanding of their function could give insights

into how to build better computer vision systems.

Theories for the role of feedback connections have usu-

ally focused on attentional mechanisms and hypothesis ver-

ification loops. In Hawkins [14], it is proposed that feed-

back connections are involved in prediction-verification re-

cursions wherein the generation of a predicted representa-

tion (top-down) is matched with the upcoming representa-

tion (bottom-up). Computational implementations of these

hypothesis-verification theories have had limited success

when compared to appearance-based recognition systems,

although some exceptions exist (e.g. [6]).

In Reverse Hierarchy Theory (RHT), proposed by

Hochstein and Ahissar [16], information is first processed

automatically bottom-up, while perception progresses in the

opposite direction. RHT can account for many seemingly

disparate psychological phenomena found in humans, such

as the different modes of visual search, and the properties of

vision at a glance compared to vision with scrutiny. How-

ever, in biological systems, verifying this or any other feed-

back theories remains extremely difficult.

In computational systems, feedback is often used in the

training phase of neural networks and graphical models,

however, the authors are unaware of any work showing

how feedback can be useful for modern discriminative ob-

ject recognition systems, such as those employing SVM or

AdaBoost for classification. Currently, these discriminative

systems seem to outperform other technologies but still fall

far behind human performance. Adding feedback is one

promising direction to close the gap.

Here we create computational implementations of differ-

ent hierarchal architectures to see if an improvement can be

made over the performance of simpler discriminative ob-

ject classification systems. In our framework, we equate the

cognitive notion of perception (from RHT) with the com-

putational output of classifiers trained to respond strongly

to that class. We describe five computational hierarchies

and experimentally evaluate their relative performance.

2. Background: Hierarchical vision systems

Before appearance-based models became standard prac-

tice, hierarchal representations were common in computer

vision. Objects were often represented as compositional

hierarchies of atomic forms, and object searches were

performed by detecting for appropriate groups of these

atoms in oftentimes combinatorial sized search spaces (e.g.

[20, 11]). With the advent of advanced statistical learning

tools and more powerful computers, the best performances

were next reported by shallow architectures using learning

directly on top of relatively simple image representations.
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Recently, hierarchal systems, now with multiple levels of

learning, have regained their popularity (e.g. [18, 23]).

Along with the additional power and flexibility available

to hierarchal systems come problems inherent to their de-

sign. It remains unknown how best to factor the vision prob-

lem: should object parts be represented explicitly, at what

stages should learning be employed, etc. In [28], a genera-

tive model was trained using both the appearance of target

objects, and the gist of the scenes in which these objects

were likely to appear. While factoring the conditional of

a generative model by layers in a hierarchal representation

is a well defined problem, the best way to combine these

layers in a discriminative framework is less clear.

Part-based systems These are hierarchal architectures

which explicitly represent spatially localized structures re-

lated to the task. For instance, the part-based face detec-

tor detailed by Heisele et. al. [15] employs detectors for

the eyes, nose and mouth. The part based system of Ull-

man et. al. [30] is similar in that sub-parts of the image

are represented explicitly by independent detectors within

the system. However, in this system, instead of hand selec-

tion, mutual information is used to select which object parts

will be represented. Other part-based object detection sys-

tems which automatically learn, via clustering or otherwise,

which object parts to explicitly represent include [31] and

[19]. In [4], feedback is used in order to resolve ambigui-

ties in the part detections by considering inter-part relations.

Classifiers as features Several systems have used dis-

criminative classifier outputs as learned intermediate visual

features, e.g. [26, 1]. The intuition is that classifiers trained

to perform tasks in one domain may learn to implicitly rep-

resent patterns and invariances in a host of related domains.

The subsequent use of these classifier outputs as input to a

higher level of the hierarchy allows for the transfer domain

knowledge. Another option is to learn an intermediate level

representation without label information. In this case, it is

necessary to use an unsupervised algorithm, such as clus-

tering or parametric models, as in [19, 17] or [31].

The convolutional network The system of LeCun et. al.

[18] is an example of a multi-layered neural network de-

signed and trained via back-propagation to perform object

detection and recognition tasks. It can be seen as a type

of visual hierarchy in which learning occurs at each level.

Rather than explicitly representing parts, a hierarchal ob-

ject representation is induced through the clever network

architecture. Although feedback is used during the train-

ing phase, during testing the convolutional network is com-

pletely feed-forward, leading to very rapid performance.

The standard model This system provides a quantitative

model of the feed-forward pathway of the ventral stream in

visual cortex. Recently, a machine vision implementation of

the architecture was tested on real-world image databases,

showing promising results [24, 3]. So far, the modeling

effort has focused on the feed-forward architecture of the

visual stream. Strong evidence suggests that feed-forward

pathways are responsible for the first 100 msec of visual

perception [21, 25] and that the basic steps for recogni-

tion are completed in this time, including tuned responses

of neurons in IT. Of course, a complete model of verte-

brate vision must take into account image sequences, as

well as top-down signals, attentional effects and the struc-

tures mediating them (e.g. the extensive back-projections

present throughout cortex).

Reverse Hierarchies Hochstein and Ahissar’s Reverse

Hierarchy Theory, (RHT) [16] proposes that visual informa-

tion initially travels through the feed-forward visual hierar-

chy, and that perception begins at the higher levels, reaching

the lower areas via feedback connections, forming a reverse

hierarchy. They point to three lines of evidence to support

this theory. Firstly, the gist of a scene, consisting of broad

category information, is consciously perceived first, and de-

tailed information is only consciously perceived later when

vision with scrutiny is engaged. The ability to perceive the

contents of rapidly presented images, as seen in the Rapid

Serial Visual Presentation (RSVP) paradigm [22], while at

the same time being blind to details of the images, as seen

in repetition blindness and change blindness phenomena,

is further support. Since the receptive field sizes needed

to process the gist of a scene are only seen in neurons of

higher visual areas, while cells coding for precise details are

found in lower visual areas, these phenomena suggest that

perception starts at the highest levels and travels backward

to the lower levels. The second piece of evidence comes

from the visual search research, where it has been well es-

tablished that there are two modes of search, one mode that

is rapid and parallel and one mode that is slower and serial

[29]. The rapid parallel detection of objects often uses com-

plex features such as circles and faces that are only avail-

able in higher visual areas, suggesting again that high level

areas have consciousness first [27]. The final line of ev-

idence comes from visual learning research, where it has

been shown that visual tasks that are learned more rapidly

tend to generalize to other similar spatial stimulus condi-

tions, while harder tasks that take a long time to learn tend

not to generalize outside of the specific conditions where

they are learned [12]. Hochstein and Ahissar hypothesize

that learning that has greater generalization occurs in neu-

rons with large receptive fields and thus must be occurring

in higher level areas, and since this generalizable learning

occurs earlier than specific learning, the authors conclude

that learning occurs in higher areas first.

3. Alternative classification strategies

Given a hierarchical image representation, there are sev-

eral alternative ways it can be classified. If each level of

representation is given as a vector, one can concatenate all



(i)

(ii)
Figure 1. (i) A simple feedback system. (ii) The unfolded version

of the same system. Since we are not concerned with the actual

location of the computation we view system (i) and system (ii) as

being equivalent.

of the representations to a single long vector. Another op-

tion is to classify each level separately and then combine the

classification results. Below we will name and describe five

such options. In our experiments we focus on two level hi-

erarchies since modern representations with more than two

levels are rare. It is straight-forward to enumerate more

strategies for hierarchies with three or more levels. Below,

we clarify some of the basic concepts we use.

High level vs. low level Strictly speaking, representa-

tion B will be higher in the hierarchy than representation

A if computing B requires computing A. When processing

takes place information is lost. Hence, it is always the case

that higher levels of hierarchies are less informative than

lower levels. However, these representations are often more

explicit, resulting in a more straightforward classification.

On the other hand, simply concatenating several represen-

tations will always result in no less information than any in-

dividual representation. Yet, it is the ease in which the clas-

sifier can access the relevant information that determines the

overall accuracy, and having many irrelevant variables can

diminish performance.

Feedback In a simple feedforward system, each level of

the hierarchy is used only to produce the next level. Once

level l − 1 produces level l, its role is completed, and it is

never used again. In systems that employ feedback, infor-

mation from higher levels is passed back to lower levels and

the combination of both is then being considered.

An example for a feedback system might be a system

where representation A produces image representation B,

which in turn through some process updates representation

A. Finally, further processing is applied and an output is

produced (see figure 1(i)). In this work we do not consider

the location in which the feedback takes place. Instead we

separate the initial representation (A) from the later repre-

sentation (Ā). Our view of the system would resemble fig-

ure 1(ii): representation A is computed, and representation

B is computed from it. Representation Ā is then computed

from A and from B, more processing is then done to pro-

duce the final system’s output.

We assume that the feedback system and the unfolded

system are equivalent. We describe our systems as unrolled

systems, which resemble feed-forward systems. However,

these system are not simple feed-forward systems (as de-

fined above), and since they can be implemented as feed-

back systems, they can be studied as a model of these.

One can imagine the image representation Ā to be sim-

ilar in nature to A, yet improved by incorporating higher

level information that is available in representation B. For

example, A might contain edge information, and by em-

ploying higher level information that is available in repre-

sentation B, closed contours are being emphasized in Ā. In

a more elaborate example, B is classified (e.g. in a car de-

tection system – to a car or not a car) and the results of this

classification are used to emphasize particular properties in

A (such as the object boundaries in the car example).

We have conducted experiments akin to these two exam-

ples. Unfortunately, the result only demonstrated the diffi-

culties in implementing a robust feedback system. In one

experiment we tried to emphasize elements of the C1 im-

age representation [24] that contribute to long continuous

boundaries as detected by our continuity detector [5]. The

hope was that the modified C1 would have better recogni-

tion capabilities than the original C1. In another experi-

ment, we tried to emphasize the most informative C1 ele-

ments in a car detection task using feedback. For this ex-

periment, we used a boosting classifier on-top of weak clas-

sifiers, each corresponding to a single C1 unit. The units

which contributed positively to the classification were made

larger in value and projected back to the original edge map

(which is called S1 in [24]). Finally, a new C1 represen-

tation was then computed. Both of these experiments pro-

duced disappointing results: the modified C1 did not signif-

icantly outperform the original. Perhaps, with further study

better results could be achieved.

In this paper, we are much more restricted in the kind

of systems we allow. We assume that the modified repre-

sentation Ā is to be delivered to a classifier. Since we do

not know how to properly modify A to create Ā, we build a

classifier directly on top of the inputs that contribute to Ā.

Hence, if Ā is computed based on A and B, instead of clas-

sifying Ā, we train a classifier directly on top of a combina-

tion of A and B. Since our classifiers are limited in power,

and since the number of training examples is not high, such

a solution is not optimal. However, it does bypass the need

to engineer a modified representation explicitly, which is a

task for which our technological capabilities are limited.

Perception Another simplification that we employ is the

equating of perception with classifier-output. Since percep-

tion is computed from the data it is worthwhile discrimi-

nating between processing (going up the representation hi-



(a) basic (b) concatenation (c) feed-forward perception

(d) reverse hierarchy (e) semantic concatination

Figure 2. These figures illustrate alternative hierarchy architectures (this is not a full list). A circle represents an image representations,

a square represents classification, the small full triangle represents the output. For example, A© can refer to the C1 image representation,

while B© can refer to the higher level C2, a square can represent the output (raw distances from hyperplanes) of a 102 one-vs-all linear SVM

classifier trained on the 101 objects (plus background) dataset. (a) Basic feedforward architecture. (b) Concatenation of the layers followed

by a classifier. (c) A feedforward perception architecture in which the perception of the lower level representation is used in combination

with the higher level representation to create the final perception. (d) Our interpretation of the reverse hierarchies [16]. The perception

of the high level features is classified together with the low level features to create the final perception. (e) The semantic concatenation

architecture, in which the final perception is a result of combining the perceptions of all of the previous levels together.

erarchies) and perception. In our terminology, perception

is a type of computation which is learned from the data

and which produces information which is aimed at being

directly indicative of the objects’ identity. In other words,

through training, we expect the perception vector to be very

highly correlated with the label information. In figure 2,

representations are marked as circles, while perceptions are

marked as boxes.

For multiple class data sets, we employ one vs. all archi-

tectures and the perception vector is as large as the number

of classes. Note that we record the raw classifier output (a

real number) rather than a discrete label. This “perception”

can then be combined with other perceptions or with vector

image representations simply by concatenation. For binary

tasks, we create many classifiers, each using only part of

the training data, and use the output of all of these classi-

fiers to create a long perception vector (somewhat similarly

to random forests [7]).

A crucial point is that for some hierarchies we train a

first set of classifiers to generate perceptions and then train

another set of classifiers on top of the output of the first set.

Ideally, we would use one set of training examples to com-

pute the first set of classifiers, and another set of training

examples to compute the second set. In our experiments

we do not use a separate training set for the following rea-

sons: (1) when data are expensive, splitting the training set

is wasteful; (2) Since we try to check if classification of

classifiers’ output is beneficial on a separate test set, the di-

minished performance one gets by using the same training

data twice, can only lead to a more conservative conclusion;

(3) We use classifiers with good generalization ability, lim-

iting the effect of reusing training data.

3.1. Five alternative strategies

Below we present five alternatives strategies for classify-

ing the information in a hierarchical representation. These

alternatives are illustrated in figure 2.

basic (a) The most basic strategy to classify a hierarchical

image representation is to simply classify one of the levels

of the hierarchy. Usually, one would classify the highest

level available [24]. Another alternative is to use the level

in the hierarchy that produces the best results.

concatenation (b) Another simple strategy is to concate-

nate the features from all of the layers into one long vector,

and use this vector for classification. This is the method

used in [5] and it seems to be quite effective.

feedforward perception (c) By feedforward perception

we simply mean that the perception of the low level image

description is used in concert with the raw high-level de-

scription to generate the final classification. An example for

such a system would be a car detection system which em-

ploys edge information along side with edge statistics. The

edge information would be classified to be a car boundary

or not, and this boundary perception would be incorporated

with the edge statistics of a window to generate the final

classification. In our experiments, we compare to a simpli-

fied version where the low level perception are global to the

entire window (not one per pixel). This allows us to make

direct comparisons between different hierarchies, without



biasing the results by searching the large space of parame-

ters which a more engineered solution requires.

reverse hierarchy (d) RHT asserts that higher level rep-

resentations are being perceived before low level ones. The

initial perception is based on the rough high level informa-

tion (or gist). This perception is verified while details are

filled in by a second perception process that takes into ac-

count the initial perception and the low level representation.

In our experiments, we concentrate on classification ac-

curacy, and not on the fine details of recognizing the object

(for example, we do not try to recognize the object’s bound-

aries or the parts of the object). This enables us to establish

common performance measurements between the varying

strategies. The high level feature is being classified to create

a perception vector which is concatenated to the low level

image representation and then classified.

semantic concatenation (e) This strategy is usually re-

ferred to as stacking [32]. Here the perception vectors are

computed for each level of the hierarchy separately, and are

then combined by a simple concatenation. The concate-

nated vector is classified to produce the final output.

This simple strategy resembles voting, but with impor-

tant differences. First, while simple voting cannot take

place between two classifiers, semantic concatenation is

successful in such cases. Second, by our definition of per-

ception, the classifier does not output a label but rather a

real valued number. Similar to some voting techniques, in

the final decision each element of the perception vectors is

weighted differently.

4. Experimental study

We cannot offer a theory that can predict which hierarchy

is the most appropriate for any given task. Similar to other

situations where one has to choose between learning algo-

rithms/parameters, performance measures on a validation

data set might be the prevailing indicator. Below we pro-

vide experimental results on several vision data sets. These

experiments show that the type of hierarchy used may have

a large effect on the resulting accuracy.

In the experiments reported, when combining feature

matrices X1 and X2, we normalize matrix X2 by multiply-

ing it by a constant such that the matrix norms of the kernel

matrices K1 = X⊤

1
X1 and K2 = X⊤

2
X2 are the same.

This way we ensure that their contribution to the final ker-

nel used by the SVM, K = K1 + K2, is the same. Hence,

even if X1 contains 3000 rows, each being a different C2

feature, and X2 contains 102 rows that are the output of one

vs. all classifiers, their contribution would be similar.

4.1. Toy data set – polygon identification

The random process described in figure 3 is used to cre-

ate a data set of polygons with three to ten vertices. The

Method Recognition rate

Edge (a) 32.67 ± 1.1

Distance Map (a) 35.25 ± 1.7

Both concatenated (b) 48.33 ± 1.9

Feedforward perception (c) 39.37 ± 1.5

Reverse hierarchy (d) 34.50 ± 1.6

Semantic concatenation (e) 51.37 ± 1.7

Table 1. Recognition rates in percent for several hierarchical strate-

gies applied to the polygon dataset. The mean and standard-

deviation were computed over 20 independent trials. The distance

map representation is preferable to the edge map. Combining them

provides the best results, but these vary depending on the combi-

nation method. Semantic concatenation (e) does best, followed

by simple concatenation (b). Methods (c) and (d) do not perform

well.

goal is to classify each polygon image by the number of the

vertices each polygon has. Since the vertex location is ran-

dom and the images are decimated down to 28 × 28 pixels,

this is not a simple task to solve using an appearance-based

model. For example, it is hard to distinguish between poly-

gons of 8-10 vertices.

For this experiment, the edge image is used as the low

level feature, and the distance transform is used as the high

level image representation. The edge image was computed

by applying the canny edge detector [9]. The distance trans-

form is computed based on the edge image, and is clearly

higher in the computational hierarchy.

The results are given in table 1. The success rates are

averaged over 20 repeats of random experiments. For each

experiment, 70 random images per class were used for train-

ing (a total of 560 training images) and 130 random images

per class were used for testing.

4.2. The 101 object data set

Here, results are given for the popular 101 classes dataset

[13]. The results reported are the average recognition rate

obtained in 10 independent trials of 15 random training and

50 different random testing images from each object class;

(some classes contained less than 65 images in which case

all the images not used for training were used in the test

set). Using the identical protocol1, where the errors per

class are averaged, Berg reports a performance of 45% on

the non-duplicated dataset [2], and Serre reports an aver-

age performance of 35% using 10, 000 “global” C2 fea-

tures [24]. However, by using the code of [24] combined

with a variance normalization step, we get a performance of

36.86% ± 1.64% using only 3, 000 of the C2 features2.

1In this borrowed protocol there are 102 classes: background is a class

and faces and faces-easy are two separate classes.
2Public code is available at http://cbcl.mit.edu/

software-datasets.



(i) (ii) (iii) (iv) (v)
Figure 3. The process for creating the toy data. (i) A perfect polygon is created with a given number of vertices. It is enclosed inside a

circle of radius 100 pixels and is rotated by a random rotation. (ii) Each vertex is shifted independently by random amount of up to 40

pixels in the x and y directions. (iii) The image is decimated to 28 × 28 pixels. Two image descriptors are then used: (iv) the edge image,

which is computed by using a canny edge detector applied to the decimated image, and (v) the distance transform of the edge image.

Method Recognition rate

C1 (a) 30.93 ± 1.2

C2 (a) 36.86 ± 1.6

Both concatenated (b) 44.18 ± 0.8

Feedforward perception (c) 43.37 ± 1.0

Reverse hierarchy (d) 45.81 ± 1.1

Semantic concatenation (e) 45.16 ± 1.0

Table 2. Percentage recognition rate for the 101 dataset where C1

was used as the low level representation and C2 was used as the

high level one. The results for (b) are given without the matrix

normalization step in order to match the results given in [5]. Nor-

malized results are very similar. (e) and (d) do best followed by

(b) and (c).

To test the performance of the hierarchies on this dataset,

we preformed two sets of experiments. In the first experi-

ment we used their C1 features as the low level representa-

tion, and their C2 features as the high level representation.

As can be seen in table 2 using the right hierarchies signifi-

cantly improves performance.

The second set of experiments also includes the three

novel image representations presented in [5]: Continuity,

Circularity and Parallelism. They are used in concert with

C1 as the low-level of the hierarchy, as we believe such rep-

resentations to exist in the lower visual areas. As the high-

level representation we again use C2. The results (table 3)

show that by combining the strategy of semantic concatena-

tion (e) with these image representations one gets the best

result on the 101 dataset reported so far.

4.3. Street Scene experiments

In this experiment the hierarchy architectures were

tested on 3 binary object detection experiments using the

car, pedestrian, and bicycle objects from the StreetScenes

database [3, 5]. Each database consists of labeled positive

and negative grayscale examples of the class. The results

of these experiments, in terms of the statistics of the ROC

curves produced, are listed in table 4. Specifically, the mean

Method Recognition rate

C1 + Cont + Circ + Par (a) 42.56 ± 1.0

C2 (a) 36.86 ± 1.6

Both concatenated (b) 48.26 ± 0.9

Feedforward perception (c) 50.14 ± 1.2

Reverse hierarchy (d) 46.97 ± 0.9

Semantic concatenation (e) 51.18 ± 1.2

Table 3. Recognition rate in percent for the 101 dataset, where the

low level representation consisted of a combination of C1, Con-

tinuity, Circularity and Parallelism. Semantic concatenation (e)

does best followed by (c). (b) and (d) perform worse.

and standard deviation of the equal error rate and the true

positive rate when the false positive rate is set to 1% are

listed. Independent trials consisted of dividing the data into

one third for testing, and the rest for training.

The first two rows show the result of directly applying

a classifier to the raw representations (i.e., hierarchy a) and

consequently match the results published in [5]. In this case,

as in all others, the classifier used is gentleBoost, a variant

of AdaBoost, which was run to convergence. The concate-

nation architecture (b), in which the two feature vectors are

simply concatenated for each example and then classified,

performed better than either feature mode alone for each

class. In order to build the other three hierarchy types, it was

necessary to build multiple intermediate classifiers, in order

to build a perception vector. In these cases, for each nec-

essary group of classifiers, n such intermediate classifiers

were constructed by training on random subsets of the ex-

amples,a strategy similar to random forests (but without re-

placement). Each subset contained 20% of the training ex-

amples. For the results shown here, n was set arbitrarily to

80, but the results seem to be stable for a wide range of pa-

rameter values. Looking at the results, there does not seem

to be a clear advantage to either forward, (c), or reverse,

(d), hierarchies, but semantic concatination, (e), seems to

consistently perform well.

Another experiment was conducted using the pedestrian



car pedestrian bicycle

Method TP@FP=.01 Eq. err TP@FP=.01 Eq. err TP@FP=.01 Eq. err

C1 Direct. (a) 82.5±4.9 5.4±1.0 32.9±5.9 19.2±2.4 62.5±8.0 8.6±2.9

C2 Direct. (a) 64.1±5.5 7.9±0.9 44.9±5.1 13.5±1.8 49.3±9.7 11.2±2.8

C1+C2 Concatination (b) 85.4±3.6 4.7±1.0 54.2±6.0 12.7±1.5 69.1±7.2 8.2±1.9

Feedforward perception. (c) 87.1±3.8 4.5±1.1 46.6±10.3 13.9±1.9 69.9±8.3 7.4±2.1

Reverse hierarchy. (d) 81.2±5.5 4.8±1.0 60.0±5.3 10.8±1.7 68.7±9.4 7.6±1.8

Semantic concatination (e) 86.1±4.3 4.8±1.1 63.7±7.8 10.0±1.9 73.6±8.3 6.4±2.0

Table 4. Equal error rate and the true positive rate when the false positive rate is set to 1% for several hierarchical strategies applied to the

StreetScenes dataset [5]. The mean and standard-deviation given were computed on 25 independent trails. For each object class, combining

the feature modes in a hierarchal manner improves upon any direct classification strategy.

Method Eq. err AUC

Continuity (a) 9.35 ± 2.1 95.49 ± 1.7

HoG (a) 7.87 ± 1.5 97.02 ± 0.9

Both concatenated (b) 6.59 ± 1.6 97.73 ± 0.8

Feedf. perception (c) 7.33 ± 2.4 97.46 ± 1.1

Reverse hierarchy (d) 6.66 ± 0.9 98.05 ± 0.5

Semantic conc. (e) 6.34 ± 1.4 98.19 ± 0.6

Table 5. Equal error rate and area under the ROC curve in percent

for several hierarchical strategies applied to the polygon dataset.

The mean and standard-deviation given were computed on 20 in-

dependent trails. HoG is better than the baseline representation.

Combining them gives best results. Strategies (b), (d), and (e) give

best results, while (c) does not seem to do better than HoG.

data, but this time with the HoG [10] features as the high

level representation. The edge continuity feature computed

as in [5] was used as the low level information. In 20 inde-

pendent trials, the data were split cleanly into 60% training,

40% testing. Here SVM was used. The results shown in

table 5 suggest that all combination strategies seem better

than the baseline, except for the feed-forward perception.

4.4. Analysis of the results

The general trends in the experiments seem to be that:

(1) classifying a single level of the hierarchy is suboptimal.

(2) using perception when combining multiple levels can

be beneficial. (3) perception, in most of the experiments,

works well when it is applied first to the most discriminative

hierarchical level. Finally, semantic concatenation works

well in the case where the hierarchy levels are similar in

their discriminative power. Below we provide the details of

some sanity checks we performed to verify the results.

Are the results statistically significant? Since the exact

same training and testing splits were used for all of the com-

pared algorithms we could verify that the differences are in-

deed statistically significant. This was done by applying the

paired t-test on the set of performance measures returned

by the algorithms. In the polygon experiment the semantic

concatenation method is significantly better than the others

(p<0.01, corrected for multiple comparisons). In the C1/C2

101 object dataset, reverse hierarchy and semantic concate-

nation are significantly better than the other methods, but

not significantly different (p=0.46). In the experiments of

table 3, semantic concatenation is significantly better than

feedforward perception (p=0.005), and the latter is signifi-

cantly better than all the rest. For the pedestrian experiment,

methods (b) (d) and (e) performed significantly better than

the rest (p<0.01), but were not significantly different.

Could the source of discrepancy be better normaliza-

tion? As mentioned above, we normalized the data such

that contributions from different sources would be similar.

We also performed several experiments examining this nor-

malization. In one experiment we repeated the 101 object

experiment using an AdaBoost classifier, which is less sen-

sitive to normalization issues. The results were much worse,

in the range of 20% to 30%, but the relative performance of

the strategies (a)-(e) remained the same.

In another control experiment we tested concatenation

(b) with different scale factors. We used the polygon

dataset, and scaled the distance map prior to concatenation

with a factor that ranged between 10−5 to 105. None of

these experiment resulted in performance higher than 49%.

Maybe adding a classifier on top of a 1-vs-all representa-

tion improves results? We tested whether taking a set of

features, classifying it with a 1-vs-all classifier to get a vec-

tor of perceptions, and then classifying it again improves

performance. Intuitively, since the basic 1-vs-all strategy is

in the solution space of the two level 1-vs-all, performance

may increase. It turns out that it does not. For example,

for the C2 feature set on the 101 object dataset, it reduces

performance slightly to 36.10% (from 36.86%).

5. Conclusions

Our results are too preliminary to tell whether the strat-

egy of reverse-hierarchies is an effective one for object

recognition. However, our work, which was inspired by

Reverse Hierarchy Theory, has shown that a considerable



performance gain can be achieved by employing less com-

mon classification strategies for visual hierarchies. One im-

plication is that feedback, even in the limited form studied

here, is helpful for object recognition. For the kind of elab-

orate feedback systems thought to be present in the human

visual system, involving attention, object based segmenta-

tion, and possibly verification loops, a performance gain in

a discriminative framework is much harder to demonstrate.
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